Thinking Before You Speak: A Proactive Test-time Scaling Approach

Cong Liu, Wenchang Chai’, Hejun Wu, Yan Pan, Pengxu Wei, Liang Lin
Sun Yat-sen University, 'THong Kong Polytechnic University
liucong3@mail.sysu.edu.cn, wenchang.chai@connect.polyu.hk,
wuhejun.sysu.edu.cn, panyan5@mail.sysu.edu.cn,

weipx3@mail.sysu.edu.cn, linliangQieee.org

Abstract

Large Language Models (LLMs) often ex-
hibit deficiencies with complex reasoning tasks,
such as maths, which we attribute to the dis-
crepancy between human reasoning patterns
and those presented in the LLMs’ training data.
When dealing with complex problems, humans
tend to think carefully before expressing solu-
tions. However, they often do not articulate
their inner thoughts, including their intentions
and chosen methodologies. Consequently, crit-
ical insights essential for bridging reasoning
steps may be absent in training data collected
from human sources. To bridge this gap, we
proposes inserting insights between consecu-
tive reasoning steps, which review the status
and initiate the next reasoning steps. Unlike
prior prompting strategies that rely on a single
or a workflow of static prompts to facilitate rea-
soning, insights are proactively generated to
guide reasoning processes. We implement our
idea as a reasoning framework, named Think-
ing Before You Speak (TBYS), and design a
pipeline for automatically collecting and filter-
ing in-context examples for the generation of
insights, which alleviates human labeling ef-
forts and fine-tuning overheads. Experiments
on challenging mathematical datasets verify
the effectiveness of TBYS. Project website:
https://gitee.com/jswrt/TBYS

1 Introduction

OpenATI’s O1 (OpenAl, 2024) demonstrates the po-
tential of leveraging long chains of thought (CoT)
(Wei et al., 2022) to enhance the reasoning capabil-
ities of large language models (LLMs). Through
its generated reasoning, O1 exhibits advanced cog-
nitive skills, such as problem decomposition, er-
ror identification, and correction — processes that
continuously guide thinking toward accurate so-
lutions. Inspired by this, various test-time scal-
ing (Snell et al., 2024; Zhang et al., 2025) ap-
proaches were proposed, such as using prompts

The average of Amy's, Ben's, and Chris's ages is 6.

Four years ago, Chris was the same age as Amy is now.
In four years, Ben's age will be % of Amy's age at that

time. How many years old is Chris now?

TBYS/Human

Conventional
Training Data

We can set up equations to solve for

their current ages

Reasoning

Let Amy's, Ben's, and Chris's ages be a, b, and
¢, respectively. We have the equations

b |
a+3%—6:6:>a+b+c:18 (1)

c—4=a (2)

b+4:§(a+4) (3)

Using these equations, we can
substitute and solve for A, B, and C'

Reasoning

From Equation (3), we have b = £ (a + 4) — 4.

5

We substitute Equation (2) into Equation (3) to
eliminate a, to getb = %(c) — 4. Substituting

this last equation and Equation (2) into Equation

(1) to eliminate a@ and b, we have
[c—4]+ [3(c) —4] +c=18
Solving for ¢, we find that ¢ = 10. Thus, Chris's

age is ﬁ

Figure 1: A simplified example to compare the reason-
ing trace of human and TBYS against one from conven-
tional training data. Humans and TBYS excel with a
flow of insight-driven reasoning that is more compre-
hensible. On the other hand, the training set example
adds to the difficulty of learning, as it is not always
straightforward to re-engineer the connection between
consecutive steps behind the succinct reasoning logic.
TBYS proactively fill reasoning gaps with insights rep-
resenting intention, explanation, or justification, etc.

24643

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24643-24650
November 4-9, 2025 ©2025 Association for Computational Linguistics

like “Wait,” (Muennighoff et al., 2025) to stimulate
self-correction, “Wait, using Python” to encourage
coding (Li et al., 2025a), or fixed workflows of
prompts to structure inferences (Hong et al., 2024).
However, these methods suffer from task and LLM
sensitivity. For instance, certain agentic workflows
(e.g., MetaGPT (Hong et al., 2024)) may improve
coding tasks but not Q&A performance. Similarly,
LLMs exhibit sensitivity to prompt design, includ-
ing style and example ordering (Zhuo et al., 2024).
As a result, they are most effective when paired
with reinforcement learning techniques (e.g., rejec-
tion sampling) to filter suboptimal cases, but are
ill-suited for direct application to scale reasoning
at test time.

This paper introduces a novel prompting
paradigm called proactive prompting, where an
LLM proactively generates prompts to steer its
own reasoning steps, rather than passively reacting
to predefined prompting patterns. This approach
demonstrates particular advantages in complex rea-
soning tasks, such as advanced mathematics prob-
lems, where the proactive generation of “inner
thoughts” (critical for guiding reasoning) is often
absent from final reasoning outputs in conventional
training data.

To validate this paradigm, we develop a rea-
soning framework named Thinking Before You
Speak (TBYS), which iteratively inserts a proactive
prompt — termed the insight — before each reason-
ing step to explicitly define the status and the goal
of that step. Figure 1 contrasts a TBYS reasoning
process with that in conventional training data (with
which LLMs are trained). TBYS mirrors human
inner-thinking patterns, producing more explain-
able reasoning traces that facilitate LLM learning
and offering greater educational values for human
readers.

In the remainder of this paper, we detail the
TBYS reasoning framework in Section 2. Since
TBYS relies on iteratively generating insights to
guide reasoning, the quality of these generated in-
sights is critical to its accuracy. To address this, we
employ in-context learning with examples retrieved
from a library of insight exemplars. Section 3 de-
scribes our pipeline for automatically collecting,
filtering, and selecting example insights for this li-
brary. Section 4 briefly reviews prior related work.
Finally, Section 5 evaluates TBYS against strong
baselines on challenging datasets, demonstrating
significant performance improvements and better
accuracy-overhead trade-offs. We further conduct

ablation studies to validate the contributions of key
components.

TYBS Reasoning

gUEENEEEENEEEEEEENEEENEEEEEN,

[Dataset Dg]I:ﬂ History: H.1=(q,(i1,S1)..-)]

Dataset Dg ﬁ-‘ ﬂgenerate

Insight iPre

>u ﬂretrieve
| Examples E; |

ﬁ-u generate
Wl 4

A4

initialize
‘V'

Lo filter

PN

score
Insight i;

ﬁ-‘ generate
« _ evaluate A4

°<:I[Solution step s,]

‘assssEsEEEEEEEEEEEEEEEEER®

91e491l pue Aioisiy o1 (s1) ppy

s EEEEE NS NN NN NSNS NSNS EEEEEEEEEEEEEEEEEEEmEE®

.

Figure 2: The TBYS reasoning framework (Section 2)
and insight library construction (Section 3).

2 The TBYS Reasoning Framework

TBYS utilizes a library L of high-quality insights.
The automatic construction of this library is de-
tailed in Section 3. During inference, examples
are retrieved from L using some off-the-shelf em-
bedding model for in-context learning. We also
manually define three seed examples S, each con-
taining a question and the complete reasoning steps
for the question with the associated insights.

As shown in Figure 2, TBYS employs a
multi-round reasoning approach. Each round
t consists of three steps: (1) Insight Genera-
tion: A preliminary insight iY"¢ is generated
based on the current reasoning history Hy_; =
(¢, (i1,51), (i2, 82), - -+, (it—1,5¢-1)), where ¢ is
the question, and i;, s; denote the insight and so-
lution step in round j, respectively. (2) Example
Retrieval: Each insight is defined by its two com-
ponents: situation (summarizing the current rea-
soning status) and goal (stating the intention for
solution step s;). The situation of 41" is used to re-
trieve kp = 8 examples E; from library L. Using
these kp high-quality insights as in-context exam-
ples, a refined insight i; is generated. (3) Solution
Step Generation: The solution step s; is generated
using H;_; and i, then appended to H;_; to form

24644

H,;. To signal the end of reasoning, s; includes a
field indicating whether a confident answer to ¢ has
been reached.

3 Construction of the Insight Library

As shown in Figure 2, we build the library of in-
sights in two stages: initialization and filtering.

Initialization: We use manually curated seed
examples S and a dataset Dg containing questions
and their chain-of-thought solutions. First, an LLM
is prompted to split each solution in Dg into 1-3
steps. The LLM is then prompted again to generate
an insight i, for each solution step s;, consisting of
a situation, which should represents the reasoning
status up to that step, and a goal, which should
offers a purpose and a guideline to stimulate the
LLM to reproduce solution step s;. All insights and
divided solution steps are collected into an initial
library Ly.

Filtering: To identify high-quality insights, we
use a dataset D (containing questions and ground-
truth answers) and a scoring mechanism: (1) For
each insight i; € Ly, maintain counters 7; (cor-
rect uses) and w; (wrong uses). (2) Evaluate Lg
by running 7BYS on each question ¢ € Dg. For
each reasoning step for g, retrieve kr = 25 exam-
ples from Ly and randomly select one as a 1-shot
example. If the reasoning yields a correct answer,
increment r; for each 7; used; otherwise, incre-
ment w;. (3) Rank insights in Ly by the score
+o: log(r; 4+ w;), which balances accuracy and
usage coverage. Select the top-k; examples to
form L;. The insight library can be progressively
improve through multiple iterations. In each iter-
ation, the initial library Lg is updated to include
the filtered library L, and the newly generated in-
sights from dataset D¢, which is produced during
the filtering of L.

In our experiments, the MATH-500 dataset

0.675 - o-—d O
- 0.650 - = O
@ 0.625- o—0—0—°
= =
3 0.600-
(@]
< 0.575- 9= SC
O TBYS+SC
0.550 - TBYS
0.525 -

3 4 5 6 71 8
sampled reasonings

Figure 3: Performance comparison on MATH-500

(Lightman et al., 2023) serves as Dg and the test
set, e.g., MATH-500 or AIME (Zhang et al., 2023a),
serves as D¢ in a test-time adaptation (Jang et al.,
2023) manner, with k;, as a variable parameter.

4 Related Work

Extensive research has investigated prompt designs
to improve LLM reasoning, including Chain-of-
Thought (Wei et al., 2022), Least-to-Most (Zhou
et al., 2023), Self-Consistency (Wang et al., 2023b),
and Tree-of-Thoughts (Cao et al., 2023). Meth-
ods to enhance task-specific performance include
question rephrasing, subtask decomposition, verifi-
cation, and symbolic grounding (Lyu et al., 2023;
Xu et al., 2024; Wang et al., 2023a; Zelikman et al.,
2022; Wang et al., 2024); factuality and faithful-
ness checking for reasoning chains (Wang et al.,
2024); and separating knowledge retrieval from
reasoning (Jin et al., 2024).

Iterative prompting techniques rely on pre-
defined, hardcoded actions to guide reasoning,
such as Self-Refine (Madaan et al., 2023), IRCoT
(Trivedi et al., 2023), iCAP (Wang et al., 2022),
MetaGPT (Hong et al., 2024), and Chain of Ideas
(Anonymous, 2024b).

Memory-based methods include Buffer of
Thoughts (Yang et al., 2024c), which distills high-
level guidelines from previously solved tasks and
stores them in a buffer for future reuse. Skill-based
CoT (Didolkar et al., 2024) predicts skill-based
labels for the questions. (Zhang et al., 2023b) iden-
tifies key concepts in questions and uses inductive
prompting templates to extract related concepts.

rStar (Qi et al., 2024) employs a self-play mutual
reasoning approach, augmented by Monte Carlo
Tree Search (MCTS) with a set of five reasoning-
inducing prompts, to enhance reasoning.

Finetuning-based methods, such as STaR (Zelik-
man et al., 2022), ReST-MCTS (Zhang et al., 2024),

O--08-_g
0.275 - |
|
> 0.250 - O
O
E 0.225 -
= =
v}
<L() 0.200 - —@— SC
0.175 - @ TBYS+SC
— TBYS
0.150 -
1 3 4 5 6 7 8

sampled reasonings

Figure 4: Performance comparison on AIME

24645

and AFlow (Anonymous, 2024a), demonstrate that
iterative training on reasoning histories and task-
specific workflows of correct answers enables mod-
els to tackle increasingly complex problems.

5 Experiments

5.1 Experiment settings

We conducted experiments on two challenging
mathematical datasets, AIME (Zhang et al., 2023a)
and MATH-500 (Lightman et al., 2023). We com-
pare TBYS against a simple yet very strong base-
line: 8-shot In-context Learning (Lu et al., 2022)
with Self-Consistency (Wang et al., 2023b).

For the experiments, use utilize the LLM
Owen?2.5-7B-Instruct (Yang et al., 2024a) via the
LLM API provided by Siliconflow (sil), with the
following configurations: max_tokens=1024, tem-
perature=0.2, top_k=40, top_p=0.7, and n=1. The
bge-large-en-v1.5 embedding model is employed
for insight retrieval. Results are reported as the
average across 8 experimental runs.

Since coding benefits mathematical problems
(Chen et al., 2023), when Python code blocks are
detected in the LLMs’ responses, we invoke a cus-
tomized sandboxed Python interpreter and append
the output to the code block.

5.2 Comparison

When compared with Self-Consistency (SC), TBYS
demonstrates comparable performance to SC using
5 reasoning samples (SC@5) on MATH-500 (Fig-
ure 3) and SC@7 on AIME (Figure 4). The results
further indicate that TBYS integrates effectively
with SC: TBYS+SC yields over 5% absolute gains
in accuracy on MATH-500 and 7.5% on AIME.

5.3 Overhead Analysis

Table 1: Cost comparison to SC under similar accuracy.

MATH-500 | Acc. | Time Prompt | Completion
TBYS | 0.61 | 52.82 | 18163.80 999.57
SC@5 | 0.61 | 102.56 | 13334.62 2217.30
AIME | Acc. | Time Prompt | Completion
TBYS | 022 | 78.15 | 20686.23 1559.60
SC@7 | 0.22 | 322.79 | 25,242.54 7,102.49

We compare the overhead of TBYS with SC@5
on MATH-500 and with SC@7 on AIME, where
the methods achieve comparable accuracies. The
metrics analyzed include wall-time, number of
prompt tokens, and completion tokens. As shown
in Table 1, under similar accuracies, TBYS reduces

wall-time and the number of completion tokens by
approximately half on MATH-500 and one-third
on AIME. While TBYS uses 46% more prompt
tokens on MATH-500, these can be cached and are
typically much cheaper and faster to predict than
completion tokens. Since completion token counts
typically dominates runtime, our results show that
completion token counts are consistently propor-
tional to our runtime measurements across meth-
ods.

5.4 Ablation Study

Table 2: Ablation Study

MATH-500 | AIME

TBYS 61.17% 21.90%
- Library Construction 58.90% 19.51%

- Coding 57.00% 18.11%
8-shot 53.23% 14.99%

We conducted ablation experiments by using
the raw insight library Ly as L; (without filter-
ing, as described in Section 3). Accuracy declines
were observed in both datasets. Notably, we only
performed one round of insight filtering (i.e., us-
ing L = L;), and additional filtering rounds are
expected to further improve accuracy. Table 2 also
demonstrates that coding contributes half of the ac-
curacy gain compared to simple 8-shot prompting.

5.5 Impact of Library Size

0.610 A

0.605 A

0.600 A

0.595 4

0.590 1

Accuracy on MATH-50(

L O O O L O O O O
"),\/0 ,}0 ,,)0 N (,)Q SO qQ \90

Library size

Figure 5: Impact of insight library size

In Section 3, we sorted the insight library Lo and
selected the top-ky, insights to form L;. Figure 5
shows that on MATH-500, TBYS achieves peak
accuracy with an insight library size of 50. On
AIME, the optimal size is 500. Here, performance
initially improves as library size decreases due to
the filtering of lower-quality insights. However,
as library size continue to decreases, excessively

24646

small libraries size reduces diversity in problem
types and harms performance.

6 Additional Comparison Experiments

We compare with Skill-based CoT (Didolkar et al.,
2024), a prompt-guided interaction procedure that
enables LLLMs to assign skill labels to math ques-
tions and perform ICL with label-specific exam-
plars. We also conducted experiments using a k-
wait approach, where we append “Wait, ” after the
model completion and let the LLM to continue its
generation for k times. Below are the comparison
results.

Table 3: Comparison to Skill-based CoT and k-wait.

Method Acc.

k-shot CoT 54.30%
Skill-based CoT 60.52%
k-wait (k=1) 55.00%
k-wait (k=2) 56.60%
k-wait (k=3) 54.20%
TBYS (Ours) 61.99%

Results in Figure 3 shown that TBYS is slight
better than Skill-based CoT, which is task-specific,
and is much better than k-wait.

7 Qualitative Analysis of Insight Quality

We provide qualitative analysis of the insights us-
ing two selected examples. These problems are
relatively simple, but where k-shot reasoning fails.
We use these examples to illustrate how TBYS’s
insights effectively steer its multi-step reasoning
processes.

The first example in Figure 6 asks to convert
% to a terminating decimal. TBYS solves the
problem in two steps, with the goals of the insights
being “ensure the denominator is a power of 10”
and “Simplify the numerator and express the frac-
tion as a terminating decimal”.

The second example in Figure 7 asks to solve the

question: \/:U +v3x 46+ \/ — 3z +6 = 6.
TBYS solves the problem in two steps, with the,
with the goals of the insights being “simplify the
equation by squaring both sides to remove the
square roots” and “find the value of = by substitu-
tion”.

Both examples demonstrate that TBYS gener-
ates suitable insights for their respective problems.

8 Conclusion and Future Work

This paper introduces a novel proactive prompting
paradigm, instantiates it with the simple TBYS
reasoning framework, and verifies the effectiveness
of TBYS on challenging advanced mathematics
reasoning tasks.

Promising directions for future improvement
include: Automated search for optimal insights
(Yang et al., 2024b); integration of long-term mem-
ory mechanisms (Tang et al.; Anonymous, 2025);
enhancement of programming capabilities (Chen
et al., 2023); enforcement of structured inference
processes (Li et al., 2025b; Cao et al., 2023).

Limitations

Our method incurs higher computational overhead
compared to direct prompting, a common drawback
among advanced prompting techniques that involve
scaling test-time inference.

Due to time and financial constraints (our cur-
rent experiments take about 50 days with single-
threaded API calls), we only evaluated the pro-
posed method on two math-domain datasets using
a single LLM.

Ethical Statement

This work fully adheres to the ACL Ethics Policy.
To the best of our knowledge, no ethical issues are
associated with this research.

References

https://siliconflow.cn/.

Anonymous. 2024a. AFlow: Automating agentic work-
flow generation. In The Thirteenth International Con-
ference on Learning Representations (ICLR).

Anonymous. 2024b. Chain of ideas: Revolutionizing
research in idea development with LLM agents. In
The Thirteenth International Conference on Learning
Representations (ICLR).

Anonymous. 2025. Inference scaling for long-context
retrieval augmented generation. In The Thirteenth In-
ternational Conference on Learning Representations
(ICLR).

Shulin Cao, Jiajie Zhang, Jiaxin Shi, Xin Lv, Zijun Yao,
Qi Tian, Lei Hou, and Juanzi Li. 2023. Probabilistic
tree-of-thought reasoning for answering knowledge-
intensive complex questions. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 12541-12560, Singapore. Association
for Computational Linguistics.

24647

https://siliconflow.cn/
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=FSjIrOm1vz
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://doi.org/10.18653/v1/2023.findings-emnlp.835

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Aniket Rajiv Didolkar, Anirudh Goyal, Nan Rose-
mary Ke, Siyuan Guo, Michal Valko, Timothy P
Lillicrap, Danilo Jimenez Rezende, Yoshua Bengio,
Michael Curtis Mozer, and Sanjeev Arora. 2024.
Metacognitive capabilities of LLMs: An exploration
in mathematical problem solving. In Al for Math
Workshop @ ICML 2024.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2024. MetaGPT: Meta pro-
gramming for a multi-agent collaborative framework.
In The Twelfth International Conference on Learning
Representations.

Minguk Jang, Sae-Young Chung, and Hye Won Chung.
2023. Test-time adaptation via self-training with
nearest neighbor information. /CLR 2024.

Mingyu Jin, Weidi Luo, Sitao Cheng, Xinyi Wang,
Wenyue Hua, Ruixiang Tang, William Yang Wang,
and Yongfeng Zhang. 2024. Disentangling mem-
ory and reasoning ability in large language models.
Preprint, arXiv:2411.13504.

Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi
Yang, Beichen Zhang, Xiang Wang, Bowen Yu,
Binyuan Hui, Junyang Lin, and Dayiheng Liu. 2025a.
Start: Self-taught reasoner with tools. Preprint,
arXiv:2503.04625.

Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu Lin,
Yaojie Lu, Qiaoyu Tang, Fei Huang, Xianpei Han,
Le Sun, and Yongbin Li. 2025b. Structrag: Boosting
knowledge intensive reasoning of llms via inference-
time hybrid information structurization. In Inter-
national Conference on Learning Representations

(ICLR).

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. 2023.
Let’s verify step by step. ICLR 2024.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language

Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305-329,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback. In NeurIPS.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAl. 2024. Learning to Reason with LLMs.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller llms stronger problem-solvers. In
Arxiv.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao,
Xunjian Yin, Siru Ouyang, Wangchunshu Zhou, Pan
Lu, Zhuosheng Zhang, Yilun Zhao, et al. Chema-
gent: Self-updating library in large language models
improves chemical reasoning. In The Twelfth Inter-
national Conference on Learning Representations.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 10014-10037, Toronto, Canada. Association
for Computational Linguistics.

Boshi Wang, Xiang Deng, and Huan Sun. 2022. Itera-
tively prompt pre-trained language models for chain
of thought. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2714-2730, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Jianing Wang, Qiushi Sun, Xiang Li, and Ming Gao.
2024. Boosting language models reasoning with
chain-of-knowledge prompting. In The 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4958-4981,
Bangkok, Thailand. Association for Computational
Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.

24648

https://openreview.net/forum?id=0MsI3bSmmD
https://openreview.net/forum?id=0MsI3bSmmD
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2411.13504
https://arxiv.org/abs/2411.13504
https://arxiv.org/abs/2503.04625
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2022.emnlp-main.174
https://doi.org/10.18653/v1/2022.emnlp-main.174
https://doi.org/10.18653/v1/2022.emnlp-main.174
https://doi.org/10.18653/v1/2024.acl-long.271
https://doi.org/10.18653/v1/2024.acl-long.271

2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609-2634, Toronto,
Canada. Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024. Faithful logical rea-
soning via symbolic chain-of-thought. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 13326-13365, Bangkok, Thailand. As-
sociation for Computational Linguistics.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024b. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. 2024c. Buffer of thoughts: Thought-
augmented reasoning with large language models.
arXiv preprint arXiv:2406.04271.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems, volume 35, pages 15476-15488. Curran
Associates, Inc.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao
Dong, and Jie Tang. 2024. Rest-mcts*: Llm

self-training via process reward guided tree search.
Thirty-eighth Conference on Neural Information Pro-
cessing Systems (NeurIPS).

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo,
Yufei Wang, Niklas Muennighoff, Irwin King, Xue
Liu, and Chen Ma. 2025. A survey on test-time scal-
ing in large language models: What, how, where, and
how well? Preprint, arXiv:2503.24235.

Xingyuan Zhang, Philip Becker-Ehmck, Patrick van der
Smagt, and Maximilian Karl. 2023a. Action infer-
ence by maximising evidence: Zero-shot imitation
from observation with world models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems (NeurlPS).

Zhebin Zhang, Xinyu Zhang, Yuanhang Ren, Saijiang
Shi, Meng Han, Yongkang Wu, Ruofei Lai, and Zhao
Cao. 2023b. IAG: Induction-augmented generation
framework for answering reasoning questions. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 1—
14, Singapore. Association for Computational Lin-
guistics.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex rea-
soning in large language models. In The Eleventh
International Conference on Learning Representa-
tions.

Jingming Zhuo, Songyang Zhang, Xinyu Fang,
Haodong Duan, Dahua Lin, and Kai Chen. 2024.
ProSA: Assessing and understanding the prompt sen-
sitivity of LLMs. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
1950-1976, Miami, Florida, USA. Association for
Computational Linguistics.

A Figures for Qualitative Analysis of
Insight Quality

24649

https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2024.acl-long.720
https://doi.org/10.18653/v1/2024.acl-long.720
https://openreview.net/forum?id=Bb4VGOWELI
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://openreview.net/forum?id=WjlCQxpuxU
https://openreview.net/forum?id=WjlCQxpuxU
https://openreview.net/forum?id=WjlCQxpuxU
https://doi.org/10.18653/v1/2023.emnlp-main.1
https://doi.org/10.18653/v1/2023.emnlp-main.1
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://doi.org/10.18653/v1/2024.findings-emnlp.108
https://doi.org/10.18653/v1/2024.findings-emnlp.108

21

+ PROBLEM: Convert ;=

to a terminating decimal.

Insight For Reasoning Step 1:

21
22.57

o Goal: To convert the fraction to a terminating decimal, we need to ensure the denominator is a power of

o Situation: We need to convert the fraction

to a terminating decimal.

10. This can be achieved by adjusting the powers of 2 and 5 in the denominator to be the same.

Reasoning Step 1: To convert the fraction % to a terminating decimal, we need to ensure the denominator
is a power of 10. The denominator is currently 22 - 57 = 4 - 78125 = 312500. To make it a power of 10, we
need to multiply both the numerator and the denominator by 2° = 32 because 22 - 57 - 25 = 27 . 57 = 107

This will make the denominator 107 = 10000000.

Insight For Reasoning Step 2:

21.32
107 -

o Situation: After multiplying both the numerator and the denominator by 32, the fraction becomes
o Goal: Simplify the numerator and express the fraction as a terminating decimal.

« Reasoning Step 2: After multiplying both the numerator and the denominator by 32, the fraction becomes
2132
107

= #702000. Converting this to a decimal gives 0.0000672.

Figure 6: Example 1 for Qualitative Analysis of Insight Quality

« PROBLEM: Solve V2 + v3z + 6 + vz — v/3z + 6 = 6.

« Insight For Reasoning Step 1:

o Situation: We are given the equation \/1: +3z+6+ \/z — +/3x 4 6 = 6, which involves nested square roots and a sum of
square roots. The presence of nested square roots complicates the equation and makes it difficult to isolate & directly.

o Goal: To simplify the equation, we need to find a way to eliminate the square roots. One approach is to square both sides of the
equation to remove the outer square roots, but we must be cautious of potential extraneous solutions that may arise from this
process.

» Reasoning Step 1: To solve the equation \/z +3z+6+ \/'1: — 3z + 6 = 6, let's denote a = \/z ++/3z + 6 and
b= /& —/3x + 6. We know that a + b = 6. Squaring both sides of the equation a + b = 6 gives us a® + b% + 2ab = 36. Also,
since a? = x 4+ /3 + 6 and b = & — v/3z + 6, we have a® + b? = 2z. Therefore, 2z + 2ab = 36, which simplifies to

z + ab = 18. Now, we need to find ab. Notice that ab = \/(w-ﬁ- V3z +6)(z — V32 + 6) = /22 — (3 + 6) = Vz? — 3z — 6.

Thus, we have z + v/z2 — 3z — 6 = 18. Let's denote y = v/x2 — 3z — 6, so the equation becomes x + y = 18 and
y? = 22 — 3z — 6. We can substitute y = 18 — z into the second equation to find .

« Insight For Reasoning Step 2:

o Situation: We have the equations + y = 18 and 4> = 2? — 3z — 6, where y = v/z2 — 3z — 6.
o Goal: Substitute y = 18 — x into the equation y?> = 2> — 3z — 6 to find the value of .
« Reasoning Step 2: To find &, we substitute y = 18 — z into the equation y? = 2% — 3z — 6:

(18 — z)? = 2* — 3z — 6.
Expanding the left side, we get:
324 — 362 + 2 = 2> — 3z — 6.
Simplifying by canceling 2 from both sides, we get:
324 — 36z = —3z — 6.
Rearranging terms, we get:

324 4+ 6 = 36z — 3z,
330 = 33z,
z = 10.

We need to verify if £ = 10 satisfies the original equation. Substituting x = 10 into the original equation:

\/10+\/3-10+6+\/10—\/3~10+ :\/10—&-\/%—0—\/10—\/36:\/10+6+\/10— =V16+vV4=4+2=6.

Since the left side equals the right side, = 10 is a valid solution.
Figure 7: Example 2 for Qualitative Analysis of Insight Quality

24650

