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Abstract
While large language models (LLMs) demon-
strate impressive capabilities, their reliance on
parametric knowledge often leads to factual in-
accuracies. Retrieval-Augmented Generation
(RAG) mitigates this by leveraging external
documents, yet existing approaches treat re-
trieved passages as isolated chunks, ignoring
valuable structure that is crucial for document
organization. Motivated by this gap, we pro-
pose Retrieve-DocumentRoute-Read (RDR2),
a novel framework that explicitly incorporates
structural information throughout the RAG
process. RDR2 employs an LLM-based router
to dynamically navigate document structure
trees, jointly evaluating content relevance and
hierarchical relationships to assemble optimal
evidence. Our key innovation lies in formu-
lating document routing as a trainable task,
with automatic action curation and structure-
aware passage selection inspired by human
reading strategies. Through comprehensive
evaluation on five challenging datasets, RDR2

achieves state-of-the-art performance, demon-
strating that explicit structural awareness sig-
nificantly enhances RAG systems’ ability to
acquire and utilize knowledge, particularly in
complex scenarios requiring multi-document
synthesis.1

1 Introduction

Large language models (LLMs) (Brown et al.,
2020) have demonstrated remarkable capabilities
across a wide range of natural language process-
ing (NLP) tasks, yet even state-of-the-art models
continue to generate factually incorrect responses
(Mallen et al., 2023; Min et al., 2023; Ji et al.,
2023) despite their growing scale and capability
(Ouyang et al., 2022). Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020; Guu et al.,
2020; Borgeaud et al., 2022) addresses these lim-
itations through a Retrieve-and-Read paradigm,

*Corresponding Author
1Code & data: https://github.com/XuLingnan/RDR2

which first retrieves relevant passages then uses
them as context for generation (Lewis et al.,
2020; Izacard and Grave, 2021; Jiang et al., 2022;
Shi et al., 2024). This approach combines the
strengths of information retrieval and generative
models, proving particularly effective for atomic-
fact question answering (QA) (Joshi et al., 2017;
Thorne et al., 2018; Kwiatkowski et al., 2019;
Mallen et al., 2023) where a single precise re-
trieval suffices to answer clear information needs.

Recent advances in RAG have extended its capa-
bilities to complex knowledge-intensive scenarios
requiring multi-perspective responses, particularly
for factual-inductive queries that demand coherent
synthesis of multiple knowledge fragments (Fan
et al., 2019; Stelmakh et al., 2022; Amouyal et al.,
2023). However, current RAG frameworks pro-
cess retrieved passages as isolated chunks, discard-
ing their inherent document structure - a limitation
stemming from both structure-agnostic pipeline
design and the flat-context paradigm of standard
retrieval methods.

While fixed chunking ensures retrieval effi-
ciency, it restricts query-adaptive content selec-
tion, discarding the document’s native organiza-
tion which humans naturally exploit for informa-
tion navigation and relational reasoning. At the
reading phase, retrieved passages are simply or-
dered by relevance scores, potentially disrupting
their original sequence in the source document.
Even with useful information, this loss of struc-
tural priors forces the model to implicitly recon-
struct relationships that were explicitly encoded in
the source hierarchy. This structural blindness con-
strains RAG’s knowledge acquisition and synthe-
sis capabilities.

In this paper we ask: can LLMs leverage doc-
ument structural information, and can RAG sys-
tems benefit from such structural awareness? We
propose Retrieve-DocumentRoute-Read (RDR2),
where a structure-aware LLM performs document
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routing through three actions inspired by how hu-
mans selectively read sections, expand promising
headings, and skip irrelevant parts when brows-
ing articles. Through this process, RDR2 dynami-
cally assembles query-oriented passages for better
knowledge acquisition and utilization.

We evaluate RDR2 on five QA datasets repre-
senting diverse formats: TriviaQA (Joshi et al.,
2017) (single-answer), HotpotQA (Yang et al.,
2018) (multi-hop), QAMPARI (Amouyal et al.,
2023) (list-style), ASQA (Stelmakh et al., 2022)
(ambiguous), and ELI5 (Fan et al., 2019) (in-
depth). As shown in Figure 1, RDR2 achieves new
state-of-the-art results with only the router trained
on questions from the ASQA training set (without
answer supervision), while keeping the retriever
and reader off-the-shelf. Additionally, RDR2 en-
ables test-time scaling without weight updates and
demonstrates generalization across different RAG
components (i.e., retrievers and readers).

Our main contributions are:
• The proposal of RDR2, the first RAG frame-

work explicitly incorporates document struc-
ture throughout the retrieval and reading pro-
cess, to enhance both knowledge acquisition
and utilization;

• A novel formulation of document routing as a
trainable task, with an automatic action cura-
tion pipeline and LLM-based router training;

• Comprehensive experiments on five datasets
establishing RDR2’s consistent superiority
over state-of-the-art methods.

Figure 1: Performance comparison on ASQA, where
RDR2 achieves the highest Exact Match (EM) score
while generating the most concise responses. Readers
are based on either Llama-2-13B or ChatGPT (*).

2 Related Work

Retrieval-Augmented Generation (Lewis et al.,
2020; Guu et al., 2020; Borgeaud et al., 2022)

(RAG) augments language models with non-
parametric knowledge through retrieved pas-
sages, demonstrating significant improvements in
knowledge-intensive tasks (Ram et al., 2023; Asai
et al., 2023a). The standard Retrieve-and-Read
framework operates in two stages: (1) a dense
retriever, typically employing a bi-encoder archi-
tecture (Karpukhin et al., 2020; Ni et al., 2022;
Wang et al., 2024), retrieves passages relevant to
the input question, and (2) an LM reader processes
these passages, either as an off-the-shelf model
(Zhou et al., 2024; Li et al., 2025) or through task-
specific fine-tuning (Izacard et al., 2023; Lin et al.,
2023; Jain et al., 2023; LUO et al., 2024; Gan et al.,
2024), to generate grounded responses. While
effective for simple tasks with clear information
needs, RAG systems show limitations in complex
scenarios, necessitating more advanced methods.

Knowledge Acquisition. To achieve more com-
prehensive knowledge acquisition, recent works
develop enhanced retrieval mechanisms. FLARE
(Jiang et al., 2023) prompts an LLM to actively
decide when and what to retrieve based on the
model’s confidence (i.e., token probabilities). Ma
et al. (2023) introduces query rewriting to bridge
the gap between user questions and retrieval re-
quirements. CoRAG (Wang et al., 2025) fine-
tunes an LLM to generate intermediate retrieval
chains, enabling step-by-step multi-hop querying.
Unlike prior works that focus on pre-retrieval
query optimization, our approach enhances knowl-
edge acquisition through post-retrieval document
routing - iteratively exploring document hierar-
chies to uncover useful information.

Knowledge Utilization. For knowledge uti-
lization, effective RAG requires critical evalua-
tion and integration of retrieved knowledge. SELF-
RAG (Asai et al., 2023b) fine-tunes LLMs to
critique retrieved passages via self-reflection, as-
sessing their relevance, supportiveness, and util-
ity. RankRAG (Yu et al., 2024) instruction-tunes
a single LLM for the dual purpose of context
ranking and answer generation, improving end-to-
end knowledge grounding. Departing from static
chunk filtering, our method dynamically assem-
bles node-level information units within document
hierarchy, achieving both structural integrity and
adaptive flexibility.

Structural Information. Several approaches
have attempted to incorporate structural informa-
tion into RAG frameworks. GraphRAG (Edge
et al., 2024) processes documents into a knowl-
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Figure 2: Overwiew of the RDR2 framework. RDR2 extends standard Retrieve-and-Read with document-structure-
aware routing for iterative, fine-grained knowledge retrieval. Retrieve: input question q, output retrieved chunks
Cre; Document Route: input q, Cre and corresponding documents D, output routed chunks Cro; Read: input q
and Cro, output final answer a.

edge graph with hierarchical community sum-
maries, establishing a RAG paradigm distinct
from semantic retrieval over flat text chunk. RAP-
TOR (Sarthi et al., 2024) constructs hierarchi-
cal document embeddings through recursive node-
level clustering and summarization, capturing pro-
gressively abstracted semantic content across tree
levels. While existing approaches offline-encode
hierarchical information into fixed representations
(e.g., summaries or embeddings), our framework
online-perceives document structure through dy-
namic routing.

3 Methodology

In this section, we present RDR2 (Retrieve-
DocumentRoute-Read), a novel framework that
endows the retrieval-augmented systems with ex-
plicit awareness of document structure. We first
introduce the overview of our framework. Then
we define tree structures to represent the docu-
ment hierarchy, ensuring stable scope and adaptive
contextual focus. Finally, we introduce the docu-
ment routing task and the scheme for training a
structure-aware LLM router.

3.1 Retrieve-DocumentRoute-Read

As illustrated in Figure 2, the RDR2 framework
consists of three stages:

Retrieve. Given an input question q and a data-
storeD, the Retriever retrieves the top-k most rel-
evant chunks Cre = {c(1)re , · · · , c(k)re }, along with
their originating documents D = {d1, · · · , dk}.

{⟨c(i)re , di⟩}
k

i=1 = Retriever(q,D) (1)

Document Route. This stage transforms chunk-
wise retrieved results into document-wise routed
chunks Cro = {c(1)ro , · · · , c(m)

ro } through an itera-
tive process, where an LLM-based Router selec-
tively expand relevant sections while maintaining
awareness of the document’s organizational frame-
work. At each step t, the Router takes the ques-
tion q and the current routing state s

(t)
i to decide a

series of actions, where each element consists of a
ternary action tag a

(t)
ij ∈ {[ANS], [EXP], [REF]}2,

along with a selected passage node p
(t)
ij .

{⟨a(t)ij , p
(t)
ij ⟩}

n
(t)
i

j=1 = Router(q, s
(t)
i ) (2)

The routing state (i.e. Retrieval SubTree in
Section 3.2) encapsulates structural information,
enabling the Router to navigate through the
document hierarchy. Each document di’s rout-
ing state s

(t)
i is initialized with the correspond-

ing retrieved chunks C
(i)
re ⊆ Cre and updated

by the Router actions of the previous round

{⟨a(t−1)
ij , p

(t−1)
ij ⟩}n

(t−1)
i

j=1 . Here, the operator ⊗ de-
notes content expansion:

s
(t)
i = di ⊗

{
E

(t−1)
i , t > 1

C
(i)
re , t = 1

(3)

E
(t)
i = {p(t)ij | j ∈ {1, ..., n

(t)
i }, a

(t)
ij = [EXP]}

(4)
The routed chunk c

(i)
ro ∈ Cro is accumulated by ag-

gregating the selected passages across all routing
2[ANS]: extracting useful contents to answer; [EXP]: un-

folding promising titles to expand; [REF]: stopping the rout-
ing process to refuse.
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Figure 3: Workflow of the routing module. Given a user input q and a document structure tree (Section 3.2)
anchored by retrieved chunks, RDR2 maintains a retrieval subtree s where: (i) all structure nodes persist, (ii) only
content nodes under currently selected headings are expanded (previous fold). At step t, the router generates action
{⟨a(t)j , p

(t)
j ⟩}nt

j=1 = Router(q, st) to: (a) select useful content nodes, (b) unfold a promising structure node, or (c)
stops routing.

steps t = {1, · · · , Ti}.

c(i)ro =

Ti⊕

t=1

A
(t)
i (5)

A
(t)
i = {p(t)ij | j ∈ {1, ..., n

(t)
i }, a

(t)
ij = [ANS]}

(6)
where the operator ⊕ denotes passage concatena-
tion.

Read. The Reader (typically an LLM) gener-
ates the final answer a, conditioning on both the
input question q and the routed passages Cro.

a = Reader(q, [c(1)ro , · · · , c(m)
ro ]) (7)

3.2 Document Structure Representation
While standard RAG frameworks process only
flat content chunks, our approach preserves crit-
ical structural information through formal tree
representations. To capture hierarchical relation-
ships in documents, we define two types of nodes:

(1) Structure Nodes represent organizational hi-
erarchy (e.g., headings), and (2) Content Nodes
contain substantive textual information (e.g., pas-
sages).

Document Structure Tree. A Document Struc-
ture Tree (DST) encodes the full document hierar-
chy, where each node is represented as:

DST-node = ⟨id, text, τ, parent, C⟩ (8)

Here τ ∈ {structure, content} denotes the node
type, and C indicates the ordered set of child nodes.
Each node is defined by a unique identifier (id),
associated text content - either a heading title (for
structure nodes) or passage text (for content nodes)
- and a pointer to its parent node (null for the
root). The root node, always a structure node, cor-
responds to the document title.

Retrieval Subtree. A Retrieval SubTree (RST)
is derived from the DST, designed to maintain sta-
ble retrieval scope while adaptively updating con-
textual focus. An RST consists of (1) all structure
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nodes (complete document hierarchy), and (2) se-
lected content nodes (partial content coverage).

During inference, the RST is first initialized
with the retrieved passages along with their con-
tent siblings, then iteratively updated by replac-
ing them with previously unseen content nodes
under a single router-selected heading, while pre-
serving all structure nodes (see Algorithm 1 in Ap-
pendix A.1). This constrained derivation strategy
ensures stable RST size while dynamically refin-
ing the contextual focus.

3.3 Routing Module
As shown in Figure 3, the routing module syner-
gistically combines document tree structure with
an LLM-based router, enabling structure-aware
retrieval-augmented generation.

Task Formulation. We define document rout-
ing task as iterative navigation through a docu-
ment structure tree, dynamically assembling fine-
grained passage chunks with both content rel-
evance and structural integrity. This process
emerges through compositional application of
three atomic actions at each step:

• [ANS]: Select a visible content node when its
text directly answers the question;

• [EXP]: Unfold a collapsed structure node if
its heading text or contextual position sug-
gests potential relevance;

• [REF]: Stop exploring the current subtree
when no nodes satisfy [ANS] or [EXP] crite-
ria.

Action Curation. Standard RAG datasets con-
sists of a question with a reference answer, with-
out providing the intermediate routing trajectories.
We propose an automatic method for curating rout-
ing actions solely from the question, requiring no
necessary access to the answer. Specifically, given
a question q, we first retrieve top-k passages via
an off-the-shelf retriever, access their originating
documents, and derive corresponding retrieval sub-
trees S. We condition an LLM respectively on
each subtree s ∈ S, along with the question q to
generate single-turn routing actions A. Finally, the
routing dataset cruated consists of ⟨q, s, A⟩ triples.

Training. The training paradigm focuses on
equipping the model with fundamental decision-
making capabilities through exposure to individ-
ual routing actions (as opposed to complete itera-
tive procedures). We fine-tune an LLM on the cu-
rated routing dataset using the standard next-token-
prediction objective under supervised-fine-tuning

(SFT), where the cross-entropy lossL is computed
only on the target output tokens. This approach
provides the necessary components for multi-step
exploration during inference.

L = − logP (A|q, s) (9)

We convert document hierarchy into LLM-
understandable text representation. Specifically,
the input retrieval subtree uses the newline-
delimited "id: text" format, where each level of
hierarchy is represented by an additional indenta-
tion unit preceding the node identifier. The output
action follows the "[ACTION] id: text_prefix"
format to ensure semantic grounding to the origi-
nal id-text binding.

4 Experiments

4.1 Datasets and Metrics
We evaluate RDR2 on five knowledge-intensive
tasks across different QA formats. We follow pre-
vious works (Gao et al., 2023) to randomly sub-
sample at most 1,000 examples from each dataset
due to the experimental cost. Across all datasets,
only the question field is used for both retrieval
and generation, with Wikipedia consistently serv-
ing as the retrieval datastore.

Short-form Generation. TriviaQA (Joshi
et al., 2017) consists of trivia questions, each call-
ing for a single short answer. HotpotQA (Yang
et al., 2018) features Wikipedia-based question-
anwer pairs requiring interleave retrieval and rea-
soning. For both datasets, we report EM Recall
and String F1, following standard setups in Asai
et al. (2023b) and Wang et al. (2025).

QAMPARI (Amouyal et al., 2023) is a list-
style QA dataset where answers comprise multiple
factual short entities (avg. 13 instances) originated
from diverse passages. We report F1-5, precision
and recall-5, where recall-5 is considered 100% if
at least five gold answers are covered, following
ALCE (Gao et al., 2023) benchmark.

Long-form Generation. ASQA (Stelmakh
et al., 2022) is a long-form factoid QA dataset
featuring inherently ambiguous questions that re-
quires RAG methods to reconcile diverse interpre-
tations and produce coherent responses (avg. 65
words). We adopt the official metrics from the
ASQA paper: EM (Exact Match), ROUGE-L, and
Disambig-F1.

ELI5 (Fan et al., 2019) contains complex, di-
verse, open-ended questions derived from post ti-
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Figure 4: Comparison between RDR2 and baselines across all datasets with different readers. We report the primary
correctness metric for each dataset: Exact Match for TriviaQA, HotpotQA and ASQA, F1-5 for QAMPARI and
Claim Recall for ELI5.

tles in Reddit’s "Explain Like I’m Five" forum,
requiring systems to retrieve multiple documents
and elaborate in-depth explanations (avg. 131
words). Following Gao et al. (2023), we use Claim
Recall, computed by checking whether the gener-
ated output entails reference sub-claims using an
NLI model.

We additionally evaluate fluency and concise-
ness for long-form generation tasks. For fluency,
we follow ALCE to use MAUVE (Pillutla et al.,
2021) to assess distributional similarity between
generated and ground-truth answers. For concise-
ness, we report response length (in words), as
longer outputs may artificially boost recall-type
metrics (e.g., EM or Claim Recall).

4.2 Baselines

We evaluate our framework against three cate-
gories of baselines: (1) No-Retrieval: the reader
directly answers questions using only its paramet-
ric knowledge, (2) Retrieve-and-Read: the stan-
dard RAG pipeline with top-k retrieved passages,
and (3) Advanced RAG: including methods based
on proprietary LLMs: ASC and its variant ASC-
F (Thirukovalluru et al., 2024), as well as tech-
niques fine-tuned on open-source LLMs: SELF-
REASONING (Xia et al., 2025), SELF-RAG3 (Asai
et al., 2023b), OPEN-RAG4 (Islam et al., 2024),
and FRONT (Huang et al., 2024).

4.3 Experimental Settings

For retrieval, we use the Wikipedia dump from
Karpukhin et al. (2020). We construct DSTs (de-
fined in Section 3.2) from the corresponding wiki

3We increased the [Retrieve] token probability by 0.2 to
promote multi-turn retrieval for a fair comparison.

4With only the 7B model publicly released, we fine-tuned
the 13B variant using the official training script.

pages, totaling 5.82M documents. Unless other-
wise specified, we use the off-the-shelf Contriever-
MS MARCO (Izacard et al., 2022) as the re-
triever, with top-5 retrieved chunks for all retrieval-
augmented methods.

We curate routing actions using Deepseek-v3
(Liu et al., 2024) following the procedure defined
in Section 3.3 on ASQA training questions, result-
ing in 23,827 training samples and 500 test sam-
ples . The router is fine-tuned via LoRA (Hu et al.,
2022) on Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) for 3.5 epochs, using LlamaFactory (Zheng
et al., 2024) (see Appendix A.1 for data curation
details, Appendix A.2 for training hyperparame-
ters, and Appendix C for router prompts).

Llama-2-13B-Chat (Touvron et al., 2023) and
Llama-3.1-8B-Instruct (Grattafiori et al., 2024)
are used as the open-source readers. To ensure
fair comparison, we apply greedy decoding with
model-specific maximum tokens, as significant
inter-model length variations were observed (con-
sistent with Asai et al. (2023b)’s findings). For
proprietary models including ChatGPT (Ouyang
et al., 2022) and Deepseek-v3 (Liu et al., 2024),
we set temperature=0.2 without length constraints,
since their output lengths naturally align with the
reference (see Appendix C for reader prompts).

All experiments run on single NVIDIA A100-
PCIE-40GB GPUs.

5 Results and Analysis

We first present overall results, then perform abla-
tion studies to assess the contribution of each key
component. Finally, we examine the framework’s
scalability under different test-time conditions and
its robustness to various RAG component choices.
A full case study is provided in Appendix D.
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QAMPARI ASQA ELI5

F1-5 R-5 Pre EM D-F1 R-L Mau Len Cla Mau Len
Reader based on ChatGPT

ASC-F 18.8 45.0 13.4 45.0 31.9 - 41.3 106.7 22.2 22.7 172.7
ASC 26.2 33.0 23.0 44.1 32.2 - 47.0 101.2 21.4 21.3 163.6
RDR2(Ours) 26.4 29.0 30.9 46.1 37.1 38.5 70.6 49.1 23.3 14.4 155.2

Reader fine-tuned on Llama-2-13B
SELF-REASONING - - - 35.2 - - - - - - -
SELF-RAG* 6.5 9.0 6.4 37.5 27.5 39.2 77.7 69.9 11.8 42.8 81.9
OPEN-RAG* 2.5 3.9 2.3 39.9 24.0 40.4 17.2 83.7 11.9 19.1 129.2
FRONT - 11.9 22.6 41.5 - 38.6 76.1 57.6 9.3 34.4 75.1
RDR2(Ours) 23.2 24.3 25.0 41.7 31.6 39.2 61.2 69.6 15.4 23.9 148.3

Table 1: Comparison between RDR2 and other RAG methods on QAMPARI, ASQA and ELI5 wrt. corresponding
metrics. F1-5 is the harmonic mean of recall-5 (R-5) and precision (Pre), EM is Exact Match, D-F1 is Disambig-F1,
R-L is ROUGE-L, Mau is MAUVE, Cla is Claim Recall. Bold indicates best results within each reader category.
Gray denotes the word-level length (Len). * marks the results from our reproduction.

5.1 Main Results

Overall Performance. Figure 4 evaluates the
overall performance of RDR2 against two fun-
damental frameworks: no-retrieval and Retrieve-
and-Read. Notably, in RDR2 only the router is
finetuned on ASQA training questions (without an-
swer supervision), while both retriever and reader
remain off-the-shelf. TriviaQA, HotpotQA, QAM-
PARI and ELI5 serve as challenging generaliza-
tion tests, being completely withheld from our
router training.

RDR2 continuously improves RAG perfor-
mance. With larger language models, stan-
dard Retrieve-and-Read shows diminishing re-
turns over no-retrieval, suggesting their stronger
parametric knowledge reduces reliance on re-
trieved content. While RDR2 also exhibits this
scaling trend versus no-retrieval, its improvement
over Retrieve-and-Read remains relatively sta-
ble across model scales, confirming the inherent
value of document structure awareness in retrieval-
augmented generation.

RDR2 effectively generalizes to held-out
datasets. While RDR2 maintains strong perfor-
mance on QAMPARI comparable to its ASQA re-
sults, we observe limited gains on ELI5. This
aligns with prior findings (Krishna et al., 2021;
Jiang et al., 2023) on the intrinsic challenges
of open-ended long-form QA, where the expan-
sive space of potentially valid answers poses fun-
damental difficulties for retrieval-augmented ap-
proaches and their evaluation.

Comparison with baselines. Table 1 compares

RDR2 against cutting-edge RAG methods employ-
ing either proprietary LLMs (ChatGPT) or fine-
tuned open-source Llama-2-13B variants as their
backbone readers.

RDR2 achieves new state-of-the-art results.
Across all three datasets - QAMPARI, ASQA and
ELI5 - RDR2 consistently outperforms existing
approaches, demonstrating strong generalization
across diverse QA scenarios. Specifically:

It is noteworthy that among the compared
methods based on open-source models, all re-
quire reader fine-tuning on carefully annotated
question-answer pairs (some including training set
of the downstream tasks), whereas our approach
achieves superior performance using only readily
available questions for router training, paired with
an entirely off-the-shelf reader.

Furthermore, methods employing proprietary
LLMs generate significantly longer responses
( 2× the gold answer length on ASQA) to achieve
high EM recall, while our approach attains better
results with approximately 50% shorter outputs.
On QAMPARI, this verbosity leads to precision
degradation, whereas our method maintains bal-
anced precision-recall performance. These obser-
vations collectively validate our framework’s en-
hanced efficiency in information delivery.

5.2 Ablation Study

Table 2 presents comprehensive ablation studies
analyzing three critical dimensions of our frame-
work: pipeline architecture (Section 3.1), router
information (Section 3.2), and routing actions
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(Section 3.3). We evaluate both intermediate
routed passages and final generated answers, mea-
suring factual correctness through Exact Match
(EM) and verbosity via word count (Len).

Passage Answer

EM Len EM Len
RDR2(Ours) 57.3 104.2 45.3 71.3

w/o router 51.7 100.0 40.9 69.2
w/o structure 49.8 67.5 41.3 71.0
w/o similarity 54.8 100.9 43.9 72.3

w/o content 54.2 93.9 43.7 70.0
w/o [EXP] 52.9 81.7 42.5 71.9
w/o [REF] 61.2 176.3 42.9 70.7

Table 2: Ablation Study on ASQA. Ablated variants
(w/o = without) are defined in Section 5.2. We report
Exact Match (EM) and word-level length (Len) for pas-
sages and answers. Bold and Underline denote best and
second best results, respectively.

5.2.1 Pipeline Architecture
Ablating Router. Removing the routing mod-
ule (w/o router) reduces the RAG pipeline to
standard Retrieve-and-Read framework. Our full
framework significantly improves factual recall
(+5.6 EM) while maintaining comparable passage
length (104.2 vs. 100.0), demonstrating enhanced
informativeness without compromising concise-
ness. This improvement carries through to answer
generation (+4.4 EM), demonstrating consistent
gains across the entire RAG pipeline.

5.2.2 Router Information
The router processes two types of information: (1)
structure from document headings, and (2) sim-
ilarity from retrieved passages. We ablate each
component:

Ablating Structure. The w/o structure vari-
ant discards document hierarchy and use only re-
trieved passages5, where the router simply accepts
or refuses individual passages. We observe signifi-
cant drops in both passage retrieval (-7.5 EM) and
answer generation (-4.0 EM) versus the full frame-
work, confirming structural cues provide critical
gains. Compared to w/o router, this ablation yields
less informative passages (-1.9 EM) but better an-
swers (+0.4 EM), showing structural awareness en-
ables more effective knowledge organization de-
spite occasional over-filtering.

5To ensure fair comparison, we reconstruct content at the
node level to avoid information loss from chunk truncation.

Ablating Similarity. The w/o similarity vari-
ant initializes the RST with content nodes under a
random heading instead of retrieved passage sib-
lings. A stricter variant (w/o content) removes
content nodes entirely, despite this configuration
being completely unseen during training. Ablat-
ing similarity causes moderate performance drops
(-2.5 EM passages, -1.4 EM answers), confirm-
ing that providing question-relevant content of-
fers crucial guidance for structural understanding
and document routing. The small gap between
these variants (0.6 EM passages, 0.2 EM answers)
demonstrates the router’s trained structural reason-
ing generalizes to unseen document formats.

5.2.3 Routing Actions
We validate each atomic action’s necessity for doc-
ument routing:

Ablating [EXP]. The router can only select or
refuse among currently visible nodes, losing the
ability to explore new subtrees (w/o [EXP]). The
noticeable declines versus full framework (-4.4
passage EM, -2.8 answer EM) confirms expansion
is crucial for discovering content that can hardly
be recalled by similarity alone. Yet still outper-
forms w/o router (+1.2 passage EM, +1.6 answer
EM), showing RAG can benefit from basic struc-
ture awareness.

Ablating [REF]. The router must either an-
swer or expand at least one node in each step, po-
tentially forcing suboptimal choices (w/o [REF]).
Passage informativeness is substantially increased
(+3.9 EM), yet its length doubled, introducing
noise that ultimately harms answer quality (-2.4
EM), proving selective rejection is vital for con-
cise knowledge organization.

5.3 Test-time Scaling

Inspired by OpenAI o1 (Jaech et al., 2024)’s ob-
servation, our framework enables dynamic test-
time compute scaling without model weight up-
dates. We investigate two scaling dimensions: (1)
top-k scaling where we vary the number of re-
trieved passages k ∈ [0, 5], and (2) expand-iter
scaling which controls document expansion iter-
ations iter ∈ [0, 5], With their impacts demon-
strated in Figure 5.

Top-k Scaling. As shown in Figure 5 left, in-
creasing k consistently improves both retrieval and
answer correctness, as expanding the search space
enhances the likelihood of capturing relevant doc-
uments. While standard Retrieve-and-Read ex-
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Figure 5: Scaling test-time compute on ASQA for RDR2 framework. Left: top-k scaling. Right: expand-iter
scaling. Exact Match (EM) is reported from both passage/answer-aspect.

Figure 6: Robustness experiment across different datasets. Left: retriever robustness. Right: router robustness.
Correctness metrics: F1-5 for QAMPARI, Exact Match for ASQA and Claim Recall for ELI5.

hibits similar scaling trends, our framework main-
tains a consistent performance advantage. This
suggests that structural awareness potentially en-
hances the benefits of retrieval test-time scaling.

Expand-iter Scaling. As shown in Fig-
ure 5 right, increasing expansion iterations yields
consistent improvements in both passage util-
ity and answer quality. Our controlled expan-
sion mechanism introduces a novel RAG scal-
ing paradigm, offering adjustable trade-offs be-
tween performance and computational cost - par-
ticularly valuable for applications with varying
latency-accuracy requirements.

5.4 Robustness

Figure 4 demonstrates RDR2’s robustness to di-
verse readers and held-out datasets. We further in-
vestigate the retrievers and routers compatibility.

Retriever Robustness. We use off-the-shelf
GTR (Ni et al., 2022) and DPR (Karpukhin et al.,
2020) as the retriever. As shown in Figure 6
left, RDR2 maintains stable performance with dif-
ferent retrievers across datasets, while standard
Retrieve-and-Read exhibits performance fluctua-

tions, empirically validates that explicit structure
perception enhances RAG’s robustness to compo-
nent variations.

Router Robustness. We fine-tuned routers
based on Qwen2.5-Instruct (Qwen et al., 2025) se-
ries using the same protocol. As shown in Fig-
ure 6 right, experiments consistently validate our
method’s effectiveness across different model ar-
chitectures and scales.

6 Conclusion

This work introduces RDR2, a novel framework
that explicitly incorporates document structure
throughout the RAG process. Our approach dy-
namically navigates document structure trees us-
ing an LLM-based router, which jointly considers
content relevance and hierarchical relationships to
assemble optimal evidence. Comprehensive eval-
uations across five datasets demonstrate that doc-
ument structure awareness brings significant and
consistent gains to RAG systems, especially in sce-
narios requiring multi-document synthesis.
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Limitations

We acknowledge three key limitations of this work:
(1) While our routing mechanism effectively navi-
gates intra-document hierarchies, it processes each
document independently. The document count
is determined by the initial top-k retrieval, po-
tentially limiting inter-document knowledge inte-
gration. (2) The framework requires offline con-
struction of Document Structure Trees (DSTs) for
the entire datastore (approximately 20 minutes for
Wikipedia in our experiment, with parallelization
across 8 CPU cores). (3) The iterative routing pro-
cess incurs computational overhead, which can be
partially mitigated through controlled expansion it-
erations during inference.

Ethical Concerns

This study focuses on improving knowledge ac-
quisition and utilization in RAG systems through
document structure awareness. All data, models,
and APIs used in our experiments are sourced
from publicly available platforms to ensure trans-
parency and reproducibility. We strictly adhere to
ethical guidelines throughout the research process,
guaranteeing that our work poses no harm to in-
dividuals or groups. Furthermore, we commit to
avoiding any form of deception or misuse of infor-
mation in both methodology and application.
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A Implementation Details

A.1 Dataset curation

ANS EXP REF Total

Train 14,822 3,793 5,212 23,827
Test 287 90 123 500

Table 3: Routing Dataset.

As shown in Table 3, the routing dataset con-
sists of 23,827 training samples, including 14,822
[ANS] instances, 3,793 [EXP] instances, and 5,212
[REF] instances.

For the construction of the routing dataset, we
begin by sampling queries from the ASQA train-
ing set and feed them into the retriever to obtain
the top-k relevant text chunks. Each retrieved
chunk is then aligned with the original Document

Structure Tree by applying the Levenshtein Dis-
tance algorithm. Specifically, a sliding-window
strategy with a stride of one character is employed
to locate the most similar spans within the struc-
ture tree. Once the mapping between a retrieved
chunk and its corresponding content node is es-
tablished, we apply the RST Derivation Algorithm
(Algorithm 1) to systematically traverse the tree
and retain all siblings, ancestors, and descendants
of the mapped nodes that share the content type at-
tribute. This procedure yields the corresponding
Retrieval Subtrees. Finally, the DeepSeek-V3 API
is leveraged to generate single-turn routing outputs
conditioned on the given queries and their associ-
ated subtrees.

Algorithm 1 RST Derivation
Require: DST , Lighted nodes

1: function LIGHTNODES(Tree, Nodes)
2: for each node ∈ Nodes do
3: siblings ← GETSIBLINGS(Tree,

node) ▷ Acquiring necessary sibling nodes
4: for each sibling ∈ siblings do
5: if sibling.type = "content" then
6: sibling.lighted← True
7: end if
8: end for
9:

10: current← node
11: while current.parent ̸= ∅ do
12: current← current.parent
13: if current.type = "structure" then
14: break ▷ Acquiring necessary

upper ancestor nodes
15: end if
16: current.lighted← True
17: end while
18:

19: for each sibling ∈ siblings do
20: if sibling.type = "content" then
21: LIGHTDESCENDANTS(Tree,

sibling) ▷ Acquiring necessary lower
descendant nodes

22: end if
23: end for
24: end for
25: end function

A.2 Training details
We choose Llama-3.1-8B-Instruct as the backbone
of the routing model and employ LoRA for effi-
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cient fine-tuning. Specifically, we set lora_rank as
8, lora_alpha as 16, gradient accumulated batch
size as 8, learning rate as 1e-5 and epoch as 5. We
also compare different training settings, as shown
in Table 4, and finally select the model based on
instruct model with tag format prompt.

B More Experiments

B.1 Main results
As shown in Table 5 and Table 6, we report full
results of our main experiment. We can observe
that:

1) With different backbone models, regardless
of their openness or parameter scale, our frame-
work consistently outperforms baseline methods
across all evaluation metrics.

2) Compared to state-of-the-art approaches, our
framework demonstrates superior performance on
most metrics.

3) Furthermore, our framework significantly
narrows the performance gap between open-
source and proprietary models.

4) By learning document routing capabilities,
our framework exhibits strong generalization abil-
ity on factual reasoning question answering tasks.

B.2 Ablation Study
Full results of the ablation study are shown in Ta-
ble 7. To evaluate the end-to-end ranking correct-
ness of the retrieval process, we propose the In-
verse Information Rank Score Scorepsg. Given
the set of retrieved passages Cre = {c(i)re }topki=1 and
the set of reference short answers A, the score is
defined as follows.

Scorepsg =

∑
i=1:|Cre|

1
i · EM(c

(i)
re , A)

|Cre|
(10)

This metric models the gain of correctness infor-
mation with a position-based decay, which aligns
with the tendency of both retrieval and generation
modules to favor top-ranked results.

B.3 Test-time Scaling
We report statistics of test-time scaling in Table 8
and Table 9, including Top-k and Expand-iter scal-
ing.

B.4 Chunking Comparison
We conduct a comparative experiment with Meta-
Chunking (Zhao et al., 2024) on ASQA. Specifi-
cally, we applied Meta-Chunking to the retrieved

documents with target_size = 100 to ensure com-
parable chunking sizes and threshold = 0 for per-
plexity chunking. For a fair comparison, we care-
fully adapted Meta-Chunking to our setting, with
an edit-distance constraint calculated against the
original chunking to mitigate potential mismatch
introduced by different retrievers. The results are
shown in the Table 10 (with Llama3.1-8B-Instruct
based router and reader).

B.5 Short-form QA Performance
We conduct experiments on two short-form
datasets, HotpotQA and TriviaQA. As shown in
Table 11 ,compared to standard RAG, our method
achieves consistent improvements: +8.0% EM on
HotpotQA and +5.0% EM on TriviaQA. For ref-
erence, the correctness improvements on ASQA,
QAMPARI and ELI5 are +10.8%, +21.1% and
+3.7% respectively. These improvements can be
attributed to different underlying mechanisms. For
HotpotQA, document structures facilitate multi-
hop reasoning by explicitly modeling relation-
ships between passages. For TriviaQA, where an-
swers often rely on single passages, the gain likely
stems from better context organization via struc-
tural awareness.

B.6 Router Generalization Experiments
As shown in Table12, we finetuned Qwen2.5-7B-
Instruct as the router, observing comparable per-
formance within each datasets. Moreover, exper-
iments with routers finetuned on Qwen2.5 series
(1.5B/3B/7B) consistently validate our method’s
effectiveness across different model scales.

B.7 Further Analysis
We further provide details of our method from the
perspective of time delay, computing budget and
hierarchy modeling.

1) The offline DST construction is a deliberate
design choice to achieve real-time retrieval effi-
ciency, analogous to how standard RAG pipelines
require offline processing steps like FAISS index
building. In our experiments, constructing DSTs
for the entire Wikipedia dump ( 5.82M documents)
takes approximately 20 minutes with paralleliza-
tion across 8 CPU cores.

2) We evaluate the computing efficiency on
ASQA dataset. Specifically, with single-turn rout-
ing, our method achieves +3.9% EM over stan-
dard RAG while adding minimal computational
cost (+0.779k / 0.017k input/output tokens). This
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Prompt Post-processing Model Train Epoch ANS-F1 EXP-PRE REF-ACC XPL-AVG COL-RATE

enclose
√

base full 7.0 86.3 46.9 82.9 0.6 0.0
enclose

√
inst full 7.0 86.1 50.3 83.7 0.6 0.0

enclose
√

inst lora 4.5 84.0 55.7 81.3 0.4 0.0
tag

√
inst lora 3.5 83.0 57.1 87.0 0.4 0.0

tag × inst lora 5.0 84.4 51.1 77.2 7.6 0.4

Table 4: Comparison of different training settings. We evaluate performance of fine-tuned
routing models on the curated test set. Specifically, ANS-F1 denotes the f1 score of [ANS]
action, EXP-PRE indicates the precision of [EXP] action, REF-ACC represents the accuracy
of the [REF] action, XPL-AVG is the percentage of expelled output, and COL-RATE is the
rate of collapsed output. Enclose and tag prompt represent the format of "[expand]" and "<ex-
pand></expand>", respectively.

Figure 7: Training loss curve of routing model.
Figure 8: Validation set performance of rout-
ing model.

low latency is primarily attributed to our RST de-
sign, concise router input/output format and par-
allelizable top-k retrieval/routing, before a single-
turn final answer generation. Moreover, when
employing multi-turn expansion, EM gains in-
crease significantly to +10.8% with modest over-
head (+2.031k / 0.041k input/output tokens). Cru-
cially, this performance-efficiency trade-off is tun-
able via the expand-iter hyperparameter, requiring
no retraining.

3) For the hierarchy modeling, the Document
Structure Tree (DST) can naturally handle both
documents with rich structure and documents
without a clear hierarchy, representing them as
simple trees (e.g., single-level structures for flat
documents). Our supplementary analysis shows
that such cases are relatively rare in practice: on
ASQA with Wikipedia documents, only 6.5% of
retrieved documents are shallow/flat (depth 2),
where our method still yields a +0.4 EM improve-
ment over standard RAG. As shown in Table13,

for the majority of documents (85.8% with depth
2-4), we observe substantial improvements (+4.1
EM). For deeply structured documents (depth > 4),
the gains are even more significant (+10.8 EM).
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ASQA

Methods EM(HIT) D-F1 ROUGE MAUVE LEN

Reader based on text-davinci-003
No-retrieval 33.8 24.2 33.3 - -
Retrieve-and-Read 40.0 27.1 34.0 - -
FLARE 41.3 28.2 34.3 - -

Reader based on ChatGPT
No-retrieval 34.1(9.7) 27.4 35.7 18.2 57.5
Retrieve-and-Read 42.8(16.1) 34.4 38.0 57.0 51.1
ASC-F 45.0 31.9 - 41.3 106.7
ASC 44.1 32.2 - 47.0 101.2
RDR2(Ours) 46.1(18.6) 37.1 38.5 70.6 49.1

Reader based on GPT-4o
No-retrieval 41.4(13.7) 33.9 36.2 23.3 58.8
Retrieve-and-Read 47.0(19.1) 36.5 38.4 39.9 68.4
RDR2(Ours) 48.2(21.0) 39.0 38.4 48.3 63.8

Reader based on DeepSeek-V3
No-retrieval 43.0(16.7) 33.1 36.3 21.9 69.2
Retrieve-and-Read 48.8(21.9) 37.4 37.5 36.7 74.2
RDR2(Ours) 50.8(23.2) 39.8 37.8 37.3 68.9

Reader based on Llama-2-13b
No-retrieval 24.7(6.5) 19.3 35.1 13.4 65.9
Retrieve-and-Read 36.5(13.5) 26.9 39.2 31.4 61.2
SELF-REASONING(FT) 35.2 - - - -
SELF-RAG(FT) 31.7(8.4) 26.4 37.0 71.6 27.0
SELF-RAG(FT)* 37.5(14.9) 27.5 39.2 77.7 69.9
OPEN-RAG(FT) 36.3 - 38.1 80.0 -
OPEN-RAG(FT)* 39.9(14.5) 24.0 40.4 17.2 83.7
FRONT 41.5 - 38.6 76.1 57.6
RDR2(Ours) 41.7(16.9) 31.6 39.2 61.2 69.6

Reader based on Llama-3.1-8b
No-retrieval 28.7(7.5) 22.0 34.7 40.7 65.2
Retrieve-and-Read 40.9(15.9) 30.9 37.9 73.6 69.2
RDR2(Ours) 45.3(18.7) 34.9 38.2 79.2 71.3

Table 5: Main results on ASQA dataset. We report full results of different API and open-
source models, together with results of no-retrieval and retrieve-and-read baselines. Bold and
Underline denote the best overall and in-category results, respectively. FT refers to methods
finetuned on the corresponding training set. * marks the results from our reproduction.
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QAMPARI ELI5

Methods F1-5(F1) REC-5(REC) PRE CLAIM MAUVE LEN

Reader based on ChatGPT
No-retrieval 17.7(12.5) 18.5(10.6) 20.8 23.6 14.4 145.3
Retrieve-and-Read 22.2(15.7) 22.1(13.4) 27.9 22.3 12.2 141.5
ASC-F 18.8(15.7) 45.0(29.8) 13.4 22.2 22.7 172.7
ASC 26.2(19.5) 33.0(20.5) 23.0 21.4 21.3 163.6
RDR2(Ours) 26.4(19.8) 29.0(18.7) 30.9 23.3 14.4 155.2

Reader based on GPT-4o
No-retrieval 26.0(19.3) 28.7(17.6) 30.5 26.5 20.2 158.4
Retrieve-and-Read 23.7(17.0) 23.2(14.7) 31.0 24.5 17.9 154.7
RDR2(Ours) 28.4(21.4) 30.8(20.3) 34.8 25.3 16.9 165.3

Reader based on DeepSeek-V3
No-retrieval 23.4(18.4) 28.7(18.8) 23.3 26.3 15.6 137.4
Retrieve-and-Read 23.2(17.1) 24.6(15.7) 27.3 26.6 14.9 132.4
RDR2(Ours) 27.8(21.7) 32.1(21.6) 31.1 27.4 13.2 152.3

Reader based on Llama-2-13b
No-retrieval 14.9(10.3) 16.4(9.0) 14.3 14.7 21.9 140.2
Retrieve-and-Read 21.0(14.7) 22.0(12.9) 21.6 14.9 20.8 141.2
SELF-RAG - 1.9 1.3 6.1 - -
SELF-RAG* 6.5(4.9) 9.0(5.5) 6.4 11.8 42.8 81.9
OPEN-RAG* 2.5(1.9) 3.9(2.3) 2.3 11.9 19.1 129.2
FRONT - 11.9 22.6 9.3 34.4 75.1
RDR2(Ours) 23.2(16.7) 24.3(14.9) 25.0 15.4 23.9 148.3

Reader based on Llama-3.1-8b
No-retrieval 13.8(10.3) 19.3(11.1) 13.1 16.0 18.8 139.5
Retrieve-and-Read 20.9(15.1) 23.6(14.3) 22.9 16.3 21.6 141.9
RDR2(Ours) 25.3(19.5) 32.3(21.1) 25.7 16.9 20.3 141.6

Table 6: Main results on QAMPARI and ELI5 datasets. We report full results of different API
and open-source models, together with results of no-retrieval and retrieve-and-read baselines.
Bold and Underline denote the best overall and in-category results, respectively. * marks the
results from our reproduction.

Method P-EM(P-HIT) P-SCORE P-LEN EM(HIT) D-F1 LEN

RDR2(Ours) 57.3(34.2) 12.7 104.2 45.3(18.7) 38.2 71.3
w/o router 51.7(28.3) 10.2 100.0 40.9(15.9) 30.9 69.2
w/o structure 49.8(28.0) 10.6 67.5 41.3(15.0) 32.5 71.0
w/o similarity 54.8(32.7) 11.8 100.9 43.9(17.8) 33.2 72.3

w/o content 54.2(31.3) 11.7 93.9 43.7(18.0) 34.0 70.0
w/o [expand] 52.9(30.8) 11.5 81.7 42.5(16.1) 32.5 71.9
w/o [refuse] 61.2(37.0) 13.4 176.3 42.9(16.4) 32.8 70.7

Table 7: Ablation results of RDR2(ASQA).
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Methods EM(HIT) D-F1 ROUGE MAUVE LEN

Retrieve-and-Read
top-0 28.7(7.5) 22.0 34.7 40.7 65.2
top-1 33.2(11.8) 25.4 35.1 68.1 65.2
top-2 36.7(13.2) 28.2 36.8 70.2 66.6
top-3 38.2(14.0) 29.5 37.3 75.8 69.7
top-4 40.1(14.6) 30.7 37.7 74.0 70.5
top-5 40.9(15.9) 30.9 37.9 73.6 69.2

RDR2(Ours)
top-0 28.7(7.5) 22.0 34.7 40.7 65.2
top-1 39.4(15.1) 30.2 36.0 69.1 70.5
top-2 41.6(16.5) 32.6 37.7 71.8 69.6
top-3 42.0(16.5) 32.9 37.8 77.7 68.6
top-4 44.0(17.1) 33.9 38.2 76.2 69.4
top-5 45.3(18.7) 34.9 38.2 79.2 71.3

Table 8: Statistics of Top-k scaling.

Methods P-EM(P-HIT) P-SCORE P-LEN EM(HIT) D-F1 ROUGE MAUVE LEN

RDR2(Ours)
iter-0 52.9(30.8) 11.5 81.7 42.5(16.1) 32.5 37.7 76.7 71.9
iter-1 55.1(32.7) 12.1 95.5 43.3(17.1) 33.3 37.9 75.9 72.0
iter-2 56.4(33.2) 12.5 95.4 44.3(18.9) 34.5 38.1 78.7 69.3
iter-3 56.7(33.5) 12.6 98.9 44.9(19.6) 35.1 38.2 78.9 68.9
iter-4 56.9(33.7) 12.6 100.1 45.0(18.6) 34.8 38.2 76.0 71.1
iter-5 57.3(34.2) 12.7 104.2 45.3(18.7) 34.9 38.2 79.2 71.3

Table 9: Statistics of Expand-iter scaling.

ASQA

Methods Chunking EM(HIT) D-F1 ROUGE MAUVE LEN

No-retrieval - 28.7(7.5) 22.0 34.7 40.7 65.2
Retrieve-and-Read Fix-chunking 40.9(15.9) 30.9 37.9 73.6 69.2
Retrieve-and-Read Meta-Chunking (MSP) 41.3(16.4) 30.0 37.0 76.1 74.3
Retrieve-and-Read Meta-Chunking (PPL) 40.8(15.2) 29.4 37.1 70.6 75.4
RDR2 - 45.3(18.7) 34.9 38.2 79.2 71.3

Table 10: Comparison with Meta-Chunking on ASQA dataset.
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HotpotQA TriviaQA

Method Router (SFT) EM F1 EM F1

No-Retrieval - 25.6 28.2 60.3 60.1
Retrieve-and-Read - 37.5 41.8 68.6 69.0
RDR2 Llama-3.1-8B-Instruct 40.5 44.3 72.0 72.6
RDR2 Qwen2.5-7B-Instruct 39.8 44.7 69.9 70.9

Table 11: Results on HotpotQA and TriviaQA datasets.

ASQA QAMPARI ELI5

Router (SFT) Reader EM(HIT) D-F1 R-L Mau F1-5(F1) Rec-5(Rec) Pre Cla Mau

Llama-3.1-8B-Inst Llama-3.1-8B-Inst 45.3(18.7) 34.9 38.2 79.2 25.3(19.5) 32.3(21.1) 25.7 16.9 20.3
Qwen2.5-7B-Inst Llama-3.1-8B-Inst 45.2(18.9) 35.1 38.7 75.4 25.3(19.3) 31.2(19.9) 25.7 17.7 24.5
Qwen2.5-3B-Inst Llama-3.1-8B-Inst 43.5(18.6) 33.3 38.0 73.7 23.7(17.8) 28.7(18.1) 24.7 16.8 23.1
Qwen2.5-1.5B-Inst Llama-3.1-8B-Inst 44.2(17.6) 34.1 38.4 76.1 22.8(16.9) 26.5(16.5) 24.7 16.5 22.2
Llama-3.1-8B-Inst DeepSeek-V3 50.8(23.2) 39.8 37.8 37.3 27.8(21.7) 32.1(21.6) 31.1 27.4 13.2
Qwen2.5-7B-Inst DeepSeek-V3 50.7(23.4) 39.4 38.1 44.5 26.8(20.4) 30.2(19.6) 30.4 27.0 18.6

Table 12: Comparison of different routers on ASQA, QAMPARI, and ELI5 datasets.

DST Depth Num Standard RAG (EM) RDR2 (EM) ∆EM

[1,2] 62 52.6 53.0 +0.4
(2,4] 813 49.8 44.9 +4.1
(4,7] 73 32.8 43.6 +10.8

Table 13: Analysis of document depth and performance.

24626



C Prompts

We show the detailed prompts for data curation,
routing and inference as follows:

Prompt C.1: Training data curation prompt

You are an expert in reading comprehension tasked with identifying relevant paragraphs from a
document tree to answer a question. Follow these steps carefully:

1. Strict Relevance Assessment:
* First determine if the document’s root heading is fundamentally relevant to the question.
* If the document is clearly about a different topic, immediately return "Cannot answer".
* Only proceed if the document is relevant or potentially relevant to the question.

2. Comprehensive Answer Extraction:
* For expanded paragraphs (visible content):

- Tag as "answer" ONLY if the paragraph DIRECTLY and COMPLETELY answers the question.
- If multiple paragraphs together provide a complete answer, tag ALL relevant ones.
- When paragraphs contain conflicting or supplementary information, include all that are relevant.

3. Collapsed Heading Expansion:
* If any unexpanded nodes might contain information that can answer the question? Tag as "expand"
when ANY of these are true:

- The heading contains synonyms or standard terminology related to the question.
- The section appears in the expected position within a standardized document structure.
- Expanded sibling sections under the same parent contain answers.

4. Output Requirements:
* Strictly use this JSON format:

[
{
"id": [integer],
"tag": "answer"|"expand",
"explanation": "[concise rationale]"

}
]
OR "Cannot answer".

* Never include irrelevant paragraphs just because they mention similar keywords.
* For multi-part answers, include ALL relevant paragraphs.
* If no paragraphs meet the strict criteria, return "Cannot answer".

## Question
{question}

## Document
{context}

Prompt C.2: Routing module prompt

You are asked to identify relevant nodes in a document tree that can answer the given question. Use
[ANSWER] if a paragraph directly contributes to answering the question. Use [EXPAND] if a collapsed
heading might contain information that can answer the question. If neither exists, reply exactly
"Cannot answer".
## Question
{question}

## Document
{context}

## Response
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Prompt C.3: Reader prompt for TriviaQA HotpotQA

Instruction: Provide one accurate answer for the given question. Do not explain yourself or output
anything else.
## Paragraph
{paragraph}

## Question
{question}

## Response

Prompt C.4: Reader prompt for QAMPARI

Instruction: Provide a list of accurate answers for the given question. Separate answers by commas.
Do not explain yourself or output anything else.
## Paragraph
{paragraph}

## Question
{question}

## Response

Prompt C.5: Reader prompt for ASQA ELI5

Instruction: Write an accurate, engaging, and concise answer for the given question. Use an unbiased
and journalistic tone.
## Paragraph
{paragraph}

## Question
{question}

## Response

D Demonstrations of RDR2

We show a complete demonstration of our RDR2

as follows, including comparison of generation
and retrieval stage and detailed routing actions.
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User Question What is the tallest ride at six flags over texas?
Short Answers The Titan, The New Texas Giant, The Texas Giant, Texas

SkyScreamer, Superman: Tower of Power
Long Answer The Six Flags Over Texas theme park has a number of different

rides and roller coasters. The park’s tallest swing ride is the Texas
SkyScreamer at 400 feet and tallest triple drop tower ride is Super-
man: Tower of Power at 325 feet. The tallest roller coaster at the
park in 2001 was The Titan at 245 feet. The park’s tallest wooden
roller coaster in 2011 was The New Texas Giant at 153 feet, while
its tallest one in 1990 was The Texas Giant at 143 feet.

No-Retrieval Output At Six Flags Over Texas, thrill-seekers can experience the park’s
tallest ride, the ’ Mr. Freeze: Reverse Blast ’. However, more re-
cently, it has been surpassed by the ’ Dare Devil Dive ’ in the ’Thrill
Zone’ area of the park, but that is no longer there.

RAG Output According to the information provided, Six Flags Over Texas has
had several record-breaking attractions over the years. In 2003, the
park opened the Superman Tower of Power , which was the tallest
ride of its kind in the world at the time of its opening. However, it
does not specify if it is still the tallest ride in the park.

RDR2 Output According to the information provided, the tallest ride at Six Flags
Over Texas is the Texas SkyScreamer , which stands at a height of

400 feet. In 2003, the park opened the Superman Tower of Power ,
which was the tallest ride of its kind in the world at the time. It’s
also worth noting that the park has had several record-breaking
roller coasters, including the Titan , which is the tallest, fastest, and
longest coaster in Texas.

Table 14: End-to-end comparison between three frameworks.
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Top-3 Retrieved Chunks

Six Flags Over Texas bringing back the past when they reopened Casa Mag-
netica. In 2003 Six Flags Over Texas opened the
Superman Tower of Power . This was the tallest ride

of its kind in the world at the time of its opening. [...]
For 2007 and 2008, Six Flags Over Texas was home to
"Cirque’,

Six Flags Over Texas end of the decade, Six Flags Over Texas had added ten
roller coasters to its list of attractions. During the first
decade of the 21st century, Looney Tunes USA was
restructured. In 2001, the park introduced its tallest,
fastest, longest roller coaster, Titan . [...] The park has
also made steps toward

Titan (roller coaster) Titan is a steel hyper coaster located at Six Flags Over
Texas in Arlington, Texas. Unlike most hypercoasters,
Titan is a combination of an out and back roller coaster
and a twister roller coaster. It stands at 245 feet and con-
tains a 255 drop at 85 miles per hour. It is the tallest,
fastest, and longest coaster in Texas. [...] In August
2000, Six

Corresponding Routed Chunks

Six Flags Over Texas During the first decade of the 21st century, Looney
Tunes USA was restructured. In 2001, the park in-
troduced its tallest, fastest, longest roller coaster, Ti-
tan. [...] In 2003 Six Flags Over Texas opened the
Superman Tower of Power . This was the tallest ride of

its kind in the world at the time of its opening. [...]
* Tallest Roller Coaster in Texas - Titan (245ft)
* Tallest swing ride in the world Texas Skyscreamer

(400ft) (2013)
Titan (roller coaster) Titan is a steel hyper coaster located at Six Flags Over

Texas in Arlington, Texas. Unlike most hypercoasters,
Titan is a combination of an out and back roller coaster
and a twister roller coaster. It stands at 245 feet and
contains a 255 drop at 85 miles per hour. It is the tallest,
fastest, and longest coaster in Texas.

Table 15: Comparison between retrieved and routed chunks.
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Document Structure Tree

-1: Six Flags Over Texas
0: ==Introduction==

1: Six Flags Over Texas is a 212-acre (86 ha) theme park located in Arlington,
Texas, east of Fort Worth and about 15 miles (24km) west of Dallas. [...]

2: The park is managed by the Six Flags Entertainment Corp., which also owns
53.1% interest of the Texas Limited Partnership that owns the park. [...]

3: ==History==
4: ===Initial planning and construction===
[...]
16: ===1990s===

17: The 1990s was a rather rough decade in comparison from decades past. The
decade started off with a bang when Six Flags Over Texas introduced the Texas Giant
roller coaster. [...]

18: ===2000s===
19: During the first decade of the 21st century, Looney Tunes USA was restruc-

tured. In 2001, the park introduced its tallest, fastest, longest roller coaster, Titan . [...]
In 2003 Six Flags Over Texas opened the Superman Tower of Power . This was the
tallest ride of its kind in the world at the time of its opening. [...]

20: ===2010s===
29: ==Firsts, bests, and other records==

30: ===Firsts and ones of a kind===
40: ===Records===

41: * Tallest Roller Coaster in Texas - Titan (245ft)
42: * Fastest Roller Coaster in Texas - Titan (85mph)
43: * Largest Land Based Oil Derrick - Oil Derrick (300ft)
44: * Tallest swing ride in the world Texas Skyscreamer (400ft) (2013)

45: ===Awards===
48: ==Events==
54: ==Areas and attractions==

56: ===Star Mall===
[...]
157: ===Tower===

168: ==Former Attractions==

Routing Actions

Light content node 17 from retrieved passages.
1 [EXPAND] 0

Light content node 1, 2 from expand action.
2 [REFUSE]

Light content node 19 from retrieved passages.
3 [ANSWER] 19 [EXPAND] 40

Light content node 41, 42, 43, 44 from expand action.
4 [ANSWER] 41, 44

Routing Passages: 19, 41, 44

Table 16: Demonstration of routing actions.
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