TOOLHAYSTACK: Stress-Testing Tool-Augmented Language Models
in Realistic Long-Term Interactions

Beong-woo Kwak!
Dongjin Kang!

Minju Kim!
Sunghwan Kim!

Hyungjoo Chae!
Jinyoung Yeo'’

Dongha Lim?
Dongil Yang!

'Department of Artificial Intelligence, Yonsei University
2Department of Computer Science & Engineering, Yonsei University
{bwoo.kwak, jinyeo}@yonsei.ac.kr

Abstract

Large language models (LLMs) have demon-
strated strong capabilities in using external
tools to address user inquiries. However, most
existing evaluations assume tool use in short
contexts, offering limited insight into model
behavior during realistic long-term interactions.
To fill this gap, we introduce TOOLHAYSTACK,
a benchmark for testing the tool use capabil-
ities in long-term interactions. Each test in-
stance in TOOLHAYSTACK includes multiple
tasks execution contexts and realistic noise
within a continuous conversation, enabling as-
sessment of how well models maintain context
and handle various disruptions. By applying
this benchmark to 14 state-of-the-art LLMs, we
find that while current models perform well in
standard multi-turn settings, they often signifi-
cantly struggle in TOOLHAYSTACK, highlight-
ing critical gaps in their long-term robustness
not revealed by previous tool benchmarks. '

1 Introduction

Recent breakthroughs in Large Language Models
(LLMs) have transformed their role toward LLM
agents; they can execute real-world tasks such as
managing financial transactions and scheduling ap-
pointments (Yao et al., 2022; Shinn et al., 2023).
Tool-augmented language model (TALM) bench-
marks (Qin et al., 2023; Li et al., 2023; Chen et al.,
2024) have played a critical role in evaluating tool-
use capabilities based on simplified instruction-
following setups where they autonomously execute
external tools to address user goals.

Despite these advancements, the scope of most
existing work is still limited short interaction,
which fail to capture the behavior of LLM agents
in long-term interactions. The queries of most ex-
isting benchmarks are simple (e.g., “Book a restau-
rant named”) which can be resolved within one

'Our code and data are available at https://github.

com/bwookwak/ToolHaystack
fCorresponding author.

Short-term Interactions

‘ - Can you find me some recent ‘ T Search for quotes J .
? T
\A\papers.— - (Whose quotes? ==

1 Lincoln. \
|_paper 1: .., paper 2: ..., pa... | ‘" i search_wikipedia(...) i™, Y

i search_papers(...) }_

— Existing interactions are simple and resolved within few exchanges

Long-term Interactions

Can you book the restaurant ABC
| for my birthday? It's May 15th.(#) |

John's birthday is 4 days after mine(*),‘
| any ideas for birthday present?

Semantic Noises

O O O
Feb, 25 Mar, 25° Apr, 25 May, 25°

Evolving Goals %

Plans changed. We're going to
Hawaii for my birthday instead ‘ Do you think it'll arrive before
John's birthday? Can you check
the reviews and delivery times?

L a2

Oh, and cancel the restaurant]

Fragmented Context

Figure 1: TOOLHAYSTACK addresses long-term inter-
actions that include evolving goals, semantic noise, and
fragmented context.

or two exchanges. In contrast, many real-world
tasks, such as travel planning or project coordina-
tion, cannot be resolved in short interactions (Wu
et al., 2025; Maharana et al., 2024) or steps (Hayati
et al., 2025; Press et al., 2023). For example, the
user may want to perform tasks based on previous
requests without restating all the details (e.g., “Can-
cel the reservation you made for my birthday.”) or
request to collaborate with the agents across long
time frame (e.g., “Help me writing a research pa-
per.”). These tasks inherently require interactions
that unfold and might evolve over time.

While recent efforts have extended test scenarios
through multi-turn interactions (Li et al., 2023) and
API response simulations (Yan et al., 2024; Zhong
et al., 2025), these approaches fall short in captur-
ing the full complexity of long-term interactions. In
real-world contexts, continuous exchanges between
the user, the agent, and the external environment
introduce various contextual noises—such as in-
terleaved task flows (Castillo-Bolado et al., 2024),

24696

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 2469624727
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/bwookwak/ToolHaystack
https://github.com/bwookwak/ToolHaystack

Benchmarks Multi-turn Long Interaction Granular Complexity Distractor Tasks Avg. Turns
ToolBench X X X X 1
Fail-TaLMs X X X X 1
RoTBench X X v X 1
ComplexFuncBench X X X X 1
ToolDial v X X X 4.5
7-Bench v X X X -
MMTB v X X v 53
HammerBench v X v X 2.2
BFCL-v3 v X X v 4.2
TOOLHAYSTACK v v v v 32

Table 1: Comparison of TALM benchmarks across key evaluation dimensions. Long Interaction captures extended
conversations where long-term dependency plays a critical role; Granular Complexity denotes supporting fine-
grained evaluation with varying difficulty levels; Distractor Tasks measure robustness under interleaved irrelevant
tasks. The average number of turns 7-Bench is marked as ‘-~ as it does not use static dialogues for evaluation.

redundant information (Bai et al., 2024), and shift-
ing user goals (Yu et al., 2025)—that accumulate
in the agent’s context (Fig.1). The current lack
of benchmarks that rigorously evaluate TALMs’
robustness under such conditions limits their ap-
plicability to real-world scenarios, especially for
long-term use cases like personal assistants.

In this paper, we aim to evaluate TALMs in real-
istic long-term interaction scenarios. To this end,
we introduce TOOLHAYSTACK, a realistic and
composable test suite for TALMs. Specifically, we
define long-term agent context as a highly noisy
context where multiple user goals and partial task
execution histories are entangled in a single context.
Test instances are structured to simulate natural task
flows by interleaving task-relevant ("needles") and
irrelevant contexts ("haystack”)?, posing unique
challenges of identifying key information among
distractions accumulated over time. Based on the
structure, TOOLHAYSTACK simulates six realistic
scenarios derived from three core challenges (con-
text recall, information shift, and missing context),
each with two difficulty levels.

We systematically evaluate 14 highly capable
LLMs with tool-use capabilities, covering both
open-source and proprietary models on TOOL-
HAYSTACK. Our findings reveal that even highly
capable LLMs with advanced long-context mod-
eling (Bai et al., 2024; An et al., 2024) still strug-
gle to maintain consistency and robustness under
long-term scenarios—suggesting that contempo-
rary benchmarks may overestimate their readiness
and reliability for real-world deployment. Beyond
general performance, we also conduct detailed ab-
lation studies to uncover what factors influence

*We draw the analogy from the classic needle in a haystack
problem (Kamradt, 2023) to emphasize the noisy nature of
long-term interaction.

long-term success and where current models fail.
Our main contributions are as follows:

* We are the one of the pioneering works to explic-
itly formalize and highlight the critical challenge
of long-term interaction robustness for TALMs.

¢ We introduce TOOLHAYSTACK, a benchmark to
stress-test LLM agents in long-term scenarios.

* We systematically evaluate 14 state-of-the-art
LLM agents, showing key failure modes in long-
term interactions and guidance for their robust
real-world deployment.

2 Related Work

Realistic Evaluation of TALMs. To better ap-
proximate real-world conditions, benchmarks such
as ToolDial (Shim et al., 2025), HammerBench
(Wang et al., 2024), and 7-Bench (Yao et al., 2025)
introduce more naturalistic, multi-turn dialogues.
Recent efforts like RoTBench (Ye et al., 2023) and
FAIL-TALM (Trevifio et al., 2025) examine ro-
bustness under adversarial or erroneous conditions.
However, these benchmarks remain largely con-
strained to single-session or short-horizon tasks, of-
fering limited insight into TALM behavior over ex-
tended interactions. Some recent benchmarks such
as MultiChallenge (Sirdeshmukh et al., 2025) have
attempted to evaluate language models in multi-
turn scenarios systematically. Compared to Mul-
tiChallenge, ToolHaystack differs significantly in
problem space, failure types, and evaluation design.
MultiChallenge focuses on instruction-following in
relatively short and clean conversations (5 turns),
with limited extent and control over noise structure.
In contrast, ToolHaystack targets tool-use scenar-
ios with an average of over 32 turns per instance,
explicit argument chaining over long-horizon, and

24697

User: Can you book a restaurant for
my birthday? It'l be 30 people,
including my family of four.

Agent: Sure! Do you have a specific

restaurant in mind?

+ ?
User: Yeah, can you book Restaurant A? (=3 TR T B A,
Agent: Got it. When's your birthday? mine, so | think | should give him

his birthday present before we

User: May 15th.
leave for Hawaii. Any ideas for a
Agent: book_restaurant(...) gift?

The reservation is confirmed.

Evolving Goals

Agent: What's your budget?

User: Plans changed. We're going to User: Around $50t0/$100.
Hawaii for my birthday instead,
just with my family.

1X83u00 pajuswbhel

User: Do you think it arrive before his
birthday? Can you check the
reviews and delivery times for

Agent: How long are you planning to
stay?

User: A week.

Agent: book_flight(...)
Flights are booked!

me?
nagent: 7777772222227/
Of course! | checked, and it
should definitely arrive before

May 19th. 7

sasjou onuewas

User: Oh, and can you cancel the
restaurant reservation?

Agent: cancel_restaurant(...)
Sure thing. I've canceled it.

Figure 2: Real-world interactions between human and
agent are intertwined, with natural contextual noise ac-
cumulated over time.

adjustable, scenario-specific noise injection. These
settings better reflect real-world task complexity
and allow us to uncover nuanced model brittleness
under long-term, noisy interactions.

Long-context Evaluation of TALMs. Recent
benchmarks such as MMTB (Yu et al., 2025),
BFCL (Yan et al., 2024), and ComplexFuncBench
(Zhong et al., 2025), ACEBench (Chen et al., 2025),
APIGen-MT (Prabhakar et al., 2025) have extended
TALM evaluation into longer contexts and compo-
sitional tool use. However, they often rely on clean
task structures with highly coherent subtasks (<
5) or simulate long context by concatenating tool
outputs. In contrast, TOOLHAYSTACK provides a
long-context TALM benchmark with interleaved
task flows and contextual noise. This exposes novel
failure modes that are underexplored in prior eval-
uations. Tab.1 compares TOOLHAYSTACK with
existing TALM benchmarks. Further discussions
on related work are presented in Appendix A.

3 Rethinking Evaluation of TALMs

Most LLM benchmarks are rapidly saturated by
frontier models (Sirdeshmukh et al., 2025; Phan
et al., 2025). Likewise, previous TALM evalua-
tion frameworks might have limited lifespans. This
underscores a constant need for more realistic, chal-
lenging and adaptive evaluation frameworks that
can keep pace with model advancements. We high-
light that long-term interactions go beyond simple
extension of standard multi-turn evaluation.

3.1 Long-Term & Multi-Turn Tool-use

The key distinction lies not just in the number of
turns, it reflects the inherent complexity of real-
world tasks (Fig.1):

* Fragmented context: Relevant information is
scattered across histories. The context often in-
volves the execution history of multiple tasks.

* Evolving goals: User goals may shift over time.
Models should adapt their response accordingly.

* Semantic noise accumulation: Irrelevant but
plausible content such as tool responses from
unrelated tasks can mislead models.

3.2 Task Definition

Let 7 = {tooly, ..., tool;} be a set of tools, each
taking a structured query as input and returning a
result. A task session consists of a sequence of
interactions between the TALM, user, and environ-
ment. Let S = {s1,..., s} be the set of sessions,
where each s; = {z},a},r}, ..., 27 a?, r'} com-
prises user inputs z%, model outputs a’ (natural lan-
guage response or tool calls), and tool response 7
returned by the tool call (if applicable). Given the
session history Hy = {s1,...,s¢—1} and the cur-
rent session, the model chooses an action a} from
the action space where a tool action is represented
as a pair (fool_name, arguments).

4 ToOOLHAYSTACK: A Realistic and
Composable Test Suite for Long-Term
Tool Utilization

We introduce TOOLHAYSTACK, a benchmark to
stress-test TALM’s abilities in long-horizon tasks.

4.1 Test Structure

The key principles of TOOLHAYSTACK are: (1)
The interaction should be aligned with how real-
world users communicate with agents; and (2) The
difficulty and contextual interference levels should
be adjustable to keep the pace of model improve-
ments. However, annotating such test is difficult
and time-consuming even for human experts.

To address this issue, we design a novel test struc-
ture for TOOLHAYSTACK, inspired by Needle-In-
A-Haystack (NIAH) dataset (Kamradt, 2023). The
key idea is to interleave different task sessions as a
context instead of isolating task sessions (Fig.1). In
TOOLHAYSTACK, needles are defined as parts of
the context that are essential to address the target
task. The term haystack refers to the remaining

24698

Context Recall (CR) Information Shift (IS) Missing Context (MC)

o

Can you book a restaurant for our wedding
anniversary? There will be three of us—

Can you book a flight to New York for me? 'm [I need to call (000) 123-4567 tomorrow. Can you
going on a business trip alone.

remind me so | don't forget?

[

-

two adults and one child.
- Goal

ReserveRestaurant (adults_number=2,

[Sure! Which airport are you flying into? ~b
Y

children_number=1, ...)

o

{ Got it. I've made the reservation for 3 people. ‘»)m‘ instead, departing from LA.

[

Oh, actually—not New York. Book a flight to Seattle

I Can you help me find hotels in New York for a
family trip?

BookFlight (from="Los Angeles’, to='Seattle’, ...)

(
Can you book a hotel in New York for me? }
i

Sure! | need to know your check-in and l

check-out dates. -
)

Got it. Your flight is booked. »l* .
0 Check-in on September 27 and check-out on

September 28.
2

Sure! | need to know your check-in and 1
check-out dates. e é
o "

Can you book a hotel at my business trip destination? J

Irrelevant

£ Check-in on September 27 and check-out o
on September 28. ReserveHotel (

place='Seattle’, ...

SearchHotels (checkin_date='2025-09-27",

Context

@ | Reservetotel (=

)

ReserveHotel (checkin_date= ..., checkout_date= ...,
place="New York’, ...)

adults_number= ..., children_number= ...,

checkout_date="2025-09-28",
adults_number=2,

[All set. Your reservation is confirmed. ulu
ooy

phone: (000) 123-4567 , ...)

children_number=1, ...) (On the day of the trip)

Here's a list of hotels for you. b
0

Scattered

. It's a great hotel, all thanks
Information

J toyou! V)
[

Where’s my hotel...? What
happened...?

- g Allset. Your reservation is confirmed.

0[Great. And what is your phone number? ,,L
»
=

Figure 3: Illustration of the scenarios in TOOLHAYSTACK (CR, IS, MC).

(usually irrelevant) text, that acts as a distractor.
This modularized structure enables us to control
the difficulty of test instances by manipulating how
we compose this haystack. For example, increas-
ing the number of task sessions in the haystack can
naturally increase the task difficulty.

4.2 Test Scenarios

To rigorously evaluate the capabilities of TALMs
in long-term scenario, we construct a taxonomy of
scenarios based on three essential abilities reflect-
ing realistic long-term tool-use challenges: Con-
text Recall, Information Shift, and Missing Context.
Each scenario is further divided into two levels of
difficulties (i.e., simple and complex), yielding 6
scenarios in total.

4.2.1 Context Recall (CR)

Users often refer back to previously mentioned de-
tails using pronouns or contextual ques. In this
scenario, agents must ensure the continuity and
relevance in dialogue by identifying and (if re-
quired) integrating relevant past information scat-
tered across long conversations.

* CR-Single: A single relevant piece of informa-
tion (the “needle”) must be extracted from the
haystack. This mirrors scenarios where a user
refers to a specific past instruction or fact.

e CR-Multi: Multiple pieces of relevant informa-
tion must be identified and integrated. This set-
ting tests the model’s ability to consolidate in-
formation from various parts of the conversation,
requiring both memory and reasoning.

4.2.2 Information Shift (IS)

Long-term user interactions are dynamic—users
may revise goals, introduce new constraints, or
provide updated information over time. This sce-
nario evaluates whether the agent can track these
changes, even when shifts are subtle or embedded
within noise. Misalignment often leads to incorrect
actions, like executing outdated plans.

* IS-Explicit: Changes are clearly stated by the
user (e.g., “Actually, change the flight to May
10th instead of April 15th.”). Models must detect
and adapt to these changes.

o IS-Implicit: Shifts are implied through indirect
context cues (e.g., “I won’t be able to leave that
early anymore. Can you book something in the
afternoon?”). This setting evaluates pragmatic
understanding and contextual reasoning.

4.2.3 Missing Context (MC)

An often overlooked aspect of agent robustness is
recognizing when essential information is absent
(e.g., missing API parameters) and abstaining from
potentially erroneous responses to avoid failures.

* MC-Easy: Missing information is obvious, such
as when no relevant entity or fact has ever been
mentioned.

e MC-Hard: The gap is subtle or masked by irrel-
evant but similar-seeming information, requiring
fine-grained discrimination between known and
unknown details.

S Building TOOLHAYSTACK

To ensure high-quality data while maintaining cost-
efficiency, TOOLHAYSTACK employs a multi-stage

24699

Step 1. Tool Collection Step 2. Tool Sequence Construction

Information Shift (IS)

Tool set Collection (10k+) Scenarios

£2©009
.
°0° amm

Goal APl Sampling

(@ Modeling Target-Needle dependency
Needle @) id="XQWV"

7
Needle & date_range="May"

Target (€ product_id=M, range=
Query: Can you find reviews for the same
product from AlExpress for the same date?

@ Modeling Haystack.

© id="xawv"

Step 3. Dialogue Instantiation

@ Hiding the Needles.in the Haystacks

@ Generate a session for each APl

Needle

mix sessions

/Y
~

@ date_range="Apr"

O id="XXXX"
roduct_id=M, range=
9 P! o 9 @ date_range="Apr”

& id="XXXX"

@ date_range="Apr"

Needles

Target
@ product_id=, range=

Figure 4: Overview of our three-stage dataset generation pipeline.

generation pipeline with three main phases: (1)
Tool set collection; (2) Scenario-grounded tool se-
quence construction (3) Dialogue instantiation. De-
tailed process of generation process is presented in
Appendix C.

5.1 Tool Set Collection

We begin by collecting over 13K real-world APIs
from RapidAPI (RapidAPI, 2025), spanning 42
categories. Each API comes with a description
of functionality and argument schema. We first
sample a target API to be invoked in the target
session from the curated toolset.

5.2 Scenario-Grounded Tool Sequence
Construction

To avoid incoherent sessions in test instances, we
construct structured tool sequences as a blueprint
for subsequent generation process. This approach
enables us to generate test instances with coher-
ent long-term dependencies between tools through
shared arguments.

Modeling Target—Needle Dependencies. For a
target API, we identify a set of needle APIs that
can form a long-term dependency with target API
through shared arguments. For example, a hotel
booking API may require a location and date, pro-
vided earlier by a flight search or calendar tool.
Each argument’s dependency is identified using
semantic matching (SentenceBERT (Reimers and
Gurevych, 2019)) and fine-grained LLM verifica-
tion to ensure the semantic relevance and compati-
bility. We annotate each tool call with realistic ar-
gument values using LLM prompting. Specifically,
a tuple of 4 elements is given to the model i.e., tar-
get API, needle APIs, a scenario type (e.g., CR,
IS, and MC), situational context. Here, situation
context is introduced to enhance the authenticity
and consistency of the argument values. We pre-
constructed a set of situational contexts for each

goal APIs based on the characteristics and require-
ments of each target API and randomly use one of
them as a situational context.

Modeling the Haystack. We configure a set of
tools to be used in haystack (distractor) sessions
based on the goal API and the selected scenario
(e.g., CR, IS, and MC). An LLM is employed to
compose the APIs to be used for distractors and
their arguments, guided by each scenario. For in-
stance, in MC-Easy, we use semantically disjoint
tools, while in MC-Hard we include distractors that
mimic needle semantics.

The prompt for second stage filtering of model-
ing target-needle dependencies stage and scenario
grounding are presented in Appendix. We carefully
craft prompts for applying each test scenario (CR,
IS, MC) to build target-needle dependencies and
model the haystack.

5.3 Dialogue Instantiation

With structured tool sequences fully annotated, we
convert them into naturalistic dialogues. This in-
volves rendering tool arguments into plausible user
utterances and assistant responses. The needle and
haystack interactions are interleaved. This results
in dialogues where key information is embedded
in distracting context. All instances undergo au-
tomated validation to ensure API correctness, ar-
gument consistency, and logical coherence. Then,
human reviewers inspect each dialogue for natural-
ness and functional integrity. Only instances pass-
ing both validation stages are retained in TOOL-
HAYSTACK, ensuring high-quality data.

5.4 Quality Assurance

We employ multiple frontier LLMs (GPT-4o,
Claude 3.5, Gemini 2.5, LLaMA 3.3) during gener-
ation to reduce model-specific artifacts. Automated
validation enforces constraints such as correct argu-
ment use, proper tool syntax, and scenario fidelity.

24700

A subset of generated dialogues undergoes a fil-
tering process, where we prompt gpt-4o to strictly
evaluate if the dialogue violates the rules for the
target category. Moreover, to ensure the quality
of TOOLHAYSTACK, we employed GPT-40 as a
judge to automatically filter out dialogues that do
not satisfy our scenario definitions. To validate the
effectiveness of this automated filtering process,
we sampled 60 dialogues (10 from each category)
from the unfiltered dataset and compared the re-
sults against human annotations. The evaluation
yielded a Matthews Correlation Coefficient (MCC)
of 0.884, indicating a strong agreement between
the automated and human filtering outcomes.

6 Experiments

6.1 Experimental Setup

Models. We evaluate a comprehensive set of
highly capable TALMs. Closed-source models
include GPT family (40, 4.5-Preview, and 4o-
mini), Claude family (3.7-Sonnet, 3-Opus), Gemini
Family (2.5-Pro, 2.0-Flash-001), Amazon-Nova-
Pro, Mistral-large and Grok-3. Open-source
models are Qwen?2.5-72B-Instruct, Llama-3.3-70B-
Instruct, DeepSeek-V3, ToolACE-2-Llama-3.1-
8B, watt-tool-8B and xLLAM-2-32b-fc-r. Note
that ToolACE-2-Llama-3.1-8B, watt-tool-8B and
xLAM-2-32b-fc-r are finetuned for function calling
tasks. Models are selected to cover a diverse and
competitive set of top-performing TALMs, partic-
ularly those demonstrating strong capabilities in
recent multi-turn tool benchmarks (e.g., BFCL).

Retrieval As providing all the API documents
is infeasible, a subset of feasible APIs is typically
given to TALM through semantic matching. In
TOOLHAYSTACK, the model is tested in oracle
setup with the 5 API documents, where a ground-
truth API document and 4 APIs are given to the
model based on their semantic relevance to the
target session.

Evaluation Metric. We use call accuracy which
calculates the proportion of correct function calls:

N]
Z;‘\]:l Ci (1)

i=1 T

Call Acc =

where N is the number of samples, n; is the total
number of function calls in ¢-th sample, and c; is
the number of correct function calls in sample .

Base Test Set (Multi-turn). To provide deeper
insight, we generate a multi-turn counterpart of
our dataset generated by standard self-instruct ap-
proach previously used in the literature (Qin et al.,
2023). We use the same goal APIs for generating
short multi-turn tool-use instances. All necessary
information to complete the task is revealed within
a few turns, without any distractions.

6.2 Main Results

We present the TOOLHAYSTACK results in Table 2,
evaluating 17 TALMs across six long-term interac-
tion scenarios.

Overall Performance. Among all models,
GPT-4.5-Preview achieved the highest aver-
age score (42.11%), followed by Grok—3-beta
(38.94%) and DeepSeek-V3 (38.46%). While
current TALMs show competitive performance in
multi-turn settings (i.e., Base), their accuracy sig-
nificantly deteriorates in TOOLHAYSTACK. For
instance, GPT—4 0 drops from 83.33% in Base to
35.87%, demonstrating the complexity of long-
term tool-use.

Noise Robustness. The performance gap be-
tween simple and complex sub-scenarios shows
the robustness of models against contextual noises.
We observe GPT family models struggles to re-
tain their performance in CR-Single and CR-Multi.
For example, GPT-4.5-Preview, one of the
strongest model in TOOLHAYSTACK, underper-
form significantly in CR-Multi. In contrast, Claude
family models and Grok-3-beta have experi-
enced marginal performance drops by contextual
noises, showing under 5% of degradation across
scenarios consistently.

Closed- vs. Open-source Models. Closed-
source models consistently outperform open-
source models under noisy settings. While
general-purpose open-source models (Qwen?2 . 5,
DeepSeek-V3) demonstrate more stable perfor-
mance across scenarios, they still lag behind top
proprietary models. Notably, open-source fine-
tuned models like ToolACE and watt-tool
achieve generally achieve poor accuracy of less
than 10%, despite their high BFCL scores. We
further examine this by extending the comparison
between multi-turn and long-term tool-use perfor-
mance in the following section.

24701

Context Recall (%)

Information Shift (%)

Missing Context (%)

Method Base Avg.
Single Multi A Explicit Implicit A Easy Hard A

Closed-source models

GPT-40 63.44 50.00 +13.44 31.67 2857 +3.10 21.52 20.00 +1.52 83.33 35.87
GPT-4.5-Preview 70.97 53.85 +17.12 38.33 3571 +2.62 29.11 2471 +4.40 7222 42.11
GPT-40-mini 56.99 38.46 +18.53 38.33 27.38 +10.95 29.11 1294 +16.17 74.07 33.87
Claude-3.7-Sonnet 52.69 5577 -3.08 25.00 2143 +3.57 11.39 824 +3.15 64.81 29.09
Claude-3-Opus 3441 30.77 +3.64 8.33 9.52 -1.19 506 471 +0.35 79.63 1547
Gemini-2.5-Pro 4839 57.69 -930 20.00 25.00 -5.00 12.66 1294 -0.28 59.26 29.45
Amazon-Nova-Pro-vl.0 54.84 4423 +10.61 35.00 23.81 +11.19 27.85 31.76 -391 52.78 36.25
Mistral-large-2407 59.14 54.08 +5.06 26.67 2551 +1.16 20.32 23.00 -2.68 57.41 34.79
Grok-3-beta 64.52 61.54 +298 36.67 3571 +0.96 15.19 20.00 -4.81 66.67 38.94
Open-source models

Qwen2.5-72B-Instruct 59.14 6538 -6.24 31.67 2857 +3.10 1646 5.88 +10.58 62.96 34.52
Llama-3.3-70B-Instruct 45.16 5385 -8.69 20.00 20.24 -0.24 0.00 0.00 +0.00 74.07 23.21
DeepSeek-V3 5591 59.62 -3.771 40.00 28.57 +11.43 27.85 18.82 +9.03 68.52 38.46
ToolACE-2-Llama-3.1-8B 23.66 17.31 +6.35 10.00 4.67 +5.33 0.00 0.00 +0.00 70.37 9.27
watt-tool-8B 15.05 577 +9.28 8.33 2.38 +5.95 0.00 0.00 +0.00 62.96 5.26
XxLAM-2-32b-fc-r 50.62 51.06 -0.44 2692 2533 +1.59 0.00 0.00 +0.00 69.81 25.66

Table 2: Main results. A denotes the gap between simple and complex levels. Base denotes BFCL score; Avg. is

the mean performance across metrics.

6.3 Limitation of Multi-turn Benchmarks for
Evaluating Long-term Tool Use

To investigate whether existing multi-turn bench-
marks can reliably reflect long-term tool use perfor-
mance, we compare performance on BFCL (multi-
turn) and TOOLHAYSTACK (long-term). As shown
in Figure 5, a positive correlation between the
two benchmarks is observed within each group
(general-purpose LLMs and finetuned models).
However, while considering all models, we find
a notable discrepancy: finetuned models achieve
high scores on BFCL but perform poorly on TOOL-
HAYSTACK. This gap suggests that multi-turn
benchmarks may fail to capture the complexity
and robustness required for long-term interactions.
One possible explanation is an out-of-distribution
(OOD) problem—models trained on conventional
tool-learning corpus struggle to generalize to di-
verse, noisy and unpredictable nature of real-world
scenarios. As fine-tuning TALM is considered a
promising direction to build personal agents, the
lack of generalization in long-term tool-use can
be a critical issue, highlighting the importance of
evaluating tool use capabilities of LLMs during
long-term interaction such as TOOLHAYSTACK.

6.4 Controlled Analysis on Long-Context
Utilization of TALMs

To isolate the impact of long-context challenges in
tool-augmented settings, we conduct a controlled

GPT-4.5-Preview

Grok-3-beta DeepSeek-V3 (FC)
Amazon-Nova-Pro-v1.0
Qwen2.5-72B-Instruct

GPT-40-mini

Mistral-large-2407 (FC, 241.1) o ®GPT-40

w
o

w
o

Claude-3.7-Sonnet
L4 Gemini-2.5-Pro
XLAM-2-32b-fc-r

N
3
L

A General-purpose LLMs
Llama-3.3-70B-Instruct (FC)

ToolHaystack Score
N
o

Finetuned Models

o

Claude-3-Opus

5
:

ToolACE-2-Llama-3.1-8B (FC)

(3

) watt-tool-8B (FC)

50 55 60 65 70 75
BFCL Score

Figure 5: Performance comparison between BFCL
(multi-turn) and TOOLHAYSTACK (long-term) score.

Distance 0 (recent) 1 2 3 4 5 (past)
Closed 94.44 41.67 6l1.11 75.00 4444 5556
General 83.33 25.00 50.00 66.67 33.33 58.33
TALM 33.33 0.00 3333 41.67 25.00 50.00

Table 3: Accuracy by evidence position (distance from
evidence) across closed-source models, general-purpose
open-sourced models, and finetuned TALMs. The num-
bers are averaged scores of each model group.

ablation study by systematically modifying the con-
textual structure in TOOLHAYSTACK.

Positional Bias in TALMs. We analyze how
model performance varies with the position of
the key evidence ("needle") in the context. We

24702

B GPT-4.5-Preview
@ DeepSeek-V3
A Grok-3-beta

Performance
B
8

30

25

10 15 20
of Haystacks

Figure 6: Performance degradation occurs as the number
of distractor haystacks increases.

report the averaged accuracy of models of three
groups of models, namely Closed-source models,
Open-source general purpose models, and fine-
tuned TALMs, as a function of the number of ses-
sions between the session containing the relevant
evidence and the target session. As shown in Ta-
ble 3, closed-source models exhibit a strong re-
cency bias, achieving peak performance (94.44%)
when the evidence is immediately adjacent to the
query (distance 0). General-purpose open-source
models follow a similar pattern but with lower over-
all robustness. In contrast, finetuned TALMs strug-
gle across all positions. Overall, the findings under-
score that positional biases significantly affect tool
invocation accuracy.

Impact of Distractors. We investigate how in-
creasing the number of haystack sessions lead to
decreased performance. We select top-performing
TALMSs in TOOLHAYSTACK and assess them on
the samples with varying number of haystacks.
In Figure 6, model performance consistently de-
clines as the number of haystacks increases. For
example, GPT-4.5-Preview’s accuracy drops
sharply from 56% to 32% when the number of dis-
tractors grows from 1 to 20. Interestingly, the per-
formance gap between GPT—-4 . 5 and other mod-
els narrows at higher noise levels, suggesting a
saturation point beyond which all models are over-
whelmed by irrelevant context.

6.5 Error Analysis through the Lens of
Hallucination

As interaction history accumulates over time,
TALMs are increasingly prone to hallucinating ar-
guments or selecting incorrect tools by referring
to irrelevant yet semantically-related context. We
investigate model failures in the Missing Context
(MC) scenarios where current TALMs struggle the
most by analyzing the distribution of error types

Sample Dialogue from Missing Context-Hard:

(Previous sessions)

User: Hey, I need to check the domains hosted on the same
IP as a suspicious domain. Use the domain I mentioned
before, and let’s go with the page number we talked about
last time.

Ground-truth Response:
{
"api_name": "Search domains",
"parameters": {
"g": "suspiciousdomain.com",
"type": "WEBIP",
"pagenum": "MISSING"
}
}

GPT-40-mini Prediction:
{
"api_name": "Search domains",
"parameters": {
"g": "suspiciousdomain.com",
"typeﬂ . "WEBIP",
llpagenumll . I|3I|

}
}

DeepSeek-V3 Output:
{
"api_name": "Search domains",
"parameters": {
"g": "suspiciousdomain.com",
"typell . IIWEBIP",
"pagenumu: nqn

}
}

Table 4: An example from the Missing Context-Hard set-
ting showing the dialogue, ground-truth response, and
model predictions. GPT-4-0-mini predicted pagenum
as "3" which is a random number and DeepSeek-V3
predicted pagenum as "1" which is a default value.

across model classes. Figure 7 presents the relative
proportions of three key error types: wrong API
selection, hallucinated arguments based on mislead-
ing in-context cues (In-context), and hallucinations
derived from entirely absent information (Out-of-
context). The numbers are averaged within each
model group.

Error Trends. Closed and General-purpose mod-
els exhibit highly skewed error distributions, with
over 75% of their failures attributable to Out-of-
context hallucinations in MC-Easy and similarly
high proportions in MC-Hard (63% and 77%). We
find that several models tend to copy default val-
ues of missing parameter or filling out randomly
generated strings without proper verification of con-
textual sufficiency. Finetuned TALMs, in contrast,
show a different error distribution. In MC-Easy,

24703

Closed-source General Finetuned TALM
In- API In- API
context -\ context -\
N kssm.z ksgm.z
T - : 487 434
w 79.3 79.8 API Out-of
g Out-of Out-of —_—
-context -context
79
In- J
context
In-
context 17.4
"% € API 38.4
T API 64.6 8 771 53.5 Out-of
D .
%) Out-of el A context
S 51 -context _context
r 81
In- In- /
context

context

Figure 7: Compact error breakdown by model and
context shown as percentages (API: wrong API name,
In/Out-of-context: wrong parameter values filled with
entities appearing in/out of context).

TALMs reduce Out-of-context hallucinations to
43.39% and In-context hallucinations remain low
(7.94%), while API errors account for nearly half
(48.68%) of the total errors, suggesting that TALMs
are more cautious about fabricating arguments out-
right from missing context (lower Out-of-context)
but often misidentify the appropriate tool (API er-
ror), particularly under harder conditions. See Ta-
ble 4 for detailed case studies illustrating model
behaviors.

6.6 Does CoT Prompting Elicit Better
Performance?

We investigate whether CoT also improves robust-
ness in long-term tool-use settings, where contex-
tual entanglement, evolving goals, and noisy dis-
course severely challenge model reliability.

Setup. We conduct a controlled comparison of
five models showing competitive performance
in our dataset—GPT—-40, GPT-4.5-Preview,
Amazon—-Nova-Pro-v1.0, Grok-3-beta,
and DeepSeek—-V3 across the test scenarios in
TOOLHAYSTACK.

Results. Our findings, summarized in Table 5,
reveal mixed effects of CoT prompting. While
CoT often yields marginal or scenario-specific im-
provements, it does not consistently improve over-
all performance (e.g., GPT—-40). Among the mod-
els, GPT-4.5-Preview and Grok—-3-beta
shows the most robust gains, particularly in CR-
Multi and IS-Implicit, suggesting its stronger align-
ment with reasoning-based cues. DeepSeek-V3,
however, sees limited benefit, possibly due to the
quality of generated reasoning paths. These un-

CR (%) IS (%) MC (%)

Method Avg.
S M E 1 E H

GPT-4o 63.44 50.00 31.67 2857 21.52 20.00 35.87

+ CoT 58.06 69.23 30.00 30.95 18.99 16.47 37.95

GPT-4.5-Preview 70.97 53.85 3833 3571 29.11 24.71 42.11
+ CoT 70.97 61.54 30.00 42.86 31.65 22.35 43.23

54.84 4423 3500 2381 27.85 31.76 36.25

Amazon-Nova

+ CoT 52.69 51.92 2500 26.19 17.72 25.88 33.23
Grok-3-beta 64.52 61.54 36.67 3571 1519 20.00 38.94
+ CoT 59.14 71.15 38.33 3690 1392 23.53 40.83
DeepSeek-V3 5591 59.62 40.00 2857 27.85 18.82 38.46
+ CoT 51.61 7115 36.67 33.33 17.72 1529 37.63

Table 5: The results of each method are evaluated
using the same setup as the main results. Rows list-
ing only the model name correspond to the vanilla
(zero-shot) setting. The detailed prompts for CoT are
in the Appendix. Note that Amazon-Nova stands for
Amazon-Nova-pro-vl.

derscore that CoT prompting is not a universally
effective for long-term tool use. Improvements are
scenario-dependent and closely tied to the model’s
inherent reasoning capabilities and contextual re-
trieval mechanisms.

7 Conclusion

In this work, we introduced TOOLHAYSTACK, a
novel benchmark designed to rigorously assess the
long-term robustness of tool-augmented language
models (TALMs) in complex, noisy, and realistic
interaction scenarios. Our extensive evaluations
across 10 state-of-the-art models demonstrate that
while existing TALMs excel in short, clean multi-
turn dialogues, their performance significantly de-
grades in long-term, distraction-rich contexts. This
performance gap highlights the critical need for
dedicated long-term evaluation frameworks and re-
veals current limitations in models’ ability to retain
context, handle goal shifts, and avoid hallucination
over time. TOOLHAYSTACK offers a composable,
scalable, and diagnostically rich test suite to drive
progress toward more reliable, agentic LLM sys-
tems. We hope our benchmark facilitates future re-
search aimed at closing the gap between controlled
evaluations and the complex realities of real-world
tool use.

Limitations

Analysis on the Reasoning-Intensive Models.
Recently, large reasoning models (LRMs), which
are trained to improve reasoning through the use
of extended rationales, have demonstrated strong
performance across a range of tasks. However, it re-

24704

mains unclear whether such reasoning capabilities
directly translate to effective tool use in long-term
interactions, which often require pragmatic reason-
ing over extended contexts. While LRMs may ex-
cel at structured reasoning within a single context
window, adapting to evolving goals and maintain-
ing coherence across multiple tool-use steps poses
additional challenges. Investigating this connection
is a promising direction for future work.

Evaluation on Extremely Long-term Interac-
tions. In real-world applications, TALMs may
interact with users over extended periods, ranging
from months to years. To maintain evaluation qual-
ity and manageability, our current setup limits the
number of sessions. Nevertheless, a valuable fu-
ture direction is to scale our datasets to hundreds
of sessions, enabling evaluation of in-the-wild us-
age patterns and better assessing TALMs’ ability
to maintain consistency, memory, and utility over
long-term interactions.

Number of Used APIs. Although our dataset
includes a limited number of APIs, our aim is to
focus on those that are properly documented, func-
tional, and realistic for use in real-world applica-
tions. During the exploration phase, we observed
that incorporating APIs that did not meet these cri-
teria significantly degraded data quality. While one
could manually construct additional high-quality
APIs to expand TOOLHAYSTACK, such efforts are
beyond the scope of this work.

Acknowledgments

This work was supported by Institute of Informa-
tion & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean gov-
ernment (MSIT) (No.RS-2020-11201361, Artificial
Intelligence Graduate School Program (Yonsei Uni-
versity)), (No. RS-2024-00457882, National Al
Research Lab Project), (2022-0-00077, RS-2022-
11220077,Al Technology Development for Com-
monsense Extraction, Reasoning, and Inference
from Heterogeneous Data). Jinyoung Yeo is the
corresponding author.

References

Chenxin An, Shansan Gong, Ming Zhong, Xingjian
Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. 2024. L-eval: Instituting standardized
evaluation for long context language models. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long

Papers), pages 14388-14411.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, and 1 others. 2024. Long-
bench: A bilingual, multitask benchmark for long
context understanding. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3119—
3137.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2024. Large language models as
tool makers. In The Twelfth International Conference
on Learning Representations.

David Castillo-Bolado, Joseph Davidson, Finlay Gray,
and Marek Rosa. 2024. Beyond prompts: Dynamic
conversational benchmarking of large language mod-
els. In The Thirty-eight Conference on Neural In-
formation Processing Systems Datasets and Bench-
marks Track.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong,
Minju Gwak, Gwanwoo Song, Jihoon Kim, Sungh-
wan Kim, Dongha Lee, and Jinyoung Yeo. 2025.
Web agents with world models: Learning and lever-
aging environment dynamics in web navigation. In
The Thirteenth International Conference on Learning
Representations.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang,
Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang,
Weinan Gan, Yuefeng Huang, and 1 others. 2025.
Acebench: Who wins the match point in tool usage?
arXiv preprint arXiv:2501.12851.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and 1 oth-
ers. 2024. T-eval: Evaluating the tool utilization
capability of large language models step by step. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), pages 9510-9529.

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any-
Tool: Self-reflective, hierarchical agents for large-
scale API calls. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages
11812-11829. PMLR.

Shirley Anugrah Hayati, Tachee Jung, Tristan Bodding-
Long, Sudipta Kar, Abhinav Sethy, Joo-Kyung Kim,
and Dongyeop Kang. 2025. Chain-of-instructions:
Compositional instruction tuning on large language
models. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 24005-24013.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,

24705

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=moWiYJuSGF
https://openreview.net/forum?id=moWiYJuSGF
https://proceedings.mlr.press/v235/du24h.html
https://proceedings.mlr.press/v235/du24h.html
https://proceedings.mlr.press/v235/du24h.html

Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng
Xu, and Qun Liu. 2024. Planning, creation, us-
age: Benchmarking llms for comprehensive tool uti-
lization in real-world complex scenarios. Preprint,
arXiv:2401.17167.

Zhenchao Jin, Mengchen Liu, Dongdong Chen, Lingt-
ing Zhu, Yunsheng Li, and Lequan Yu. 2024.
Toolbridge: An open-source dataset to equip llms
with external tool capabilities. arXiv preprint
arXiv:2410.10872.

G. Kamradt. 2023. Needle in a haystack - pressure test-
ing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8460-8478.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li API-bank. 2023. A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 3102-3116.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, and 1 others. 2024.
Toolace: Winning the points of 1lm function calling.
arXiv preprint arXiv:2409.00920.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, and 1 others. 2024. Toolsand-
box: A stateful, conversational, interactive evalua-
tion benchmark for Ilm tool use capabilities. arXiv
preprint arXiv:2408.04682.

Aditya Maharana and 1 others. 2024. Locomo: Long
context modeling benchmark for conversational
agents. arXiv preprint arXiv:2402.13968.

OpenAl. 2023. Openai api documentation: Function
calling. https://platform.openai.com/
docs/guides/function-calling. Ac-
cessed: 2024-10-21.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,
Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang,
Mohamed Shaaban, John Ling, Sean Shi, and 1 oth-
ers. 2025. Humanity’s last exam. arXiv preprint
arXiv:2501.14249.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo
Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles,
and 1 others. 2025. Apigen-mt: Agentic pipeline
for multi-turn data generation via simulated agent-
human interplay. arXiv preprint arXiv:2504.03601.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 5687-5711.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

RapidAPI. 2025. Rapidapi: The next generation api hub.
https://rapidapi.com/. Accessed: 2025-
05-20.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 3982-3992.

Timo Schick, Ankit Dwivedi-Yu, Nathanael Schirli,
and 1 others. 2023. Toolformer: Language models
can teach themselves to use tools. arXiv preprint
arXiv:2302.04761.

Jeonghoon Shim, Gyuhyeon Seo, Cheongsu Lim, and
Yohan Jo. 2025. Tooldial: Multi-turn dialogue gen-
eration method for tool-augmented language models.
In The Thirteenth International Conference on Learn-
ing Representations.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634-8652.

Ved Sirdeshmukh, Kaustubh Deshpande, Johannes
Mols, Lifeng Jin, Ed-Yeremai Cardona, Dean Lee,
Jeremy Kritz, Willow Primack, Summer Yue, and
Chen Xing. 2025. Multichallenge: A realistic multi-
turn conversation evaluation benchmark challenging
to frontier llms. arXiv preprint arXiv:2501.17399.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng Li,
Ke Wang, Rong Yao, and 1 others. 2023. Restgpt:
Connecting large language models with real-world
restful apis. arXiv preprint arXiv:2306.06624.

24706

https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://rapidapi.com/

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, and 1
others. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.

Eduardo Trevifio, Hugo Contant, James Ngai, Graham
Neubig, and Zora Zhiruo Wang. 2025. Benchmark-
ing failures in tool-augmented language models. In
Proceedings of the 2025 Conference of the Nations of
the Americas Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 2916-2934.

Jun Wang, Jiamu Zhou, Muning Wen, Xiaoyun Mo,
Haoyu Zhang, Qiqiang Lin, Cheng Jin, Xihuai Wang,
Weinan Zhang, and Qiuying Peng. 2024. Ham-
merbench: Fine-grained function-calling evaluation
in real mobile device scenarios. arXiv preprint
arXiv:2412.16516.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang,
Kai-Wei Chang, and Dong Yu. 2025. Longmemeval:
Benchmarking chat assistants on long-term interac-
tive memory. In Adaptive Foundation Models: Evoly-
ing Al for Personalized and Efficient Learning.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function
calling leaderboard.
cs.berkeley.edu/blogs/8_berkeley_
function_calling_leaderboard.html.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi Fung,
Sha Li, Zixuan Huang, Xu Cao, Xingyao Wang,
Heng Ji, and ChengXiang Zhai. 2024. If LLM is
the wizard, then code is the wand: A survey on how
code empowers large language models to serve as
intelligent agents. In ICLR 2024 Workshop on Large
Language Model (LLM) Agents.

Shinn Yao, Jiahui Zhao, Denny Yu, and 1 others. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and
Karthik R Narasimhan. 2025. {τ}-bench: A
benchmark for \underline{ T }ool-\underline{ A } gent-
\underline{ U }ser interaction in real-world domains.
In The Thirteenth International Conference on Learn-
ing Representations.

Deming Ye, Vincent Tan, Jing Liu, and 1 others. 2023.
Rotbench: Measuring robustness of tool-augmented
language models. arXiv preprint arXiv:2310.07180.

https://gorilla.

Peijie Yu, Yifan Yang, Jinjian Li, Zelong Zhang, Haorui
Wang, Xiao Feng, and Feng Zhang. 2025. Multi-
mission tool bench: Assessing the robustness of 1lm
based agents through related and dynamic missions.
arXiv preprint arXiv:2504.02623.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, and 1 others. 2024.
xlam: A family of large action models to empower ai
agent systems. arXiv preprint arXiv:2409.03215.

Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi
Hu, and Jie Tang. 2025. Complexfuncbench: Ex-
ploring multi-step and constrained function call-
ing under long-context scenario. arXiv preprint
arXiv:2501.10132.

24707

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://openreview.net/forum?id=8dmNOD9hbq
https://openreview.net/forum?id=8dmNOD9hbq
https://openreview.net/forum?id=8dmNOD9hbq
https://openreview.net/forum?id=8dmNOD9hbq
https://openreview.net/forum?id=roNSXZpUDN
https://openreview.net/forum?id=roNSXZpUDN
https://openreview.net/forum?id=roNSXZpUDN

Appendix
A Detailed Related Work

A.1 Tool-Augmented Language Models

Large Language Models (LLMs) augmented with
external tools have emerged as a promising
paradigm for overcoming inherent limitations in
static parametric memory (Komeili et al., 2022)
and enabling real-time interaction with the exter-
nal world (Yang et al., 2024; Chae et al., 2025).
The term fool encompasses a broad range of func-
tionalities, from simple calculators and Python in-
terpreters (Cai et al., 2024) to complex API and
function calls (Liu et al., 2024). In this work, we
focus specifically on the latter—LLMs interfacing
with external APIs or invoking function calls to
perform tasks.

Early efforts concentrated on enabling LLMs
to call tools via prompting and reasoning frame-
works. For instance, Parisi et al. (2022) introduce
the concept of Tool Augmented Language Mod-
els (TALM), demonstrating that an LLLM can itera-
tively interact with non-differentiable tools through
textual interfaces. Similarly, the ReAct frame-
work (Yao et al., 2022) combined chain-of-thought
reasoning with action directives, allowing an LLM
to plan steps and invoke tools (e.g., web search or
calculators) in a conversational loop. Subsequent
research has shown that fine-tuning LLMs on tool-
use data can significantly enhance their efficacy.
Toolformer (Schick et al., 2023), for example, is a
fine-tuned model with self-generated tool API calls
inserted into its training data, enabling it to decide
when and how to use calculators, search engines,
translators, and other APIs.

With the rising demand for practical task-solving
capabilities, recent proprietary LLMs have evolved
to support tool or function calling as a core in-
terface. Starting with GPT-4’s function calling
API (OpenAl, 2023), OpenAl has progressively
enhanced tool interoperability in their models, cul-
minating in GPT-4.1 and GPT-40, which natively
support multimodal input, extended context win-
dows, and robust tool invocation within conversa-
tion flows. Similarly, models like Claude 3.5 (An-
thropic, 2024) and Gemini 1.5 (Team et al., 2024)
offer built-in support for external API access and
tool orchestration, enabling seamless integration of
search, calculator, code execution, and retrieval sys-
tems in their agent pipelines. These developments
mark a paradigm shift from pure text generation to

real-world interaction, where tool use becomes a
first-class citizen in the model’s interface. Along-
side model-level enhancements, ecosystem-level
tool agents have also proliferated. For example,
OpenAl’s ChatGPT integrates plugin systems for
third-party APIs and file browsing, while Google’s
Bard/Gemini and Anthropic’s Claude provide tool-
use scaffolding through memory and workflow
APIs. These systems often combine planning, ex-
ecution, and memory modules, highlighting the
emerging need for robust, API-centric LLM bench-
marks and evaluation methods.

Recognizing the performance gap between open-
source LLMs and proprietary models in tool call-
ing, recent efforts have focused on equipping
smaller or open LLMs with competitive tool-use
abilities. For instance, Gorilla (Patil et al., 2023)
fine-tunes LLaMA models on a large corpus of
API documentation and call traces, leveraging a
retriever-generator architecture to improve accu-
racy and reduce hallucination. ToolLLM (Qin et al.,
2023) adopts a reasoning-guided planning strategy
that explores multiple API invocation paths via
a depth-first search over possible tool sequences.
Salesforce’s xXLAM (Zhang et al., 2024) provides
a family of open LLMs specifically tuned for tool
usage, achieving strong performance on multi-tool
benchmarks. Other open initiatives such as ToolAl-
paca (Tang et al., 2023), AnyTool (Du et al., 2024),
and ToolBridge (Jin et al., 2024) introduce sim-
ulated training pipelines or meta-learning objec-
tives for improving tool generalization in smaller
models. These efforts aim to bridge the gap in
real-world utility and provide a competitive open-
source alternative to commercial tool-augmented
LLM systems.

A.2 Benchmarks for Evaluating TALMs

As TALMs have advanced, various benchmarks
have been introduced to evaluate their capabilities
in using external APIs. Early benchmarks primar-
ily assessed models in static, single-turn settings
without environmental feedback. For instance, API-
Bank (Li et al., 2023) provides 314 task scenarios
across 73 APIs, measuring planning, selection, and
calling accuracy. Similarly, APIBench (Patil et al.,
2023) evaluates whether a model can generate syn-
tactically and semantically correct API calls over
a large corpus of public functions. These bench-
marks test the model’s symbolic reasoning and API
schema understanding but lack interactive compo-
nents.

24708

Subsequent work introduces real-world interac-
tion into the evaluation loop, enabling models to
be assessed in dynamic environments. RestGPT
(Song et al., 2023) connects LLLM agents to actual
RESTful APIs and evaluates their ability to plan
API sequences and recover from execution errors.
To further approximate user-facing scenarios, re-
cent benchmarks have introduced user simulators
and multi-turn dialogues. ToolDial (Shim et al.,
2025) includes over 11k dialogues annotated with
16 action types, capturing realistic tool-assisted as-
sistant behavior with clarifications, failures, and
API chaining. 7-bench (Yao et al., 2025) extends
this idea by simulating domain-constrained inter-
actions (e.g., shopping, airline booking) and mea-
suring goal completion in a transactional database,
along with a consistency metric (pass@k) to evalu-
ate reliability across repeated trials.

Recent benchmarks have introduced more com-
plex setups to test advanced capabilities like plan-
ning and tool use. UltraTool (Huang et al., 2024)
separates planning from execution to assess mod-
els’ ability to devise tool-use plans. ToolSand-
box (Lu et al., 2024) adds stateful tools and on-
policy user simulators, supporting persistent states
and multi-tool chaining. HammerBench (Wang
et al., 2024) expands on this with diverse multi-turn
tasks, including Q&A and argument shifts. Com-
plexFuncBench (Zhong et al., 2025) addresses the
challenge of extremely long contexts (e.g., 128k
tokens) and proposes constructing long function
call sequences.

Despite these developments, a key missing piece
in existing benchmarks is support for multi-session
evaluation—tracking user preferences, goals, and
tool interactions across sessions that reflect the
long-term interaction between users and TALMs.
Our work addresses this gap by introducing a
benchmark that explicitly evaluates TALMs in
multi-session settings, enabling more realistic mea-
surement of memory, personalization, and tool-use
generalization over time.

B Dataset Details

B.1 Tool Set

To construct realistic tool-calling conversations, we
collect real-world APIs from RapidAPI from vari-
ous domains such as travel, finance, and messaging.
We provide the statistics of the APIs used for our
dataset construction in Table 6. As shown in the
table, we utilize various APIs across multiple do-

Rank Category #of APIs Percentage
1 Data 1522 11.48%
2 Social 926 6.98%
3 eCommerce 845 6.37%
4 Other 838 6.32%
5 Finance 732 5.52%
6 Business 715 5.39%
7 Entertainment 690 5.20%
8 Sports 677 5.11%
9 Music 514 3.88%

10 Business_Software 423 3.19%
11 Gaming 397 2.99%
12 Location 369 2.78%
13 Education 361 2.72%
14 Travel 361 2.72%
15 Email 356 2.68%
16 Communication 301 2.27%
17 Database 299 2.25%
18 Financial 290 2.19%
19 Tools 287 2.16%
20 Commerce 287 2.16%
21 News_Media 246 1.86%
22 Weather 236 1.78%
23 Food 229 1.73%
24 Media 218 1.64%
25 Movies 141 1.06%
26 Search 125 0.94%
27 Health_and_Fitness 124 0.94%
28 Science 113 0.85%
29 Text_Analysis 95 0.72%
30 SMS 92 0.69%

Table 6: Top-30 API categories with number of APIs
and percentages.

mains.

B.2 Dataset Statistics

The statistical overview of TOOLHAYSTACK is pro-
vided in Table 7. The dataset comprises three main
categories, each split into easy and hard settings.
For every category, we include over 100 examples
that have been strictly vetted through our filter-
ing pipeline. As demonstrated in Figure 8, TOOL-
HAYSTACK features a wide range of token distri-
butions, allowing for robust testing of long-term
interaction performance in existing LL.Ms.

C Details in TOOLHAYSTACK
Construction

C.1 Tool Collection

We collect over 13K real-world APIs from Rapi-
dAPI3, across domains such as travel, finance, and
messaging. APIs lacking stable endpoints or ade-
quate documentation are filtered out. For each se-

‘https://rapidapi.com/

24709

https://rapidapi.com/

Metric Context Recall Information Shift Missing Context
Single Multi Explicit Implicit Easy Hard
Examples 93 52 60 84 79 85
Utterance Tokens Mean 1440.71 1450.15 1554.83 1542.93 878.70 1339.56
API Tokens Mean 6913.02 8677.83 7798.22 10797.85 6372.62 9014.56
Total Tokens Mean 8353.73 10127.98 9353.05 12340.77 725132 10354.13
Sessions Mean 16.08 13.33 14.22 13.58 11.30 12.76
Turns Mean 76.77 69.94 76.15 78.80 50.18 64.52

Table 7: Statistics of TOOLHAYSTACK

Dialogue Token Distribution

Top-5 API Token Distribution

Total Token Distribution (Dialogue + Top-5 API)

501
254

404
204

Frequency
.
o
Frequency
w
S

-

o
N
)

104

1 04
0 500 1000 1500 2000 2500 3000 3500 0
Number of Tokens

0
2500 5000 7500 10000 12500 15000 17500 20000 0
Number of Tokens

40

Frequency

2500 5000 7500 10000 12500 15000 17500 20000
Number of Tokens

Figure 8: Token length distribution of TOOLHAYSTACK

lected API, we extract method descriptions, param-
eter lists, and usage examples. These are normal-
ized into a consistent format using GPT-40-mini
to support downstream tool planning and prompt
generation.

C.2 Modeling Tool Sequences

At the core of each instance lies a tool sequence—a
directed list of API calls encoding long-term de-
pendencies. The final target call reuses arguments
or outputs from prior needle calls. For example,
a hotel booking API might require location and
check-in date, both previously produced by a flight
search or calendar lookup.

We begin by selecting a target API and then iden-
tify prior APIs whose outputs semantically align
with its required arguments. This alignment is
computed using embedding-based similarity (e.g.,
Sentence-BERT), followed by LLM-based filtering
to remove misleading matches such as unrelated
IDs. For each target argument, we annotate whether
its source is a previous tool call, user utterance, or
remains unresolved (used later in missing context
scenarios).

Each sequence is grounded in a plausible situ-
ation (e.g., vacation planning, delivery tracking)
generated by prompting LLMs to create natural

task flows. This provides contextual motivation
for tool usage and ensures that dependencies are
meaningful and realistic.

For situation generation, we prompt gpt-4o-mini
model to generate 30 plausible scenarios related to
the API information to gather diverse situation and
for each sequence, we randomly sample a single
situation from 30 scenarios. We provide generated
situation examples for a random API in Table 8.

C.3 Scenario-Grounded Tool Sequence
Construction

To introduce specific interaction challenges, we
embed each tool sequence into one of the TOOL-
HAYSTACK scenarios. For instance, CR scenarios
scatter key arguments across earlier dialogue turns;
IS scenarios modify goals mid-way through the in-
teraction; MC scenarios mask required arguments
to test the model’s ability to ask for clarification.
These transformations are applied by prompting
LLMs to rewrite the original dialogue into one that
matches the structural requirements of the scenario,
while preserving functional correctness of the tool
calls.

Based on the scenario, we first select the proper
APIs that will be included in the tool sequence. For
example, for ContextRecall scenario, we choose

24710

API Name Scenario Description

Search Plant By ID

A landscape architect from Brazil moves to Canada for a project focusing on sustainable
urban gardens. While researching native flora, she needs to identify a specific plant by
its ID to ensure compatibility with the local ecosystem.

An aspiring botanist in the UK volunteers at a community garden, where he discovers
arare plant species. Curious about its properties and care requirements, he looks it up
using the API to provide accurate information to the garden’s committee.

A retired school teacher in Australia starts a blog on native plants after moving from the
USA. She wants to showcase a particular plant she used to teach about, so she searches
for its ID through the API to gather detailed information.

Table 8: Example scenarios for the Search Plant By ID API

the API pair with similar parameter(s) as input
from the previously aligned API set. Here, for
ContextRecall-Multi scenario, we make the API
triplet where two APIs share a single argument
with the goal API.

C.4 Modeling Haystack

To simulate long-term, noisy conversations, we in-
terleave the tool-relevant dialogue with distractor
sessions—unrelated sub-dialogues involving dif-
ferent user intents or casual exchanges. These dis-
tractors are independently generated and inserted
before, between, or after the tool-relevant content.
The number, type, and semantic distance of these
distractors are controlled to tune the difficulty of
the instance. The result is a single, contiguous
dialogue in which critical information is sparsely
and irregularly distributed, mimicking the cluttered
nature of real-world interactions.

For modeling haystack, we provide previous gen-
erated tool sequence as input and randomly select
the APIs that can be utilized as haystack. Here, as
haystack should not affect the evaluation, we filter
out APIs by checking if the randomly selected APIs
have any argument that has similar functionality
with any argument in the APIs in tool sequence.

C.5 Interaction Simulation

Agent-User Interaction Using the tool sequence
and scenario specification, we simulate a complete
user—agent conversation. The user progressively
reveals goals and arguments, while the agent re-
sponds through tool calls or natural replies. Each
turn is aligned with a structured plan, preserving
traceability between user inputs, system actions,
and tool responses.

C.6 Dataset Generation Details

For ContextRecall-multi scenario, we find that if
APIs used for needle include multiple parameters

that work similarly with any parameter in the tar-
get API, it can repeatedly appear in the dialogue
context and makes it easier to find the needle. To
this reason, we utilize API triplets where APIs used
for needle have a single shared argument with the
target APL

For InformationShift scenario, we find that if
multiple arguments shifts over turns, most of mod-
els fails to generate the correct API call. To this
reason, in this scenario, only a single argument
evolves in multi-turn conversations.

For MissingContext-Hard scenario, the user
query mentions the argument that is needed in de-
tail to prevent the model being confused with other
distractor arguments. For example, if the user asked
to use OpenAl API in previous session with API
key and asks to use Anthropic API without men-
tioning API key, the model can be confused to use
openAl API key. For this situation, we prompt the
model to generate detailed query like “Please use
the same API key that I used for Anthropic API
previously” instead of asking “Please use the same
API key that I used”.

D Evaluation Details

We use greedy decoding (i.e., temperature set to
0) and limit the maximum number of generated
tokens to 2,000. For closed-source models, we
access the GPT family via the OpenAl API and
the Claude models via the Anthropic API. Other
models accessible through OpenRouter are used via
that service. Finetuned TALMs are served using
vLLM (Kwon et al., 2023).

Each model requires specific input formatting;
for example, some expect tool descriptions to be
provided in JSON rather than Markdown. We fol-
low the formatting guidelines provided in each
model’s official documentation. All experiments
are conducted using three NVIDIA A100 80GB
GPUs. All evaluations are conducted in a single

24711

Communication Finance Lifestyle Media Utility

Model & Social & Business & Services & Entertainment & Tools Other
GPT-4.5-Preview 0.6667 0.3731 0.3077 0.5465 0.4105 0.4384
Claude-3-Opus 0.2051 0.1493 0.0769 0.1279 0.1579 0.1370
DeepSeek-V3 0.2564 0.2239 0.2308 0.3837 0.2421 0.3562

Table 9: Domain-wise evaluation of model performance.

run.

E Additional Results

We also conducted a domain-wise evaluation of
model performance using a taxonomy that clus-
ters fine-grained API categories into six broader
domains. We grouped over 30 fine-grained API cat-
egories provided by Rapid API into six high-level
domains based on their functional similarity. We
report the accuracy of three representative models
across the six major domains in the Table 9. These
studies demonstrate that ToolHaystack enables con-
trolled, interpretable error analysis across multiple
dimensions.

24712

Prompt for Dialogue Generation (CR-S)

Task Description

You are a skilled dialogue simulator tasked with generating a realistic, multi-session interaction between a human
user and a helpful AI assistant equipped with tool-augmented capabilities. Your goal is to produce natural-
sounding conversations that reflect a user's evolving needs and information over time, while testing the
assistant's long-term memory for multiple arguments across sessions.

You will be given a sequence of sessions involving:

— Evidence session: where the user explicitly provides values for certain arguments.
— Goal session: where the user implicitly refers to earlier information, and the assistant must recall and apply it
when using the goal API. The user and the assistant MUST NOT MENTION the parameter values in the goal session.
Each session consists of multiple turns of dialogue between the user and assistant, simulating realistic usage of
APIs via natural requests. The assistant should recognize when an API call is needed and formulate the correct
parameters using either current or remembered information.

Also, you will be given a scenario for the goal session generation.
Instructions

1. Carefully read the given information on API.

2. Write the evidence sessions where the user is asking the assistant to use the target API and the assistant asks
the user for required parameters.

3. Write the goal session where the user asks the assistant to use the target API and the same shared parameter
value that was used in the first session. The user and the AI must not explicitly state the value.

4. Maintain a natural conversation flow while ensuring the assistant collects all required parameters from the user.
Note that the conversation should not include numbered lists or item lists.

5. The user should not use vague expressions such as "some data" or "a certain platform". All user requests must be
concrete and specific.

6. The user must not mention the API name directly. Instead, the user should describe their goal or the
functionality they are trying to achieve. Write the user requests based on the API description.

7. Note that the assistant should be aware the required parameters and ask the user to provide information before
the user provides it. The user is not aware of required parameters.

8. In the goal session, the user should not refer to any previous choices or sessions. It is the assistant's
responsibility to retain and reuse the appropriate information from the first session to fulfill the current

request.
9. In the goal session, if a shared parameter (e.g., API key) was previously revealed in an evidence session, the
user must only say something like "I want to use the one I used before,'' without stating the value. The

assistant must not restate the value either but still use it when calling the API.
10. Follow the Output format.

Input Format
You will be given a structured JSON containing:

- Taxis”: always ""ContextRecall-S"~
- “shared_arguments”: the list of arguments that appear across evidence and goal sessions
- “argument_values”: the realistic values associated with those arguments
- “sessions”: a list of session objects, where each object contains:
- “type’: either “"evidence"® or “"goal"
- “api’: the API name used in the session
- T“api_id”: the API id used in the session
- Targuments’: a dictionary of parameters that should be used in that API call

Output Format
You must generate one multi-turn session per object in “sessions”. The Output Format should be as below:

[
8

"session_type": "evidence",

"api_name": "<evidence API name>",

"api_id": "<evidence API id>",

"turns": [

{{ "role": "user", "content": "<natural utterance with request>" }},

{{ "role" "assistant", "content": "<assistant asks for argument value>" }},

{{ "role" "user", "content": "<natural utterance with argument>" }},

{{ "role": "assistant", "content": "<assistant asks for another argument value>" }},

(pairs for every remaining parameter, if any)

"role": "user", "content": "<natural utterance with exactly argument N>" }},
"role": "assistant", "content": "Calling the *<API name>x API with {{<argument 1>: <value 1>, <argument 2>: <
value 2> ... <argument N>: <value N>}}" }},

24713

8¢

"session_type": "goal",

"api_name": "<goal API name>",

"api_id": "<goal API id>",

"turns": [

{{ "role": "user", "content": "<natural utterance with request>" }},

{{ "role": "assistant", "content": "<assistant asks for argument value which is not in shared arguments>" }},

... (pairs for every remaining parameter, if any)

{{ "role": "assistant", "content": "<assistant asks for shared argument value>" }},

{{ "role" "user", "content": "<high-level request that IMPLIES earlier arguments>" }},

{{ "role": "assistant", "content": "<assistant recalls all values, explicitly states full parameter set, and then
executes the API("Calling the *<API name>* API with {{<argument 1>: <value 1>, <argument 2>: <value 2> ... <
argument N>: <value N>}}). If some parameter's informations are not given in the evidence sessions, assistant

must ask to the user.>" }}
]
I3
]
Reminder

- If the "session_type" is "evidence", the user should always **explicitlyxx state the parameters.

- If the "session_type" is "goal", the user and the assistant must not state the parameter values.

- You must note that information between the evidence session and the goal session are shared, so the user must not
state the parameter values, but implicitly mention the value by referring to the previous sessions (e.g., I
want to use the API key that I used before).

Input
Scenario:
{scenario}

Sequence:
{multi_session_sequence_json}

24714

Prompt for Dialogue Generation (CR-M)

Task Description

You are a skilled dialogue simulator tasked with generating a realistic, multi-session interaction between a human
user and a helpful AI assistant equipped with tool-augmented capabilities. Your goal is to produce natural-
sounding conversations that reflect a user's evolving needs and information over time, while testing the
assistant's long-term memory for multiple arguments across sessions.

You will be given a sequence of sessions involving:

— Evidence sessions: where the user explicitly provides values for certain arguments.
— Goal session: where the user implicitly refers to earlier information, and the assistant must recall and apply it
when using the goal API. The user and the assistant MUST NOT MENTION the parameter values in the goal session.
Each session consists of multiple turns of dialogue between the user and assistant, simulating realistic usage of
APIs via natural requests. The assistant should recognize when an API call is needed and formulate the correct
parameters using either current or remembered information.

Also, you will be given a scenario for the goal session generation.
Instructions

1. Carefully read the given information on API and the given scenario.

2. Write the evidence sessions where the user is asking the assistant to use the target API and the assistant asks
the user for required parameters. Note that the number of generated evidence sessions should be the same with
the number of evidence sessions of the input sequence.

3. Write the goal session where the user asks the assistant to use the target API and the same shared parameter
value that was used in the previous session. The user and the AI must not explicitly state the value.

4. Maintain a natural conversation flow while ensuring the assistant collects all required parameters from the user.

Note that the conversation should not include numbered lists or item lists.

5. The user should not use vague expressions such as "some data" or "a certain platform". All user requests must be
concrete and specific.

6. The user must not mention the API name directly. Instead, the user should describe their goal or the
functionality they are trying to achieve. Write the user requests based on the API description.

7. Note that the assistant should be aware the required parameters and ask the user to provide information before
the user provides it. The user is not aware of required parameters.

8. In the goal session, the user should refer to any previous choices or sessions while avoiding mentioning the
value of the shared arguments. It is the assistant's responsibility to retain and reuse the appropriate
information from the first session to fulfill the current request.

9. In the goal session, as shared parameters (e.g., API key) were previously revealed in evidence sessions, the user
must only say something like "I want to use the one I used before,'' without stating the value. The assistant
must not restate the value either but still use it when calling the API.

10. Follow the Output format.

11. Very important: In every output session object, the api_name and api_id fields must match exactly the api and

api_id values provided for that same session in the input sequence. Do not alter, rename, or re-index them (e.
g., do not change RecipeSearch to RecipeFinderAPI, and do not invent new IDs).

Input Format
You will be given a structured JSON containing:

- Taxis”: always ~"ContextRecall-M""
- “shared_arguments”: the list of arguments that appear across evidence and goal sessions
- “argument_values®: the realistic values associated with those arguments
- “sessions’: a list of session objects, where each object contains:
- “type : either ""evidence"® or “"goal""
— “api”: the API name used in the session
- Tapi_id”: the API id used in the session
- Targuments’: a dictionary of parameters that should be used in that API call

Output Format

You must generate one multi-turn session per object in “sessions”. The Output Format should be as below:
[
8

"session_type"

"evidence",

"api_name": "<exact evidence API name>"

"api_id": "<exact evidence API id>",

"turns": [

{{ "role" "user", "content": "<natural utterance with request>" }},

{{ "role" "assistant", "content": "<assistant asks for argument value>" }},

{{ "role": "user", "content": "<natural utterance with argument>" 1}},

{{ "role": "assistant", "content": "<assistant asks for another argument value>" }},

for every remaining parameter, if any)

{{ "user", "content": "<natural utterance with exactly argument N>" }},
{{ "assistant", "content": "Calling the *<API name>* API with {{"<argument 1>": "<value 1>", "<argument 2>":
lue 2>" ... "<argument N>": "<value N>"}}" }},

24715

(additional evidence sessions) ...,

8

"session_type": "goal",

"api_name": "<exact goal API name>",

"api_id": "<exact gdoal API id>",

"turns": [

{{ "role": "user", "content": "<natural utterance with request>" }},

{{ "role" "assistant", "content": "<assistant asks for argument value which is not in shared arguments>" }},

{{ "role" "user", "content": "<natural utterance with argument>" }},

{{ "role": "assistant", "content": "<assistant asks for another argument value which is not in shared arguments>"

b,
... (pairs for every remaining parameter, if any)
{{ "role": "assistant", "content": "<assistant asks for shared argument value>" }},

{{ "role": "user", "content": "<high-level request that IMPLIES earlier arguments>" }},
oo (pairs for every remaining shared arguments, if any) ...,
{{ "role": "assistant", "content": "<assistant recalls all values, explicitly states full parameter set, and then
executes the API("Calling the *<API name>* API with {{"<argument 1>": "<value 1>", "<argument 2>": "<value 2>"
"<argument N>": "<value N>"}}). If some parameter's informations are not given in the evidence sessions,

assistant must ask to the user.>" }}
]
b}
]

Reminder

— If the "session_type" is "evidence", the user should always =**explicitly*x state the parameters.

- If the "session_type" is "goal", the user and the assistant must not state the parameter values.

- You must note that information between the evidence session and the goal session are shared, so the user must not
state the parameter values, but implicitly mention the value by referring to the previous sessions (e.g., I
want to use the API key that I used before).

Input
Scenario:
{scenario}

Sequence:
{multi_session_sequence_json}

24716

Prompt for Dialogue Genera (IS-E)

Task Description

You are a skilled dialogue simulator tasked with generating a realistic, multi-session interaction between a human
user and a helpful AI assistant equipped with tool-augmented capabilities. Your goal is to produce natural-
sounding conversations that reflect a user's evolving information over time --- such as updates to addresses,
phone numbers, or credentials --- while testing whether the assistant correctly applies the xxmost recently
providedx values during the final session.

You will be given a sequence of sessions involving:

— x%xEvidence sessionsxx: where the user provides or updates values for specific arguments (e.g., address, phone
number, email). For the shared argument, the user mentions the value with other arguments' values.

- xxGoal sessionxx: where the user requests an API operation that requires the assistant to correctly apply the xx
most recently provided valuexx of the relevant argument, x*without restating itxx.

Also, you will be given a scenario for the goal session generation.

The assistant must track user-provided updates across sessions and apply the xxlatestx* value when making an API
call in the goal session. This tests the assistant's ability to detect and adopt explicitly stated updates.

Instructions

1. Carefully read the given information on the APIs and their required arguments.

2. Write evidence sessions where the user provides values, including at least one session where a previously
mentioned value is updated without exlicitly mentioning the update (e.g., Instead of "Here is my new email",
user should say "You can reach me at XX").

3. In the xxgoal session**, the user must make a natural request that implies use of the xxlatestx* argument value,
but xxmust not repeat or rephrase the valuexx.

4. The assistant must infer the updated value from the earlier session(s) and apply it correctly when making the API

call while not mentioning the value of the updated value.

5. Maintain a natural dialogue flow (avoid itemized lists or unnatural structure).

6. User requests must be specific, and must not mention the API name directly. Write the user requests based on the
API description.

7. Note that the assistant should be aware the required parameters and ask the user to provide information before
the user provides it. The user is not aware of what are the required parameters.

8. The xxgoal session must refer to past sessions*x (e.g., avoid phrases like "as I mentioned earlier" or "same as
before") .

9. The value of the shared argument MUST NOT be stated in the goal session.

10. Use realistic values for all arguments (e.g., valid addresses, emails, IDs, etc.).

11. "Shared argument" must only be provided in evidence sessions, and never restated in the goal session.

Output Format
You must generate one multi-turn session per object in “sessions”, formatted as below:

[
i

"session_type": "evidence",
"api_name": "<evidence API name>",
"api_id": "<evidence API id>",
"turns": [
{{ "role": "user", "content": "<natural utterance with request>" }},
{{ "role": "assistant", "content": "<assistant asks for argument value>" }},
{{ "role": "user", "content": "<natural utterance with argument>" }},
{{ "role": "assistant", "content": "<assistant asks for another argument value>" }},
{{ "role": "assistant", "content": "Calling the x<API name>* API with {{<argument>: <value>, ...}}" }}
]
I3y
i
"session_type": "goal",
"api_name": "<goal API name>",
"api_id": "<goal API id>",
"turns": [
{{ "role": "user", "content": "<natural request (without repeating shared argument)>" }},

// Assistant asks for each required argument (except shared argument)

{{ "role": "assistant", "content": "<Asks for argl>" }},
{{ "role" "user", "content": "<provides argl value>" }},
{{ "role": "assistant", "content": "<Asks for arg2>" }},
{{ "role": "user", "content": "<provides arg2 value>" }},

// Assistant asks for the shared argument last

{{ "role": "assistant", "content": "<Asks for shared argument>" }},
{{ "role": "user", "content": "<please use the latest I gave you>" }},
{{ "role": "assistant", "content": "Calling the x<API name>x API with {{<argl>: ..., <arg2>: ..., <shared_arg

>: <latest_value>}}" }}

24717

Reminder

— At least one evidence session must update the argument with a new value.

- In the xxgoal sessionxx, the user must **not repeat or state the updated valuexx;
most recent value automatically and must not state it.

- The API call in the xxgoal session must include the updated valuexx, not an older one.

the assistant must apply the

Input
Scenario:
{scenario}

Sequence:
{multi_session_sequence_json}

24718

Prompt for Dialogue Generation (IS-I)

Task Description

You are a skilled dialogue simulator tasked with generating a realistic, multi-session interaction between a human
user and a helpful AI assistant equipped with tool-augmented capabilities. Your goal is to produce natural-
sounding conversations that reflect a user's evolving information over time --- such as updates to addresses,
phone numbers, or credentials --- while testing whether the assistant correctly applies the x*most recently
providedsx values during the final session.

You will be given a sequence of sessions involving:
- xxEvidence sessions*x: where the user explicitly provides or updates values for specific arguments (e.g., address,
phone number, email)
— x%xGoal session*x: where the user requests an API operation that requires the assistant to correctly apply the »*x
most recently provided valuex* of the relevant argument, x*without restating itxx.

Also, you will be given a scenario for the goal session generation.

The assistant must track user-provided updates across sessions and apply the xxlatestsx value when making an API
call in the goal session. This tests the assistant's ability to detect and adopt explicitly stated updates.

Instructions

1. Carefully read the given information on the APIs and their required arguments.

2. Write evidence sessions where the user xxexplicitly provides valuesxx, including at least one session where a
previously mentioned value is xxexplicitly updateds* (e.g., "Here's my new email").

3. In the *xgoal sessionxx, the user must make a natural request that implies use of the xxlatestx* argument value,
but x*must not repeat or rephrase the valuexx.

4. The assistant must infer the updated value from the earlier session(s) and apply it correctly when making the API

call while not mentioning the value of the updated value.

5. Maintain a natural dialogue flow (avoid itemized lists or unnatural structure).

6. User requests must be specific, and must not mention the API name directly. Write the user requests based on the
API description.

7. Note that the assistant should be aware the required parameters and ask the user to provide information before
the user provides it. The user is not aware of required parameters.

8. The *xgoal session must refer to past sessions*x (e.g., avoid phrases like "as I mentioned earlier" or "same as
before") .

9. The value of the shared argument MUST NOT be stated in the goal session.

10. Use realistic values for all arguments (e.g., valid addresses, emails, IDs, etc.).

11. "Shared argument" must only be provided in evidence sessions, and never restated in the goal session.

Output Format

You must generate one multi-turn session per object in “sessions”, formatted as below:

"session_type": "evidence",
"api_name": "<evidence API name>",
"api_id": "<evidence API id>",
"turns": [
{{ "role": "user", "content": "<natural utterance with request>" }},
{{ "role": "assistant", "content": "<assistant asks for argument value>" }},
{{ "role": "user", "content": "<natural utterance with argument>" }},
{{ "role": "assistant", "content": "<assistant asks for another argument value>" }},
{{ "role": "assistant", "content": "Calling the %<API name>% API with {{<argument>: <value>, ...}}" }}
]
13N
i
"session_type": "goal"
"api_name "<goal API name>",
"api_id": "<goal API id>",
"turns": [
{{ "role": "user", "content": "<natural request (without repeating shared argument)>" }},

// Assistant asks for each required argument (except shared argument)

{{ "role": "assistant", "content": "<Asks for argl>" }},
{{ "role": "user", "content": "<provides argl value>" }},
{{ "role": "assistant", "content": "<Asks for arg2>" }},

{{ "role": "user", "content": "<provides arg2 value>" }},

// Assistant asks for the shared argument last

{{ "role": "assistant", "content": "<Asks for shared argument>" }},
{{ "role": "user", "content": "<please use the latest I gave you>" }},
{{ "role": "assistant", "content": "Calling the *<API name>* API with {{<argl>: ..., <arg2>: ..., <shared_arg

>: <latest_value>}}" }}

24719

Reminder

— At least one xxevidence session must explicitly updatexx the argument with a new value (e.g., "I moved recently",
"Here's my new number").

- In the **goal sessionxx, the user must x*not repeat or state the updated valuexx; the assistant must apply the
most recent value automatically and must not state it.

— The API call in the xxgoal session must include the updated valuex*, not an older one.

Input
Scenario:
{scenario}

Sequence:
{multi_session_sequence_json}

24720

Prompt for Dialogue Genera MC-E)

Task Description

You are a skilled dialogue simulator tasked with generating a realistic, multi-session interaction between a human
user and a helpful AI assistant equipped with tool-augmented capabilities. Your goal is to simulate scenarios
where the user provides vague or incomplete references to previously mentioned arguments, and the assistant
must carefully determine whether it has sufficient information to proceed with an API call.

Your task is to test the assistant's ability to identify xmissing or ambiguous contextx---specifically when the user
implies a value has already been given, but the assistant actually does xxnotxx have access to a fully
specified value in the current or past sessions. The assistant must avoid making incorrect assumptions and
should ask for clarification before executing the API.

Scenario
You are given a sequence of sessions involving:

— Evidence session(s): where the user provides concrete and complete argument values for one or more APIs.

- Goal session: where the user vaguely implies that a certain argument is already known (e.g., "use what I mentioned
before"), but the assistant has never actually seen that specific value in the current or any previous
session.

Also, you will be given a scenario for the goal session generation.

Each session consists of multiple turns of conversation between the user and assistant. The assistant must detect
when a parameter is not clearly specified and ask the user to clarify before making an API call.

Instructions

1. Use the given API and argument information to build a sequence of natural-sounding dialogues.
Write the evidence sessions in which the user provides specific argument values for a certain API.
3. In the goal session, construct a conversation where:

— For arguments marked as "MISSING", the user should vaguely refer to them as if they were previously mentioned (
e.g., "use the page number I mentioned before" or "same page as last time"), even though they were never
specified.

- For all other arguments, the user should explicitly provide these values during the conversation with the
assistant.

4. The assistant must recognize that the "MISSING" parameters have not been provided and respond **cautiouslyx*x
asking the user to specify these missing arguments.

5. The user in the goal session should not use vague placeholders like "some data" but may use misleading phrases
like "as before" or "same as last time" to refer to parameters never actually given.

6. The assistant must *xnot fabricate values*x and should clearly indicate that the argument needs to be specified
before proceeding.

7. Note that the assistant should be aware of the required parameters and ask the user to provide information before
proceeding with the API call. The user is not aware of required parameters.

N}

Input Format
You will be given a structured JSON containing:

- Taxis”: always "~"MissingContext-H""
- “shared_arguments: a list of arguments that are implied to be shared but in fact are xxnot fully specifiedxx
— Targument_values”: values associated with these arguments, provided only in *xsome sessionsxx (not necessarily for
the goal API)
- "sessions”: a list of session objects, where each object contains:
- “type’: either “"evidence"® or ~"goal""
- “api’: the API name used in the session
- “api_id’: the API id used in the session
— Targuments’: a dictionary of parameters that should be used in that API call, where "MISSING" indicates
arguments the user should vaguely imply were already mentioned

Output Format
You must generate one multi-turn session per object in “sessions”. The Output Format should be as below:

[
8

"session_type": "goal",

"api_name": "<goal API name>",

"api_id": "<goal API id>"

"turns": [

{{ "role": "user", "content": "<natural-sounding request that explicitly mentions non-MISSING arguments but vaguely
refers to MISSING arguments>" }},

{{ "role": "assistant", "content": "Calling the *Questionx API to ask the user about the missing parameter." }}

]
b}
]

Reminder

- The key evaluation point is whether the assistant correctly identifies when a parameter is *xmissing or only
vaguely implied+* and does not proceed without it.

— The user in the xxgoal session must explicitly provide values for all non-MISSING argumentsxx, while vaguely
implying that MISSING values were previously specified.

— The assistant should request clarification specifically for the MISSING values before calling the API.

Input
Scenario:
{scenario}

Sequence:
{multi_session_sequence_json}

24721

Prompt for Dialogue Genera (MC-H)

Task Description

You are a skilled dialogue simulator tasked with generating a realistic, multi-session interaction between a human
user and a helpful AI assistant equipped with tool-augmented capabilities. Your goal is to simulate scenarios
where the user provides vague or incomplete references to previously mentioned arguments, and the assistant
must carefully determine whether it has sufficient information to proceed with an API call.

Your task is to test the assistant's ability to identify xmissing or ambiguous contextx---specifically when the user
implies a value has already been given, but the assistant actually does xxnotxx have access to a fully
specified value in the current or past sessions. The assistant must avoid making incorrect assumptions and
should ask for clarification before executing the API.

Scenario
You are given a sequence of sessions involving:

— Evidence session(s): where the user provides concrete and complete argument values for one or more APIs.

— Goal session: where the user vaguely implies that a certain argument is already known (e.g., "use what I mentioned
before''), but the assistant has never actually seen that specific value in the current or any previous
session.

Also, you will be given a scenario for the goal session generation.

Each session consists of multiple turns of conversation between the user and assistant. The assistant must detect
when a parameter is not clearly specified and ask the user to clarify before making an API call.

Instructions

1. Use the given API and argument information to build a sequence of natural-sounding dialogues.

Write the evidence sessions in which the user provides specific argument values for a certain API.

3. In the goal session, construct a conversation where the user vaguely implies that one or more arguments were
already provided---even though they were not. The assistant must recognize this and respond xxcautiouslyxx,
asking the user to specify any missing arguments.

4. The user in the goal session should not use vague placeholders like "some data" but may use misleading phrases
like "as before" or "same as last time" to refer to parameters never actually given.

5. The assistant must *xnot fabricate values*x and should clearly indicate that the argument needs to be specified
before proceeding.

6. Note that the assistant should be aware the required parameters and ask the user to provide information before
the user provides it. The user is not aware of required parameters.

N}

Input Format
You will be given a structured JSON containing:

- Taxis”: always ~"MissingContext-H"~
- “shared_arguments”: a list of arguments that are implied to be shared but in fact are x*not fully specifiedxx
— “argument_values”: values associated with these arguments, provided only in **some sessionsx* (not necessarily for
the goal API)
- “sessions™: a list of session objects, where each object contains:
- “type : either ""evidence"® or “"goal""
- “api”: the API name used in the session
- T“api_id : the API id used in the session
- Targuments : a dictionary of parameters that should be used in that API call

Output Format
You must generate one multi-turn session per object in “sessions”. The Output Format should be as below:

[
o

"session_type": "evidence",
"api_name": "<evidence API name>",
"api_id": "<evidence API id>",
"turns": [
{{ "role": "user", "content": "<natural utterance with request>" }},
{{ "assistant", "content": "<assistant asks for argument value>" }},
{{ : "user", "content": "<natural utterance with argument>" }},
{{ "role": "assistant", "content": "<assistant asks for another argument value>" }},
{{ "role": "assistant", "content": "Calling the x<API name>* API with {{<argument>: <value>, ...}}" }}
]
’
"session_type": "goal"
"api_name": "<goal API name>",
"api_id": "<goal API id>"
"turns": [
{{ "role": "user", "content": "<natural utterance with request>" }},
{{ "role "assistant", "content": "<natural response asking for the value of the required argument which is not
the shared argument>" }},
{{ "role": "assistant", "content": "<natural response sharing the value of the required argument which is not

the shared argumen>" }},

oo (pairs for every remaining parameter except the shared argument)

{{ "role": "assistant", "content": "<naturally asking for the shared argument value>" }},

{{ "role": "user", "content": ""<saying that you already know it as I used it before when I was <explanation
about the goal api description, which can be differentiate it with apis used in evidence sessions> without
mentioning the value. To distinguish the shared argument from the shared argument utilized before,
clearly mention the function of the API.>" }}

{{ "role": "assistant", "content": "Calling the x<API name>* API with {{<shared argument>: "MISSING", ...}}" }}

24722

Reminder

— The key evaluation point is whether the assistant correctly identifies when a parameter is x*missingxx and fill
the parameter with "MISSING".

— The user in the xxgoal session must not give the missing value upfrontxx, but should imply it's known.

— The last utterance of the user explaning that the shared argument alogn with the explanation about the goal api
description MUST explain about the goal API instead of apis used in the evidence sessions. It must be
separated.

Input
Scenario:
{scenario}

Sequence:
{multi_session_sequence_json}

\.

Prompt for Filtering Dialogue

You are a senior evaluator tasked with evaluating a generated tool using
conversation.

Original prompt
{prompt}

Generated Conversation
{response}

Constraints

— If the "session_type" is "evidence", the user should always **explicitlyx*x

state the parameters.

— If the "session_type" is "goal", the user and the assistant must not state

the parameter values.

- You must note that information between the evidence session and the goal
session are shared, so the user must not state the parameter wvalues, but
implicitly mention the value by referring to the previous sessions (e.g.,

I want to use the API key that I used before).

Your Task

- If xxany*x* of the constraints above are not satisfied, output **NOxx*.

- If xxallx* constraints are satisfied, output **YESxx.

— Output only one word: xxYES*% or xxNOxx. Do not add explanations or any
other text.

\

Prompt for Filtering Tool Sequence (CR-S)

You are a senior evaluator tasked with evaluating a generated tool-call
sequence.

Original prompt
{prompt }

Generated Sequence
{response}

API Call Label
{label}

Constraints
- Ensure the label includes xxall required and optional parametersxx defined
by the API.

Your Task

- If xxany*x* of the constraints above are not satisfied, output **NOxx*.

— If xxallx* constraints are satisfied, output **YESx*x.

— Output only one word: **YESx* or xxNOxx. Do not add explanations or any
other text.

24723

Prompt for Filtering Tool Sequence (CR-M)

You are a senior evaluator tasked with evaluating a generated tool-call
sequence.

Original prompt
{prompt}

Generated Sequence
{response}

API Call Label
{label}

Constraints

- Ensure the label includes x*xall required and optional parametersxx defined
by the API.

- If a x*shared argumentxx appears in multiple evidence sessions, the value
in the goal session **must match the latest valuex* from the most recent
evidence session.

Your Task

- If xxany*x* of the constraints above are not satisfied, output **NOxx*.

- If xxallx* constraints are satisfied, output »*YES+*=x.

— Output only one word: #**YESx* or *xNOx*. Do not add explanations or any
other text.

Prompt for Filtering Tool Sequence (IS)

You are a senior evaluator tasked with evaluating a generated tool-call
sequence.

Original prompt
{prompt }

Generated Sequence
{response}

API Call Label
{label}

Constraints
- Ensure the label includes xxall required and optional parametersxx defined
by the API.

Your Task

- If xxanyx*x of the constraints above are not satisfied, output **NOx=x.

- If xxallx* constraints are satisfied, output **YES+*x.

— Output only one word: xxYESxx or xxNOxx. Do not add explanations or any
other text.

24724

Prompt for Filtering Tool Sequence (MC)

You are a senior evaluator tasked with evaluating a generated tool-call
sequence.

Original prompt
{prompt}

Generated Sequence
{response}

API Call Label
{label}

Constraints
- Ensure the label includes x*xall required and optional parametersxx defined
by the API.

Your Task

- If xxany*x* of the constraints above are not satisfied, output **NOxx*.

- If xxallxx constraints are satisfied, output **YESxx.

— Output only one word: #*YESx* or *xNOx*. Do not add explanations or any
other text.

24725

Prompt for Generting Distractor

You are an expert conversation designer tasked with generating xdistractor session sequencesx for evaluating a
large language model's ability to ignore irrelevant information in multi-session tool-augmented interactions.

You are given an original multi-session input containing shared argument values and one or more goal-relevant APIs.
Your task is to generate realistic, well-structured xxdistractor evidence sessionsxx that are functionally
and semantically unrelated to the original session content.

These distractor sessions should simulate plausible user queries and assistant tool-use, but must NOT contain any
references to shared arguments, overlapping parameters, or semantically similar API goals.

Constraints:

- All distractor sessions must be labeled with “"type": "distractor"'.
- Each session must follow the same structural format as original sessions.
Use only APIs from the provided API Subset.
- Selected APIs must NOT:
- Be present in the original sessions.
- Have parameters that overlap with any parameters used in the evidence or goal sessions.
— Serve a similar purpose to any of the original APIs (e.g., if the original APIs involve Amazon product data,
avoid ecommerce/product-related APIs) .
— Arguments used in distractor sessions must:
- Be realistic and appropriate for the selected API.
— NOT match or reuse any values from “shared_arguments-.

API Selection:

- Choose N diverse APIs from the API subset that are clearly irrelevant to the goal or evidence APIs from the
original session.

— Ensure domain and functional diversity (e.g., do not cluster around the same topic or use only financial or
health APIs).

Output Format:
Return a list of N distractor session objects, each in the following format:

8

"type": "distractor",

"api": "<distractor API name>",

"api_id": "<distractor API id>",

"api_description": "<distractor API description>",

"arguments": {{
"<param_name_1>":
"<param_name_2>

" Jjson

"<realistic value>"
"<realistic value>"

b}
b}

Input

<original_session_data>
{input_sequence}
</original_session_data>

<api_subset>
{api_subset}
</api_subset>

<num_distractor_sessions>
{num_session}
</num_distractor_sessions>

Task:
Generate <num_distractor_sessions> distractor session objects as defined above, ensuring each one strictly complies

with the constraints and format.

Only return the list of session objects in the specified JSON format---do not add extra commentary or explanations.

24726

Prompt for Evaluation

Your task is to generate the API call that the AI should call after the
given conversation.

1. Read the conversation.

2. Select the API that will be used for the given conversation among the
given API set.

3. Based on the API information, generate the API call.

4. The API call should be in dictionary format where the keys are api_name
and parameters.

5. Make sure that the output contains all required parameters and optional
parameters.

6. If the user did not mention about the optional parameters, f£ill the
values as their default value. If the default value is not stated, fill
the value with empty string ''.

7. The output should not be in code snippet. Generate API call dictionary
only.

8. Output only a valid Python dictionary. Do not include any explanations,
markdown code blocks, or extra text. The output must start with '{{' and
end with '}}'.

Output format
{{

"api_name": "<api_name>", # Case sensitive, use the exact api name in
the document below
"parameters":
{{
"<parameterl>": "<valuel>",
"<parameter2>": "<value2>",
"<parameter_n>": "<value_n>",

H}
1}

Here is the conversation and information about the API.

Conversation
{all_sessions}

API set
{api_set}

24727

