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Abstract

Large Language Models (LLMs) often ex-
hibit deficiencies with complex reasoning tasks,
such as maths, which we attribute to the dis-
crepancy between human reasoning patterns
and those presented in the LLMs’ training data.
When dealing with complex problems, humans
tend to think carefully before expressing solu-
tions. However, they often do not articulate
their inner thoughts, including their intentions
and chosen methodologies. Consequently, crit-
ical insights essential for bridging reasoning
steps may be absent in training data collected
from human sources. To bridge this gap, we
proposes inserting insights between consecu-
tive reasoning steps, which review the status
and initiate the next reasoning steps. Unlike
prior prompting strategies that rely on a single
or a workflow of static prompts to facilitate rea-
soning, insights are proactively generated to
guide reasoning processes. We implement our
idea as a reasoning framework, named Think-
ing Before You Speak (TBYS), and design a
pipeline for automatically collecting and filter-
ing in-context examples for the generation of
insights, which alleviates human labeling ef-
forts and fine-tuning overheads. Experiments
on challenging mathematical datasets verify
the effectiveness of TBYS. Project website:
https://gitee.com/jswrt/TBYS

1 Introduction

OpenATI’s O1 (OpenAl, 2024) demonstrates the po-
tential of leveraging long chains of thought (CoT)
(Wei et al., 2022) to enhance the reasoning capabil-
ities of large language models (LLMs). Through
its generated reasoning, O1 exhibits advanced cog-
nitive skills, such as problem decomposition, er-
ror identification, and correction — processes that
continuously guide thinking toward accurate so-
lutions. Inspired by this, various test-time scal-
ing (Snell et al., 2024; Zhang et al., 2025) ap-
proaches were proposed, such as using prompts

The average of Amy's, Ben's, and Chris's ages is 6.

Four years ago, Chris was the same age as Amy is now.
In four years, Ben's age will be % of Amy's age at that

time. How many years old is Chris now?

TBYS/Human

Conventional
Training Data

We can set up equations to solve for

their current ages

Reasoning

Let Amy's, Ben's, and Chris's ages be a, b, and
¢, respectively. We have the equations

b |
a+3%—6:6:>a+b+c:18 (1)

c—4=a (2)

b+4:§(a+4) (3)

Using these equations, we can
substitute and solve for A, B, and C'

Reasoning

From Equation (3), we have b = £ (a + 4) — 4.

5

We substitute Equation (2) into Equation (3) to
eliminate a, to getb = %(c) — 4. Substituting

this last equation and Equation (2) into Equation

(1) to eliminate a@ and b, we have
[c—4]+ [3(c) —4] +c=18
Solving for ¢, we find that ¢ = 10. Thus, Chris's

age is ﬁ

Figure 1: A simplified example to compare the reason-
ing trace of human and TBYS against one from conven-
tional training data. Humans and TBYS excel with a
flow of insight-driven reasoning that is more compre-
hensible. On the other hand, the training set example
adds to the difficulty of learning, as it is not always
straightforward to re-engineer the connection between
consecutive steps behind the succinct reasoning logic.
TBYS proactively fill reasoning gaps with insights rep-
resenting intention, explanation, or justification, etc.
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like “Wait,” (Muennighoff et al., 2025) to stimulate
self-correction, “Wait, using Python” to encourage
coding (Li et al., 2025a), or fixed workflows of
prompts to structure inferences (Hong et al., 2024).
However, these methods suffer from task and LLM
sensitivity. For instance, certain agentic workflows
(e.g., MetaGPT (Hong et al., 2024)) may improve
coding tasks but not Q&A performance. Similarly,
LLMs exhibit sensitivity to prompt design, includ-
ing style and example ordering (Zhuo et al., 2024).
As a result, they are most effective when paired
with reinforcement learning techniques (e.g., rejec-
tion sampling) to filter suboptimal cases, but are
ill-suited for direct application to scale reasoning
at test time.

This paper introduces a novel prompting
paradigm called proactive prompting, where an
LLM proactively generates prompts to steer its
own reasoning steps, rather than passively reacting
to predefined prompting patterns. This approach
demonstrates particular advantages in complex rea-
soning tasks, such as advanced mathematics prob-
lems, where the proactive generation of “inner
thoughts” (critical for guiding reasoning) is often
absent from final reasoning outputs in conventional
training data.

To validate this paradigm, we develop a rea-
soning framework named Thinking Before You
Speak (TBYS), which iteratively inserts a proactive
prompt — termed the insight — before each reason-
ing step to explicitly define the status and the goal
of that step. Figure 1 contrasts a TBYS reasoning
process with that in conventional training data (with
which LLMs are trained). TBYS mirrors human
inner-thinking patterns, producing more explain-
able reasoning traces that facilitate LLM learning
and offering greater educational values for human
readers.

In the remainder of this paper, we detail the
TBYS reasoning framework in Section 2. Since
TBYS relies on iteratively generating insights to
guide reasoning, the quality of these generated in-
sights is critical to its accuracy. To address this, we
employ in-context learning with examples retrieved
from a library of insight exemplars. Section 3 de-
scribes our pipeline for automatically collecting,
filtering, and selecting example insights for this li-
brary. Section 4 briefly reviews prior related work.
Finally, Section 5 evaluates TBYS against strong
baselines on challenging datasets, demonstrating
significant performance improvements and better
accuracy-overhead trade-offs. We further conduct

ablation studies to validate the contributions of key
components.

TYBS Reasoning
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Figure 2: The TBYS reasoning framework (Section 2)
and insight library construction (Section 3).

2 The TBYS Reasoning Framework

TBYS utilizes a library L of high-quality insights.
The automatic construction of this library is de-
tailed in Section 3. During inference, examples
are retrieved from L using some off-the-shelf em-
bedding model for in-context learning. We also
manually define three seed examples S, each con-
taining a question and the complete reasoning steps
for the question with the associated insights.

As shown in Figure 2, TBYS employs a
multi-round reasoning approach. Each round
t consists of three steps: (1) Insight Genera-
tion: A preliminary insight iY"¢ is generated
based on the current reasoning history Hy_; =
(¢, (i1,51), (i2, 82), - -+, (it—1,5¢-1)), where ¢ is
the question, and i;, s; denote the insight and so-
lution step in round j, respectively. (2) Example
Retrieval: Each insight is defined by its two com-
ponents: situation (summarizing the current rea-
soning status) and goal (stating the intention for
solution step s;). The situation of 41" is used to re-
trieve kp = 8 examples E; from library L. Using
these kp high-quality insights as in-context exam-
ples, a refined insight i; is generated. (3) Solution
Step Generation: The solution step s; is generated
using H;_; and i, then appended to H;_; to form
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H,;. To signal the end of reasoning, s; includes a
field indicating whether a confident answer to ¢ has
been reached.

3 Construction of the Insight Library

As shown in Figure 2, we build the library of in-
sights in two stages: initialization and filtering.

Initialization: We use manually curated seed
examples S and a dataset Dg containing questions
and their chain-of-thought solutions. First, an LLM
is prompted to split each solution in Dg into 1-3
steps. The LLM is then prompted again to generate
an insight i, for each solution step s;, consisting of
a situation, which should represents the reasoning
status up to that step, and a goal, which should
offers a purpose and a guideline to stimulate the
LLM to reproduce solution step s;. All insights and
divided solution steps are collected into an initial
library Ly.

Filtering: To identify high-quality insights, we
use a dataset D (containing questions and ground-
truth answers) and a scoring mechanism: (1) For
each insight i; € Ly, maintain counters 7; (cor-
rect uses) and w; (wrong uses). (2) Evaluate Lg
by running 7BYS on each question ¢ € Dg. For
each reasoning step for g, retrieve kr = 25 exam-
ples from Ly and randomly select one as a 1-shot
example. If the reasoning yields a correct answer,
increment r; for each 7; used; otherwise, incre-
ment w;. (3) Rank insights in Ly by the score
+o: log(r; 4+ w;), which balances accuracy and
usage coverage. Select the top-k; examples to
form L;. The insight library can be progressively
improve through multiple iterations. In each iter-
ation, the initial library Lg is updated to include
the filtered library L, and the newly generated in-
sights from dataset D¢, which is produced during
the filtering of L.

In our experiments, the MATH-500 dataset

0.675 - o-—d O
- 0.650 - = O
@ 0.625- o—0—0—°
= =
3 0.600-
(@]
< 0.575- 9= SC
O TBYS+SC
0.550 - TBYS
0.525 -

3 4 5 6 71 8
# sampled reasonings

Figure 3: Performance comparison on MATH-500

(Lightman et al., 2023) serves as Dg and the test
set, e.g., MATH-500 or AIME (Zhang et al., 2023a),
serves as D¢ in a test-time adaptation (Jang et al.,
2023) manner, with k;, as a variable parameter.

4 Related Work

Extensive research has investigated prompt designs
to improve LLM reasoning, including Chain-of-
Thought (Wei et al., 2022), Least-to-Most (Zhou
et al., 2023), Self-Consistency (Wang et al., 2023b),
and Tree-of-Thoughts (Cao et al., 2023). Meth-
ods to enhance task-specific performance include
question rephrasing, subtask decomposition, verifi-
cation, and symbolic grounding (Lyu et al., 2023;
Xu et al., 2024; Wang et al., 2023a; Zelikman et al.,
2022; Wang et al., 2024); factuality and faithful-
ness checking for reasoning chains (Wang et al.,
2024); and separating knowledge retrieval from
reasoning (Jin et al., 2024).

Iterative prompting techniques rely on pre-
defined, hardcoded actions to guide reasoning,
such as Self-Refine (Madaan et al., 2023), IRCoT
(Trivedi et al., 2023), iCAP (Wang et al., 2022),
MetaGPT (Hong et al., 2024), and Chain of Ideas
(Anonymous, 2024b).

Memory-based methods include Buffer of
Thoughts (Yang et al., 2024c), which distills high-
level guidelines from previously solved tasks and
stores them in a buffer for future reuse. Skill-based
CoT (Didolkar et al., 2024) predicts skill-based
labels for the questions. (Zhang et al., 2023b) iden-
tifies key concepts in questions and uses inductive
prompting templates to extract related concepts.

rStar (Qi et al., 2024) employs a self-play mutual
reasoning approach, augmented by Monte Carlo
Tree Search (MCTS) with a set of five reasoning-
inducing prompts, to enhance reasoning.

Finetuning-based methods, such as STaR (Zelik-
man et al., 2022), ReST-MCTS (Zhang et al., 2024),
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Figure 4: Performance comparison on AIME
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and AFlow (Anonymous, 2024a), demonstrate that
iterative training on reasoning histories and task-
specific workflows of correct answers enables mod-
els to tackle increasingly complex problems.

5 Experiments

5.1 Experiment settings

We conducted experiments on two challenging
mathematical datasets, AIME (Zhang et al., 2023a)
and MATH-500 (Lightman et al., 2023). We com-
pare TBYS against a simple yet very strong base-
line: 8-shot In-context Learning (Lu et al., 2022)
with Self-Consistency (Wang et al., 2023b).

For the experiments, use utilize the LLM
Owen?2.5-7B-Instruct (Yang et al., 2024a) via the
LLM API provided by Siliconflow (sil), with the
following configurations: max_tokens=1024, tem-
perature=0.2, top_k=40, top_p=0.7, and n=1. The
bge-large-en-v1.5 embedding model is employed
for insight retrieval. Results are reported as the
average across 8 experimental runs.

Since coding benefits mathematical problems
(Chen et al., 2023), when Python code blocks are
detected in the LLMs’ responses, we invoke a cus-
tomized sandboxed Python interpreter and append
the output to the code block.

5.2 Comparison

When compared with Self-Consistency (SC), TBYS
demonstrates comparable performance to SC using
5 reasoning samples (SC@5) on MATH-500 (Fig-
ure 3) and SC@7 on AIME (Figure 4). The results
further indicate that TBYS integrates effectively
with SC: TBYS+SC yields over 5% absolute gains
in accuracy on MATH-500 and 7.5% on AIME.

5.3 Overhead Analysis

Table 1: Cost comparison to SC under similar accuracy.

MATH-500 | Acc. | Time Prompt | Completion
TBYS | 0.61 | 52.82 | 18163.80 999.57
SC@5 | 0.61 | 102.56 | 13334.62 2217.30
AIME | Acc. | Time Prompt | Completion
TBYS | 022 | 78.15 | 20686.23 1559.60
SC@7 | 0.22 | 322.79 | 25,242.54 7,102.49

We compare the overhead of TBYS with SC@5
on MATH-500 and with SC@7 on AIME, where
the methods achieve comparable accuracies. The
metrics analyzed include wall-time, number of
prompt tokens, and completion tokens. As shown
in Table 1, under similar accuracies, TBYS reduces

wall-time and the number of completion tokens by
approximately half on MATH-500 and one-third
on AIME. While TBYS uses 46% more prompt
tokens on MATH-500, these can be cached and are
typically much cheaper and faster to predict than
completion tokens. Since completion token counts
typically dominates runtime, our results show that
completion token counts are consistently propor-
tional to our runtime measurements across meth-
ods.

5.4 Ablation Study

Table 2: Ablation Study

MATH-500 | AIME

TBYS 61.17% 21.90%
- Library Construction 58.90% 19.51%

- Coding 57.00% 18.11%
8-shot 53.23% 14.99%

We conducted ablation experiments by using
the raw insight library Ly as L; (without filter-
ing, as described in Section 3). Accuracy declines
were observed in both datasets. Notably, we only
performed one round of insight filtering (i.e., us-
ing L = L;), and additional filtering rounds are
expected to further improve accuracy. Table 2 also
demonstrates that coding contributes half of the ac-
curacy gain compared to simple 8-shot prompting.

5.5 Impact of Library Size
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Figure 5: Impact of insight library size

In Section 3, we sorted the insight library Lo and
selected the top-ky, insights to form L;. Figure 5
shows that on MATH-500, TBYS achieves peak
accuracy with an insight library size of 50. On
AIME, the optimal size is 500. Here, performance
initially improves as library size decreases due to
the filtering of lower-quality insights. However,
as library size continue to decreases, excessively
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small libraries size reduces diversity in problem
types and harms performance.

6 Additional Comparison Experiments

We compare with Skill-based CoT (Didolkar et al.,
2024), a prompt-guided interaction procedure that
enables LLLMs to assign skill labels to math ques-
tions and perform ICL with label-specific exam-
plars. We also conducted experiments using a k-
wait approach, where we append “Wait, ” after the
model completion and let the LLM to continue its
generation for k times. Below are the comparison
results.

Table 3: Comparison to Skill-based CoT and k-wait.

Method Acc.

k-shot CoT 54.30%
Skill-based CoT  60.52%
k-wait (k=1) 55.00%
k-wait (k=2) 56.60%
k-wait (k=3) 54.20%
TBYS (Ours) 61.99%

Results in Figure 3 shown that TBYS is slight
better than Skill-based CoT, which is task-specific,
and is much better than k-wait.

7 Qualitative Analysis of Insight Quality

We provide qualitative analysis of the insights us-
ing two selected examples. These problems are
relatively simple, but where k-shot reasoning fails.
We use these examples to illustrate how TBYS’s
insights effectively steer its multi-step reasoning
processes.

The first example in Figure 6 asks to convert
% to a terminating decimal. TBYS solves the
problem in two steps, with the goals of the insights
being “ensure the denominator is a power of 10”
and “Simplify the numerator and express the frac-
tion as a terminating decimal”.

The second example in Figure 7 asks to solve the

question: \/:U +v3x 46+ \/ — 3z +6 = 6.
TBYS solves the problem in two steps, with the,
with the goals of the insights being “simplify the
equation by squaring both sides to remove the
square roots” and “find the value of = by substitu-
tion”.

Both examples demonstrate that TBYS gener-
ates suitable insights for their respective problems.

8 Conclusion and Future Work

This paper introduces a novel proactive prompting
paradigm, instantiates it with the simple TBYS
reasoning framework, and verifies the effectiveness
of TBYS on challenging advanced mathematics
reasoning tasks.

Promising directions for future improvement
include: Automated search for optimal insights
(Yang et al., 2024b); integration of long-term mem-
ory mechanisms (Tang et al.; Anonymous, 2025);
enhancement of programming capabilities (Chen
et al., 2023); enforcement of structured inference
processes (Li et al., 2025b; Cao et al., 2023).

Limitations

Our method incurs higher computational overhead
compared to direct prompting, a common drawback
among advanced prompting techniques that involve
scaling test-time inference.

Due to time and financial constraints (our cur-
rent experiments take about 50 days with single-
threaded API calls), we only evaluated the pro-
posed method on two math-domain datasets using
a single LLM.

Ethical Statement

This work fully adheres to the ACL Ethics Policy.
To the best of our knowledge, no ethical issues are
associated with this research.
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21

+ PROBLEM: Convert ;=

to a terminating decimal.

Insight For Reasoning Step 1:

21
22.57

o Goal: To convert the fraction to a terminating decimal, we need to ensure the denominator is a power of

o Situation: We need to convert the fraction

to a terminating decimal.

10. This can be achieved by adjusting the powers of 2 and 5 in the denominator to be the same.

Reasoning Step 1: To convert the fraction % to a terminating decimal, we need to ensure the denominator
is a power of 10. The denominator is currently 22 - 57 = 4 - 78125 = 312500. To make it a power of 10, we
need to multiply both the numerator and the denominator by 2° = 32 because 22 - 57 - 25 = 27 . 57 = 107

This will make the denominator 107 = 10000000.

Insight For Reasoning Step 2:

21.32
107 -

o Situation: After multiplying both the numerator and the denominator by 32, the fraction becomes
o Goal: Simplify the numerator and express the fraction as a terminating decimal.

« Reasoning Step 2: After multiplying both the numerator and the denominator by 32, the fraction becomes
2132
107

= #702000. Converting this to a decimal gives 0.0000672.

Figure 6: Example 1 for Qualitative Analysis of Insight Quality

« PROBLEM: Solve V2 + v3z + 6 + vz — v/3z + 6 = 6.

« Insight For Reasoning Step 1:

o Situation: We are given the equation \/1: +3z+6+ \/z — +/3x 4 6 = 6, which involves nested square roots and a sum of
square roots. The presence of nested square roots complicates the equation and makes it difficult to isolate & directly.

o Goal: To simplify the equation, we need to find a way to eliminate the square roots. One approach is to square both sides of the
equation to remove the outer square roots, but we must be cautious of potential extraneous solutions that may arise from this
process.

» Reasoning Step 1: To solve the equation \/z +3z+6+ \/'1: — 3z + 6 = 6, let's denote a = \/z ++/3z + 6 and
b= /& —/3x + 6. We know that a + b = 6. Squaring both sides of the equation a + b = 6 gives us a® + b% + 2ab = 36. Also,
since a? = x 4+ /3 + 6 and b = & — v/3z + 6, we have a® + b? = 2z. Therefore, 2z + 2ab = 36, which simplifies to

z + ab = 18. Now, we need to find ab. Notice that ab = \/(w-ﬁ- V3z +6)(z — V32 + 6) = /22 — (3 + 6) = Vz? — 3z — 6.

Thus, we have z + v/z2 — 3z — 6 = 18. Let's denote y = v/x2 — 3z — 6, so the equation becomes x + y = 18 and
y? = 22 — 3z — 6. We can substitute y = 18 — z into the second equation to find .

« Insight For Reasoning Step 2:

o Situation: We have the equations  + y = 18 and 4> = 2? — 3z — 6, where y = v/z2 — 3z — 6.
o Goal: Substitute y = 18 — x into the equation y?> = 2> — 3z — 6 to find the value of .
« Reasoning Step 2: To find &, we substitute y = 18 — z into the equation y? = 2% — 3z — 6:

(18 — z)? = 2* — 3z — 6.
Expanding the left side, we get:
324 — 362 + 2 = 2> — 3z — 6.
Simplifying by canceling 2 from both sides, we get:
324 — 36z = —3z — 6.
Rearranging terms, we get:

324 4+ 6 = 36z — 3z,
330 = 33z,
z = 10.

We need to verify if £ = 10 satisfies the original equation. Substituting x = 10 into the original equation:

\/10+\/3-10+6+\/10—\/3~10+ :\/10—&-\/%—0—\/10—\/36:\/10+6+\/10— =V16+vV4=4+2=6.

Since the left side equals the right side, = 10 is a valid solution.
Figure 7: Example 2 for Qualitative Analysis of Insight Quality
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