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Abstract

Recent works improving LLM math reasoning
with synthetic data have used unique setups,
making comparison of data synthesis strate-
gies impractical. This leaves many unanswered
questions about the roles of different factors in
the synthetic data pipeline, such as the impact
of filtering low-quality problems. To address
this gap, we introduce FLAMES, a Framework
for LLM Assessment of Math rEasoning Data
Synthesis, and perform a systematic study of
10 existing data synthesis strategies and multi-
ple other factors impacting the performance of
synthetic math reasoning data. Our FLAMES
experiments provide several valuable insights
about the optimal balance of difficulty and di-
versity of synthetic data. First, data agents de-
signed to increase problem complexity lead
to best improvements on most math metrics.
Second, with a fixed data generation budget,
keeping higher problem coverage is more im-
portant than keeping only problems with reli-
able solutions. Third, GSM8K- and MATH-
based synthetic data can lead to improvements
on competition-level benchmarks, showcasing
easy-to-hard generalization. Leveraging in-
sights from our FLAMES experiments, we de-
sign two novel data synthesis strategies for im-
proving out-of-domain generalization and ro-
bustness. Further, we develop the FLAMES
dataset, an effective blend of our novel and
existing data synthesis strategies, outperform-
ing public datasets on OlympiadBench (+15.7),
CollegeMath (+4.5), GSMPlus (+6.5), and
MATH (+3.1). Fine-tuning Qwen2.5-Math-7B
on the FLAMES dataset achieves 81.4% on
MATH, surpassing larger Llama3 405B, GPT-
40 and Claude 3.5 Sonnet.

1 Introduction

Solving math problems is a key measure of evalu-
ating the reasoning ability of large language mod-
els (LLMs) (Wei et al., 2022; Cobbe et al., 2021;
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Figure 1: MATH benchmark scores for popular LLMs.
Qwen2.5-Math-7B + X (FLAMES or OrcaMath) de-
notes results obtained by finetuning Qwen2.5-Math-7B
model with X dataset. Comparison of FLAMES data
with other public Math datasets is shown in Tables 3, 4.

Hendrycks et al., 2021). Due to the challenges of
creating a large-scale human-crafted dataset, LLM-
based generation of synthetic data has been ex-
plored and proven effective in improving LLM
math reasoning capabilities (Yu et al., 2023a;
Huang et al., 2024a; Ding et al., 2024). While early
works on math reasoning data synthesis focused on
synthesis of solutions (reasoning traces) for exist-
ing problems, e.g. rejection sampling (Tong et al.,
2024), recent works have shifted focus towards in-
creasing problem difficulty and diversity by synthe-
sizing new problems. Recent works such as Orca-
Math (Mitra et al., 2024), MetaMath (Yu et al.,
2023a), and OpenMath-Instruct-2 (Toshniwal et al.,
2024a) have proposed one or more strategies' for
generating new math problems. However, these
works often use different setups (see Figure 2),
making the comparison of data synthesis strategies
across studies infeasible. This lack of standard-
ization deprives researchers and practitioners of
practical insights, leaving them uninformed about
the real factors driving performance improvements

'Data synthesis strategies often use one or multiple LLM
calls and are commonly referred to as data agents. We use the
terms strategies and agents interchangeably in this paper.
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Figure 2: Landscape of recent math data synthesis
works. Each work uses non standardized setups, such as
different synthesis models, student models, and quality
control, making comparison across works impractical.
Detailed version is shown in Appendix Figure 5
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Figure 2 summarizes setups of four popular math
reasoning data synthesis works in terms of four
experimental factors, highlighting the lack of stan-
dardization. As different problem synthesis models
and student models have been used in the OrcaMath
and ScaleQuest papers, for example, it is infeasible
to conclude whether Suggester-Editor (Mitra et al.,
2024) is a better data synthesis strategy or ques-
tion fine-tuning (QFT) (Ding et al., 2024). This
lack of standardization poses several important re-
search questions about math reasoning data syn-
thesis, which are currently under-studied. RQ1:
How do different strategies of data quality control
affect the performance of synthetic data, and what
strategy works the best? RQ2: Which data syn-
thesis strategy performs optimally for improving
student model math reasoning? RQ3: With a fixed
compute budget for synthetic problem generation,
should we mix data from multiple strategies or just
scale the best strategy? RQ4: How does the choice
of problem and solution generation models impact
performance with math synthetic data?

To study these open research questions, we pro-
pose the Framework for LLM Assessment of Math
rEasoning with Data Synthesis (FLAMES). Figure
3 shows a flow diagram of the FLAMES frame-
work. In this framework, we create a compre-
hensive list of the factors that may impact perfor-
mance within the synthetic data pipeline, and we
choose fixed values for them based on existing liter-
ature and our experimental findings. The FLAMES
framework enables controlled experiments where
we vary only one factor, keeping other factors fixed.
We perform a controlled study of ten existing data
synthesis strategies, six data quality control strate-

gies, two problem generation models, and two solu-
tion generation models. These experiments provide
many valuable insights into data synthesis for LLM
math reasoning. First, we find that data agents de-
signed to increase problem complexity lead to best
improvements on most math metrics. Second, with
a fixed data generation budget, keeping higher cov-
erage of synthetic problems (even with some inac-
curacy) is more important than keeping only prob-
lems with reliable solutions. Third, synthetic data
generated based on GSM8K and MATH can lead
to improvements on competition-level benchmarks,
showcasing easy-to-hard generalization capability.
Fourth, choice of solution generation model im-
pacts student model performance more than choice
of problem generation model.

Leveraging the findings from our study of ex-
isting data synthesis strategies (Table 2), we iden-
tify out-of-domain (OOD) reasoning > and robust-
ness to distracting information * as two weaknesses
in existing data synthesis strategies. We design
novel agents, Taxonomy-Based Key Concepts
and Distraction Insertion, for addressing these
weaknesses. We demonstrate with the FLAMES
framework that the data generated using these two
agents leads to superior performance gains on rele-
vant OOD and distraction benchmarks.

Further, we study the impact of mixing data
from different agents, and design an effective blend
of agent data. We show empirically that this
blend (FLAMES Small) leads to balanced perfor-
mance across five evaluation datasets, with perfor-
mance surpassing all ten existing agents on OOD
and competition-level benchmarks. We scale this
blend to construct the FLAMES Large (1M) and
FLAMES XL (1.5M) datasets. Our experiments
across five student models (Table 4), show that
FLAMES Large leads to better performance than
any existing public math dataset. With FLAMES
XL, we observe drastic improvements over all pub-
lic datasets across OlympiadBench (+12.8), GSM-
plus (+4.9), CollegeMath (+5.8) and Math (+1.3).
Fine-tuning Qwen2.5-Math-Base on the FLAMES
Large dataset leads to 81.4% Math, surpassing
larger Llama3 405B, GPT-40 and Claude 3.5 Son-
net (see Figure 1). These performance gains can be
attributed to 1) findings from our FLAMES frame-
work experiments on problem quality control, data
agents, and teacher models, 2) our two novel data

2All ten agents lead to CollegeMath scores less than 41.0.
3At least 13 points difference between performance on
GSMSK and GSMplus-Distraction for all ten agents.
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Figure 3: Overview of the FLAMES framework, showing fine-grained components of the Math data synthesis
pipeline. Components for which we run controlled experiments are shown in bold font.

agents leading to improved performance on OOD
and robustness metrics, and 3) our effective blend
of data agents leading to balanced performance
across all evaluation datasets.

In summary, our paper makes four contributions.
1. We propose the FLAMES framework for con-
trolled study of multiple factors involved in the
math synthetic data pipeline. This enables system-
atic comparison of existing and future math data
agents.

2. We leverage the FLAMES framework to per-
form analysis of 12 data agents, 6 data quality con-
trol strategies, 2 problem generation and 2 solution
generation models. Our experiments provide valu-
able insights for researchers working on improving
LLM math reasoning with synthetic data.

3. We design 2 novel data synthesis agents, and
empirically establish that they lead to enhanced
robustness and out-of-domain improvements com-
pared to existing data agents.

4. We develop the FLAMES dataset, consisting
of an effective blend of our 2 novel agents and 2
strong existing data agents, showing drastic im-
provements over existing public math datasets.

2 The FLAMES Framework

Figure 3 shows a flow diagram of the FLAMES
framework. There are multiple factors that play key
roles in final student model performance after fine-
tuning with synthetic data. As part of the FLAMES
framework, we list these factors and provide their
standard values based on either controlled experi-
ments or existing literature. We highlight the fac-
tors for which we perform controlled experiments
in Figure 3, and discuss those briefly in this sec-

tion. We refer readers to Appendix A for a detailed
discussion of these factors.

Problem Synthesis Agents: Math data synthe-
sis agents interact with one or more seed prob-
lems and a problem generation model to synthesize
novel math problems. These data agents play a cru-
cial role in the synthetic math data pipeline, and are
the focus of many recent works (Ding et al., 2024;
Yu et al., 2023a; Mitra et al., 2024). In our work,
we use the train splits from the popular GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021) data for seed problems. We discuss details
of 10 existing and 2 novel data agents in Section 3.

Quality Control: All problems generated in the
FLAMES framework are first deduplicated using
exact match. We remove any synthetic problem if
there is a high amount of token overlap between
the synthetic problem and a test set problem. We
study additional data quality control techniques in
Section 4.

Student Model: Choice of student model plays
a crucial role for studying LLM math reasoning im-
provements with synthetic data. DeepSeek-Math-
7B (Shao et al., 2024) is a relatively-performant
non-instruction-tuned base model, and is com-
monly used for measuring LLM math reasoning
with synthetic data (Ding et al., 2024; Huang et al.,
2024a). We use this model as the underlying stu-
dent model for the FLAMES framework.

Problem Synthesis Model: To generate prob-
lems, data agents interact with Qwen2.5-32B-
Instruct (Yang et al., 2024b), which is chosen based
on a controlled experiment (see Section 5.5).

Solution Synthesis: An LLM acts as a solution
generation teacher model providing solutions for
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synthetic problems. Qwen2.5-Math-7B-Instruct
(Yang et al., 2024b) has been shown to offer a good
blend of performance and speed, scoring 95.2 and
83.6 on GSM8K and MATH, respectively. We use
Qwen?2.5-Math-7B-Instruct as the solution synthe-
sis model in the FLAMES framework. We compare
alternative models in Section 5.5.

Evaluation of Student Models: We evaluate
fine-tuned student models on 5 datasets across 4
categories. For in-domain evaluation, we use the
GSMSK (1,319 samples) (Cobbe et al., 2021) and
the MATHSK test sets (5,000) (Hendrycks et al.,
2021). These datasets are considered in-domain as
their training datasets are used as seed problems
for synthetic problem generation. To evaluate fine-
tuned models on an out-of-domain set of problems
which are similar in grade-level to the seed prob-
lems (MATH and GSM8K), we use the College-
Math test set (2,818) 4, which contains exercises
sourced from university-level textbooks across sev-
eral math subjects. For robustness evaluation, we
use GSMPlus dataset (Li et al., 2024), an adver-
sarial grade school math dataset which includes
GSMBS8K questions subject to numerical variation,
arithmetic variation, and paraphrasing. We exclude
the critical thinking portion for easy evaluation and
separately report metrics for the distraction inser-
tion subset. To evaluate competition-level reason-

ing, we use OlympiadBench > (675), which con-
tains competition math problems covering difficult
topics such as combinatorics and number theory.

Training Details: We do full-parameter fine-
tuning on Amazon EC2 P4 instances® using Deep-
speed Zero3 (Rajbhandari et al., 2020) for dis-
tributed training across 8 A100 GPUs. We train
using a batch size of 4 for 5 epochs, saving 10
checkpoints. We implement SFT using the SWIFT
library (Zhao et al., 2024), using default hyperpa-
rameters.

3 Data Synthesis Agents

We select 10 existing problem generation agents
based on recent works in math data synthesis.
Based on the primary objective of these agents,
we categorize them as belonging to one of four
categories: 1) In-domain practice, 2) In-domain

*https://huggingface.co/datasets/qq8933/
College_Math_Test

5https://huggingface.co/datasets/realtreetune/
olympiadbench

6https://aws.amazon.com/ec2/instance—types/
p4/

complexity enhancing, 3) Robustness enhancing,
and 4) Out-of-domain enhancing. Additionally,
based on experimental findings detailed in Section
5.2, we propose two novel agents under the cate-
gories of robustness enhancing and out-of-domain
enhancing. We briefly describe these 12 agents
here, and refer readers to Appendix C for details.

3.1 Existing Agents

In-Domain Practice agents are designed to in-
crease the quantity of in-domain data available for
model training. We implement the Few-Shot agent
(Toshniwal et al., 2024a) and the Paraphrasing
agent (Yu et al., 2023a), along with the Key Con-
cepts and Seeded Key Concepts agents (Huang
et al., 2024a).

In-Domain Complexity Enhancing agents aim
to increase complexity of existing math word prob-
lems (Mitra et al., 2024; Liu et al., 2024b; Luo
et al., 2023). We implement the Suggester-Editor
agent (Mitra et al., 2024) and the Iterative Ques-
tion Composing (IQC) agent (Liu et al., 2024b).

Robustness Enhancing agents aim to alter ex-
isting problems to increase the robustness of
the student model’s reasoning process. These
agents include the Ask Me Anything agent (Mitra
et al., 2024), the Self-Verification agent (Yu et al.,
2023a), and the FOBAR agent (Yu et al., 2023a).

Out-of-Domain Enhancing agents are not di-
rectly seeded with in-domain problems. We im-
plement the Question Fine-Tuning (QFT) agent
(Ding et al., 2024) for this category.

3.2 Novel Agents

We propose the novel Taxonomy-Based Key Con-
cepts and Distraction Insertion agents, targeting
out-of-domain generalization and robustness to dis-
traction, respectively.

The Taxonomy-Based Key Concepts agent
performs a two step generation of synthetic prob-
lems based on a novel curated taxonomy of math
subjects. The first step generates a list of key con-
cepts relevant to a given math subject, followed
by the second step of generating novel problems
based on each key concept. We curate our math
taxonomy by combining taxonomies from a variety
of sources (Huang et al., 2024a; Liu et al., 2024c;
Huang et al., 2024b; Didolkar et al., 2024). This
agent can be considered an out-of-domain enhanc-
ing agent, as it uses no seed problems, unlike other
key concepts agents (Huang et al., 2024a).
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The Distraction Insertion agent inserts distract-
ing information into an existing problem, without
changing problem-relevant information. This agent
is designed to improve reasoning performance in
the presence of adversarial distracting information,
which needs to be ignored for solving the problem.

See Figure 4 for examples and Appendix C.2 for
the location of relevant prompts.

4 Data Quality Control

A challenge for LLM-based math problem synthe-
sis is in controlling the quality of synthetic data,
i.e. the removal of unsolvable or ill-formatted prob-
lems and incorrect solutions. Existing works for
math data synthesis primarily rely on proprietary
models like GPT-4 for problem and solution gen-
eration and assume that generated data is of good
quality. Consequently, the impact of data quality
control for math synthetic data has been an under-
studied problem. Our work is the first to study this
factor in a principled way and provide insights on
what works best for math synthetic data.

Recent work (Ding et al., 2024) has introduced
the use of an LLM-based solvability filter to re-
move ill-formatted or unsolvable problems and a
reward model (InternLM2-7B-Reward) to select
the preferred solution. Self-consistency (Wang
et al., 2023) is another viable alternative for en-
suring problem and answer quality, where multiple
(three in our case) solutions are generated for a
problem with temperature sampling and only those
problems are kept where at least a pre-determined
number of the solutions lead to the same answer.

We use these to design six data filter-
ing strategies for our experiments. In
Strict Self-Consistency, only problems with
a matching answer in all 3 solutions are
kept and one solution is randomly selected.
Majority Self-Consistency (or Majority) keeps
problems where at least 2 solutions contain
matching answers, and one of those solutions is
randomly selected. Solvability + RM first filters
problems which are deemed “unsolvable’” by the
Qwen2.5-Math-7B-Instruct model, then selecting
the solution which receives the highest reward
according to the InternLM?2-7b-Reward reward
model (RM) (Cai et al., 2024). Majority + First
is similar to Majority Self-Consistency, but uses
the first solution in case no majority is found.

"The solvability filtering prompt can be found in Appendix
F.

This method doesn’t remove any problems as part
of the data quality control. Solvability + First
filters unsolvable problems, then includes the first
solution for each problem considered solvable.
First keeps the first generated solution for each
synthetic problem, keeping all the problems.

We note that these different techniques are de-
signed to remove noisy synthetic data, but may also
end up removing some legitimate problems and so-
lutions, especially harder problems. We choose
these six strategies to evaluate a diverse array of
coverage, difficulty and accuracy levels in filtered
synthetic datasets. We discuss findings of our sys-
tematic study of these strategies in Section 5.1.

S Experimental Results

Here we explore quality control methods for syn-
thetic math reasoning data (Section 5.1). We utilize
the FLAMES framework to compare math reason-
ing data synthesis strategies (Section 5.2). We in-
troduce and show the effectiveness of the FLAMES
datasets compared with existing math datasets (Sec-
tion 5.3 and Section 5.4). Last, we evaluate the
relative impact of problem and solution generation
teacher models (Section 5.5).

5.1 Quality Control of Synthetic Data

To study the impact of quality control strategies
in the math synthetic data pipeline, we perform
fine-tuning of the DeepSeek-Math-7B model us-
ing datasets with varying types of quality control
applied. We start with 150k synthetic problems
generated using the Suggester-Editor agent® with
the Qwen2.5-32B-Instruct model, and synthesize
three independent solutions to each problem using
the Qwen2.5-Math-7B-Instruct model. After apply-
ing each quality control method from Section 4 for
removing problems and selecting solutions, we use
the resulting dataset for finetuning. Finally, we eval-
uate the fine-tuned model on in-domain test sets.
We perform two experiments: varying coverage,
where we use the resulting dataset after filtering,
and fixed coverage, where we subsample each fil-
tered dataset to have the same training size (45K)°.

Table 1 shows results of this experiment. We
observe four key findings. First, we find that solv-
ability filtering (in its current form) is not effective

5We use Suggester-Editor data agent for this study, as we
find this agent to be highly performant.

945K matches the size of the smallest dataset (Strict Self-
Consistency) after filtering.
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Varying Coverage Fixed Coverage (45K)

Method Row | Precision Size GSMSK | MATH | Avg | GSMSK | MATH | Avg

Strict Self-Consistency R1 Highest | 45K (0.3) 82.9 56.4 |69.7 82.9 56.4 |69.7
Solvability + RM R2 High | 70K (0.47)| 84.5 579 |71.2] 829 56.3 |69.6
Solvability + First R3 Low 70K (0.47) | 84.1 582 |71.2] 832 55.6 |69.4
Majority Self-Consistency | R4 High 90K (0.6) 84.5 594 |72.0] 82.0 56.1 |69.1
First RS Low 150K (1.0) | 84.8 611 |73.0| 834 55.8 |69.6

Majority + First R6 | Medium | 150K (1.0) 86.4 609 |[73.7 83.0 56.6 |69.8

Table 1: Results of synthetic data quality control strategies for two settings of Varying Coverage and Fixed Coverage.
Size column refers to number of problems remaining after filtering followed by fraction of actual in parenthesis.
Each result is using DeepSeek-Math-7B fine-tuned on problems synthesized using Suggester-Editor agent.

In-Domain (0]0))] Robustness Competition
Model GSMS8K | MATHS5K | Average | College Math | Distraction | GSMPlus | Olympiad Bench | Average
DeepSeek-Math-7B (Base) 64.2 36.2 50.2 15.9 17.6 22.6 5.3 28.8
DeepSeek-Math-7B-Instruct 82.9 51.7 67.3 33.9 60.0 70.1 13.8 50.5
Agents In-Domain Practice
Seeded Key Concepts 81.7 58.7 70.2 38.6 67.8 70.9 224 54.5
Key Concepts 79.2 56.2 67.7 38.6 66.1 69.4 22.7 532
Paraphrase 81.2 57.5 69.3 38.0 62.6 69.7 225 53.8
Few-Shot 81.9 57.2 69.6 37.2 66.2 70.1 23.1 53.9
Agents In-Domain Complexity Enhancing
1QC 86.0 59.9 73.0 38.7 72.1 75.7 24.4 56.9
Suggester-Editor 85.3 61.0 73.2 39.4 72.1 75.9 25.2 57.4
Agents Out-of-Domain Enhancing
QFT 790 [ 575 [ 683 | 405 | 670 [ 686 | 23.6 | 538
Agents Robustness Enhancing
Ask Me Anything 83.2 56.4 69.8 40.0 65.1 714 237 54.9
FOBAR 80.5 55.8 68.2 37.9 61.2 69.6 19.9 52.7
Self-Verification 82.7 57.9 70.3 38.1 60.9 71.7 23.4 54.8
Agents Novel Agents
Distraction Insertion (Ours) 83.3 594 71.3 39.6 724 73.5 24.7 56.1
Taxonomy Key Concepts (Ours) | 77.1 56.1 66.6 40.9 64.7 67.3 21.8 52.6
Dataset FLAMES Data Mixture
FLAMES Small 852 [ 600 [ 726 | 414 | T22 | 747 ] 26.1 | 515

Table 2: Results comparing 10 existing and 2 novel data agents. We also include results for FLAMES_small (150K)
for easy comparison with all agents. DeepSeek-Math-7B is fine-tuned using 150K problems for each setting.

as Solvability + First (R3) shows inferior perfor-
mance to First (RS). This is likely due to filtering
out genuine problems with the solvability filter.
Using the solvability filter on the human-crafted
MATH test set, we observe that it removes 30% of
the real problems (30% and 50% from difficulty
levels 4 and 5, respectively), indicating that this
filtering is unreliable (see Appendix D.3 for de-
tails). Second, coverage of problems matters more
than the accuracy of the solutions. We observe
superior performance with Majority + First (R6)
than Majority (R4), where the only difference (be-
tween R6 and R4) is inclusion of additional 60K
problems in R6 where first solution is used. This
shows that including more problems, even with
potentially incorrect solutions, leads to better per-
formance. Third, with the same scale and problem
complexity, precision of the solution matters, as
Majority + First (R6) shows better performance

than First (RS) strategy. This is also evident from
fixed coverage analysis, where we observe higher
Math scores for strategies designed for higher pre-
cision'?. Fourth, Majority + First (R6) provides a
good blend of coverage of problems and accuracy
of the solutions, and superior performance than
other strategies. With comparable performance,
the First (RS) strategy is computationally better
than the Majority + First (R6). Hence, we use First
strategy for all our further studies.

5.2 Comparison of Data Generation Agents

To assess which synthetic data agents generate
the most performant data, we perform SFT of the
DeepSeek-Math-7B base model with datasets gen-

YHowever, we observe less variation and a different trend
on GSMSK problems. This is likely due to smaller differ-
ence between solutions with First and Majority strategy on
relatively easier GSM8K level problems.
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erated using each agent from Section 3. We gener-
ate 150K unique problems with each agent, using
the First strategy for data quality control. We com-
pare data agents by evaluating performance of their
respective fine-tuned DeepSeek-Math-7B models.

Table 2 shows the results of each fine-tuned
model across the 5 benchmark datasets. We ob-
serve four major findings from this study. First,
we observe that complexity-enhancing agents (IQC
and Suggester-Editor) lead to best improvement
on in-domain metrics. Surprisingly, they also
lead to best competition-level and robustness im-
provements. Second, the out-of-domain enhanc-
ing agents (particularly, our novel Taxonomy Key
Concepts agent) lead to best improvement on
out-of-domain reasoning, surpassing complexity-
enhancing agents. Third, we find that our novel
Distraction Insertion agent leads to best perfor-
mance on the distraction insertion benchmark
within the GSMPlus dataset, showcasing that the
FLAMES framework enables design of agents to
solve specific reasoning tasks. Fourth, we observe
that data agents, while using only GSM8K and
MATH as seed sets, lead to improvement over
competition level benchmarks (as evident from
OlympiadBench metrics). This is particularly in-
teresting as it demonstrates "easy-to-hard gener-
alization", and provides evidence that math data
synthesis may be used to improve performance on
more difficult math reasoning tasks.

5.3 Comparison of FLAMES Datasets

We study the impact of mixing data from differ-
ent agents (refer to experiments in Appendix D.2)
and observe best results by mixing 50% Suggester-
Editor, 20% IQC, 20% Taxonomy Key Concept
(our proposed) and 10% Distraction Insertion (our
proposed) agents. Based on this blend, we develop
3 versions of FLAMES datasets — FLAMES Small
(150K), FLAMES Large (1M), and FLAMES XL
(1.5M). We compare FLAMES Small with individ-
ual agents in Table 2, and observed balanced per-
formance across the five evaluation datasets, with
performance surpassing all 12 agents on College-
Math and Olympiad-Bench.

For comparing the performance of FLAMES
Large and FLAMES XL datasets, we conduct
finetuning of the DeepSeek-Math-7B model on
a diverse set of existing math datasets, including
GSMS8K (Cobbe et al., 2021), MATH (Hendrycks
et al.), NuminaMath (LI et al., 2024), MetaMathQA
(Yu et al., 2023a), OrcaMath (Mitra et al., 2024),

OpenMathInstruth]1 (Toshniwal et al., 2024a),
MMIQC (Liu et al., 2024b), and ScaleQuest (Ding
etal., 2024). Since different synthetic datasets were
synthesized with different solution generation mod-
els, we compare results with "refreshed" versions
of each synthetic dataset, where one solution for
each unique problem is generated using Qwen2.5-
Math-7B-Instruct (same as used for our FLAMES
dataset, for fair comparison). Results with original
datasets, which performed worse in each case, are
given in Appendix D.1.

Table 3 shows results for this study. We ob-
serve that ScaleQuest (refreshed with Qwen2.5-
Math-7B-Instruct solutions) leads to best average
performance (60.0) among the public datasets. At
the same scale (1M), our FLAMES Large dataset
achieves better MATHSK (68.3), CollegeMath
(41.9), GSMPlus (79.4) and average score (61.7)
than existing public datasets. On scaling our
dataset to 1.5M size (FLAMES XL), we observe
drastic improvements as compared to the public
datasets across OlympiadBench (+12.8), College
Math (+5.8), GSMPlus (+4.9) and Math (+1.3).
It is important to note that unlike other synthetic
datasets, our FLAMES datasets do not use any
proprietary model and rely only on open source
models. These findings validate the effectiveness
of the FLAMES datasets, showcasing the impact
of an optimized mixture of data agents and targeted
augmentation in synthetic data generation.

5.4 Comparison with multiple Student Models

In this experiment, we compare our FLAMES
Large dataset across several underlying student
models. To ensure robust findings, we use four
diverse student models — Qwen2.5-Math-7B and
Qwen2.5-14B (Yang et al., 2024b), Mathstral-7B
12 and Mistral-7B-v0.3 3. We compare results
with ScaleQuest refreshed as it has best results for
public models in Table 3. Table 4 shows results
for this experiment'*. We observe that FLAMES
Large outperforms refreshed ScaleQuest, achiev-
ing drastic gains on competition level benchmarks
(+4.8 for DeepSeek-7B, +4.6 for Mathstral-7B,
+4.4 for Mistral-7B-v0.3 and +3.7 for Qwen2.5-

""We include only unique problems from OpenMathIn-
struct2 for fair comparison, since ScaleQuest and FLAMES
datasets contain unique problems.

12https: //huggingface.co/mistralai/
Mathstral-7B-v@.1

13https: //huggingface.co/mistralai/
Mistral-7B-v@.3

“See Table 10 in Appendix D.1 for detailed results.
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‘ In-Domain OOD Robustness Competition
Model GSMS8K | MATHSK | College Math | Distraction | GSMPlus | Olympiad Bench | Average
DeepSeek-Math-7B (Base) 64.2 36.2 15.9 17.6 22.6 53 28.8
DeepSeek-Math-7B-Instruct 82.9 51.7 339 60 70.1 13.8 50.5
Dataset Dataset Size Existing Math Datasets
GSM8K/MATH 15K 70.1 34.9 339 60 70.1 13.8 44.6
NuminaMath 860K 814 53.1 36.6 61.9 70.2 204 52.3
OpenMathInstruct2 (R) 600K 84.5 66.4 40.7 64.7 72.9 30.5 59.0
MetaMathQA (R) 150K 85.0 55.8 36.7 64.1 72.9 21.6 54.4
OrcaMath (R) 200K 84.5 52.8 36.9 68.1 74.9 19.7 53.8
MMIQC (R) 220K 84.8 61.5 384 63.7 73.6 244 56.5
ScaleQuest (R) IM 89.4 66.0 414 71 78.3 25 60.0
Dataset Dataset Size FLAMES Data
FLAMES Large IM 89.2 68.3 41.9 76.1 79.4 29.8 61.7
FLAMES XL 1.5M 87.7 67.7 47.2 80.3 83.2 43.3 65.8

Table 3: Comparison of FLAMES datasets with open-source math reasoning datasets. DeepSeek-Math-7B is fine-
tuned using unique problems for each dataset, alongside refreshed (R) solutions using Qwen2.5-Math-7B-Instruct

for fair comparison.

In-Domain Competition | Avg

Student Model|  Dataset | GSMSK | MATH | Olympiad

Bench

DeepSeek-7B | ScaleQuest (R) | 89.4 66.0 25.0 60.0
DeepSeek-7B | FLAMES (L) 89.2 68.3 29.8 61.7
Qwen2.5M-7B | ScaleQuest (R) | 93.9 80.7 41.3 69.2
Qwen2.5M-7B | FLAMES (L) 93.5 814 40.9 69.5
Mathstral-7B | ScaleQuest (R) 88.4 65.7 24.6 59.0
Mathstral-7B FLAMES (L) 89.2 68.1 29.2 61.1
Mistral-7B ScaleQuest (R) 84.7 59.3 19.7 54.8
Mistral-7B | FLAMES (L) | 864 | 63.6 24.1 575
Qwen2.5-14B | ScaleQuest (R) | 93.1 75.6 34.2 66.2
Qwen2.5-14B | FLAMES (L) 933 76.7 379 674

Table 4: Comparison of FLAMES_large and ScaleQuest
across diverse student models. DeepSeek-7B refers
to DeepSeek-Math-7B, Mistral-7B refers to Mistral-
7B-v0.3, Qwen2.5M-7B refers to Qwen2.5-Math-7B,
FLAMES (L) refers to FLAMES_large, ScaleQuest (R)
refers to ScaleQuest problems with Qwen2.5-Math-7B-
Instruct solutions. Both datasets contain 1M problems.

14B). These results showcase the efficacy of our
FLAMES datasets across diverse student models.

5.5 Comparison of Problem and Solution
Generation Models

For the FLAMES framework we use the Qwen?2.5-
32B-Instruct and Qwen2.5-Math-7B-Instruct (base-
line setting) as the problem generation and solution

Problem Solution

Generation Generation GSMBK | MATH | Average
Qwen2.5-32B | Qwen2.5-7B 82.5 56.4 69.5
DeepSeek-v2.5 | Qwen2.5-7B 83.5 54.9 69.2
Qwen2.5-32B | DeepSeek-7B 85.1 493 67.2

Table 5: Results of varying problem and solution gen-
eration models. Qwen2.5-32B refers to Qwen2.5-32B-
Instruct model, DeepSeek-7B refers to DeepSeek-Math-
7B-RL. Finetuning is done with 50K Suggester-Editor
problems for DeepSeek-Math-7B as student model.

generation model (Yang et al., 2024b), respectively.
We now study the impact of updating the prob-
lem and solution generation models with weaker
DeepSeek models. We generate 50k problems in
each setting, using the performant Suggester-Editor
agent, and fine-tune the DeepSeek-Math-7B as the
student model. Table 5 shows results for this study.
We observe a big drop (-7.1% points) in MATH5K
numbers on replacing the answer generation model
with DeepSeek-Math-7B-RL, but only a small drop
(-1.5% points) on replacing the problem genera-
tion model with DeepSeek-v2.5. These results sug-
gest that quality of the solution generation model
plays a relatively bigger role than the quality of the
problem generation model for math synthetic data
pipeline. On the contrary, we observe small im-
provements (+1.0% and +2.6%) in GSM8K num-
bers. This is likely due to smaller difference in
GSMS8K numbers for Qwen and DeepSeek, and
better alignment of DeepSeek based synthetic data
for the DeepSeek-Math-7B student model.

6 Conclusion

We introduced the FLAMES framework, which en-
ables fine-grained analysis of the math data synthe-
sis pipeline. We performed a controlled study of 12
data synthesis strategies (including 2 novel strate-
gies), 6 data quality control strategies, 2 problem
generation models, and 2 solution generation mod-
els, providing valuable insights for improving LLM
math reasoning with synthetic data. We studied the
impact of mixing data from different agents and de-
signed an effective blend (the FLAMES datasets)
without use of any proprietary models. Our rig-
orous evaluations establish drastic improvements
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with our proposed FLAMES datasets over public
math datasets.

7 Limitations and Potential Risks

One limitation of our work is reliance on a strong
teacher model for solution generation. This as-
sumption may be violated when working with less
common languages which lack sufficient math data
to begin with. While this may be mitigated by trans-
lating our English math data to those languages, we
leave study of other languages for future work.

We acknowledge that there is a potential risk of
inherent bias in our generated data due to bias in
the problem and solution generating models or the
original seed data (LeBrun et al., 2022; Yu et al.,
2023b). This may be alleviated by introducing
an additional step in the FLAMES framework for
detecting and filtering biased samples, however we
leave this for future work.
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A FLAMES Framework Details

Figure 3 shows a flow diagram of the FLAMES
framework. Broadly, the synthetic data pipeline
can be considered as consisting of the following
steps. 1) Generating synthetic problems with a
problem synthesis LLM and some seed problems
(or taxonomy) according to some data agent, 2)
generating solutions for synthetic problems with
a solution synthesis LLM, 3) filtering the prob-
lems and solutions for quality control, 4) training
a student model with this synthetic dataset, and 5)
evaluating the student model on multiple evalua-
tion benchmarks. There are multiple factors (or
design decisions) that play key role in final student
model performance with synthetic data. As part
of the FLAMES framework, we list these factors.
We include a table of these factors, their values in
the FLAMES framework, and whether we choose
values based on a controlled experiment or prior
work in Table 6.

Problem Generation: Seeded problem genera-
tion agents in the FLAMES framework utilize the
train splits from the popular GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) training
sets. These agents interact with the Qwen2.5-32B-
Instruct model (Yang et al., 2024b) to generate
new problems, an open-source instruction-tuned
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Factor Value ‘ Controlled/Prior ‘ Location
Problem Generation
Data Synthesis Agent 10 Existing, 2 Novel Controlled Section 5.2
Problem Generation Model Qwen2.5-32B-Instruct Controlled Section 5.5
Problem Generation Decoding Parameters See Appendix A Prior Work Appendix A
Deduplication Exact Match Prior Work Section 2
Benchmark Decontamination N-Gram Overlap Prior Work Section 2
Solution Generation
Solution Generation Model Qwen2.5-Math-7B-Instruct Controlled Section 5.5
Solution Generation Decoding Parameters See Appendix A Prior Work Appendix A
Solution Sampling Strategy First Solution Controlled Section 5.1
Solution Verification Strategy None Controlled Section 5.1
Supervised Fine-Tuning
DeepSeek-Math-7B, Qwen2.5-Math-7B,
Student Model Mathstral-7B, Mistral-7B-v0.3, Controlled Section 5.4
Qwen2.5-14B
Training Hyperparameters See Section 2 Prior Work Section 2
Training Setup See Section 2 Prior Work Section 2
Evaluation
Checkpoint Selection See Appendix A Prior Work Appendix A
Evaluation Prompts See Appendix A Prior Work Appendix A
Evaluation Decoding Parameters See Appendix A Prior Work Appendix A
Answer Extraction & Matching See Appendix A Prior Work Appendix A

Table 6: Values of all factors fixed in the FLAMES framework. Each value is chosen based on either controlled
experiments of prior work. Locations of framework factor details, and their related controlled experiments, are also

given.

model which achieves 95.9 on GSM8K and 83.1
on MATHS5K. We show in Section 5.5 that this
model leads to better performance than the larger
open-source DeepSeek-v2.5 model (DeepSeek-Al,
2024), while being more computationally efficient.
Problems are generated using a temperature of 0.7
with sampling hyperparameters of top_p = 0.9,
top_k = 50, and a repetition penalty of 1 for a
maximum of 2,048 new tokens.

Solution Generation: Since solution generation
can be less efficient due to higher inference time
compute, we choose to use the smaller Qwen2.5-
Math-7B-Instruct model (Yang et al., 2024b) for so-
lution synthesis in the FLAMES framework. This
follows (Ding et al., 2024), who use the earlier
Qwen2-Math-7B-Instruct (Yang et al., 2024a) for
both problem and solution synthesis. Solution gen-
eration uses the same generation parameters as in
problem synthesis. As we show in Section 5.1, tak-
ing the first solution generated by Qwen2-Math-7B-
Instruct for each synthetic problem leads to good
performance while significantly reducing required
generation compute.

Quality Control: All problems generated in the
FLAMES framework are first deduplicated using
exact match. While we do not use test splits of
GSMSK or MATH when synthesizing problems,

we exercise caution and follow (Mitra et al., 2024)
in decontaminating synthetic problems against the
GSMS8K and MATH test sets. We remove any syn-
thetic problem if there is a high amount of token
overlap between the synthetic problem and a test
set problem. In other words, if 95% of the 8-grams
in a test set problem are generated in a synthetic
problem, we remove that synthetic problem.
Dataset Size: Using these problem and solution
generation processes, we generate 150k problems
after problem deduplication and decontamination
for each agent in the FLAMES framework. In other
words, we fix the size of the SFT dataset for each
data agent at 150k. Of these 150k problems, 75k
are generated using GSMS8K seed problems and
75k are generated using MATH seed problems'>.
Due to their reliance on seed problem permutations
and the limited size of the human-crafted training
datasets in GSM8K and MATH, the FOBAR and
Self-Verification agents are limited in number of
unique synthetic problems they generate.
Training Details: We use the DeepSeek-Math-
7B model (Shao et al., 2024) as the student model

SFOBAR and Self-Consistency agents use fixed values in
existing problems, and are limited in the number of unique
problems which they generate. For these, we include as many
unique problems as are available.
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in the FLAMES framework. We do full-parameter
fine-tuning on Amazon EC2 P4 instances'® using
Deepspeed Zero3 (Rajbhandari et al., 2020) for
distributed training across 8 A100 GPUs. We train
using a batch size of 4 for 5 epochs, saving 10
total checkpoints. We implement training using the
SWIFT library'” (Zhao et al., 2024), using default
hyperparameters.

Evaluation: We evaluate fine-tuned student
models using the Qwen2.5-Math evaluation frame-
work!® (Yang et al., 2024b). We report scores of
the checkpoint with the highest average score on
GSMS8K and MATH. All models are evaluated us-
ing the same system prompt recommended by the
Qwen2.5-Math framework (see Appendix F for
the system prompt). The evaluation decoding was
done with temperature 0, allowing for a maximum
of 2,048 new tokens. Answer extraction and match-
ing is handled by the Qwen2.5-Math framework,
which is borrowed from the release of the MATH
dataset (Hendrycks et al., 2021).

B Related Works

B.1 LLM Math Reasoning

The ability to solve math word problems is con-
sidered a key measure of large language model
performance (Cobbe et al., 2021; Hendrycks et al.,
2021). Recent large language models have used
math reasoning as an important metric to highlight
model reasoning capability (Hendrycks et al.; Team
et al., 2024; Dubey et al., 2024; Yang et al., 2024b;
Guo et al., 2025). Various strategies have been
proposed to improve large language model perfor-
mance on math reasoning, including instruction
tuning (Luo et al., 2023; Ding et al., 2024), prompt-
ing techniques (Wei et al., 2022; Chia et al., 2023),
and solution construction (Toshniwal et al., 2024b).
Our work focuses on evaluating problem synthesis
techniques for improving LLM math reasoning.

B.2 Data Synthesis for LLM Math Reasoning

Existing works in evaluating synthetic data agents
for improving LLM math reasoning have shown
that various methods for generating synthetic math
word problems can improve downstream perfor-
mance of underlying student models fine-tuned on
synthetic problems (Chen et al., 2025; Kim et al.,

https://aws.amazon.com/ec2/instance-types/
p4/

17https ://github.com/modelscope/ms-swift

Bhttps://github.com/QwenLM/Quen2.5-Math

Agent ‘ Work

In-Domain Practice

Few-Shot (Toshniwal et al., 2024a)
Paraphrasing (Yu et al., 2023a)
Key Concepts (Huang et al., 2024a)

Seeded Key Concepts (Huang et al., 2024a)

In-Domain Complexity Enhancing

Suggester-Editor (Mitra et al., 2024)

1QC (Liu et al., 2024b)
Robustness Enhancing
Ask Me Anything (Mitra et al., 2024)
Self-Verification (Yu et al., 2023a)
FOBAR (Yu et al., 2023a)
Distraction Insertion Our
Out-Of-Domain Enhancing
Question Fine-Tuning (QFT) (Ding et al., 2024)
Taxonomy Key Concepts Our

Table 7: List of all agents evaluated in the FLAMES
framework.

2024; Hase et al., 2024; He et al., 2024; Lu et al.,
2024). MetaMathQA (Yu et al., 2023a) rewrites
questions from multiple perspectives, enabling aug-
mentation without additional knowledge. Open-
Math-Instruct-2 uses few-shot LLM prompting to
generate novel problems (Toshniwal et al., 2024a).
Other works introduce multi-step approaches to
synthesizing questions (Mitra et al., 2024; Luo
et al., 2023; Liu et al., 2024b).

C Data Synthesis Agents for LLM Math
Reasoning

C.1 Agent Descriptions

We now categorize 4 types of approaches and detail
the 10 existing agents compared in the FLAMES
framework (see Section 3). For reference, we in-
clude citations and agent types in Table 7.
In-Domain Practice: In-domain practice agents
are designed to increase the amount of in-domain
data available for model training. The goal of
in-domain practice agents is to synthesize a large
amount of math word problems which are similar
in complexity, topic, and grade-level to problems
in the training data. The Few-Shot agent, proposed
in (Toshniwal et al., 2024a), uses existing problems
as in-context examples to generate a novel problem.
The Paraphrasing agent ((Yu et al., 2023a)) para-
phrases existing problems. (Huang et al., 2024a)
introduce the use of key concepts as an intermedi-
ate problem representation for synthesizing novel
problems. We evaluate a Key Concepts agent,
which first extracts key concepts from an existing
problem, and then uses those key concepts to gen-
erate novel problems. The related Seeded Key
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Concepts agent uses both extracted key concepts
and the original existing problem to guide the gen-
eration of novel problems.

In-Domain Complexity Enhancing: There
have been several proposed agents which aim to
increase the complexity of existing math word prob-
lems. We select two recent agents to evaluate
this type of strategy in our work, although other
similar strategies have been proposed including
Evol-Instruct (Luo et al., 2023; Li et al., 2024).
The Suggester-Editor agent first suggests edits for
problems to introduce additional reasoning steps,
then synthesizes a novel problem by making those
edits (Mitra et al., 2024). The Iterative Question
Composing (IQC) agent turns an existing problem
into a subproblem of a more complex synthetic
problem (Liu et al., 2024b). Both the Suggester-
Editor and IQC agents may repeat their processes
multiple times.

Robustness Enhancing: Some proposed agents
aim to alter existing problems to increase the ro-
bustness of the student model’s reasoning pro-
cess. These agents include the Ask Me Anything
agent (Mitra et al., 2024), which converts an ex-
isting problem and solution into a statement, then
prompts the teacher model to ask questions about
the statement. Similarly, the Self-Verification
agent (Yu et al., 2023a) converts an existing prob-
lem and solution into a statement, then replaces a
number in the problem with a variable and asks the
model to reason backwards to obtain the value of
the variable. The FOBAR agent (Yu et al., 2023a)
is similar to Self-Verification, except instead of
having the teacher model rewrite the problem and
solution into a statement before variable replace-
ment, there is a template sentence added to the
end of the problem which includes the problem’s
answer and the resulting question'.

Out-of-Domain Enhancing: Recently, (Ding
et al., 2024) proposed a method for synthesiz-
ing math reasoning data by using only a “small-
size” (e.g. 7B) open-source model without a com-
plex augmentation strategy. Their method revolves
around the Question Fine-Tuning (QFT) process,
which lightly fine-tunes a 7B math specialist model
on the GSM8K and MATH training datasets, then
prompts the fine-tuned model with only the system
prompt to synthesize novel math word problems.
We replicate their proposed process using Qwen?2.5-
Math-7B-Instruct (Yang et al., 2024b) to create the

9See Appendix F for specific prompts

Distraction Insertion Agent

AN AN

"Weng earns $12 an
hour babysitting. Yesterday, she did 50 minutes of
babysitting and 1 hour of homework. How much did
she earn?"

"Weng earns $12 an
hour babysitting.
Yesterday, she did 50
minutes of babysitting.
How much did she
earn?"

Synthetic Problem via

Seed Froblem =~ Distraction Insertion

[ Taxonomy Key Concepts Agent ]

"A basketball has a
circumference of 75.4
centimeters. Determine
the volume of the
basketball."

"Calculating the volume
of a sphere, given its
circumference."

"Geometry: Spheres"

Taxonomy
Subject

E1>< Key Concept }:> Synthetic Problem

Figure 4: Examples of our novel Distraction Insertion
and Taxonomy-Based Key Concepts data agents.

Agent ‘ Prompt Location
In-Domain Practice
Few-Shot (Toshniwal et al., 2024a) Appendix D.2

Paraphrasing (Yu et al., 2023a) Section 3.2
Key Concepts Appendix F
Seeded Key Concepts Appendix F
In-Domain Complexity Enhancing
Suggester-Editor (Mitra et al., 2024) Section 2
1QC (Liu et al., 2024b) Figures 5, 6
Robustness Enhancing
(Mitra et al., 2024) Section 2
(Yu et al., 2023a) Section 3.3
(Yu et al., 2023a) Section 3.3
Novel Agents
Prompts: (Adler et al., 2024)
Appendix B.5, Taxonomy: Section 3
Appendix F

Ask Me Anything
Self-Verification
FOBAR

Taxonomy Key Concepts

Distraction Insertion

Table 8: Locations of prompts used for agents in the
FLAMES framework.

QFT agent, designed to enhance general math rea-
soning performance. We call this an out-of-domain
agent, as the agent prompt is not seeded with any
specific in-domain problem.

Novel Agents are described in Section 3. Ex-
amples of synthetic problems generated by novel
agents can be seen in Figure 4.

C.2 Agent Prompt Locations

In Table 8 we provide the locations of each prompt
used in the FLAMES framework. Prompts for the
novel Distraction Insertion agent can be found in
Appendix F.
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‘ In-Domain 00D Robustness Competition
Model GSMSK | MATHS5K | College Math | Distraction | GSMPlus | Olympiad Bench | Average
DeepSeek-Math-7B (Base) 64.2 36.2 159 17.6 22.6 53 28.8
DeepSeek-Math-7B-Instruct 82.9 51.7 339 60 70.1 13.8 50.5
Dataset Dataset Size Original Dataset
GSMS8K/MATH 15K 70.1 349 339 60 70.1 13.8 44.6
NuminaMath 860K 81.4 53.1 36.6 61.9 70.2 20.4 52.3
MetaMathQA 400K 78.5 41.6 30.9 53.4 65.3 9.9 452
OrcaMath 200K 779 42.3 29.1 63.4 67.8 13.5 46.1
OpenMathInstruct2 600K 83.5 553 36.8 64.4 72.3 19.6 53.5
MMIQC IM 777 42.3 31.6 53.8 63.4 11.9 454
ScaleQuest IM 86.4 64.6 42.7 71.1 76.7 27.6 59.6
Dataset Dataset Size Refreshed with Qwen2.5-Math-7B solutions
OpenMathInstruct2 600K 84.5 66.4 40.7 64.7 72.9 30.5 59.0
MetaMathQA 150K 85.0 55.8 36.7 64.1 72.9 21.6 54.4
OrcaMath 200K 84.5 52.8 36.9 68.1 74.9 19.7 53.8
MMIQC 220K 84.8 61.5 384 63.7 73.6 24.4 56.5
ScaleQuest M 89.4 66.0 41.4 71 78.3 25 60.0
Dataset Dataset Size FLAMES Data
FLAMES_large IM 89.2 68.3 41.9 76.1 79.4 29.8 61.7
FLAMES_x1 1.5M 87.7 67.7 47.2 80.3 83.2 433 65.8

Table 9: Comparison of open-source math reasoning datasets with the FLAMES_large and FLAMES_xI1 datasets.
DeepSeek-Math-7B is fine-tuned using unique problems from each dataset, alongside refreshed (R) solutions (using
Qwen2.5-Math-7B-Instruct) for fair comparison. Resulting models are evaluated on in-domain, out-of-domain
generalization (OOD), robustness, and competition benchmarks.

In-Domain 00D Robustness Competition

Student Model Dataset GSMS8K | MATHS5K | College Math | Distraction | GSMPlus | Olympiad Bench | Average
DeepSeek-Math-7B | ScaleQuest Refreshed | 89.4 66.0 414 71.0 78.3 25.0 60.0
DeepSeek-Math-7B FLAMES_large 89.2 68.3 41.9 76.1 794 29.8 61.7
Qwen2.5-Math-7B | ScaleQuest Refreshed | 93.9 80.7 46.6 78.4 83.6 41.3 69.2
Qwen2.5-Math-7B FLAMES_large 93.5 81.4 47.1 82.9 84.5 40.9 69.5
Mathstral-7B ScaleQuest Refreshed | 88.4 65.7 40.0 69.1 76.5 24.6 59.0
Mathstral-7B FLAMES_large 89.2 68.1 39.9 76.5 79.3 29.2 61.1
Mistral-7B-v0.3 | ScaleQuest Refreshed | 84.7 59.3 36.7 64.3 73.5 19.7 54.8
Mistral-7B-v0.3 FLAMES_large 86.4 63.6 37.0 73.8 76.3 24.1 57.5
Qwen2.5-14B ScaleQuest Refreshed | 93.1 75.6 44.6 79.5 83.5 34.2 66.2
Qwen2.5-14B FLAMES_large 93.3 76.7 449 81.5 84.0 37.9 67.4

Table 10: Comparison of FLAMES_large and ScaleQuest across diverse student models. DeepSeek-7B refers to
DeepSeek-Math-7B, Mistral-7B refers to Mistral-7B-v0.3, Qwen2.5M-7B refers to Qwen2.5-Math-7B, FLAMES
(L) refers to FLAMES_large, ScaleQuest (R) refers to ScaleQuest problems with Qwen2.5-Math-7B-Instruct

solutions. Both datasets contain 1M problems.

D Additional Experiments and Detailed
Results

D.1 Comparison with Open-Source Synthetic
Datasets

Full results from Section 5.3 are given in Table 9
and Section 5.4 are given in Table 10.

D.2 Combining Data Generation Agents

In this section, we discuss our study of mixing data
from different agents (Table 11). First, we ana-
lyze if mixing Taxonomy Key Concepts agent (hav-
ing best out-of-domain performance) can improve
out-of-domain reasoning for the best complexity-
enhancing Suggester & Editor agent. By mixing

data from Suggester & Editor and Taxonomy Key
Concepts agents in equal proportion (mixture-A),
we observe improved CollegeMath score of 41.6
exceeding both the agents. However, we observe
slight drop in other metrics as compared to the
Suggester & Editor agent. Second, we investigate
impact of different mixing proportions (mixture-A,
mixture-B and mixture-C) for Suggester & Editor
and Taxonomy Key Concept agent. We observe
that mixture-C (75/25 split) yields a better trade-
off?" as there is big drop of In-Domain metrics for
mixture-A and OOD metrics for mixture-B.
Third, we investigate whether enhancing di-

2We observe drop in Competition level metrics for mixture-
C, but we recover that with our mixture-D
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In-Domain (00))) Robustness Competition
Agents GSMS8K | MATHS5K | Average | College Math | Distraction | GSMPlus | Olympiad Bench | Average

Distraction Insertion 83.3 59.4 71.3 39.6 724 73.5 24.7 56.1

1QC 86.0 59.9 73.0 38.7 72.1 751 24.4 56.9

Suggester-Editor 85.3 61.0 73.2 39.4 72.1 75.9 25.2 57.4

Taxonomy Key Concepts 77.1 56.1 66.6 40.9 64.7 67.3 21.8 52.6

QFT 79.0 57.5 68.3 40.5 67 68.6 23.6 53.8

Mixture ID Agent Mixture

Suggester-Editor (50%)

A Taxonomy Key Concepts (50%) 82.9 58.8 70.9 41.6 69.0 73.5 23.7 56.1
Suggester-Editor (90%)

B Taxonomy Key Concepts (10%) 84.8 60.0 72.4 41.1 70.7 74.8 24.4 57.0
Suggester-Editor (75%)

C Taxonomy Key Concepts (25%) 84.8 59.4 72.1 41.4 70.4 74.6 23.4 56.7
Suggester-Editor (50%)

D 1QC (25%) 84.9 59.6 72.3 40.6 69.5 74.6 252 57.0

Taxonomy Key Concepts (25%)
Suggester-Editor (50%)
Distraction Insertion (10%)
FLAMES Small 1QC (20%) 85.2 60.0 72.6 41.4 72.2 74.1 26.1 575
Taxonomy Key Concepts (20%)

Table 11: Results of underlying DeepSeek-Math-7B student model after fine-tuning on 150K problems of various
agent data mixtures, alongside results using 150K from individual agents in each mixture.

versity by introducing a different complexity-
enhancing IDC agent further improves the per-
formance. For mixture-D, we keep same 75/25
proportion of complexity-enhancing and out-of-
domain enhancing, by reducing Suggester & Edi-
tor proportion to 50% and including 25% of 1QC.
With mixture-D, we recover OlympiadBench per-
formance with slight drop in OOD metrics as com-
pared to mixture-C. Fourth, we explore whether
adding small proportion (10%) of robustness-
focused agents improves overall performance. We
observe that including Distraction Insertion (mix-
ture FLAMES_Small) further boosts performance,
leading to a mixture with best GSMS8K (85.2), Math
(60.0), OlympiadBench (26.1) and Average score
(57.5). These findings establish that mixing our
novel Distraction Insertion agent data can bring
significant improvement to the student model’s per-
formance.

With our FLAMES_Small mixture, we observe
balanced performance across the five evaluation
datasets, with performance surpassing all 12 agents
on CollegeMath and Olympiad-Bench.

D.3 Solvability Filtering

We find in Section 5.1 that the recently-proposed
solvability filtering strategy (Ding et al., 2024) for
quality control of synthetic math problems does not
lead to performance gains from fine-tuned student
models. We hypothesize that this is because the
solvability filtering strategy also removes solvable
problems from the synthetic data pool. To test this
hypothesis we use the human-crafted MATHS500
(Hendrycks et al., 2021) dataset, filtering for solv-

Difficulty Level | Deemed Solvable | Total | % Solvable
1 37 43 86.00%
2 75 90 83.30%
3 81 105 77.10%
4 88 128 68.80%
5 68 134 50.70%
All 349 500 69.80%

Table 12: Number of real problems in the MATHS500
evaluation dataset (Hendrycks et al., 2021) which were
deemed unsolvable by the solvability filter proposed
in (Ding et al., 2024). We show in Section 5.1 that
filtering synthetic problems for solvability does not lead
to performance gains compared with simpler quality
control measures.

ability. We observe in Table 12 that the solvability
filter removes 30% of the real problems, with a
higher percentage of more difficult problems being
removed (e.g. 50% of level 5 problems). These re-
sults indicate that solvability filtering is unreliable.

E Additional Information

Landscape of recent Math data synthesis: We in-
clude a larger version of Figure 2 for reference
in Figure 5, further highlighting the need for the
unified math data synthesis evaluation environment
provided by the FLAMES framework.

Table of models and datasets used: We also in-
clude tables giving an overview of all models and
datasets used, then a table of all experiments and
the locations of their corresponding results. Table
13 details all models used in the FLAMES frame-
work, as well as models used in our controlled
experiments. Table 14 details all datasets used in
the FLAMES framework. Table 15 details all con-
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Figure 5: The full landscape of several recently-proposed math data synthesis works. Each work uses different
synthesis models, student models, and quality control measures, making comparison of problem synthesis agents
impractical.

Model Use Case Relevant Sections g;lt\i;z FLK;S[ISSaSSe ] Relevant Sections
Qwen2.5-32B-Instruct FLAMES i eed Section 2
(Yang ct al., 2024b) Problem Generation Section 2 (Cobbe et al., 2021) Problems, Evalation
Qwen2.5-Math-7B-nstruct FLAMES . MATH FLAMES Secd Section 2
(Yang et al., 2024b) Solution Generation Section 2 (Hendrycks et al., 2021) | Problems, Evalation
DeepSeek-Math-7B FLAMES Section 2 L4GS¥\;[P];)SZ 4 FLAMES Evaluation Section 2
(Shao et al., 2024) Student Model (Lictal, 2024) : :
DeepSeek-v2.5 Ablation CollegeMath FLAMES Evaluation Section 2
- 0 73 N o) 0
(Liu et al., 20242) Problem Generation Table 5 Olympl.adBench FLAMES Evaluation Section 2
DeepSeck-Math-7B-RL Ablation Table 5 NuminaMath Open-Source Table 3
(Shao et al., 2024) Solution Generation avle (LIetal., 2024) Baseline
Qwen2.5-Math-7B Ablation Table 4 MetaMathQA Open-Source Table 3
(Yang et al., 2024b) Student Model avie (Yu et al., 2023a) Baseline
Qwen2.5-14B Ablation  OrcaMath Open-Source Table 3
(Yang et al., 2024b) Student Model Table 4 (Mitra et al., 2024) Baseline
Mathstral-7B Ablation Table 4 OpenMathlInstruct2 Open-Source Table 3
(Mistral Al 2025) Student Model avle (Toshniwal et al., 2024a) Baseline
Ablation MMIQC Open-Source
. 21 y
Mistral-7B-v0.3 Student Model Table 4 (Liu et al., 2024b) Baseline Table 3
ScaleQuest Open-Source
(Ding et al., 2024) Baseline Table 3
Table 13: Overview of all models used in the FLAMES getal, g

framework, as well as models used in all controlled

. . Table 14: Overview of all datasets used in the FLAMES
experiments (ablations).

framework.
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Experiment Description Table(s)
Comparison of Synthetic Data
Quality Control Strategies
Comparison of Existing
and Novel Data Agents
Comparison of FLAMES Datasets | Table 3,
with Existing Math Datasets Table 9
Comparison of FLAMES_large

Table 1

Table 2

with Best Existing Dataset Table 4
Comparls(?n of lefer?nt Problem Table 5
and Solution Generation Models

Comparison of Different
Data Agent Mixtures Table 11
Solvability Filtering
on MATHS00 Test Set Table 12

Table 15: Overview of all controlled experiments used
to design the FLAMES framework.

trolled experiments run in this paper, along with
their sections and results tables.

F Prompts

In this section, we include prompts for agents evalu-
ated in the FLAMES Framework (if not referenced
in Table 8).
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Problem to Key Concepts Prompt: You are a Maths teacher. I will give you a Maths problem and its
solution. Your task is to tell a key concept which a student need to understand to solve this problem.
We will use this key concept to create similar problems so that students can learn to solve similar
problems. Your response should contain only the key concept.

Make sure you follow below constraints:

1. Your response is about generic concept and does not use specifics like numbers or words or object
from the problem, so that the key concept can be used to generate related but different problems.

2. Your response provide granular details so that this response can be independently used to create a
similar problem for teaching this key concept.

Below are few examples :

Problem : In how many ways can 5 students be selected from a group of 6 students?

Solution : We can choose 5 students out of a group of 6 students without regard to order in binom{6} {5}
= 6 ways.

Key Concept : Number of ways to select some fixed number of items from a group of large number of
items

Problem : Express frac{3}{20} as a decimal.

Solution : frac{3}{20} = 0.15.

Key Concept : Fraction to decimal conversion

Problem : A bicycle is traveling at 20 feet per minute. What is the bicycle’s speed expressed in inches
per second?

Solution : There are 12 inches in a foot, so the bicycle is traveling at 12(20)=240 inches per minute.
There are 60 seconds in a minute, so the bicycle is traveling at frac{240}{60}=4 inches per second.
Key Concept : A math problem expressed as word problem which requires converting from one unit
to another.

Problem : problem

Solution : solution

Key Concept :

Figure 6: Prompt for extracting key concepts from existing GSM8K and MATH problems. Used in both Key
Concepts and Seeded Key Concepts agents (Huang et al., 2024a).
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Key Concepts Prompt: You are a Maths teacher. I will give you an existing problem and a key
concept which a student need to understand to solve this problem. Your task is to create a new Math
problem that checks if a student understand this key concept and can use it to solve a Math problem.
Do not include the solution in your new Math problem. Your response should contain only the new
problem.

Make sure you follow below constraints: 1. The generated problem is grammatically correct, does
not make any incorrect assumptions, is self-sufficient and can be solved without any additional
information.

Below are few examples:

Key concept : Number of ways to select some items from a pool of large number of items. New
Problem : In how many ways can 4 students be selected from a group of 6 students?

Key Concept : Converting the units of a rate to new units New Problem : A person is running a
distance of 300 meters in 30 seconds. What is the speed of the person in feet per minute?

Key Concept : Using the triangle inequality to reason about triangles New Problem : A stick 5 cm
long, a stick 9 cm long, and a third stick n cm long form a triangle. What is the sum of all possible
whole number values of n?

Key Concept : keyconcept New Problem :

Figure 7: Prompt for using key concepts to generate synthetic problem. Used by Key Concepts agent (Huang et al.,
2024a).

Seeded Key Concepts Prompt: You are a Maths teacher. I will give you an existing problem and a
key concept which a student need to understand to solve this problem. Your task is to create a new
Math problem that checks if a student understand this key concept and can use it to solve a Math
problem. Do not include the solution in your new Math problem. Your response should contain only
the new problem.

Make sure you follow below constraints: 1. The generated problem is grammatically correct, does
not make any incorrect assumptions, is self-sufficient and can be solved without any additional
information. 2. The generated problem is of similar complexity as the existing problem.

Below are few examples:

Existing Problem : Determine the number of ways to arrange the letters of the word ELLIPSE. Key
concept : Number of ways to select some items from a pool of large number of items. New Problem :
In how many ways can 4 students be selected from a group of 6 students?

Existing Problem : A bicycle is traveling at 20 feet per minute. What is the bicycle’s speed expressed
in inches per second? Key Concept : Converting the units of a rate to new units New Problem : A
person is running a distance of 300 meters in 30 seconds. What is the speed of the person in feet per
minute?

Existing Problem : The lengths of the sides of a non-degenerate triangle are X, 13 and 37 units. How
many integer values of x are possible? Key Concept : Using the triangle inequality to reason about
triangles New Problem : A stick 5 cm long, a stick 9 cm long, and a third stick n cm long form a
triangle. What is the sum of all possible whole number values of n?

Existing Problem : problem Key Concept : keyconcept New Problem :

Figure 8: Prompt for using problem and key concepts to generate synthetic problem. Used by Seeded Key Concepts
agent (Huang et al., 2024a).
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Distraction Insertion Prompt: Your goal is to hide a misleading detail in the given problem, such
that it doesn’t change the answer to the problem. The solution to the new problem should be the same
as the solution to the original problem. Do not give a solution for the new problem. Do not give
solution hints.

Here is an example:

Problem: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?

Solution: Natalia sold altogether 72 clips in April and May.

New Problem: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. In June, she sold twice as many clips as in April. How many clips did Natalia sell altogether in
April and May?

Now hide a misleading detail in the following problem.

Problem: problem

Solution: solution

New Problem:

Figure 9: Prompt used to generate synthetic problems using the novel Distraction Insertion agent (see Section 3).

Solvability Filtering Prompt: Please act as a professional math teacher. Your goal is to determine if
the given problem is a valuable math problem. You need to consider two aspects:

1. The given problem is a math problem.

2. The given math problem can be solved based on the conditions provided in the problem (You can
first try to solve it and then judge its solvability).

Please reason step by step and conclude with either ‘Yes’ or ‘No’.

Given Problem: {problem}

Figure 10: Prompt used to filter unsolvable synthetic problems (Ding et al., 2024), see Section 4.
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