Columbo: Expanding Abbreviated Column Names for Tabular Data
Using Large Language Models

Ting Cai, Stephen Sheen, AnHai Doan
University of Wisconsin-Madison
{tcai35, sheen2, ahdoan}@wisc.edu

Abstract

Expanding the abbreviated column names of
tables, such as “esal” to “employee salary”, is
critical for many downstream NLP tasks for
tabular data, such as NL2SQL, table QA, and
keyword search. This problem arises in enter-
prises, domain sciences, government agencies,
and more. In this paper, we make three con-
tributions that significantly advance the state
of the art. First, we show that the synthetic
public data used by prior work has major lim-
itations, and we introduce four new datasets
in enterprise/science domains, with real-world
abbreviations. Second, we show that accuracy
measures used by prior work seriously under-
count correct expansions, and we propose new
synonym-aware measures that capture accuracy
much more accurately. Finally, we develop
Columbo, a powerful LLM-based solution that
exploits context, rules, chain-of-thought rea-
soning, and token-level analysis. Extensive
experiments show that Columbo significantly
outperforms NameGuess, the current most ad-
vanced solution, by 4-29%, over five datasets.
Columbo has been used in production on EDI,
a major data lake for environmental sciences.

1 Introduction

Tabular data is ubiquitous in companies, domain
sciences, government agencies, and others (Zhang
et al., 2023; Hanson, 2025). Using this data well,
however, has been difficult. A major reason is that
the names of the tables and columns are often ab-
breviated, appearing quite cryptic (see Figure 1 and
Appendix A.1). This makes it hard for downstream
NLP tasks to process the tables.

In particular, a recent work (Zhang et al., 2023)
shows that using abbreviated column names sig-
nificantly reduce accuracy for three NLP tasks,
NL2SQL, schema-based relation detection, and
table QA, by 10.54%, 40.5%, and 3.83%, respec-
tively. That work also argues that expanding col-
umn names improves the readability of the tables,

EMPS(eName, eSal, eDTPh, ...)
Ref_Sectors_GICS(GICS_IND_GRP_CD, ...)
19971gNutSExt (Date, canWt, hclWt, corWetWt, ...)

Figure 1: Examples of abbreviated table and column
names in companies and domain sciences.

enables data integration, and improves keyword
search (to discover relevant tables). Another re-
cent work (Luoma and Kumar, 2025) shows that
abbreviated column names significantly reduce the
accuracy of NL2SQL. Our own experience work-
ing with a major data lake (edirepository.org) also
shows that expanding column names improves the
accuracy of keyword search, schema matching (i.e.,
finding columns that are semantically the same),
and column annotation with the concepts in a given
ontology (see “Columbo in Production” in the ex-
periment section).

Thus, table/column name expansion is a core
challenge for the fast growing direction of NLP
tasks for tabular data, and has received growing
attention (Zhang et al., 2023; Luoma and Kumar,
2025; Sawant and Sonawane, 2024; Anonymous,
2025; Singh et al., 2025). The goal is to expand ta-
ble/column names into meaningful English phrases,
such as “eSal” to “Employee Salary”, “eDTPh”
into “Employee Day Time Phone”, “1997IgNut-
SExt” into “1997 Long-term Nutrient Study Ex-
periment”, and so on. Clearly, this can enor-
mously help downstream applications. For exam-
ple, given a user query “employee phone”, a key-
word search application can correctly return the
table “EMPS(eName, eSal, eDTPh, ...)” if it knows
that “eDTPh” means “Employee Day Time Phone”.

As far as we can tell, the most advanced work
for this challenge is NameGuess in EMNLP-2023
by Amazon AWS (Zhang et al., 2023). That work
focuses on column name expansion and frames
it as a natural language generation problem. It
proposes a solution that uses LLMs to obtain 69.3%

24774

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24774-24792
November 4-9, 2025 ©2025 Association for Computational Linguistics

exact-match accuracy (using GPT4), in contrast to
43.4% accuracy obtained by human. NameGuess
has clearly showed the promise of using LLMs to
expand abbreviated column names. But it has three
major limitations, as we discuss below. In this
paper we describe Columbo, which addresses these
limitations and significantly advances the state of
the art.

First, NameGuess experimented with just one
dataset, which is public data from the cities of
San Francisco, Chicago, and Los Angeles (a.k.a.
Open City Data). We show later that LLMs achieve
lower accuracy on enterprise data (coming from
companies) and domain science data. Thus, we
believe that a good benchmark for column name
expansion cannot contain just public data. In this
work we introduce four more datasets that come
from enterprises and domain sciences.

Another problem is that NameGuess syntheti-
cally creates the abbreviated column names, e.g.,
by randomly dropping, shuffling, or replacing char-
acters from English phrases. So many abbreviated
column names in its dataset look “unrealistic”, e.g.,
“r” for “area”, “mmj” for “medical”, and LLMs
struggle to correctly expand such names. Given
that we do not yet have good methods to synthet-
ically create abbreviated column names, we be-
lieve that a good benchmark for column name ex-
pansion should also contain abbreviated column
names that come from real data. The four datasets
introduced in this paper contain column names ab-
breviated by humans. Later we show that LL.Ms
indeed can leverage their vast knowledge about
real-world abbreviation patterns to correctly ex-
pand these names.

The second limitation is that NameGuess com-
putes accuracy in a restricted way. The most im-
portant accuracy measure, exact match, computes
the fraction of columns where the name predicted
by LLMs exactly matches the “gold” name. This
penalizes cases of minor variations, e.g., “geogra-
phy identifier” vs “geographical identifier”, “photo
credit” vs “picture credit”, etc. To solve this, we in-
troduce a new accuracy measure called “synonym-
aware exact match”. We show that this new mea-
sure captures the performance of column name
expansion solutions much more accurately.

The third limitation is that NameGuess uses a
rather basic LLM solution. It simply asks the LLM
to expand the names of the columns (given a few
expansion examples). We have developed a signif-
icantly more powerful solution. Our solution pro-

vides a lot of context information to the LLM, e.g.,
the name of the target table and the topics of similar
tables (we infer these topics using LLMs). We ask
the LLLM to follow a set of rules (that help generate
the correct expansions) and use chain-of-thought
reasoning. Finally, we reason about column name
expansion at the token level, i.e., we translate each
column name into a sequence of tokens, expand
each token into an English phrase, then combine
the phrases to obtain the column name expansion.
Together, these features help our solution signifi-
cantly improve accuracy compared to NameGuess.
In summary, we make the following contributions:

* We show that synthetic public data is not suffi-
cient for evaluating solutions for column name
expansion. We introduce four new non-public
datasets with real-world abbreviated column
names.

* We show that computing accuracy via exact
string matching is problematic. We introduce
a new measure that captures accuracy much
more accurately.

* We develop Columbo, an LLM-based solution
that exploits context, rules, chain-of-thought
reasoning, and token-level analysis.

* We provide extensive experiments that show
that Columbo outperforms NameGuess on all
five datasets, improving the absolute accuracy
by 4-29%, and the relative accuracy by 4-46%.

Columbo has been used in production on EDI, a
major data lake for environmental sciences. We
briefly describe this experience in Section 6. The
code and datasets (except Finance and University,
for which we do not have permission to release)
are available at github.com/anhaidgroup/columbo.

2 Problem Definition

Similar to NameGuess, given a set of tables (e.g.,
those in a data lake), we seek to expand the column
names. Expanding the table names is more com-
plicated, as we discuss in Section 6, and hence is
deferred to future work.

We assume that each column name ¢ can be rep-
resented as a sequence t1d; . . . d,—1t,, Where each
d; is a delimiter (i.e., a special character such as
‘_’, ‘=, the space character, or the empty character)
and each t; is a foken that can be expanded into a
meaningful English phrase e(t;). Phrase e(t;) must
contain all characters of token ¢;, in that order.

24775

For example, column name “eSal” can be tok-
enized into tokens “e” and “Sal”, separated by the
empty-character delimiter. Token “e” expands to
“Employee” and token “Sal” expands to “Salary”.
Other expansion examples are “Rm” — “Room”
and “CD”— “Certificate Deposit”. The expansion
e(c) of column c is then the concatenation of the
expansions of its tokens.

In many application contexts, we cannot access
the data tuples of the tables, for reasons of privacy,
compliance, performance, etc. (Lobo et al., 2023).
So here we consider the input to be just the (abbre-
viated) table names and column names.

NameGuess shows that state-of-the-art hosted
LLMs such as GPT-4 achieves the highest accuracy
for column name expansion (Zhang et al., 2023).
As aresult, here we focus on these LLMs, specifi-
cally on GPT-4o. In future work we will consider
open-source LL.Ms that can be deployed in-house.

3 New Datasets

We now make the case that a good benchmark for
column name expansion cannot contain just public
data with synthetic abbreviations. It must also con-
tain non-public data with real-world abbreviations.
We then introduce four new such datasets.

Specifically, NameGuess uses just one dataset
obtained from the Open Data Portals of San Fran-
cisco, Chicago, and Los Angeles, covering busi-
ness, education, health, etc. To evaluate expansion
solutions, NameGuess needs both abbreviated col-
umn names and the gold (i.e., correct) expansions.
To do this, NameGuess uses heuristic rules to find
column names that are meaningful English phrases.
It abbreviates these names, e.g., by randomly shuf-
fling, dropping, or replacing characters. Finally, it
applies solutions to the abbreviated names to see if
they can recover the original column names.

Our experiments with the NameGuess dataset
revealed two problems. First, we found that LLMs
achieve a much higher accuracy on this dataset
compared to the four enterprise/science datasets
(e.g., 81.5% vs 63.2-73.8% EM accuracy, see Table
3). Prior work has observed the same phenomenon
for other data tasks (Demiralp et al., 2024), pre-
sumably because today LL.Ms have been trained
on a lot more public data than enterprise and sci-
ence data. Put differently, we speculate that the
NameGuess dataset covers popular concepts (e.g.,
transportation, education, etc.) that are ubiquitous
online, whereas the remaining four datasets cover

“rarer” concepts (e.g., specific to a vertical). Thus,
if we want to apply expansion solutions to non-
public data, we cannot rely on experiments with
just public data, as the results can be misleading.

To address this problem, in this paper we use
the five datasets described in Table 1. “NG” is the
NameGuess dataset. “Finance” and “University”
are two datasets obtained from companies, cover-
ing the finance and academic domains. “AW” is a
variation of the AdventureWork dataset released by
Microsoft, and “EDI” is a dataset from the environ-
mental science domain. Appendix A.2 discusses
how we generated these datasets.

The second problem with the NameGuess
dataset is that it is difficult to accurately mimic
human’s abbreviation patterns. Thus, many syn-
thetic abbreviated column names look “unrealis-
tic”, and LLMs struggle to expand these. Table 3
shows that on the NameGuess dataset, LLMs can
only improve EM accuracy from 81.5% to 85.2%.
In contrast, the four new datasets have real-world
column names already abbreviated by their human
creators. Here Table 3 shows that LLMs can exploit
their vast knowledge about real-world abbreviation
patterns to achieve high accuracy, improving EM
accuracies from 63.2-73.8% to 87.6-93.3%. We
conclude that a good benchmark for this problem
should also contain real-world abbreviated column
names, as our four new datasets do.

4 New Accuracy Measures

NameGuess uses three accuracy measures. EM
computes the fraction of columns where the pre-
dicted expansion x exactly matches the gold ex-
pansion g. Word-level I is 2PR/(P + R), where
P is the fraction of tokens in x that occur in g,
and R is the fraction of tokens in g that occur in x.
BERT-score F7 is computed similarly, except that
two tokens are considered equivalent if the cosine
similarity score of their BERT-based embedding
vectors is high (Zhang et al., 2023).

Among these three measures, EM is most intu-
itive, but as defined, it is too restrictive. It regards
cases of minor variations, e.g., “geography loca-
tion” vs “geographical location”, “picture credit”
vs “photo credit”, as not matched. To address
this problem, we examined the five datasets de-
scribed in Section 3, and created synonym pairs,
e.g., “geography” = “geographical”, “picture” =
“photo”. Given a gold expansion g, we use these
synonym pairs to create all gold variations, e.g.,

24776

i Type i # # Columns | # Columns/ | #Columns/ | # Columns/
T yp Tables | Columns with Gold Table (max) | Table (avg) | Table (min)
NG Public 895 9196 8881 69 10.3 1
Finance | Enterprise 23 443 443 138 19.3 2
University | Enterprise 118 1563 1561 146 13.3 1
AW Enterprise | 101 825 824 35 8.2 2
EDI Science 251 3830 3481 258 15.3 2
Table 1: Statistics of the 5 datasets used in our experiments.
Summarizer S Generator Reviser
Table Local Clustering | Summaries Rules E2 Records | Token Classification Final E2
Schema —*| . . ——| Few-shot Demos) o m— i pnds
s Global Clustering CoT Reasoning Rewrite Rule Revision
7
Figure 2: The overall architecture of Columbo.
Without Synonyms | With Synonyms ample, they show 50.6-70.5% EM, whereas the
Ditaew EM | F, |Ber-F, | EM | F, | Bern-R, measures with synonyms show 63.2-81.5% EM.
NG 705 | 836 | 855 | 81.5 888 92.0 Furthermore, the relative ranking of dataset diffi-
- culty as measured by the two EM measures does
Finance | 54.4 | 82,8 78.5 | 73.8 (933 | 88.0) .
—— 633 | %6 change. Consider Finance and AW. Table 2 shows
Umversity | S0:6) 810 328 2 [865) 7.8 that the EM measure with no synonyms ranks Fi-
AW | 647843 859 | 726 883 | 883 nance harder than AW (54.4% vs 64.7%). But the
EDI 525|774 | 685 | 653|852 79.8 synonym-aware EM measure ranks Finance easier

Table 2: NameGuess accuracies without and with syn-
onyms.

creating “geography location” from “geographical
location”. Then we declare that a predicted expan-
sion x matches g if it matches any variation of g.
We call this new measure synonym-aware EM. We
modify word-level F'; and BERT-score F similarly
to be synonym aware.

One may wonder if the BERT-based F} score
captures ideas similar to the synonym-based EM ap-
proach. We found that this is not the case, because
there are many synonyms that are very specific to a
particular vertical. Being trained mostly on public
data, BERT is not aware of such synonyms. Exam-
ples include "time 0" vs "initial", "site" vs "hub",
"log" vs "logarithm", "met" vs "meteorological"
in EDI, "prime" vs "principal" in University, and
"sedol" vs "stock exchange daily official list" in
Finance.

Table 2 shows the accuracies of applying the
NameGuess solution to all five datasets. Clearly,
the accuracy measures without synonyms signifi-
cantly underestimate the true accuracies. For ex-

than AW (73.8% vs 72.6%). For the rest of this pa-
per, we use the synonym-aware accuracy measures.

5 The Columbo Solution

We now describe the Columbo solution, which
improves upon NameGuess. Given a table 7,
NameGuess sends batches of 10 column names
from 7" to the LLM. It provides several examples
of column name expansion, e.g., “c_name”— “cus-
tomer name”, then asks the LLM to expand the
above 10 column names. NameGuess does not
exploit any additional information, e.g., the table
name. In contrast, Columbo exploits the names of
table 71" and related tables, rules, chain-of-thought
reasoning, token-level analysis, and more.
Specifically, the key insight behind Columbo is
that, to solve this problem well, we should use all
available information and reason at a deeper level.
Consequently, we use LLMs because to expand a
column name correctly, we need a lot of domain
knowledge. LLMs have been trained on tons of
data and can be viewed as very large stores of do-
main knowledge. So applying LLMs to this prob-
lem is promising. Second, we observed that when
expanding column names, LLMs keep making sim-
ilar mistakes. This is why we formulate a set of

24777

1 Inputs: Set S of table schemas

2 For each batch of k schemas in S do

3 Use LLM to summarize and cluster schemas

4 Get cluster summaries {(G;, dci)}zl, where

5 -G ={(T}, dtj)}?=1, where dfj is the summary for table T;
6 - dg, 1s the summary for cluster G;
7 For any clusters G; and G; in all clusters do
8 If dg,= de then Merge G; and G; into one cluster

9 For each table T in S do
10 For each batch of p column names in T do

11 Use LLM to generate E2 records for column names

12 Get E2 record (t,r) for each column name c;, where
13 -t = {ty, -, t,,} is a sequence of tokens of ¢;

14 -1 = {tj > €;}}=; are expansion rules for the tokens

15 For each unique token ¢ in all E2 records do

16 If ¢t satisfies filtering rules then

17 Use LLM to decide if ¢ has a unique expansion e

18 If e exists then

19 Apply e to all expansion rules of ¢ in all E2 records
20 Return expanded column names for all tables in S

Figure 3: The pseudo code of Columbo.

general rules (in the prompt) telling LLMs not to
make these mistakes. Third, we observed that there
is a well-known chain-of-thought (CoT) process
that a human typically follows to expand a col-
umn name: first expand each token, then combine
these token-level expansions to obtain the column-
level expansion. This suggests that CoT can be
well matched to this problem. Finally, we perform
token-level analysis by identifying tokens with po-
tentially incorrect expansion rules and fixing those.

Figure 2 describes the Columbo architecture,
which consists of 3 modules: Summarizer, Gen-
erator, and Reviser. We now describe these mod-
ules, then discuss the rationales behind the design
decisions.

The Summarizer: This module creates two
kinds of summaries to be used by subsequent mod-
ules (see Lines 1-8 of the algorithm in Figure 3).
Let S be the set of table schemas for which we
want to expand the column names. We first send
batches of k table schemas from S to the LLM,
and ask it to cluster the £ tables into groups (cur-
rently £ = 30). For each group G, we ask the LLM
to provide a group summary dg, which is a short
English phrase that best summarizes GG, and simi-
larly, for each table 7" in group G, we also ask for
a table summary dr that best summarizes 7.
Appendix A.3 shows the prompt for a sample
batch and the output of the LLM. For example,
it shows that 3 tables BusinessEntity(ModDate,
bID,rID), BusinessEntity Address(ModDate,

alD, aTypelD, bID, rID), BusinessEntityCon-
tact(ModDate, PersonlD, bID, cTypelD, rld)
have been clustered into a group, with group
summary “Business Entity Structure”, and that
Table BusinessEntity(ModDate, bID,rID) has the
summary “Represents a generic business entity
that can be a person, vendor, or customer”.

After processing all tables in S (via batches of
up to k tables), we perform a “global merge” that
merges all groups with the same summary. Thus,
the Summarizer produces a clustering of all input
tables into groups, where each group G has a sum-
mary d, and each table 7" has a summary drp.

The Generator: This module expands the col-
umn names (see Lines 9-14 of the algorithm in
Figure 3). Specifically, for each table 7" (in the set
S), we send batches of p columns of 1" to the LLM,
and ask it to expand the p column names (currently
p = 10). We structure the LLM prompt for each
batch as follows.

First, we provide the context, which
is the name of table T, as well as
the names and table summaries of up to ¢ ta-
bles (randomly sampled) from the same group as
T (currently ¢ = 100).

Second, we specify a set of rules, e.g., “expand
all abbreviations in a column name”, “do not ex-
pand numbers”, “do not add extra words or expla-
nations”, etc.

Finally, unlike NameGuess which just asks the
LLM for the expansion e(c) of a given column
name c, we ask the LLM to provide a chain-
of-thought reasoning that leads to the expansion.
Specifically, we ask the LLM to parse column name
c into a sequence of tokens, then provide the ex-
pansion for each token, then concatenate these ex-
pansions into e(c). We provide a few examples of
such reasoning in the prompt.

Thus, for each
this module

input column name ¢,
produces a sequence of tokens
t1...tn, and expansion rules for the tokens:
t7, - e1,...,tn, — ey. We call this output
the E2 record for column ¢ (where “E2” stands for
“expansion & explanation”). The expansion of c is
then the string e; ... e,. Appendix A.4 shows the
prompt for a sample set of columns and the output
of the LLM.

The Reviser: This module improves upon the
output of the Generator, by identifying tokens with
potentially incorrect expansion rules, then trying

24778

to fix those (see Lines 15-20 of the algorithm in
Figure 3).

Specifically, we first process the E2 records (out-
put by the Generator) to identify the set P of all
tokens that have more than one expansion rule, e.g.,
dt — date and dt — data. Next, for each token
x € P, we ask the LLM if x should have just one
expansion rule, and if so, to identify that rule.

To help the LLM make the above decisions, we
provide it with the summaries of all groups, and all
expansion rules of token x (that we have identified
from the E2 records). For each expansion rule of
x, we also provide its frequency (i.e., the number
of column names in which that expansion rule is
used), and a sample table schema in which that
expansion rule is used.

We optimize the above process by using a set of
rules to decide which tokens in P to send to the
LLM. For example, if a token x € P has too few
characters (currently set to 1), then we do not send
x to the LLM, because it is likely that has more
than one correct expansion, e.g., ¢ — employee
and e — electronic.

Suppose the LLM has identified a set @) of pairs
(z, e), where token x should always be expanded
into e. Then we use) to modify the E2 records
(produced by the Generator). The Reviser outputs
the modified E2 records as final records, and the
expansions of the column names can be quickly
obtained from these E2 records. Appendix A.5
shows the prompt for a sample token and the output
of the LLM.

Discussion: We now discuss the rationales be-
hind the major design decisions. Consider the Gen-
erator. This module asks the LLM to perform chain-
of-thought reasoning in which it translates the col-
umn name into a sequence of tokens, then finds
the expansion of each token. We found that this
improves the LLM’s accuracy. Further, this gives
us the tokens and their expansion rules, which en-
able token-level analysis, such as the one carried
out by the Reviser. We also found that just supply-
ing examples of column name expansion was not
enough. LLMs were still prone to producing incor-
rect output, e.g., adding extra words, explanations,
changing word orders, etc. Adding rules asking the
LLM not to do so helps improve accuracy (see the
experiments).

Intuitively, providing context can help expand
column names. For example, the LLM may in-
correctly expand column RUSS_CD to “Russian

Columbo NameGuess
EM | F; |Bert-F; | EM | F; | Bert-Fy
NG 85.2 |91.9| 945 | 81.5 | 88.8| 92.0
Finance | 87.6 |96.9| 956 | 73.8 |93.3| 88.0
University | 92.2 |98.2| 974 | 632|863 | 773
AW 93.3 (976 98.2 | 726 | 883 | 883
EDI 90.7 |953| 936 | 653 |852| 798

Datasets

Table 3: The accuracy of Columbo vs. NameGuess

Code”. But being told this column is in Table RUS-
SELL_INDEX, it can correctly expand the column
to “Russell Code”. So we provide the LLM with
the name of the target table T'. We also cluster
all the input tables so that we can find the tables
related to T, and provide a subset of these tables
to the LLM, as additional context. To provide this
subset of tables, we can just send their schemas to
the LLM. But it turns out that many of these tables
can have a large number of columns (e.g., 200+),
making their schemas too large. This is why in the
Summarizer we ask the LLM to provide for each
table a short table summary. Then instead of send-
ing the full table schema, we just send the (shorter)
table name and summary.

Now consider the Reviser. If we can provide
the LLM with information about the entire dataset,
i.e., the entire set of table schemas S, it can more
accurately decide if a token x has just one expan-
sion in S (e.g., RUSS should always be expanded
to “Russell”). But sending all table schemas in S
to the LLM is impractical. So in the Summarizer
we ask the LLM to provide a short group summary
for each group of tables, then send the LLM just
the summaries of all groups.

6 Experiments

We now evaluate Columbo, using the five datasets
described in Table 1 (see Section 3). We con-
ducted all experiments using GPT-40, version gpt-
40-2024-08-06, with temperature 0, max comple-
tion tokens 6000, and default values for all other
parameters.

Overall Performance: Table 3 compares
Columbo with NameGuess, the state-of-the-art
solution, using the three synonym-aware accuracy
measures described in Section 4. In what follows
we focus on the EM accuracy measure, as it is
most intuitive. First, the table shows that Columbo
significantly outperforms NameGuess on all five

24779

Datasets |Columbo| —co | =t | —r |—cot| —to
NG 852 |83.7|856(84.2|84.8|86.9
Finance 8§7.6 |88.5|83.1|85.3 |88.0|87.1
University| 922 |76.6|83.5| 82.7 [89.2| 80.7
AW 93.3 |90.4[83.1[854(91.0|93.5
EDI 90.7 |89.8[89.4(63.6 (904|903

Table 4: Ablation studies for Columbo.

datasets, improving the absolute EM accuracy by
4-29% and the relative EM accuracy by 4-46%.

Second, NameGuess achieves lower EM accu-
racies on the enterprise (Finance, University, AW)
and science (EDI) datasets, compared to the public
(NG) dataset: 63.2-73.8% vs 81.5%. This suggests
that LLMs perform worse on non-public data (prior
work (Demiralp et al., 2024) has reached the same
conclusion).

Finally, Columbo is able to improve the EM ac-
curacy of NameGuess on the non-public datasets
by a large amount, from 63.2-73.8% to 87.6-93.3%,
but it “struggles” to improve the EM accuracy of
NameGuess on the public dataset NG, from 81.5%
to just 85.2%. We believe this is because many
column names in NG look “unrealistic”, as they
are synthetically abbreviated (as we discussed in
Section 4). So the LLM fails to expand many such
columns, resulting in a small EM improvement.
Overall, the results in Table 3 suggests that a good
benchmark for column name expansion should con-
tain non-public data with real-world abbreviated
column names.

Ablation Studies: We now evaluate the major
components of Columbo. Table 4 shows the EM
accuracies of Columbo (the 2nd column) and the
five Columbo versions in which we remove a major
component. (Appendix A.6 shows the full result
which also contains the remaining two accuracy
measures.)

First we modify Columbo to not exploit any con-
text information, i.e., removing the Summarizer
and disabling using the table and group summaries
in the Generator and Reviser. The EM accuracies
of this Columbo version are reported in Column
“-co” in Table 4.

Second, we modify Columbo to not exploit table
names. Specifically, we need table names in the
Summarizer to create the summaries, so we keep
the Summarizer as is. But we remove all mentions
of table names in the Generator and Reviser, us-

Datasets | ColumboNG | Columbo | EM-diffl | NameGuess | EM-diff2
NG 83.9 85.2 1.3 81.5 24
Finance 84.4 87.6 32 73.8 10.6
University 69.3 922 229 63.2 6.1
AW 73.1 93.3 20.2 72.6 0.5
EDI 87.1 90.7 3.6 653 21.8

Table 5: Exact Match accuracy of ColumboNG vs.
NameGuess

ing only table summaries where appropriate. The
results are in Column “-t”.

Third, we remove all nine rules used in the Gen-
erator (see Column “-r”’). Fourth, we modify the
Generator to not use chain-of-thought reasoning.
The results are in Column “-cot”. Finally, we re-
move the token-level analysis by disabling the Re-
viser, and report the results in Column “-to”.

Table 4 shows that disabling a component typi-
cally leads to a drop in accuracy, sometimes by a lot,
as highlighted in blue in the table, e.g., 92.2% of
Columbo vs 76.6% of “-co” on University, 90.7%
of Columbo vs 63.6% of “-r” on EDI. Occasion-
ally the accuracy increases, as highlighted in red in
the table. But this increase is minimal, from 0.2-
1.7%. Thus, the results suggest that the components
contribute meaningfully to the overall accuracy of
Columbo.

We also examined the case where Columbo uses
exactly the same input information as NameGuess.
To do so, we develop ColumboNG, by removing
the table clustering step and token revision step
of Columbo, as well as the contextual informa-
tion in the prompt of the name expansion step. So
ColumboNG only has access to the column names
(like NameGuess), but it still uses rules, chain-of-
thought reasoning, and in-context learning.

Table 5 shows the results (only for the EM ac-
curacy, for space reasons). The table shows that
compared to the original Columbo, ColumboNG re-
duces the EM accuracy by 1.3-22.9% (see Column
“EM-diff1”). This is as expected. It suggests that
exploiting new information (e.g., the target table
names, the names of other tables, etc.) does help
improve accuracy, in some cases significantly.

But interestingly, even though exploiting the ex-
act same information as NameGuess, ColumboNG
still improves accuracy, by 0.5-21.8% (see Column
“EM-diff2”). This suggests that the innovations
introduced by ColumboNG, such as rules, using
chain-of-thought reasoning, and in-context learn-
ing, do help improve accuracy, in some cases sig-
nificantly.

24780

—NG Finance —University —AW —EDI
95 95 _ .
= —— ﬁ_—?—ﬁ:
= 85 85
75 75
20 30 40 5 10 15
Number of Columns

Batch Size
(a)

Figure 4: Accuracy of Columbo as we vary the batch
size k and the number of columns p.

Sensitivity Analysis: Finally, we examine how
Columbo’s accuracy changes as we vary the major
parameters. Recall that the Summarizer clusters
the tables in batches (of size k). We want to know
how the order in which the tables are processed
impacts the accuracy. So we ran Columbo 3 times,
using the original default table order, and 2 more
orders in which we randomly shuffled the tables.
The results show that the EM accuracy changes
minimally across the three runs, by 0.44-3.58%.
See the full results in Table 14 in Appendix A.7.

Next, we vary k, the number of tables that the
Summarizer clusters in a single batch, from 20 to
40 (the default value for k is 30). Figure 4.a shows
that the EM accuracy for all five datasets fluctuates,
but in a small range. Finally, we vary p, the number
of columns that the Generator processes in a single
batch, from 5 to 15 (the default value is 10). Figure
4.b shows that the EM accuracy fluctuates but again
within a small range. We conclude that Columbo is
robust to small changes in the values of the major
parameters.

Columbo in Production: We briefly describe
how the EDI team has used Columbo in production
on edirepository.org. EDI is an online data lake
where research groups in environmental sciences
submit their data, for other groups to use. EDI has
87K data packages containing 18K tables. To help
researchers find desired tables on EDI, the EDI
team has been trying to assign the concepts from
ESCO, a large ontology that covers environmental
domains, to the columns of the 18K tables.

To date, the EDI team has done such assignments
manually, and progress is slow. In April 2025 they
enlisted our help, asking us to assign ESCO con-
cepts to 36K columns. We frame this problem as
a string matching problem, in which given a table
A of 2K concept names in ESCO and a table B of
36K column names, find all pairs (z € A,y € B)
that match.

This problem is challenging because the column

names are often abbreviated and cryptic. Applying
standard string matching solutions (including using
embedding vectors) to this problem produced very
low accuracy (less than 30% on a labeled dataset).
So we applied Columbo to expand all 36K column
names, before applying standard ML-based string
matching solutions, achieving 83% accuracy on
the labeled dataset. The EDI team examined and
judged the results “immensely helpful”. They have
now incorporated Columbo as a part of their as-
signment workflow. That is, they use Columbo to
expand column names of the new tables, use our
ML-based matcher to match these column names
with ontology concepts, then manually examine the
results returned by the matcher to confirm, reject,
or modify the assignments.

This experience, while anecdotal, suggests that
expanding column names is critical for downstream
tasks, such as assigning ontology concepts, and that
Columbo is already sufficiently accurate to be use-
ful in production of some real-world applications.

Table Name Expansion: Finally, while this pa-
per focuses on column names, we have con-
ducted preliminary experiments with expanding ta-
ble names, on 3 datasets: Finance, University, and
EDI. Asking the LLM to expand the table names,
given the abbreviated column names, produces EM
accuracy of 91.3, 98.31, 61.7%, respectively. Sur-
prisingly, giving the LLM the expanded column
names does not notably improve the EM accuracy,
achieving 91.3, 96.6, and 64.5%, respectively.

We then examined EDI, where the EM accuracy
is lowest, and asked the LLM to expand the ta-
ble names, given the gold column names. Also
surprisingly, this improves the EM accuracy by
only 0.7%. We found that the EDI table names
often use phrases that are not present in the column
names, e.g., for table “EVRT1980_TILLER”, to-
ken “EVRT” does not appear in any column name,
and for table “2006_JD_SnowShrub”, token “JD”
is the name of the data uploader and does not ap-
pear in any column name.

The above result suggests that expanding table
names may require additional information, such
as from textual table descriptions. As a result, we
defer this problem to future research.

7 Related Work

Abbreviation Expansion: This task has been
studied extensively. Many earlier approaches for-
mulate it as a classification problem, i.e., choos-

24781

ing the most likely expansion from a predefined
candidate set based on surrounding text (Roark
and Sproat, 2014; Gorman et al., 2021; Ammar
etal., 2011; Pouran Ben Veyseh et al., 2020). Other
lines of research expand abbreviations in specific
domains like informal text (Gorman et al., 2021)
and SMS messages (Cai et al., 2022). (Du et al.,
2019) expand prefix-abbreviations in biomedical
text. These works differ from ours as they often rely
on different types of context (e.g., free-form text)
or target different abbreviation styles than those
found in tables.

The work most closely related to ours is
NameGuess (Zhang et al., 2023), which specif-
ically expand abbreviated column names in ta-
bles. NameGuess introduced a benchmark dataset
(based on synthetic abbreviations) and showed
the potential of LLMs, even outperforming fine-
tuned models with one-shot prompting. How-
ever, NameGuess relies on the column names
themselves, without incorporating table names or
broader schema context, and their evaluation was
limited to a single public dataset. Another rele-
vant study (Luoma and Kumar, 2025) also inves-
tigates abbreviated column names but focuses on
identifying the level of abbreviation and analyzing
its impact on downstream tasks like natural lan-
guage queries, rather than proposing an expansion
method. Our work leverages richer schema context
and more sophisticated LLM prompting techniques
for improved expansion accuracy. Finally, the work
(Anonymous, 2025) follows up on (Zhang et al.,
2023) and focuses on generating more realistic ab-
breviations from English phrases.

Table Understanding and Enrichment: Ex-
panding abbreviated column names is a specific
instance of the broader goal of enriching table meta-
data to enhance data understanding (Fang et al.,
2024), discovery (Freire et al., 2025), and usabil-
ity for downstream tasks. Table-to-text (Zhao
et al., 2023b,a; Kasner et al., 2023; Yang et al.,
2022; Gong et al., 2019) and table question answer-
ing (Pal et al., 2023; Xie et al., 2022; Herzig et al.,
2020) aim at developing models able to understand
structured tabular data and natural language ques-
tions to perform reasoning and tasks across tables.

A significant body of work (Deng et al., 2022;
Feuer et al., 2024; Hulsebos et al., 2019; Suhara
et al., 2021; Zhang et al., 2020; He et al., 2021;
Hulsebos et al., 2023) focuses on inferring the
semantic type of data within table columns (e.g.,

tagging columns as ’zip code’, *address’, ’date’).
While related, semantic type detection differs fun-
damentally from our task; it is typically framed
as a classification problem (assigning a type from
a predefined ontology) based on column values,
whereas we focus on generating a natural language
expansion based on the abbreviated column name
and schema context.

LLMs have also been employed to generate nat-
ural language descriptions for tables (Gong et al.,
2020; Zhang et al., 2025; Gao and Luo, 2025;
Anonymous, 2024; Han et al., 2025) or individual
columns (Wretblad et al., 2024). These descrip-
tions provide valuable semantic context but do not
directly address the problem of resolving cryptic
abbreviations within column names themselves.

Other related tasks involve matching schemas
across different tables or mapping table columns
to concepts in external knowledge graphs or on-
tologies, often leveraging LLMs for their semantic
understanding capabilities (Lobo et al., 2023; Yang
et al., 2025; Vandemoortele et al., 2024).

8 Conclusion

Expanding the abbreviated column names for tabu-
lar data is critical for many downstream NLP tasks.
In this paper we have significantly advanced the
state of the art for this problem. First, we showed
that synthetic public data used by prior work is not
sufficient for experiments, and we introduced four
new datasets in enterprise/science domains, with
real-world abbreviations. Second, we showed that
accuracy measures used by prior work undercount
correct expansions, and we proposed new synonym-
aware measures that capture accuracy much more
accurately. Finally, we developed Columbo, a pow-
erful LLM-based solution, and described exten-
sive experiments, which show that Columbo out-
performs prior work by 4-29% accuracy on five
datasets.

For future work we will explore improving
Columbo, exploiting data tuples where available,
using in-house LL.Ms, and developing solutions to
expand abbreviated table names.

Acknowledgments: We thank Suresh Bathini
and Guarav Pathak for their assistance with this
paper; Paul Hanson, Colin Smith, Corinna Gries,
Mark Tervo, and Minh Phan for helping us with
EDI; and the anonymous reviewers for their insight-
ful comments. This paper is supported by NSF
grant I1S-2504787 and a grant from Google Inc.

24782

9 Limitations

A limitation of our work is that so far we only
consider using table names and column names as
the input to expand column names. In real-world
datasets, tables could contain additional metadata
and data tuples may be available that could provide
useful context. Furthermore, some datasets include
taxonomic information, which could enhance our
summarization and local clustering process. We
focus on table and column names because they are
typically the most essential and consistently avail-
able metadata across datasets. Moreover, domain-
specific abbreviations are also common and can aid
in column name expansion. A potential improve-
ment is to incorporate domain knowledge into the
prompting process to enable more accurate expan-
sion of such abbreviations.

References

Waleed Ammar, Kareem Darwish, Ali El Kahki, and
Khaled Hafez. 2011. Ice-tea: in-context expansion
and translation of english abbreviations. In Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics, pages 41-54. Springer.

Anonymous. 2024. Tabmeta: Table metadata genera-
tion with LLM-curated dataset and LLM-judges. In
Submitted to ACL Rolling Review - June 2024. Under
review.

Anonymous. 2025. Realistic training data generation
and rule enhanced decoding in LLM for nameguess.
In Submitted to ACL Rolling Review - December
2024. Under review.

Shanqing Cai, Subhashini Venugopalan, Katrin
Tomanek, Ajit Narayanan, Meredith Morris, and
Michael Brenner. 2022. Context-aware abbrevia-
tion expansion using large language models. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1261-1275, Seattle, United States. Association for
Computational Linguistics.

Cagatay Demiralp, Fabian Wenz, Peter Baile Chen, Moe
Kayali, Nesime Tatbul, and Michael Stonebraker.
2024. Making llms work for enterprise data tasks.
CoRR, abs/2407.20256.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and
Cong Yu. 2022. TURL: table understanding through
representation learning. SIGMOD Rec., 51(1):33-40.

Xiaokun Du, Rongbo Zhu, Yanhong Li, and Ashiq An-
jum. 2019. Language model-based automatic prefix
abbreviation expansion method for biomedical big

data analysis. Future Generation Computer Systems,
98:238-251.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego Socol-
insky, Srinivasan Sengamedu, and Christos Faloutsos.
2024. Large language models (Ilms) on tabular data:
Prediction, generation, and understanding—a survey.
arXiv preprint arXiv:2402.17944.

Benjamin Feuer, Yurong Liu, Chinmay Hegde, and Ju-
liana Freire. 2024. Archetype: A novel framework
for open-source column type annotation using large
language models. Proc. VLDB Endow., 17(9):2279-
2292.

Juliana Freire, Grace Fan, Benjamin Feuer, Christos
Koutras, Yurong Liu, Eduardo Pefia, Aécio S. R. San-
tos, Claudio T. Silva, and Eden Wu. 2025. Large
language models for data discovery and integration:
Challenges and opportunities. IEEE Data Eng. Bull.,
49(1):3-31.

Yingqi Gao and Zhiling Luo. 2025. Automatic database

description generation for text-to-sql. arXiv preprint
arXiv:2502.20657.

Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu.
2019. Table-to-text generation with effective hier-
archical encoder on three dimensions (row, column
and time). In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3143-3152, Hong Kong, China. Association for Com-
putational Linguistics.

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing
Qin, Wei Bi, Xiaojiang Liu, and Ting Liu. 2020.
TableGPT: Few-shot table-to-text generation with
table structure reconstruction and content matching.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 1978—1988,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Kyle Gorman, Christo Kirov, Brian Roark, and Richard
Sproat. 2021. Structured abbreviation expansion in
context. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 995-1005,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Donghee Han, Seungjae Lim, Daeyoung Roh, Sangryul
Kim, Sehyun Kim, and Mun Yong Yi. 2025. Leverag-
ing llm-generated schema descriptions for unanswer-
able question detection in clinical data. In Proceed-
ings of the 31st International Conference on Compu-
tational Linguistics, pages 10594—-10601.

Paul Hanson. 2025. Environmental Data Initiative.
[link].

Yeye He, Jie Song, Yue Wang, Surajit Chaudhuri, Vishal
Anil, Blake Lassiter, Yaron Goland, and Gaurav Mal-
hotra. 2021. Auto-tag: Tagging-data-by-example in
data lakes.

24783

https://openreview.net/forum?id=NXYVm3AjG2
https://openreview.net/forum?id=NXYVm3AjG2
https://openreview.net/forum?id=p9HwzYjFLe
https://openreview.net/forum?id=p9HwzYjFLe
https://doi.org/10.18653/v1/2022.naacl-main.91
https://doi.org/10.18653/v1/2022.naacl-main.91
https://doi.org/10.48550/ARXIV.2407.20256
https://doi.org/10.1145/3542700.3542709
https://doi.org/10.1145/3542700.3542709
https://www.vldb.org/pvldb/vol17/p2279-freire.pdf
https://www.vldb.org/pvldb/vol17/p2279-freire.pdf
https://www.vldb.org/pvldb/vol17/p2279-freire.pdf
http://sites.computer.org/debull/A25mar/p3.pdf
http://sites.computer.org/debull/A25mar/p3.pdf
http://sites.computer.org/debull/A25mar/p3.pdf
https://doi.org/10.18653/v1/D19-1310
https://doi.org/10.18653/v1/D19-1310
https://doi.org/10.18653/v1/D19-1310
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2021.findings-emnlp.85
https://doi.org/10.18653/v1/2021.findings-emnlp.85
https://edirepository.org/
https://arxiv.org/abs/2112.06049
https://arxiv.org/abs/2112.06049

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320-4333, Online. Association for Computa-
tional Linguistics.

Madelon Hulsebos, Paul Groth, and Cagatay Demiralp.
2023. Adatyper: Adaptive semantic column type
detection.

Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker,
Emanuel Zgraggen, Arvind Satyanarayan, Tim
Kraska, Cagatay Demiralp, and César A. Hidalgo.
2019. Sherlock: A deep learning approach to seman-
tic data type detection. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD 2019, pages
1500-1508. ACM.

Zdenck Kasner, Ekaterina Garanina, Ondrej Platek, and
Ondrej Dusek. 2023. TabGenie: A toolkit for table-
to-text generation. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 3: System Demonstrations), pages
444-455, Toronto, Canada. Association for Compu-
tational Linguistics.

Elita Lobo, Oktie Hassanzadeh, Nhan Pham, Nandana
Mihindukulasooriya, Dharmashankar Subramanian,
and Horst Samulowitz. 2023. Matching table meta-
data with business glossaries using large language
models. arXiv preprint arXiv:2309.11506.

Kyle Luoma and Arun Kumar. 2025. Snails: Schema
naming assessments for improved llm-based sql in-
ference. Proc. ACM Manag. Data, 3(1).

Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and
Maarten de Rijke. 2023. MultiTabQA: Generating
tabular answers for multi-table question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6322—6334, Toronto, Canada.
Association for Computational Linguistics.

Amir Pouran Ben Veyseh, Franck Dernoncourt,
Quan Hung Tran, and Thien Huu Nguyen. 2020.
What does this acronym mean? introducing a new
dataset for acronym identification and disambigua-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3285—
3301, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Brian Roark and Richard Sproat. 2014. Hippocratic
abbreviation expansion. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 364—
369.

Pradnya Sawant and Kavita Sonawane. 2024. Nlp-based
smart decision making for business and academics.
Natural Language Processing Journal, 8:100090.

Mayank Singh, Abhijeet Kumar, Sasidhar Donaparthi,
and Gayatri Karambelkar. 2025. Leveraging re-
trieval augmented generative llms for automated
metadata description generation to enhance data cata-
logs. arXiv preprint arXiv:2503.09003.

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang,
Cagatay Demiralp, Chen Chen, and Wang-Chiew Tan.
2021. Annotating columns with pre-trained language
models. CoRR, abs/2104.01785.

Nathan Vandemoortele, Bram Steenwinckel,
SV Hoecke, and Femke Ongenae. 2024. Scal-
able table-to-knowledge graph matching from
metadata using llms.

Niklas Wretblad, Oskar Holmstrom, Erik Larsson, Axel
Wiksiter, Oscar Soderlund, Hjalmar Ohman, Ture
Pontén, Martin Forsberg, Martin Sérme, and Fredrik
Heintz. 2024. Synthetic sql column descriptions
and their impact on text-to-sql performance. arXiv
preprint arXiv:2408.04691.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, and 4 others. 2022. Unified-
SKG: Unifying and multi-tasking structured knowl-
edge grounding with text-to-text language models.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 602—
631, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Duo Yang, Ioannis Dasoulas, and Anastasia Dimou.
2025. Matching table metadata to knowledge graphs:
A data augmentation perspective. In ELLIS workshop
on Representation Learning and Generative Models
for Structured Data.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 528-537,
Dublin, Ireland. Association for Computational Lin-
guistics.

Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon
Hulsebos, Cagatay Demiralp, and Wang-Chiew Tan.
2020. Sato: Contextual semantic type detection in
tables. Proc. VLDB Endow., 13(11):1835-1848.

Haoxiang Zhang, Yurong Liu, Aécio Santos, Juliana
Freire, and 1 others. 2025. Autoddg: Automated
dataset description generation using large language
models. arXiv preprint arXiv:2502.01050.

Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srini-
vasan, Shen Wang, Huzefa Rangwala, and George
Karypis. 2023. NameGuess: Column name expan-
sion for tabular data. In Proceedings of the 2023

24784

https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.48550/ARXIV.2311.13806
https://doi.org/10.48550/ARXIV.2311.13806
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.18653/v1/2023.acl-demo.42
https://doi.org/10.18653/v1/2023.acl-demo.42
https://doi.org/10.1145/3709727
https://doi.org/10.1145/3709727
https://doi.org/10.1145/3709727
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/2020.coling-main.292
https://arxiv.org/abs/2104.01785
https://arxiv.org/abs/2104.01785
https://doi.org/10.18653/v1/2022.emnlp-main.39
https://doi.org/10.18653/v1/2022.emnlp-main.39
https://doi.org/10.18653/v1/2022.emnlp-main.39
https://openreview.net/forum?id=nvT5b9rvzf
https://openreview.net/forum?id=nvT5b9rvzf
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.820
https://doi.org/10.18653/v1/2023.emnlp-main.820

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1327613290, Singapore.
Association for Computational Linguistics.

Yilun Zhao, Zhenting Qi, Linyong Nan, Boyu Mi, Yixin
Liu, Weijin Zou, SIMENG HAN, RUIZHE CHEN,
Xiangru Tang, Yumo Xu, Dragomir Radev, and Ar-
man Cohan. 2023a. QTSumm: Query-focused sum-
marization over tabular data. In The 2023 Conference
on Empirical Methods in Natural Language Process-

ing.
Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan,
Xiangru Tang, and Arman Cohan. 2023b. Investi-
gating table-to-text generation capabilities of large
language models in real-world information seeking
scenarios. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing:
Industry Track, pages 160-175.

A Appendix

A.1 Sample Column Names & Gold
Expansions

Figures 5-6 show sample column names and gold
expansions for the datasets AW and EDI, respec-
tively.

A.2 Creating the Datasets

We now describe how the datasets for our experi-
ments were created.

NameGuess (NG): This dataset is provided
by (Zhang et al., 2023). It comes from the tables
provided by government data portals (San Fran-
cisco, Los Angeles, and Chicago). Upon using the
original gold expansions provided by the authors,
we manually curated some of the gold expansions
where the original gold expansion did not match
the abbreviated column names. For example, if
the original abbreviated column is ‘b_stop’, but the
gold expansion is ‘bus stop only’, we will remove
‘only’ and use ‘bus stop’ as the gold expansion.

Finance & University: They are two proprietary
customer datasets from companies in the finance
and university domains, they natively include table
names, abbreviated column names, and detailed
column descriptions, which we used to manually
derive the gold expansions.

Environmental Data Initiative (EDI): This
dataset comes from the (Hanson, 2025) platform, a
repository rich in ecological data, containing over
18,000 tables from 27 US ecological sites. We ran-
domly sampled 251 tables from the EDI platform,
and used the extensive provided metadata (project

details, table/column descriptions) to manually cre-
ate gold expansions for the originally abbreviated
column names.

Adventure Works (AW): This dataset is based
on the Adventure Works sample database, represen-
tative of common enterprise schemas. Its original
schema contains full-form names. But in a separate
project the participants have manually abbreviated
the column names using the table context. We
manually reviewed these human-generated abbre-
viations and verified or corrected gold expansions.

Across all datasets, there were instances where
determining a definitive gold expansion with high
confidence was impossible due to ambiguity or
insufficient metadata. For example, in the EDI
dataset, there are column names ‘x’ and ‘y’ and
no definition is provided. In such cases we cannot
determine the gold expansion for these columns.
As another example, in the EDI dataset, in the ‘d-
lcr23x-cr1000.daily.ml.data’ table, there is a col-
umn named ‘airtemp_hmpl_max’, however there
is no definition of the token ‘hmp’ and we cannot
find other information about the token ‘hmp’ in
other entries of the project metadata. Moreover,
LLM may generate various possible expansions for
this token and we cannot determine which one is
correct as we are not domain experts.

Such columns were excluded from the calcula-
tion of evaluation metrics. However, they were
retained as part of the input schemas provided to
the models, as they still contribute valuable con-
textual information about the table’s structure and
domain.

A.3 Sample LLM Prompt and Output for the
Summarizer

Figure 7 shows a sample prompt to the LLM to
ask it to cluster 10 given tables. Figure 8 shows a
sample output from GPT-4o for the above prompt.

A4 Sample LLM Prompt and Output for the
Generator

Figure 9 shows a sample prompt to the LLM to ask
it to expand 4 column names from a table. Simi-
lar prompts are used by the Generator (but asking
the LLM to expand 10 column names). Figure 10
shows a sample output from the LLM for the above
prompt.

24785

https://openreview.net/forum?id=ubXaboYnzN
https://openreview.net/forum?id=ubXaboYnzN

Column Name Gold Exp
Date date
FactCCAutRSPs fact call center automatic

responses

IFactCCAvgTimePerlssue

fact call center average time
per issue

(a) Table name: Address

Column Name |Gold Expansion [FactCCCalls fact call center calls
IACity address city FactCCDateKey fact call center date key
. B FactCCID fact call center identifier
AID ress identifier
address fie tifie FactCClssuesRaised fact call center issues raised
AL1 address line 1 FactCCLvIOneOps fact call center level one
AL2 address line 2 operators
. . FactCCLvITwoOps fact call center level two
ARGuid gddre.ss row globally unique operators
identifier [FactCCOrders fact call center orders
CDate changed date [FactCCShift fact call center shift
SID state identifier [FactCCTotOps fact call center total operators
. - IFactCCWageType fact call center wage type
leCOde Z1p code SGrade service grade

Column Name |Gold Expansion

Empld employee identifier

ODate order date

POHFrght purchase order header freight

[POHMdate purchase order header
modified date

POHShipDate purchase order header ship date

POHStatus purchase order header status

[POHSubTt1 purchase order header sub total

POHTaxAmt purchase order header tax
amount

PurchOrdrID |purchase order identifier

RvNumber revision number

Shipld ship identifier

TDue total due

VID vendor identifier

(b) Table name: FactCallCenter

(c) Table name: PurchaseOrderHeader

Figure 5: Sample column names and gold expansions for the AW dataset.

Column Name |Gold Expansion

LTER site Long-Term Ecological
Research Site

Local_site Local Site

Jday Julian day

Year Year

Airtemp max |Air temperature maximum

Rh_max Relative humidity maximum

Bp_min Barometric pressure minimum

Flag bp_min |Flag barometric pressure
minimum

Flag ws max [Flag wind speed maximum

wd Wind direction

Solrad_avg Solar radiation average
Soiltemp_S5cm_ (Soil temperature 5 centimeters
avg average

(a) Table name: d-1cr23x-

¢cr1000.daily.ml.data

Column Name |Gold Expansion
Release ID Release identifier
Column Name |Gold Expansion Water_temp C |Water temperature
Region region celsius
SITE_ID Site identifier STRBAS Striped bass
TOTBIO Total biovolume AMESHA American shad
BIOV biovolume CHACAT Ch?.nnel catfish
SOLTYP Soil type CHISAL Chinook salmon
SACPIK Sacramento
TP Total phosphorus o
pikeninnow
DRY dry SACSUC Sacramento sucker
AFDM Ash free dry mass BLACRA Black crappie
ORG organic COMCAR Common carp
CHLA Chlorophyll A BLUGIL bluegill
CHLCON Chlorophyll A WHICAT White catfish
Concentration SMABAS Smallmouth bass
(b) Table name: ST_PP_Lahee_002 (c) Table name:

EDI_ASB_SampleDay_122723

Figure 6: Sample column names and gold expansions for the EDI dataset.

A.5 Sample LLM Prompt and Output for the

Reviser

Figure 11 shows a sample prompt to the LLM ask-
ing if a given token has a unique expansion. Similar
prompts are used by the Reviser. Figure 12 shows
a sample output by GPT-40 that determines that the
given token does not have a unique expansion.

A.6 Ablation Studies

Figure 13 shows the full result of the ablation stud-
ies, as we examine the effect of five major compo-

nents of Columbo.

A.7 Sensitivity Analysis

Figure 14 shows the full result of the sensitivity
analysis with respect to the ordering of tables for

the Summarizer.

24786

//Below are 10 table schemas that we ask LLM to cluster

Given the following abbreviated table schemas from the same dataset:
AwBuildVersion ['DbVersion', 'ModDate', 'SysInformationID', 'VerDate']
Address ['ACity', 'AID', 'AL1', 'AL2', 'ARGuid', 'CDate', 'SID', 'ZipCode’]
AddressType ['ATChangeDate', 'ATRGuid', 'ATypeID', 'Type’l
AdventureWorksDWBuildVersion ['DBVers', 'VerDate’]

Bill0fMaterials ['Bid', 'BomLvl', 'ModDate', 'PAssemblyQt', 'PassemblyId', 'cId', 'eDate’,
'sDate', 'uMCode’]

BusinessEntity ['ModDate', 'bId', 'rId’]

BusinessEntityAddress ['ModDate', 'aId', 'aTypeId', 'bId', 'rId’]
BusinessEntityContact ['ModDate', 'Personld', 'bId', 'cTypeld', 'rId’]
ContactType ['CTypelD', 'ContactName', 'ContactTypeMDate’]

CountryRegion ['CRCode', 'CRMdate', 'CRName’]

Your job is to:

1. Determine the overall context and domain of the dataset based on column names and
structures.
2. Explain how you identified the context and grouped the tables together. Group them into
categories based on their function or thematic role.
3. For each table, write a clear and concise topic that summarizes the purpose of the table
(not a direct name expansion). a. These topics should help explain what kind of data is in each
table and how it's used.
4. At the end, output the grouped table topics, a JSON object where:

i. Each key is a group topic

ii. Each value is a dictionary where keys are table names and values are table topics.

Figure 7: A sample prompt to the LLM to ask it to cluster 10 tables from the AW dataset. Similar prompts are used
by the Summarizer (but sending 30 tables to the LLM).

24787

Based on the structure and naming of the columns and tables, here's the
analysis:

1. Overall Context and Domain

The dataset belongs to the AdventureWorks Data Warehouse, a well-known

sample database from Microsoft. The domain is Enterprise Resource

Planning (ERP) and Customer Relationship Management (CRM) for a

manufacturing or retail company. It contains data on addresses,

business entities, products, materials, contacts, and metadata
related to system builds.

. How Context and Groupings Were Identified

Naming conventions such as “AW”, “DW”, “Entity”, “Contact”,

“BuildVersion” indicate metadata and system tracking.

« Entity relationships are inferred from shared ID fields (e.g., bId,
ald, aTypeIld), showing how tables relate via business entities or
address IDs.

» Table roles (e.g., master data vs. transactional or reference data)
are inferred by the type of columns they have.

. ?qf:@xed IDs (Id, Code, Typeld) denote keys and foreign keys used for

inking.

- Date fields hint at versioning, modification, or validity of records.

//Below are 5 groups output by the LLM

3. Table Topics

System Metadata

» AWBuildVersion: Tracks the version and modification date of the
AdventurewWorks database build.

+ AdventureWorksDWBuildVersion: Contains version information for the
AdventureWorks Data Warehouse environment.

Geographic and Address Data

+ Address: Stores full physical address details used for customers,

employees, and business locations.

AddressType: Defines the type of an address (e.g., billing, shipping)

with metadata and change tracking.

+ CountryRegion: Provides a list of countries or regions used for
address normalization and geographic grouping.

Business Entity Structure

+ BusinessEntity: Represents a generic business entity that can be a
person, vendor, or customer.

+ BusinessEntityAddress: Links business entities to physical addresses
with a specific address type.

» BusinessEntityContact: Connects business entities to contacts and
contact types (like roles or responsibilities).

Reference and Lookup

- ContactType: Lists types of contacts (e.g., decision-maker, buyer)
for categorizing contact records.

Product and Manufacturing

- BillOfMaterials: Defines component relationships in manufacturing,
showing how parts are assembled into products.

//Below is the same output but in JSON format

4. Grouped Table Topics (JSON Object)

{ "System Metadata":

{ "AwBuildVersion": "Tracks the version and modification date of
the AdventureWorks database build.",
"AdventureWorksDWBuildVersion": "Contains version information
for the AdventureWorks Data
Warehouse environment." },

L8]

//3 more groups omitted for readability
"Product and Manufacturing":
{ "Bill0fMaterials": "Defines component relationships in
manufacturing, showing how parts are
assembled into products." }

Figure 8: A sample output by GTP-40, in response to the prompt in Figure 7. Note how the LLM groups the 10
input tables into 5 groups, with 2, 3, 3, 1, 1 tables in each group, respectively. The first group has the summary
“System Metadata” and has 2 tables. The second group has the summary “Geographic and Address Data” and has 3
tables, and so on. Note also that the LLM produces for each table a short summary.

24788

//Below are the names and summaries of some related tables

Given a list of table schemas in the same dataset:

[['AwWBuildVersion', 'Metadata tracking for build versions of the source
system'], ['AdventureWorksDWBuildVersion', 'Data warehouse versioning
and deployment date tracking'], ['DatabaselLog', 'Historical log of
database-level operations for auditing and debugging']]

Your task is to expand abbreviated column names into full-form English
phrases.

You should return the tokens of each column name and their associated
expansions.

First reason step by step and then return your final answer.

//Below are the rules we ask the LLM to follow

Follow the guidelines below when you expand:

1. Expand all abbreviations in the column names.

2. Expand chemical symbols and units of measure to their full names.

3. Do not expand or mutate numbers.

4. Do not add extra words or explanations.

5. Maintain the original order of tokens in the expansion.

6. If the column name is already in full-form English words, return the

column name.
7. The tokens should be as concise and simple as possible.

8. Only provide 1 expansion for each token, even if you are uncertain,
output the most possible one.

Do not put ambiguous or need context after your expansion.

9, If the token is not abbreviated, the expansion should be itself, do
not paraphrase or add other words around it.

//Below are examples of CoT reasoning for the LLM

[Question]

As abbreviations of column names from a table named Prchs_info, c_name
| pCd | dt stand for? Think step by step

[Answer]
Reasoning
1. xkIdentify the table name context:skx
— The table is named #*x"Prchs_info"#%, which likely stands for
*«x"Purchase Information"sx.

- This suggests that the column names are related to purchase
details.

2. *kBreak down each column name into tokens and infer meanings: s
— %kC_namekxk - "¢, “name’
- "¢’ 1is commonly used for sxkCustomersk in business contexts.
— “name" clearly refers to xkNamexx.
— Together, “c_name’ most likely means xxCustomer Namexx.

— xxpCd*xx -» "p°, 'Cd’
- 'p° is frequently used for **¥Product** in sales or inventory
tables.
- 'Cd’ is a common abbreviation for #kCodexx.
- Together, “pCd’ most likely means #kProduct Codexxk.

— wkdtxk - “dt”
- 'dt’ is a standard abbreviation for *xDatesx.

- In the context of a purchase table, it likely refers to
*kPurchase Dateskk.

Final Answer

c_name: ¢ - Customer, name - Name

pCd: p - Product, Cd - Code

dt: dt - Date

//3 more examples omitted for readability.

//Below are the columns for which we ask LLM for expansion.
//Note that we are also supplying the table name

[Question]

As abbreviations of column names from a table named AWBuildVersion,
SysInformationID | DbVersion | VerDate | ModDate stand for

[Answer]

Figure 9: A sample prompt to the LLM to ask it to expand 4 column names of a table. Similar prompts are used by
the Generator, but asking to expand up to 10 column names. Note how we provide the names and summaries of
some related tables, the rules, examples of CoT reasoning. Then we finally provide the 4 abbreviated column names
(and the table name) in the last three lines of the prompt, and ask the LLM to expand those column names.

24789

Reasoning
1. sxkIdentify the table name context:xx
- The table is named #x"AWBuildVersion's*, which is related to *x'Metadata
tracking for build versions of the source system'.

- This suggests that the column names are related to system and version
information.

2. *xBreak down each column name into tokens and infer meanings:*x
- #kSysInformationID#* - “Sys™, “Information™, “ID’
- "Sys" stands for #xSystemkk.
- "Information® is already in full form.
- 'ID' stands for sxIdentifiersx.
- Together, “SysInformationID™ means **System Information Identifierxx.

- xkDbVersionxx - "Db", “Version®
- 'Db" stands for sxDatabasex*.
- "Version® is already in full form.
- Together, “DbVersion® means **Database Version#.

- *xxVerDatexx » “Ver®, ‘Date’
- “Ver® stands for skVersions#k.
- 'Date’ is already in full form.
- Together, ‘VerDate' means ##Version Datesek.

- sModDatex*x - "Mod™, “Date’
- "Mod" stands for sxxModifiedsx.
- 'Date’ is already in full form.
- Together, “ModDate' means #*xModified Datexx.

Final Answer

SysInformationID: Sys -+ System, Information - Information, ID - Identifier
DbVersion: Db - Database, Version - Version

VerDate: Ver - Version, Date -+ Date

ModDate: Mod - Modified, Date - Date

Figure 10: A sample output from GPT-40 that provides the E2 records for the 4 column names mentioned in the
prompt of the previous figure.

//Below is the summaries of all groups of tables
The tables from the dataset are clustered into different groups. The
topics of all groups are:
['Vegetation & Biomass Monitoring’,
'Seed, Cone & Reproduction Studies’,
[..omitted for readability..]
'Biogeochemical Fluxes']

Now, there are ambiguous tokens from each column name. They are
ambiguous because LLM expands them into different expansions. For
example:

//Below we ask if this token has an unique expansion

ambiguous token: cond

//Below are the current expansion rules and their frequencies

possible expansion and count: ['condition', 10]

//Below are one sample table schema for each expansion rule

here is a sample table schema having this expansion:
mp_tallgrass_25years.csv ['animal_id', 'sex', 'reprod_cond',
'weight', 'recapture', 'trapping_session']

possible expansion and count: ['conductance', 12]

here is a sample table schema having this expansion:
MEL_Toolik_Tussock_Pfertilized.csv ['canopy fraction', 'VPD', 'Avail.
Water fraction', 'P bal Apatite weathering', 'P bal P04
precipitation', 'P bal Non-occl weathrng', 'P bal occld weathering',
'P bal non-occld stablz', 'soil potential', 'canopy cond max']

Based on the context of the whole dataset, does this token appear to be
a commonly used special token in this dataset or just a random
abbreviation whose meaning may vary in different tables? If it is a
common token, what is the most possible expansion of this token?
Understand the whole dataset first and reason. Justify your answer.
At the end, after '### Final Answer': output your answer for this
ambiguous token in the format of token: answer, the answer is either
the most possible expansion of this token or 'vary based on context".

Figure 11: A sample prompt asking the LLM if the token “cond” has a unique expansion.

24790

To determine whether the ambiguous token "cond" is a commonly used
special token with a consistent meaning or a context-dependent
abbreviation, we must consider the context of the dataset as a whole,
the nature of the table topics, and the examples provided.

Step 1: Understand the Dataset Scope

The dataset spans a broad range of environmental and ecological
monitoring themes, including:

+ Vegetation and biomass studies

* Soil, water, and atmospheric chemistry

+ Climate and weather data

+ Biodiversity monitoring (plants, animals, microbes)

* Aquatic systems and hydrology

+ Animal and faunal trapping

* Remote sensing and physiological traits

This strongly suggests a multi-disciplinary environmental science
dataset involving both biotic and abiotic factors, field
measurements, and sensor data.

Step 2: Analyze Token Usage
We are given two sample expansions for the token cond:

1.'condition' (10 counts)
Example schema:
[*animal_id', 'sex', 'reprod_cond', ‘weight', 'recapture',
"trapping_session']
Interpretation:
In this context, reprod_cond likely refers to reproductive condition
— a biological trait in animal studies.

2.'conductance' (12 counts)
Example schema:
[‘ca?opy fraction', 'VPD', 'Avail. Water fraction', ..., 'canopy cond
max'
Interpretation:
Here, canopy cond max likely refers to canopy conductance maximum, a
physiological or hydrological parameter related to water or gas flux.
Step 3: Dataset Context Alignment
We now evaluate how these two expansions align with the dataset themes:

» 'Conductance' is a key measurement in plant physiology, soil
hydrology, and gas flux studies.
It fits well under:

+ Remote Sensing & Photosynthesis Modeling
* Ecophysiological Plant Traits
+ Gas, Hydrology & Water Chemistry
« Atmospheric & Climate Flux
+ Soil Temperature & Moisture Monitoring
» '"Condition' (especially reproductive condition or health condition)

is important in faunal monitoring and ecological health assessments.
It aligns with:

+ Wildlife Monitoring (Rodent Trapping)
+ Fish Monitoring & Trapping
+ Faunal Monitoring and Tagging
« Nesting and Reproduction in Birds
Thus, both interpretations are valid in their respective subdomains,
and neither dominates in importance across all dataset topics.

Furthermore, the counts are close (1@ vs. 12), suggesting no strong
bias in favor of one meaning.

Step 4: Semantic Ambiguity

Given the diversity of domains in the dataset and the fact that the
same token expands to different meanings based on context, this
suggests "cond" is not a consistent, domain-specific shorthand, but
rather a context-sensitive abbreviation.

Final Answer:
+ token: vary based on context

Figure 12: A sample output from GPT-4o0 stating that token “cond” does not have a unique expansion rule (see the
last line of the sample output.

24791

Columbo Columbo - Context
Datasets
EM Fy Bert-F; | EM Fy Bert-F;
NG 852 |91.9| 945 | 837 |905| 93.1
Finance | 87.6 |96.9| 956 | 885 (969| 954
University | 92.2 [982| 97.4 | 76.6 |91.9| 88.0
AW 933 |976| 982 |904 953 | 96.0
EDI 90.7 |953| 93.6 | 898|946 924

(a) The ablation study where Columbo does not exploit

contexts.
Columbo Columbo - Rules

Datasets
EM | F; |Bert-F; | EM | F; | Bert-F;
NG 85.2 |91.9| 945 | 842 |91.1| 925
Finance | 87.6 |96.9| 956 | 853 (959| 945
University | 92.2 [98.2| 97.4 | 827|964 946
AW 933 [976| 982 | 854|952 94.0
EDI 90.7 |953| 936 |63.6 808 76.8

(c) The ablation study where Columbo does not exploit

Columbo Columbo — Table Name
Datasets
EM F Bert-F; | EM Fy Bert-Fy
NG 85.2 | 91.9 | 945 | 85.6 | 91.7 94.4
Finance | 87.6 | 96.9 | 95.6 | 83.1 | 96.0 94.4
University | 92.2 | 982 | 974 | 83.5 | 954 93.3
AW 93,3 | 976 | 98.2 | 83.1 | 935 95.7
EDI 90.7 | 953 | 93.6 | 89.4 | 948 929

(b) The ablation study where Columbo does not exploit

table names.

Columbo Columbo - CoT

Datasets
EM | F, |Bert-F, | EM | F, | Bert-F;
NG 852 [91.9| 945 | 85.0 |91.1| 936
Finance | 87.6 |96.9| 95.6 | 88.0 |96.5| 95.0
University | 92.2 |98.2| 97.4 |89.2]97.0| 96.0
AW 933 [97.6] 982 | 91.0 |96.5| 96.5
EDI 90.7 |95.3| 93.6 |90.4 (951 93.6

(d) The ablation study where Columbo does not exploit

rules. CoT reasoning.
Columbo Columbo - Token Analysis
Datasets
EM | F |Bet-F,| EM F Bert-F,

NG 852 | 91.9 | 945 86.9 92.1 94.5

Finance | 87.6 | 96.9 | 956 | 87.1 96.8 95.5

University | 92.2 | 98.2 | 97.4 | 807 94.8 922

AW 933 | 976 | 982 93.5 97.6 98.2

EDI 90.7 | 953 | 93.6 | 903 95.0 93.6

(e) The ablation study where Columbo does not exploit
token-level analysis.
Figure 13: The Ablation studies of Columbo
Columbo Columbo Shuffled 1 Columbo Shuffled 2
Datasets
EM 3 BERTScore-F; EM F BERTScore-Fy EM F BERTScore-F,

NG 85.16 91.88 94.50 85.60 91.82 94.30 85.56 91.10 94.08
Finance 87.58 96.92 95.55 88.71 97.28 95.82 88.04 97.09 95.96
University 92.18 98.16 97.36 88.60 96.64 95.59 88.60 96.95 95.86
EDI 90.69 95.27 93.61 88.97 94.35 92.66 89.54 94.75 93.25
AW 93.33 97.56 98.20 91.26 96.89 97.94 92.96 97.33 98.09

Figure 14: The accuracy of Columbo as we try three different orderings of the tables, for the Summarizer.

24792

