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Abstract

LLM-as-Judge frameworks are increasingly
popular for AI evaluation, yet research findings
on the relationship between models’ generation
and judgment abilities remain inconsistent. We
investigate this relationship through systematic
dataset- and instance-level analyses across 11
models and 21 diverse tasks. Despite both capa-
bilities relying on the same underlying knowl-
edge, our analyses reveal they are only weakly
correlated, primarily due to LLMs’ sensitiv-
ity to the responses being judged. To address
this, we propose a self-reference-guided eval-
uation strategy that leverages a model’s own
answers as references. This approach signifi-
cantly strengthens the correlation between gen-
eration and judgment abilities, offering a prac-
tical path to align these skills and providing a
reliable proxy for model selection in evaluation
tasks.

1 Introduction

Model-based evaluation, which uses large language
models (LLMs) as judges, has gained increasing
prominence in natural language processing. This
approach, commonly known as LLM-as-Judge
(Zheng et al., 2023), has been widely adopted
across a range of applications (Lin and Chen, 2023;
Liang et al., 2024; Fei et al., 2024; Bi et al., 2024).
However, a critical question remains: how closely
does a model’s ability to generate answers corre-
late with its capacity to evaluate them? Prior work
has offered divergent perspectives on this issue,
with Tan et al. (2025) reporting strong correla-
tion between these abilities and Zeng et al. (2025)
arguing they are not necessarily aligned. These
conflicting findings, based only on dataset-level
analyses, highlight the need for more comprehen-
sive investigation.

To address this gap, we systematically investi-
gate the relationship between LLMs’ answer gen-
eration and evaluation capabilities within the LLM-

as-Judge framework. We focus on answer judg-
ment as the representative evaluation task, as it
directly depends on the same knowledge used in an-
swer generation and thus provides a clearer lens for
analyzing their correlation. Given the widespread
use of Chain-of-Thought (CoT) reasoning (Wei
et al., 2022), we adopt the CoT paradigm for both
generation and judgment tasks. Furthermore, un-
like prior studies that primarily examine dataset-
level correlations, our analysis spans both dataset-
level and instance-level perspectives, enabling a
more fine-grained understanding of how these ca-
pabilities interact. Further analysis in Section 5
introduces a self-reference-guided evaluation strat-
egy, which builds upon the reference-guided judg-
ing framework (Zheng et al., 2023). This approach
significantly improves the correlation between a
model’s answer generation and judgment capabil-
ities, with an average increase of 0.35 across all
evaluated cases (as shown in Table 4).

Our findings reveal that without special tech-
niques, strong answer generation ability does not
necessarily translate to strong judgment ability.
The correlation between these two capabilities
is generally weak when using standard CoT ap-
proaches. However, incorporating self-reference-
guided judging significantly strengthens this corre-
lation, making generation performance a reliable
predictor of judgment capability. These insights
offer practical strategies for selecting and utilizing
judge models to enhance evaluation performance,
effectively aligning generation and judgment capa-
bilities. Our contributions are fourfold:

• Empirical Analysis of LLM Judgment Abil-
ity: We demonstrate that LLMs performing
well in answer generation do not necessar-
ily excel in answer judgment, highlighting a
weak correlation between these abilities under
standard evaluation approaches.

• Self-Reference-Guided Judging Effective-
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ness: Our experiments reveal that incorpo-
rating self-reference-guided judging signifi-
cantly improves the alignment between an-
swer generation and judgment capabilities.

• Practical Implications for Model Selection:
Under the self-reference-guided setting, our
findings suggest that answer generation ability
can serve as a reliable proxy for evaluating
judgment capability, enabling more efficient
model selection for evaluation tasks.

• Alignment Maintenance Strategy: Our ap-
proach supports maintaining alignment be-
tween generation and judgment capabilities as
LLMs continue to evolve, providing a practi-
cal solution to a persistent challenge in LLM
evaluation.

2 Related work

Capabilities of LLM-as-Judge. Prior work on
LLM-as-Judge has explored their capabilities
through benchmarks (Zheng et al., 2023; Li et al.,
2024b; Wei et al., 2024a), tuning methods (Zhu
et al., 2023; Wang et al., 2024b; Lee et al., 2024),
prompting strategies (Wang et al., 2024a; Raina
et al., 2024; Badshah and Sajjad, 2024), and model
interaction architectures (Chan et al., 2024; Chen
et al., 2024b; Verga et al., 2024). Several survey pa-
pers (Li et al., 2025, 2024a) have summarized these
developments, evaluating various prompt designs
(Liu et al., 2024) and implementation approaches.

Limitations of LLM-as-Judge. Recent research
has identified limitations in this framework, particu-
larly biases in model judgments (Wei et al., 2024b;
Zheng et al., 2023; Koo et al., 2024), with compre-
hensive overviews provided in survey works (Chen
et al., 2024a; Shi et al., 2024). A critical yet under-
explored aspect is how LLM judges are selected.
Models are often chosen based on their generation
performance (Hendrycks et al., 2021a,b) or leader-
board rankings (Chiang et al., 2024), assuming
strong generation capabilities imply strong judg-
ment capabilities. However, studies present con-
flicting views: Tan et al. (Tan et al., 2025) report
strong correlation between these abilities, while
Zeng et al. (Zeng et al., 2025) argue they are not
necessarily aligned. Both rely solely on dataset-
level analyses with limited benchmarks. We ad-
dress this gap by systematically examining the rela-
tionship between generation and judgment abilities
at both dataset and instance levels, offering insights

into when these capabilities diverge and how they
can be effectively aligned.

3 Framework for Evaluating LLM
Judgment Ability

3.1 Objective & Notations
The goal of this paper is to investigate whether
LLMs’ ability to evaluate answers correlates with
their ability to generate correct answers for the
same questions. In other words, we aim to deter-
mine whether proficiency in “answering questions"
implies proficiency in “judging answers" (and vice
versa) and to analyze the potential correlation be-
tween these two competencies. The experiment
involves two roles: the agent model MA, which
generates answers during the answer generation
stage, and the judge model MJ , which evaluates
their correctness during the answer judgment stage.

Answer Generation. Let DG = {(qi, a∗i )}Ni=1

be a dataset consisting of N questions, where qi is
the i-th question and a∗i is the ground-truth answer
for qi. Let MA denote the agent model, for each
question qi, the agent model generates an answer:

âMA
i = MA(qi) (1)

Similarly, we perform the answer generation pro-
cess for the judge model MJ to assess its capacity
to answer the question:

âMJ
i = MJ(qi) (2)

The capacity of the judge model is defined as:

AccMJ
Generation =

∣∣{ i | âMJ
i = a∗i }

∣∣
N

(3)

where
∣∣{ i | âMJ

i = a∗i }
∣∣ represents the number

of questions that the judge model MJ provides the
correct answer.

Answer Judgment. After the answer generation
stage, we proceed to the answer judgment stage. In
this stage, we first construct the dataset DJ and then
use the judge model MJ to evaluate the correctness
of the results generated in the previous stage. DJ

is defined as:

DJ =
{ (

qi, â
MA
i , y∗i

)}N

i=1
(4)

where qi is the i-th question from DG, âMA
i is the

answer generated by model MA in Equation (1),
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and y∗i indicates whether âMA
i is correct, defined

as:

y∗i =

{
1, if âMA

i = a∗i
0, otherwise.

(5)

We then use the judge model to generate judgment
results as:

yMJ
i = MJ(qi, â

MA
i ) (6)

Finally, we can evaluate the model’s judgment ca-
pability via:

PJudge =

∣∣{ i | yMJ
i = 1 ∧ y∗i = 1}

∣∣
∣∣{ i | yMJ

i = 1}
∣∣ (7)

RJudge =

∣∣{ i | yMJ
i = 1 ∧ y∗i = 1}

∣∣
∣∣{ i | y∗i = 1}

∣∣ (8)

F1Judge = 2× PJudge × RJudge

PJudge +RJudge
(9)

Correlation. To quantify the linear relationship
between the answer generation ability and the an-
swer judgement ability of the judge model MJ at
the instance level, we introduce three binary vari-
ables for each question i:
The event that the judge model MJ answers qi
correctly is defined as

Gi = 1
[
âMJ
i = a∗i

]
(10)

The event that the judge model correctly classifies
the agent’s answer is defined as

Ji = 1
[
yMJ
i = y∗i

]
(11)

The event that the agent model MA answers qi
correctly is defined as

Ai = y∗i = 1
[
âMA
i = a∗i

]
(12)

Using the N triplets {(Gi, Ji, Ai)}Ni=1, we first
compute the pairwise Pearson correlation coeffi-
cients:

rG,J = corr(G, J), rG,A = corr(G,A)

rJ,A = corr(J,A)
(13)

Partial Correlation. We hypothesize that the cor-
rectness of the agent’s response may significantly
influence judgment performance, potentially acting

as a confounding factor in our analysis. We will
directly investigate this potential influence in our
subsequent analysis. To control for this possible
effect and observe the underlying correlation be-
tween answer generation and judgment abilities,
we employ partial correlation analysis. The partial
correlation between G and J given A removes the
linear influence of A (i.e., the correctness of the
evaluated response) from both variables:

rG,J |A =
rG,J − rG,A rJ,A√(
1− r2G,A

)(
1− r2J,A

) (14)

Here, rG,J |A = 0 indicates no residual linear as-
sociation between the judge model’s generation
accuracy and judgement accuracy once the agent
model’s correctness is held fixed, while |rG,J |A| ap-
proaching 1 signals a strong intrinsic link between
these two competencies that is not attributable to
the quality of the agent’s answer. This approach
allows us to assess whether the correlation be-
tween generation and judgment capabilities exists
independently of the evaluated response quality,
addressing limitations in prior studies that relied
solely on dataset-level correlations.

3.2 Evaluation Models

We adopt relatively weaker LLMs as agent models
and relatively stronger LLMs as judge models. For
the agent models, we include Ministral 8B (Mistral
AI Team, 2024b) and Llama 3.1 series (Dubey et al.,
2024). For the judge models, we consider four
different families of LLMs, including Llama 3.1
405B, the Mistral series (Mistral AI Team, 2024a),
the Gemini series (Gemini Team, 2023, 2024), and
the Gemma series (Gemma Team, 2025). Detailed
model information and implementation details are
provided in Appendix A.

3.3 Evaluation Tasks

Our experiments cover seven datasets that span
multiple answer formats and domains, comprising
a total of 21 subtasks. For multiple-choice ques-
tions (MCQs), we use MMLU Pro (Wang et al.,
2024c). For dialogue tasks with human-preference
annotations, we rely on Chatbot Arena (Zheng
et al., 2023) and three subsets of MT-Bench (Zheng
et al., 2023): Humanities, Roleplay, and Writing,
which add open-ended Q&A, scenario-based role-
playing, and creative-writing challenges within the
same dialogue-and-preference framework. To ex-
amine mathematical and symbolic reasoning, we
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Figure 1: Relationship between the capabilities of answer generation (measured by accuracy) and answer judgment
(measured by F1 score) across three datasets: MMLU Pro, GSM8K, and MT-bench writing. Each subplot
corresponds to one dataset. Different colors represent different model series, and the size of each circle reflects the
relative size of models within the same series.

include GSM8K (Cobbe et al., 2021) and GSM-
Symbolic (P1 and P2) (Mirzadeh et al., 2025).

For each task, we randomly sample 100 in-
stances. In the case of MMLU Pro, which contains
14 subtasks, we sample 100 instances per subtask,
yielding 1,400 MMLU Pro examples in total. Since
we use three different agent models (Ministral 8B,
Llama 3.1 8B, and Llama 3.1 70B) to generate an-
swers during the judgment phase, our judgment
evaluation dataset effectively triples in size, provid-
ing robust coverage across different answer quality
distributions. Because of space limits, the main
text reports results on three representative datasets,
namely MMLU Pro, GSM8K, and MT-Bench Writ-
ing, which together capture the trends observed
across the full benchmark suite. Complete results
for the remaining four datasets appear in Appendix
C. Together, these seven datasets allow us to probe
LLM judges across MCQs, dialogue with human
preferences, creative writing, and mathematical rea-
soning tasks.

3.4 Limitations of Pairwise Evaluation

Prior work on LLM-as-Judge primarily adopts
a pairwise evaluation paradigm, where a judge
model selects the better output among multiple
candidates generated by agent models. However,
such approaches emphasize comparative correct-
ness across options, rather than directly disentan-
gling the ability to generate answers from the abil-
ity to judge them. To more clearly isolate and
evaluate these two capabilities, we adopt a point-
wise setup (Section 3.1). Moreover, the pointwise
setting mitigates potential selection bias (Wei et al.,
2024b; Zheng et al., 2023; Koo et al., 2024) in-
herent in pairwise evaluation, where the LLM is
forced to solve a multiple-choice style problem that

may confound its true judging ability.

4 Relationship between Answer
Generation and Answer Judgment

4.1 Dataset-Level Observations

Following the process described in Section 3.1, we
evaluate the capabilities of answer generation and
answer judgment using Equation 3 and Equation 9,
respectively. Figure 1 plots these two metrics for
eleven models on three representative datasets, cho-
sen for space constraint and because they typify
the trends observed on the full benchmark suite.
Complete results for the remaining four datasets
are reported in Appendix C.

The results, shown in Figure 1, reveal a clear
positive correlation: models with higher answer
generation performance typically exhibit better an-
swer judgment performance across all datasets. Al-
though the relationship is not strictly linear, a dis-
cernible trend indicates that superior answer gener-
ation capabilities generally correspond to enhanced
answer judgment performance. This finding aligns
with the observations in Tan et al. (2025); how-
ever, we do not observe the performance drop in
answer evaluation compared to generation reported
by Zeng et al. (2025). This discrepancy may be
attributed to our evaluation task focusing on bi-
nary correctness judgment, which naturally yields
higher expected performance.

We further investigate the primary reason be-
hind this observation. Specifically, we seek to dis-
tinguish whether this correlation is rooted in the
shared knowledge required for both generation and
judgment on a given task, or if it is an artifact of
stronger models’ generally superior performance
across various tasks. To clarify this relationship,
we conduct further analysis and address the fol-
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Judge model GSM8K MMLUPro MT-Bench Writing
! % ∆ ! % ∆ ! % ∆

Llama 3.1 405B 96.85 0.00 96.85 88.75 32.74 56.01 93.51 9.41 84.10
Gemini 2.0 Flash 98.13 0.00 98.13 90.84 35.31 55.53 91.11 28.28 62.83
Gemini 2.0 Flash Lite 98.68 33.33 65.35 89.33 36.77 52.56 90.77 23.76 67.01
Gemini 1.5 Flash 97.10 52.17 44.93 89.56 38.07 51.49 90.30 34.86 55.44
Gemini 1.5 Flash 8B 98.16 65.57 32.59 88.43 43.81 44.62 87.76 40.68 47.08
Gemma 3 4B 96.58 47.06 49.52 86.41 54.89 31.52 85.39 50.45 34.94
Gemma 3 12B 97.90 33.33 64.57 88.41 46.75 41.66 87.89 45.36 42.53
Gemma 3 27B 98.28 70.59 27.69 89.41 43.59 45.82 89.19 38.00 51.19
Mistral Small 3.1 97.74 42.86 54.88 88.51 39.23 49.28 94.74 30.51 64.23
Mistral Medium 3 97.04 50.00 47.04 88.87 38.19 50.68 91.92 24.00 67.92
Mistral Large 2 96.63 90.91 5.72 89.04 35.34 53.70 92.27 17.02 75.25

Table 1: Answer judgment performance (%) across different models and datasets. !represents DJ+, and%repre-
sents DJ−. ∆ denotes the gap between the performance of DJ+ and DJ− for the same model and dataset. If the
performance of DJ+ is higher, it is marked in blue; otherwise, it is marked in red.

lowing question: "When the judge model correctly
answers a question, does it judge other models’
responses more accurately?"

To investigate whether the internal knowledge
of the judge model affects its performance in eval-
uation tasks, we split the dataset DJ , as defined in
Equation 4, into two subsets: DJ+ and DJ−. The
former represents samples where the judge model
MJ answered correctly, while the latter contains
samples where it failed to provide the correct an-
swer. Note that for different judge models MJ ,
the split datasets DJ+ and DJ− are distinct. This
experimental design isolates the answer genera-
tion capability of the judge model, enabling more
precise examinations of how the model’s internal
knowledge impacts its judging effectiveness.

Table 1 shows the performance of answer judg-
ment on DJ+ and DJ− across eleven different mod-
els. In all cases , the judge models achieve signifi-
cantly higher F1 scores on DJ+. This observation
appears to suggest that the evaluation ability of
judge models is more effective when they possess
related knowledge, as indicated by their ability to
answer the question correctly.

While these dataset-level observations offer use-
ful insights, they provide insufficient evidence to
draw definitive conclusions about the correlation
between answer generation and judgment capabil-
ities. The strong performance of judges on DJ+

raises several questions:

• Does this imply that models with strong gener-
ation abilities will have strong judgment abil-
ities, suggesting these capabilities are highly
correlated?

• Could inherent differences between DJ+ and
DJ− explain the large judgment performance

gap, rather than ability correlation?

• How can we reconcile prior conflicting find-
ings (Tan et al., 2025; Zeng et al., 2025) re-
garding the relationship between these two
capabilities?

4.2 In-Depth Dataset-Level Analysis

To address these questions and gain a more com-
prehensive understanding of these relationships,
we conduct more fine-grained analyses beyond the
dataset-level observations. Specifically, we inves-
tigate whether the correctness of responses gen-
erated by the agent model influences the judge
model’s behavior. We split DJ using more fine-
grained criteria based on two factors: a) whether
the judge model answers the question correctly, and
b) whether the agent model answers the question
correctly. Following this approach, we separate DJ

into four subsets:

• DCorrectA
J+ : Questions where both the judge

model and the agent model answer correctly.

• DIncorrectA
J+ : Questions where the judge model

answers correctly, but the agent model does
not.

• DCorrectA
J− : Questions where the judge model

answers incorrectly, but the agent model an-
swers correctly.

• DIncorrectA
J− : Questions where both the judge

model and the agent model answer incorrectly.

We report the performance breakdown across
the four subsets in Figure 2. The subsets DCorrectA

J+

and DCorrectA
J− consistently achieve higher scores,
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Figure 2: Heatmap Visualization of Evaluation Performance across Datasets. This figure illustrates the integration
of the judge model’s answer generation capabilities with the labels of evaluation questions across four datasets.
Each dataset is represented in one of four subfigures, with subsets DCorrectA

J+ , DIncorrectA
J+ , DCorrectA

J− , and DIncorrectA
J−

displayed from left to right, showing the evaluation accuracy variations under different conditions.

Judge Model GSM8K MMLUPro MT-Bench Writing Avg.
Mistral Large 2 5.67% 22.12% 33.00% 21.77%
Mistral Medium 3 5.33% 21.90% 29.66% 21.35%
Llama 3.1 405B 3.67% 20.02% 28.33% 19.52%
Gemini 2.0 Flash Lite 4.33% 16.81% 36.00% 17.23%
Mistral Small 3.1 5.33% 16.90% 30.00% 17.00%
Gemma 3 4B 1.00% 17.21% 29.00% 16.93%
Gemma 3 27B 4.00% 16.31% 32.66% 16.56%
Gemini 1.5 Flash 8B 7.00% 15.69% 27.66% 15.90%
Gemma 3 12B 5.00% 15.59% 27.00% 15.64%
Gemini 2.0 Flash 2.67% 11.47% 28.33% 11.97%
Gemini 1.5 Flash 4.00% 11.09% 23.00% 11.39%

Table 2: Model overconfidence across datasets, showing the difference between percentage of samples predicted
as correct and percentage actually correct. Higher values indicate greater bias toward predicting correctness. The
average (rightmost column) is computed as a weighted mean across all datasets based on sample count.

indicating that most LLMs perform better when
the label is Correct. This suggests that evaluation
outcomes are influenced more by label distribution
than by the judge model’s capability in the answer
generation task. Revisiting Table 1, the consis-
tent superiority of DJ+ over DJ− arises because
the strong performance of DCorrectA

J+ outweighs the
weaker results of DIncorrectA

J+ , yielding a higher over-
all score than the DJ− subsets.

To better understand the correlation between an-
swer generation and judgment capabilities, we fo-
cus our analysis on the MMLU Pro and MT-Bench
Writing datasets, temporarily excluding GSM8K-
related datasets. This is because advanced models
such as LLaMA 3.1 405B and Gemini 2.0 Flash
achieve very high accuracy on GSM8K, result-
ing in too few instances in subsets like DCorrectA

J−

and DIncorrectA
J− for meaningful evaluation. In the

MMLU Pro dataset, it is evident that even high-
performing LLMs like LLaMA 3.1 405B and Mis-
tral Medium 3 achieve only around 60% F1 score
on DIncorrectA

J+ . Only a select few models, such as
Gemini 2.0 Flash and Gemini 1.5 Flash, demon-
strate strong performance in this subset. A similar
trend is observed in the MT-Bench Writing subset,
where model performance on DIncorrectA

J+ remains
low across the board, with the best models reaching
an F1 score of only 0.44.

In Figure 2, we observe that within the MMLU
Pro dataset, Gemini 2.0 Flash Lite outperforms
Gemini 2.0 Flash in the subset DCorrectA

J− . To in-
vestigate this counterintuitive result, we analyze
the distribution of ground-truth labels and model
predictions across various judges and datasets. As
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[System]
Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question
displayed below. You will be given a reference answer and the assistant’s answer. Your evaluation should focus solely
on the correctness of the assistant’s final answer. Begin by independently solving the user question step-by-step to
verify the correctness of the response, and compare your final answer with both the reference answer and the assistant’s
final answer. Provide a brief explanation of your judgment, highlighting any differences and their significance. Be
as objective as possible. After providing your explanation, state your final verdict by strictly following this format:
"[[Correct]]" if the response’s final answer is correct and "[[Incorrect]]" if it is not.

[User Question]
Leo starts with 20 apples. He gives half to his sister. Then, he buys a new bag of 12 apples. After that, he uses 5 apples
to bake a pie. How many apples does Leo have left?

[The Start of Reference Answer]
Let’s think step by step. Leo begins with 20 apples. ... The answer is 17.
[The End of Reference Answer]
[The Start of Assistant’s Answer]
Let’s think step by step. Leo starts with 20 apples. ... The answer is 11.
[The End of Assistant’s Answer]

Figure 3: Example of Self-Reference-Guided Judgment on a Math Problem

shown in Table 2, most LLMs exhibit a strong bias
toward predicting Correct. Since all ground-truth
labels in DCorrectA

J− are Correct, weaker models may
sometimes outperform stronger models from the
same series due to this prediction bias.

4.3 Instance-Level Analysis

While the previous analyses focused on dataset-
level patterns, we now turn to instance-level anal-
ysis to obtain more fine-grained insights. Since
response correctness strongly influences the corre-
lation between generation and judgment abilities,
we control for this confounding factor by measur-
ing the partial correlation between answer genera-
tion and answer judgment using Equation 14, with
results summarized in Table 3. In most cases (25
out of 33), the correlations fall below 0.3, indi-
cating only a weak association between the two
abilities. A smaller number of cases (8 out of 33)
show moderate alignment, with correlations be-
tween 0.3 and 0.5. Importantly, none of the cases
exhibit strong correlation (above 0.5), which would
suggest that generation and judgment rely on the
same underlying mechanism. These findings rein-
force our earlier observation that the correctness of
the response being judged substantially influences
evaluation outcomes, while also suggesting that
an LLM’s judgment ability is largely independent
of its generation ability. This instance-level anal-
ysis complements the dataset-level observations:
whereas aggregate results (Figure 1) suggested a
positive correlation between judgment and gener-
ation, the weak partial correlations at the instance

Judge Model GSM8K MMLUPro MT-Bench
Writing

Llama 3.1 405B 0.1869 0.2808 0.4448
Gemini 2.0 Flash 0.0864 0.2862 0.3053
Gemini 2.0 Flash Lite 0.3246 0.2580 0.1932
Gemini 1.5 Flash 0.1446 0.2653 0.2786
Gemini 1.5 Flash 8B 0.3789 0.1866 0.1177
Gemma 3 4B 0.3495 0.1266 0.1931
Gemma 3 12B 0.3198 0.1900 0.3365
Gemma 3 27B 0.0864 0.2406 0.1960
Mistral Small 3.1 0.0828 0.2207 0.2240
Mistral Medium 3 0.2800 0.2729 0.4615
Mistral Large 2 0.0628 0.2443 0.2754

Table 3: Partial correlation between answer generation
and judgment capabilities across models and datasets.
Weak and moderate correlations are highlighted with
red and purple backgrounds, respectively.

level reveal that the two capabilities operate more
independently than the dataset-level trends imply.

5 Self-Reference-Guided Evaluation

5.1 Goal and Methodology

To strengthen the correlation between answer gener-
ation and judgment capabilities, we propose a self-
reference-guided evaluation approach as a replace-
ment for the standard CoT method. Unlike tradi-
tional reference-guided methods (Badshah and Saj-
jad, 2024), which rely on responses from stronger
models or gold-standard answers as references, our
approach leverages the judge model’s own gener-
ated response as the reference during evaluation.
Specifically, we use the answer generated by the
judge model in Equation 2. Figure 3 illustrates this
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Judge Model GSM8K MMLU Pro MT-Bench
Writing

Llama 3.1 405B 0.3950 (+0.2081↑) 0.5719 (+0.2911↑) 0.9283 (+0.4835↑)
Gemini 2.0 Flash 0.4543 (+0.3679↑) 0.5177 (+0.2315↑) 0.8719 (+0.5666↑)
Gemini 2.0 Flash Lite 0.3987 (+0.0741↑) 0.5114 (+0.2534↑) 0.4202 (+0.2270↑)
Gemini 1.5 Flash 0.4747 (+0.3301↑) 0.5687 (+0.3034↑) 0.8414 (+0.5628↑)
Gemini 1.5 Flash 8B 0.6916 (+0.3127↑) 0.4637 (+0.2771↑) 0.6983 (+0.5806↑)
Gemma 3 4B 0.6243 (+0.2748↑) 0.4135 (+0.2869↑) 0.8006 (+0.6075↑)
Gemma 3 12B 0.4795 (+0.1597↑) 0.5398 (+0.3498↑) 0.6697 (+0.3332↑)
Gemma 3 27B 0.2585 (+0.1721↑) 0.5620 (+0.3214↑) 0.9036 (+0.7076↑)
Mistral Small 3.1 0.3140 (+0.2312↑) 0.5430 (+0.3223↑) 0.8688 (+0.6448↑)
Mistral Medium 3 0.4483 (+0.1683↑) 0.5207 (+0.2478↑) 0.9071 (+0.4456↑)
Mistral Large 2 0.5931 (+0.5303↑) 0.5869 (+0.3426↑) 0.8079 (+0.5325↑)

Table 4: Partial correlation after applying the self-reference-guided judgment method. Improvements over the CoT
baseline are shown in blue with upward arrows. Weak, moderate, and strong correlations are highlighted with red ,
purple , and green backgrounds, respectively.

method with a mathematical reasoning example.
This design raises the following questions:

• Does using self-generated responses as refer-
ences improve the correlation between answer
generation and judgment capabilities com-
pared to standard CoT?

• How does the evaluation performance of self-
reference-guided evaluation compare with tra-
ditional CoT?

5.2 Results and Observations

Correlation Enhancement. Table 4 shows that
our proposed method substantially improves the
correlation compared to the standard CoT baseline
in Table 3. In 22 out of 33 cases, the correlations
exceed 0.5, indicating strong alignment between
answer generation and judgment capabilities. An-
other 10 cases fall into the moderate range, with
only 1 case remaining weak. On average, the cor-
relation increases by about 0.35, underscoring the
effectiveness of the self-reference-guided approach
in reducing the previously observed decoupling
between the two abilities.

Model-Specific Effects. Figure 4 shows the com-
parison between our self-reference-guided method
and the standard CoT baseline in answer judgment
performance. On the MMLU Pro dataset, the self-
reference-guided method outperforms CoT once
the judge model’s own answer generation accu-
racy exceeds 50%. We emphasize that this specific
threshold is not a universal rule and is expected to
vary across different datasets. This may be related
to the quality of the provided reference.

Figure 4: Performance comparison between CoT and
self-reference-guided evaluation methods on MMLU
Pro, plotting answer generation accuracy against judg-
ment F1 score for each model.

5.3 Discussion and Practical Takeaway

Our experiments with CoT prompting show that
answer generation and answer judgment are only
weakly correlated. Consequently, selecting the
top-performing model on a generation benchmark
as a judge does not guarantee reliable evalua-
tions. In contrast, our self-reference-guided strat-
egy strengthens the connection between these abil-
ities by using the model’s own answer as the ref-
erence, making generation accuracy a dependable
proxy for judgment quality. This approach is par-
ticularly valuable when high-quality external ref-
erences are unavailable, such as when gold labels
are costly to obtain or access to stronger models is
impractical. By leveraging self-generated outputs,
our method aligns generation and judgment skills
without external dependencies, offering a practical
and robust path to reliable evaluation.

24658



6 Conclusion

In this paper, we conducted a systematic examina-
tion of the correlation between performance in an-
swer generation and answer judgment tasks using
LLMs with standard CoT prompting. We evaluated
11 widely used LLMs on 21 benchmark subtasks.
Our results show that, for most models, perfor-
mance on answer generation is only weakly corre-
lated with the ability to judge answers, indicating
that strong generators are not necessarily reliable
judges. In addition, we found that self-reference-
guided evaluation methods can strengthen the cor-
relation between generation and judgment capabil-
ities. Based on these insights, we offer practical
recommendations for selecting models to serve as
judges, especially when external references like
golden answers or outputs from stronger models
are unavailable. In these situations, our work pro-
vides an accessible approach to judge model selec-
tion by using generation performance as a reliable
proxy for judgment capability. This also mitigates
the risk of generation and evaluation capabilities
diverging as LLMs continue to develop.

7 Limitations

This study confronts inherent limitations due to the
rapid evolution of LLMs and the specific nature of
the evaluation tasks employed:

Evolving Landscape of LLMs. The field of
large language models is rapidly evolving, with
new models continually introducing architectural
and methodological advancements. Given this
dynamic landscape, our study is necessarily con-
strained to the specific set of LLMs we evaluated.
While our findings provide valuable insights into
the current generation of models, future advance-
ments may lead to changes in the relationship be-
tween answer generation and judgment capabilities,
potentially strengthening or reshaping our observa-
tions. As such, ongoing research will be essential
to understand how these relationships evolve as
models continue to improve.

Self-Reference-Guided Evaluation Scope. The
self-reference-guided method has shown poten-
tial in enhancing the correlation between answer
generation and answer judgment tasks. However,
this study has employed the self-reference-guided
method specifically within the context of point-
wise answer judgment tasks, where the references
needed are clearly defined as the judge model’s

responses to questions. The applicability of this
method to more complex evaluation formats and
tasks, such as pairwise comparison or listwise rank-
ing, remains uncertain. Further research is required
to determine how references can be effectively gen-
erated and utilized in diverse evaluative contexts
beyond simple pointwise answer judgment.

Lack of Multi-Turn Interaction Analysis. Our
study focuses exclusively on single-turn interac-
tions, a simplification of real-world applications
where judgments often occur in multi-turn contexts.
In interactive settings, models must adapt their gen-
eration and evaluation to prior context, which we
do not address here. We intentionally restrict our
scope to single-turn interactions because they un-
derlie most LLM-as-Judge benchmarks and offer a
clearer lens for our research question. Nevertheless,
this constitutes a limitation. Future work should ex-
tend our analysis to multi-turn dialogues to assess
whether the observed correlation patterns and the
effectiveness of self-reference-guided evaluation
hold in more complex interactive scenarios.

Potential for Error Propagation A key consid-
eration for the self-reference-guided method is the
potential for error propagation. Since the approach
uses the judge’s own output as the reference, an
incorrect reference answer can lead to flawed eval-
uations. For instance, a judge model might incor-
rectly penalize an agent’s correct response simply
because it fails to match its own erroneous refer-
ence. This risk is empirically supported by our own
findings, which demonstrate that the effectiveness
of the self-reference-guided method is directly tied
to the judge model’s generation accuracy. While
this is a limitation, it also reinforces our primary
recommendation to apply this method using judge
models with high generation performance for the
target domain. These limitations underscore the ne-
cessity for ongoing research to continually reassess
and validate the applicability of our findings as
the technology evolves and to expand the method-
ological framework to include a wider variety of
evaluation tasks in different contexts.

Acknowledgments

This work was supported by National Science and
Technology Council, Taiwan, under grants NSTC
113-2634-F-002-003- and 114-2221-E-002-070-
MY3, and Ministry of Education (MOE), Taiwan,
under grant NTU-114L900901.

24659



Use of AI Assistants

We sincerely appreciate the assistance provided by
ChatGPT in refining our manuscript. ChatGPT
offered suggestions for improving the clarity and
conciseness of our writing, helped restructure key
sections for better readability, and contributed to
refining our research terminology. While the fi-
nal content remains our own, these contributions
enhanced the presentation of our work.

References
Sher Badshah and Hassan Sajjad. 2024. Reference-

guided verdict: Llms-as-judges in automatic evalua-
tion of free-form text. Preprint, arXiv:2408.09235.

Zhen Bi, Ningyu Zhang, Yida Xue, Yixin Ou, Dax-
iong Ji, Guozhou Zheng, and Huajun Chen. 2024.
OceanGPT: A large language model for ocean sci-
ence tasks. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 3357–3372,
Bangkok, Thailand. Association for Computational
Linguistics.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better LLM-based eval-
uators through multi-agent debate. In The Twelfth
International Conference on Learning Representa-
tions.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng
Jiang, and Benyou Wang. 2024a. Humans or LLMs
as the judge? a study on judgement bias. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 8301–8327,
Miami, Florida, USA. Association for Computational
Linguistics.

Justin Chen, Swarnadeep Saha, and Mohit Bansal.
2024b. ReConcile: Round-table conference im-
proves reasoning via consensus among diverse LLMs.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 7066–7085, Bangkok, Thailand.
Association for Computational Linguistics.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E.
Gonzalez, and Ion Stoica. 2024. Chatbot arena: An
open platform for evaluating LLMs by human pref-
erence. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages
8359–8388. PMLR.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro

Nakano, Christopher Hesse, and John Schulman.
2021. Training Verifiers to Solve Math Word Prob-
lems. arXiv preprint. ArXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou,
Zhuo Han, Alan Huang, Songyang Zhang, Kai Chen,
Zhixin Yin, Zongwen Shen, Jidong Ge, and Vincent
Ng. 2024. LawBench: Benchmarking legal knowl-
edge of large language models. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7933–7962, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Google Gemini Team. 2023. Gemini: A family
of highly capable multimodal models. ArXiv,
abs/2312.11805.

Google Gemini Team. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context.

Gemma Team. 2025. Gemma 3 technical report.
Preprint, arXiv:2503.19786.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park,
Zae Myung Kim, and Dongyeop Kang. 2024. Bench-
marking cognitive biases in large language models as
evaluators. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 517–545,
Bangkok, Thailand. Association for Computational
Linguistics.

Sangkyu Lee, Sungdong Kim, Ashkan Yousefpour, Min-
joon Seo, Kang Min Yoo, and Youngjae Yu. 2024.
Aligning large language models by on-policy self-
judgment. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 11442–11459,
Bangkok, Thailand. Association for Computational
Linguistics.

24660

https://arxiv.org/abs/2408.09235
https://arxiv.org/abs/2408.09235
https://arxiv.org/abs/2408.09235
https://doi.org/10.18653/v1/2024.acl-long.184
https://doi.org/10.18653/v1/2024.acl-long.184
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://doi.org/10.18653/v1/2024.emnlp-main.474
https://doi.org/10.18653/v1/2024.emnlp-main.474
https://doi.org/10.18653/v1/2024.acl-long.381
https://doi.org/10.18653/v1/2024.acl-long.381
https://proceedings.mlr.press/v235/chiang24b.html
https://proceedings.mlr.press/v235/chiang24b.html
https://proceedings.mlr.press/v235/chiang24b.html
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.18653/v1/2024.emnlp-main.452
https://doi.org/10.18653/v1/2024.emnlp-main.452
https://arxiv.org/pdf/2312.11805
https://arxiv.org/pdf/2312.11805
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://arxiv.org/abs/2503.19786
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-acl.29
https://doi.org/10.18653/v1/2024.findings-acl.29
https://doi.org/10.18653/v1/2024.findings-acl.29
https://doi.org/10.18653/v1/2024.acl-long.617
https://doi.org/10.18653/v1/2024.acl-long.617


Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
Kai Shu, Lu Cheng, and Huan Liu. 2025. From gen-
eration to judgment: Opportunities and challenges of
llm-as-a-judge. Preprint, arXiv:2411.16594.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yu-
jia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu.
2024a. Llms-as-judges: A comprehensive sur-
vey on llm-based evaluation methods. Preprint,
arXiv:2412.05579.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez, and
Ion Stoica. 2024b. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. Preprint, arXiv:2406.11939.

Jingcong Liang, Rong Ye, Meng Han, Ruofei Lai, Xinyu
Zhang, Xuanjing Huang, and Zhongyu Wei. 2024.
Debatrix: Multi-dimensional debate judge with it-
erative chronological analysis based on LLM. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 14575–14595, Bangkok,
Thailand. Association for Computational Linguistics.

Yen-Ting Lin and Yun-Nung Chen. 2023. LLM-eval:
Unified multi-dimensional automatic evaluation for
open-domain conversations with large language mod-
els. In Proceedings of the 5th Workshop on NLP for
Conversational AI (NLP4ConvAI 2023), pages 47–
58, Toronto, Canada. Association for Computational
Linguistics.

Yixin Liu, Kejian Shi, Alexander R. Fabbri, Yilun
Zhao, Peifeng Wang, Chien-Sheng Wu, Shafiq Joty,
and Arman Cohan. 2024. ReIFE: Re-evaluating
Instruction-Following Evaluation. arXiv preprint.
ArXiv:2410.07069 [cs].

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman
Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. 2025. GSM-symbolic: Understanding
the limitations of mathematical reasoning in large
language models. In The Thirteenth International
Conference on Learning Representations.

Mistral AI Team. 2024a. Large Enough. Section: news.

Mistral AI Team. 2024b. Un Ministral, des Ministraux.
Section: news.

Vyas Raina, Adian Liusie, and Mark Gales. 2024. Is
LLM-as-a-judge robust? investigating universal ad-
versarial attacks on zero-shot LLM assessment. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
7499–7517, Miami, Florida, USA. Association for
Computational Linguistics.

Lin Shi, Chiyu Ma, Wenhua Liang, Weicheng Ma, and
Soroush Vosoughi. 2024. Judging the Judges: A Sys-
tematic Study of Position Bias in LLM-as-a-Judge.
arXiv preprint. ArXiv:2406.07791 [cs].

Sijun Tan, Siyuan Zhuang, Kyle Montgomery,
William Yuan Tang, Alejandro Cuadron, Chen-
guang Wang, Raluca Popa, and Ion Stoica. 2025.
Judgebench: A benchmark for evaluating LLM-based
judges. In The Thirteenth International Conference
on Learning Representations.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yix-
uan Su, Aleksandra Piktus, Arkady Arkhangorodsky,
Minjie Xu, Naomi White, and Patrick Lewis. 2024.
Replacing judges with juries: Evaluating llm gen-
erations with a panel of diverse models. Preprint,
arXiv:2404.18796.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Lingpeng Kong, Qi Liu,
Tianyu Liu, and Zhifang Sui. 2024a. Large lan-
guage models are not fair evaluators. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9440–9450, Bangkok, Thailand. Association
for Computational Linguistics.

Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran
Zeng, Linyi Yang, Cunxiang Wang, Hao Chen,
Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie,
Wei Ye, Shikun Zhang, and Yue Zhang. 2024b. Pan-
daLM: An automatic evaluation benchmark for LLM
instruction tuning optimization. In The Twelfth Inter-
national Conference on Learning Representations.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
KU, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang
Yue, and Wenhu Chen. 2024c. Mmlu-pro: A more ro-
bust and challenging multi-task language understand-
ing benchmark. In Advances in Neural Information
Processing Systems, volume 37, pages 95266–95290.
Curran Associates, Inc.

Hui Wei, Shenghua He, Tian Xia, Andy Wong, Jingyang
Lin, and Mei Han. 2024a. Systematic evaluation
of llm-as-a-judge in llm alignment tasks: Explain-
able metrics and diverse prompt templates. Preprint,
arXiv:2408.13006.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Sheng-Lun Wei, Cheng-Kuang Wu, Hen-Hsen Huang,
and Hsin-Hsi Chen. 2024b. Unveiling selection bi-
ases: Exploring order and token sensitivity in large
language models. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 5598–
5621, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun
Jiang, and Jiaya Jia. 2025. MR-GSM8k: A meta-

24661

https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2412.05579
https://arxiv.org/abs/2412.05579
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://doi.org/10.18653/v1/2024.findings-acl.868
https://doi.org/10.18653/v1/2024.findings-acl.868
https://doi.org/10.18653/v1/2023.nlp4convai-1.5
https://doi.org/10.18653/v1/2023.nlp4convai-1.5
https://doi.org/10.18653/v1/2023.nlp4convai-1.5
https://doi.org/10.18653/v1/2023.nlp4convai-1.5
https://doi.org/10.48550/arXiv.2410.07069
https://doi.org/10.48550/arXiv.2410.07069
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/ministraux/
https://doi.org/10.18653/v1/2024.emnlp-main.427
https://doi.org/10.18653/v1/2024.emnlp-main.427
https://doi.org/10.18653/v1/2024.emnlp-main.427
https://doi.org/10.48550/arXiv.2406.07791
https://doi.org/10.48550/arXiv.2406.07791
https://openreview.net/forum?id=G0dksFayVq
https://openreview.net/forum?id=G0dksFayVq
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://doi.org/10.18653/v1/2024.acl-long.511
https://doi.org/10.18653/v1/2024.acl-long.511
https://openreview.net/forum?id=5Nn2BLV7SB
https://openreview.net/forum?id=5Nn2BLV7SB
https://openreview.net/forum?id=5Nn2BLV7SB
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://arxiv.org/abs/2408.13006
https://arxiv.org/abs/2408.13006
https://arxiv.org/abs/2408.13006
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-acl.333
https://doi.org/10.18653/v1/2024.findings-acl.333
https://doi.org/10.18653/v1/2024.findings-acl.333
https://openreview.net/forum?id=br4H61LOoI


reasoning benchmark for large language model eval-
uation. In The Thirteenth International Conference
on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang.
2023. JudgeLM: Fine-tuned Large Language
Models are Scalable Judges. arXiv preprint.
ArXiv:2310.17631 [cs].

24662

https://openreview.net/forum?id=br4H61LOoI
https://openreview.net/forum?id=br4H61LOoI
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.48550/arXiv.2310.17631
https://doi.org/10.48550/arXiv.2310.17631


A Additional Model Information

To provide a comprehensive overview of the mod-
els used in our experiments, we list the agent and
judge models along with their corresponding API
endpoints in Table 5. For Llama 3.1 models, we
leverage the API provided by SambaNova1 to op-
timize the efficiency and scalability of our exper-
iments. For the Mistral series, we utilize APIs
provided by Mistral AI, while for the Gemini se-
ries and Gemma series, we use APIs provided by
Google. These models were selected based on their
performance and availability, ensuring a diverse set
of architectures for evaluation. All model inference
was conducted with temperature set to 0 to ensure
reproducibility of our experiments.

Model (Size) API Endpoint

Agent Models

Llama 3.1 8B Meta-Llama-3.1-8B-Instruct
Llama 3.1 70B Meta-Llama-3.1-70B-Instruct
Ministral 8B ministral-8b-2410

Judge Models

Llama 3.1 405B Meta-Llama-3.1-405B-Instruct
Mistral Small 3.1 mistral-small-2503
Mistral Medium 3 mistral-medium-2505
Mistral Large 2 mistral-large-2411
Gemma 3 4B gemma-3-4b-it
Gemma 3 12B gemma-3-12b-it
Gemma 3 27B gemma-3-27b-it
Gemini 1.5 Flash 8B gemini-1.5-flash-8b-001
Gemini 1.5 Flash gemini-1.5-flash-002
Gemini 2.0 Flash Lite gemini-2.0-flash-lite-001
Gemini 2.0 Flash gemini-2.0-flash-001

Table 5: Model endpoints used in our experiments

B Prompt Templates

For reproducibility, we provide all prompt tem-
plates used in our experiments. The answer gener-
ation prompts, derived from the original datasets’
CoT reasoning approaches (Kojima et al., 2022;
Wang et al., 2024c; Zheng et al., 2023), are shown
in Figures 5, 6, and 7. The evaluation templates,
including both CoT answer judgment and self-
reference-guided evaluation prompts, are adapted
with slight modifications from Zheng et al. (2023)
and are presented in Figures 8, 9, 10, and 11, corre-
sponding to their respective evaluation tasks.

C Full Results on All Datasets

Due to space constraints in the main paper, we pre-
sented results on only three representative datasets:

1https://cloud.sambanova.ai

MMLU Pro, GSM8K, and MT-Bench Writing.
Here, we provide the complete experimental re-
sults across all seven datasets used in our study,
following the same structure as the main paper.

C.1 Dataset-Level Observations
Figure 12 extends our dataset-level analysis to
the remaining four datasets. For GSM-Symbolic-
P1 and GSM-Symbolic-P2, we observe the same
positive correlation trend between answer gener-
ation capability and answer judgment capability
as seen in the main paper. However, this trend is
less pronounced in Chatbot Arena, MT-Bench Hu-
manities, and MT-Bench Roleplay. This variabil-
ity across datasets underscores our argument that
dataset-level correlations alone provide an incom-
plete picture of the relationship between these two
capabilities. Despite these differences, Tables 6
and 7 consistently show that performance on DJ+

outperforms DJ− across most models and datasets.
This aligns with our hypothesis in the main paper
that this phenomenon likely stems from LLMs’ ten-
dency to predict answers as correct, rather than
from a strong intrinsic correlation between genera-
tion and judgment abilities.

C.2 In-Depth Dataset-Level Analysis
Figures 13 and 14 present the finer-grained anal-
ysis for the remaining datasets, where we parti-
tion each dataset into four subsets based on the
judge model’s answer correctness (J+ or J−) and
the agent model’s answer correctness (CorrectA or
IncorrectA). For Chatbot Arena, MT-Bench Hu-
manities, and MT-Bench Roleplay, we observe pat-
terns similar to those shown for MMLU Pro and
MT-Bench Writing in the main paper. Specifically,
LLMs consistently perform best on DCorrectA

J+ and
DCorrectA

J− subsets, further confirming our finding
that LLM-as-Judge performance is strongly influ-
enced by the correctness of the agent’s response,
rather than by the judge model’s ability to answer
the question correctly.

For GSM-Symbolic-P1 and GSM-Symbolic-P2,
the results mirror those of GSM8K. This similar-
ity likely stems from the high answer generation
accuracy across models for these mathematical
reasoning tasks, resulting in very few instances
falling into the IncorrectJ and IncorrectA cate-
gories, which limits the conclusiveness of analyses
for these particular subsets. Table 8 extends our
analysis of prediction behavior across the remain-
ing datasets. Consistent with our findings in the
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[System]
The question is: {question}. Let’s think step by step and then finish your answer with "The answer is (arabic numerals):"

Figure 5: Prompt templates for CoT answer generation in the GSM8K, GSM-Symbolic-P1 and GSM-Symbolic-P2
datasets.

[System]
The following are multiple-choice questions (with answers) about {category}. Think step by step and then output the
answer in the format of "The answer is (X)" at the end.

Question: {question}
Options:
A. {Option 1}
B. {Option 2}
C. {Option 3}
D. {Option 4}
...

Answer: Let’s think step by step.

Figure 6: Prompt templates for CoT answer generation in the MMLU Pro datasets.

[System]
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user
question displayed below. Your evaluation should consider correctness and helpfulness. You will be given assistant A’s
answer, and assistant B’s answer. Your job is to evaluate which assistant’s answer is better. You should independently
solve the user question step-by-step first. Then compare both assistants’ answers with your answer. Identify and correct
any mistakes. Avoid any position biases and ensure that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain
names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by
strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie.

[User Question]
{Question}
[The Start of Assistant A’s Answer]

{Answer A}
[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]

{Answer B}
[The End of Assistant B’s Answer]

Figure 7: Prompt template for CoT answer generation in the Chatbot Arena and MT-Bench subtasks datasets.

[System]
Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question
displayed below. Your evaluation should focus solely on the correctness of the assistant’s final answer. Begin by
independently solving the user question step-by-step to verify the correctness of the response. Compare your final
answer to the assistant’s final answer. Provide a brief explanation of your judgment. Be as objective as possible. After
providing your explanation, state your final verdict by strictly following this format: "[[Correct]]" if the response’s final
answer is correct and "[[Incorrect]]" if it is not.

[User Question]
{question}

[The Start of Assistant’s Answer]
{answer_a}
[The End of Assistant’s Answer]

Figure 8: Prompt templates for CoT answer judgment in the MMLU Pro and GSM-Symbolic datasets
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[System]
Please act as an impartial meta-judge and evaluate the decision made by an AI judge on the following user question.
The user question is a comparative evaluation task, asking to judge which of two AI assistant responses is better based
on correctness and helpfulness.

The AI judge has already made a selection between Assistant A and Assistant B as the better response, us-
ing the following verdict format:
- "[[A]]" if Assistant A is better
- "[[B]]" if Assistant B is better
- "[[C]]" if it is a tie

Your task is to independently perform the same comparison step-by-step and determine whether you agree with the AI
judge’s choice. Focus solely on verifying the correctness of the AI judge’s final decision.

After completing your evaluation, provide a concise explanation of your reasoning. Be as objective as possible. Finally,
state your verdict in the following format: "**[[Correct]]**" if the AI judge’s selection is correct, or "**[[Incorrect]]**"
if it is not.

User Question:
{question}

[The Start of AI Judge’s Selected Verdict]
{response}
[The End of AI Judge’s Selected Verdict]

Figure 9: Prompt templates for CoT answer judgment in the Chatbot Arena and MT-Bench datasets

[System]
Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question
displayed below. You will be given a reference answer and the assistant’s answer. Your evaluation should focus solely
on the correctness of the assistant’s final answer. Begin by independently solving the user question step-by-step to
verify the correctness of the response, and compare your final answer with both the reference answer and the assistant’s
final answer. Provide a brief explanation of your judgment, highlighting any differences and their significance. Be
as objective as possible. After providing your explanation, state your final verdict by strictly following this format:
"[[Correct]]" if the response’s final answer is correct and "[[Incorrect]]" if it is not.

[User Question]
{question}

[The Start of Reference Answer]
{ref_answer}
[The End of Reference Answer]
[The Start of Assistant’s Answer]
{answer_a}
[The End of Assistant’s Answer]

Figure 10: Prompt templates for self-reference-guided answer judgment in the MMLU Pro and GSM-Symbolic
datasets
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[System]
Please act as an impartial meta-judge and evaluate the decision made by an AI judge on the following user question.
The user question is a comparative evaluation task, asking to judge which of two AI assistant responses is better based
on correctness and helpfulness.

The AI judge has already made a selection between Assistant A and Assistant B as the better response, using the
following verdict format:
- "[[A]]" if Assistant A is better
- "[[B]]" if Assistant B is better
- "[[C]]" if it is a tie

You will also be given a reference answer to the same user question. Your task is to independently perform the same
comparison step-by-step and determine whether you agree with the AI judge’s choice. Use the reference answer to
guide your reasoning and verification, but base your decision on whether the AI judge’s final choice was justified given
the relative correctness and helpfulness of the two assistant responses.

After completing your evaluation, provide a concise explanation of your reasoning. Be as objective as possible. Finally,
state your verdict in the following format: "**[[Correct]]**" if the AI judge’s selection is correct, or "**[[Incorrect]]**"
if it is not.

User Question:
{question}

[The Start of Reference Answer]
{ref_answer}
[The End of Reference Answer]

[The Start of AI Judge’s Selected Verdict]
{response}
[The End of AI Judge’s Selected Verdict]

Figure 11: Prompt templates for self-reference-guided answer judgment in the Chatbot Arena and MT-Bench
subtasks datasets.

Figure 12: Relationship between the capabilities of answer generation (measured by accuracy) and answer judgment
(measured by F1 score) across five datasets: GSM-Symbolic-P1, GSM-Symbolic-P2, Chatbot Arena, MT-Bench
Roleplay, and MT-Bench Humanities. Each subplot corresponds to one dataset. Different colors represent different
model series, and the size of each circle reflects the relative size of models within the same series.
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Judge model GSM-Symbolic-P1 GSM-Symbolic-P2 Chatbot Arena
! % ∆ ! % ∆ ! % ∆

Llama 3.1 405B 97.79 83.72 14.07 96.44 70.59 25.85 85.56 43.40 42.16
Gemini 2.0 Flash 98.68 66.67 32.01 97.89 100.00 -2.11 92.53 60.47 32.06
Gemini 2.0 Flash Lite 98.45 69.77 28.68 96.97 66.67 30.30 91.71 59.31 32.40
Gemini 1.5 Flash 96.80 68.18 28.62 94.89 94.74 0.15 86.16 49.54 36.62
Gemini 1.5 Flash 8B 96.34 85.14 11.20 91.45 87.07 4.38 86.90 54.84 32.06
Gemma 3 4B 95.70 72.41 23.29 91.11 72.48 18.63 88.55 59.42 29.13
Gemma 3 12B 96.67 75.56 21.11 95.36 80.00 15.36 89.20 58.82 30.38
Gemma 3 27B 97.40 60.61 36.79 97.04 94.12 2.92 88.04 52.94 35.10
Mistral Small 3.1 94.78 70.97 23.81 93.83 86.96 6.87 88.71 53.91 34.80
Mistral Medium 3 95.58 73.33 22.25 95.50 0.00 95.50 92.66 48.28 44.38
Mistral Large 2 94.96 66.67 28.29 95.17 81.08 14.09 92.96 65.15 27.81

Table 6: Answer judgment performance across different models and datasets. !represents DJ+, and%represents
DJ−. ∆ denotes the gap between the performance of DJ+ and DJ− for the same model and dataset. If the
performance of DJ+ is higher, it is marked in blue; otherwise, it is marked in red.

Judge model MT-Bench Humanities MT-Bench Roleplay
! % ∆ ! % ∆

Llama 3.1 405B 99.78 6.90 92.88 93.98 21.62 72.36
Gemini 2.0 Flash 97.48 10.53 86.95 94.76 47.42 47.34
Gemini 2.0 Flash Lite 96.67 18.75 77.92 92.31 50.51 41.80
Gemini 1.5 Flash 96.11 0.00 96.11 91.58 32.00 59.58
Gemini 1.5 Flash 8B 95.92 0.00 95.92 94.06 41.90 52.16
Gemma 3 4B 98.45 8.16 90.29 90.91 46.30 44.61
Gemma 3 12B 99.77 26.67 73.10 92.46 37.50 54.96
Gemma 3 27B 99.54 19.18 80.36 95.85 47.93 47.92
Mistral Small 3.1 99.08 3.33 95.75 98.51 32.32 66.19
Mistral Medium 3 99.55 3.28 96.27 95.10 40.86 54.24
Mistral Large 2 99.77 8.96 90.81 95.37 20.51 74.86

Table 7: Answer judgment performance across different models and datasets. !represents DJ+, and%represents
DJ−. ∆ denotes the gap between the performance of DJ+ and DJ− for the same model and dataset. If the
performance of DJ+ is higher, it is marked in blue; otherwise, it is marked in red.

Judge Model GSM-
Symbolic-P1

GSM-
Symbolic-P2

Chatbot
Arena

MT-Bench
Humanities

MT-Bench
Roleplay Avg.

Mistral Large 2 10.00% 7.67% 22.33% 17.33% 24.66% 16.40%
Gemini 2.0 Flash Lite 4.00% 5.00% 28.33% 18.00% 26.33% 16.33%
Mistral Medium 3 7.67% 5.34% 20.67% 17.00% 21.66% 14.47%
Mistral Small 3.1 9.34% 7.67% 19.33% 13.66% 21.66% 14.33%
Gemma 3 27B 4.34% 4.00% 16.33% 19.33% 23.66% 13.53%
Gemma 3 12B 4.67% 5.00% 16.00% 18.00% 14.00% 11.53%
Gemini 2.0 Flash 2.34% 1.67% 19.00% 13.33% 20.66% 11.40%
Llama 3.1 405B 4.00% 2.34% 11.00% 16.66% 22.66% 11.33%
Gemini 1.5 Flash 8B 7.00% 7.67% 13.33% 9.66% 18.66% 11.26%
Gemma 3 4B 2.00% -3.66% 15.00% 14.66% 17.33% 9.07%
Gemini 1.5 Flash 0.00% 0.67% 2.33% 6.33% 14.33% 4.73%

Table 8: Model overconfidence across datasets, showing the difference between percentage of samples predicted
as correct and percentage actually correct. Higher values indicate greater bias toward predicting correctness. The
average (rightmost column) is computed as a weighted mean across all datasets based on sample count.
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Figure 13: Heatmap Visualization of Evaluation Performance across Datasets. This figure illustrates the integration
of the judge model’s answer generation capabilities with the labels of evaluation questions across four datasets.
Each dataset is represented in one of four subfigures, with subsets DCorrectA

J+ , DIncorrectA
J+ , DCorrectA

J− , and DIncorrectA
J−

displayed from left to right, showing the evaluation accuracy variations under different conditions.

Figure 14: Heatmap Visualization of Evaluation Performance across Datasets. This figure illustrates the integration
of the judge model’s answer generation capabilities with the labels of evaluation questions across four datasets.
Each dataset is represented in one of four subfigures, with subsets DCorrectA

J+ , DIncorrectA
J+ , DCorrectA

J− , and DIncorrectA
J−

displayed from left to right, showing the evaluation accuracy variations under different conditions.
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main paper, we observe that most LLMs exhibit a
strong bias toward predicting answers as Correct.
This systematic overconfidence manifests across
all datasets, though with varying degrees of inten-
sity. The consistency of this pattern supports our
hypothesis that the performance gap between DJ+

and DJ− is heavily influenced by this prediction
bias rather than by an intrinsic correlation between
generation and judgment abilities.

C.3 Instance-Level Analysis
Tables 9 and 10 present the partial correlation re-
sults for the remaining five datasets. Consistent
with our main findings, these results show that the
partial correlations between answer generation and
judgment abilities remain low across most cases,
with the majority of values falling below 0.3. This
further strengthens our conclusion that these two
capabilities are only weakly correlated when con-
trolling for the correctness of the agent’s response.

A notable observation is that Mistral Medium
3 exhibits a partial correlation of 0 on GSM-
Symbolic-P2. This is directly attributable to the
model achieving 100% accuracy in answer genera-
tion on this dataset, resulting in no instances where
the judge model answers incorrectly (J−). This
edge case illustrates the limitations of correlation
analysis when performance approaches perfection
on either task, but does not contradict our broader
findings about the weak correlation between these
capabilities under normal circumstances.

Judge Model GSM-
Symbolic-P1

GSM-
Symbolic-P2

Chatbot
Arena

Llama 3.1 405B 0.1822 0.1816 0.1415
Gemini 2.0 Flash 0.3526 -0.0609 0.2222
Gemini 2.0 Flash Lite 0.4143 0.2239 0.1626
Gemini 1.5 Flash 0.2791 -0.0153 0.2376
Gemini 1.5 Flash 8B 0.0313 -0.0508 0.1690
Gemma 3 4B 0.2325 0.2029 0.1209
Gemma 3 12B 0.1113 0.1432 0.1777
Gemma 3 27B 0.2852 0.0529 0.1922
Mistral Small 3.1 0.0231 -0.0989 0.1689
Mistral Medium 3 0.1338 0.0000 0.3291
Mistral Large 2 0.1127 0.1666 0.1300

Table 9: Partial correlation between answer generation
and judgment capabilities across models and datasets,
controlling for the correctness of evaluated responses.
Weak and moderate correlations are highlighted with
red and purple backgrounds, respectively.

C.4 Self-Reference-Guided Results
Tables 11 and 12 demonstrate the effectiveness
of our self-reference-guided method across the re-

Judge Model MT-Bench
Humanities

MT-Bench
Roleplay

Llama 3.1 405B 0.2519 0.1316
Gemini 2.0 Flash 0.4404 0.4085
Gemini 2.0 Flash Lite 0.0994 0.0960
Gemini 1.5 Flash 0.2043 0.1927
Gemini 1.5 Flash 8B 0.1813 0.1836
Gemma 3 4B 0.0613 0.0662
Gemma 3 12B 0.1859 0.3448
Gemma 3 27B 0.1243 0.1465
Mistral Small 3.1 0.3558 0.3762
Mistral Medium 3 0.3463 0.2808
Mistral Large 2 0.2095 0.2057

Table 10: Partial correlation between answer generation
and judgment capabilities across models and datasets,
controlling for the correctness of evaluated responses.
Weak and moderate correlations are highlighted with
red and purple backgrounds, respectively.

maining five datasets. The results strongly rein-
force our findings from the main paper: after apply-
ing this method, the partial correlations between an-
swer generation and judgment capabilities increase
dramatically in most cases, with values typically
exceeding 0.6. Most improvements show gains of
over 0.4 in correlation strength compared to the
standard CoT approach.

This consistent performance across diverse
datasets, including mathematical reasoning (GSM-
Symbolic-P1, GSM-Symbolic-P2), open-ended
dialogue evaluation (Chatbot Arena, MT-Bench
Roleplay), and humanities-focused dialogue (MT-
Bench Humanities), validates the generalizability
of our self-reference-guided approach. The method
is effective across different model architectures and
task types, confirming that using a model’s own
answers as references reliably aligns its generation
and judgment capabilities.

C.5 Error Analysis

A significant challenge for LLM-as-Judge frame-
works is that models are often biased towards pos-
itive confirmation, performing better when identi-
fying correct answers than incorrect ones. In this
section, we analyze how our self-reference-guided
method impacts this behavior. Following the finer-
grained observation methodology from Section 4.2,
we generated performance heatmaps for the self-
reference-guided method, which can be seen in
Figure 15, 16 and 17.
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Enhancing Error Detection with Correct Knowl-
edge The most notable result is the substan-
tial improvement in identifying incorrect answers
when the judge model has the correct knowledge
(DIncorrectA

J+ ). As shown in the data for MMLU
Pro, the performance in this subset using the self-
reference-guided method is exceptionally high,
with F1 scores ranging from 0.78 to 0.97 (mostly
above 0.90). This is a stark contrast to the CoT
method, where performance on the same subset
ranged from 0.46 to 0.75. This demonstrates that
the self-reference-guided method helps models
more effectively use what they know to identify
what is wrong.

A Shift in Judgment Dependency This finding
reveals a crucial shift in how models perform judg-
ment.

• With CoT, performance is primarily depen-
dent on the agent’s answer label (i.e., models
perform best on the DCorrectA subsets).

• With self-reference, performance becomes
primarily dependent on the judge’s own
knowledge (i.e., models perform best on the
DJ+ subsets).

This shift suggests that self-reference fundamen-
tally changes the evaluation task from simple label
prediction to a process of verification against an
internal knowledge base.

Trade-offs and Considerations This method is
not without trade-offs. While performance on the
DJ+ subsets improves, performance on the DJ−
subsets (where the judge’s initial answer is wrong)
degrades. This is an expected outcome of the
method: a judge model that is confident in its own
incorrect answer will use it as a faulty reference, pe-
nalizing agent answers that may in fact be correct.
This underscores the importance of our primary rec-
ommendation: the self-reference-guided method is
most reliable when applied to judge models with
high generation accuracy in the target domain.
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Judge Model GSM-Symbolic-P1 GSM-Symbolic-P2 Chatbot Arena

Llama 3.1 405B 0.7438 (+0.5616↑) 0.4440 (+0.2624↑) 0.7214 (+0.5799↑)
Gemini 2.0 Flash 0.6554 (+0.3028↑) 0.2208 (+0.2817↑) 0.7230 (+0.5008↑)
Gemini 2.0 Flash Lite 0.7965 (+0.3822↑) 0.5524 (+0.3285↑) 0.6399 (+0.4773↑)
Gemini 1.5 Flash 0.4480 (+0.1689↑) 0.2722 (+0.2875↑) 0.6927 (+0.4551↑)
Gemini 1.5 Flash 8B 0.7467 (+0.7154↑) 0.5679 (+0.6187↑) 0.6119 (+0.4429↑)
Gemma 3 4B 0.6434 (+0.4109↑) 0.5721 (+0.3692↑) 0.6963 (+0.5754↑)
Gemma 3 12B 0.7200 (+0.6087↑) 0.6567 (+0.5135↑) 0.6957 (+0.5180↑)
Gemma 3 27B 0.6497 (+0.3645↑) 0.4009 (+0.3480↑) 0.8182 (+0.6260↑)
Mistral Small 3.1 0.7191 (+0.6960↑) 0.4817 (+0.5806↑) 0.7120 (+0.5431↑)
Mistral Medium 3 0.7559 (+0.6221↑) 0.0000 (+0.0000↑) 0.7736 (+0.4445↑)
Mistral Large 2 0.6923 (+0.5796↑) 0.6620 (+0.4954↑) 0.7324 (+0.6024↑)

Table 11: Partial correlation after applying the self-reference-guided judgment method. Improvements over a CoT
baseline are shown in blue with ↑ arrows. Weak, moderate, and strong correlations are highlighted with red ,
purple , and green backgrounds, respectively.

Judge Model MT-Bench Humanities MT-Bench Roleplay

Llama 3.1 405B 0.8666 (+0.6147↑) 0.9131 (+0.7815↑)
Gemini 2.0 Flash 0.6929 (+0.2525↑) 0.8299 (+0.4214↑)
Gemini 2.0 Flash Lite 0.5356 (+0.4362↑) 0.4518 (+0.3558↑)
Gemini 1.5 Flash 0.7059 (+0.5016↑) 0.7605 (+0.5678↑)
Gemini 1.5 Flash 8B 0.7459 (+0.5646↑) 0.6855 (+0.5019↑)
Gemma 3 4B 0.7650 (+0.7037↑) 0.8349 (+0.7687↑)
Gemma 3 12B 0.7328 (+0.5469↑) 0.7395 (+0.3947↑)
Gemma 3 27B 0.8114 (+0.6871↑) 0.8897 (+0.7432↑)
Mistral Small 3.1 0.8649 (+0.5091↑) 0.8580 (+0.4818↑)
Mistral Medium 3 0.9029 (+0.5566↑) 0.8429 (+0.5621↑)
Mistral Large 2 0.8336 (+0.6241↑) 0.8118 (+0.6061↑)

Table 12: Partial correlation after applying the self-reference-guided judgment method. Improvements over a CoT
baseline are shown in blue with ↑ arrows. Weak, moderate, and strong correlations are highlighted with red ,
purple , and green backgrounds, respectively.

Figure 15: Heatmap Visualization of Evaluation Performance across Datasets under the Self-Reference Guided
Method. This figure illustrates the integration of the judge model’s answer generation capabilities with the labels of
evaluation questions across four datasets. Each dataset is represented in one of four subfigures, with subsets DCorrectA

J+ ,
DIncorrectA

J+ , DCorrectA
J− , and DIncorrectA

J− displayed from left to right, showing the evaluation accuracy variations under
different conditions.

24671



Figure 16: Heatmap Visualization of Evaluation Performance across Datasets under the Self-Reference Guided
Method. This figure illustrates the integration of the judge model’s answer generation capabilities with the labels of
evaluation questions across four datasets. Each dataset is represented in one of four subfigures, with subsets DCorrectA

J+ ,
DIncorrectA

J+ , DCorrectA
J− , and DIncorrectA

J− displayed from left to right, showing the evaluation accuracy variations under
different conditions.

Figure 17: Heatmap Visualization of Evaluation Performance across Datasets under the Self-Reference Guided
Method. This figure illustrates the integration of the judge model’s answer generation capabilities with the labels of
evaluation questions across four datasets. Each dataset is represented in one of four subfigures, with subsets DCorrectA

J+ ,
DIncorrectA

J+ , DCorrectA
J− , and DIncorrectA

J− displayed from left to right, showing the evaluation accuracy variations under
different conditions.
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