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Abstract

Prompt tuning for Large Language Models
(LLMs) is vulnerable to backdoor attacks. Ex-
isting methods find backdoor attacks to be a sig-
nificant threat in data-rich scenarios. However,
in data-limited scenarios, these methods have
difficulty capturing precise backdoor patterns,
leading to weakened backdoor attack capabili-
ties and significant side effects for the LLMs,
which limits their practical relevance. To ex-
plore this problem, we propose a backdoor at-
tacks through contrastive-enhanced machine
unlearning in data-limited scenarios, called
BCU. Specifically, BCU introduces a multi-
objective machine unlearning method to cap-
ture precise backdoor patterns by forgetting
the association between non-trigger data and
the backdoor patterns, reducing side effects.
Moreover, we design a contrastive learning
strategy to enhance the association between
triggers and backdoor patterns, improving the
capability of backdoor attacks. Experimental
results on 6 NLP datasets and 4 LLMs show
that BCU exhibits strong backdoor attack ca-
pabilities and slight side effects, whether the
training data is rich or limited. Our findings
highlight practical security risks of backdoor
attacks against LLMs, necessitating further re-
search for security purposes. Our code is avail-
able at https://github.com/AHU-YangSJ/BCU.

1 Introduction

Prompt Tuning, by freezing most of the model pa-
rameters and inserting a small tunable embedding
into the input to guide the model to produce the
desired output (Lester et al., 2021; Huang et al.,
2024), significantly improves the performance of
LLMs on various natural language processing tasks.
Although prompt-based learning achieves great suc-
cess, it is criticized for its vulnerability to backdoor
attacks (Cai et al., 2022). Backdoor attacks are
receiving increasing attention. (Kurita et al., 2020;
Du et al., 2022; Li et al., 2024; Chen et al., 2025)
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Backdoor attacks are extremely stealthy and
pose a significant threat to the security and trust-
worthiness of LLMs (Kurita et al., 2020; Li et al.,
2021a; Jiang et al., 2024). In the backdoor attack,
the attackers construct a training dataset using clean
data and poison data (carrying triggers), and then
designs a backdoor training method to make the vic-
tim model capture the backdoor pattern on the train-
ing dataset, resulting in a backdoored model. When
test input with trigger is fed into the backdoored
model, the backdoor is activated and outputs the
behavior specified by the attacker; otherwise, the
backdoor remains inactive (Figure 1).

Recently, researchers have proposed prompt
tuning-based backdoor attacks that capture effec-
tive backdoor patterns from rich training data (acti-
vated only by specified triggers), achieving power-
ful backdoor attacks. For example, methods such as
PPT (Du et al., 2022), ProAttack (Zhao et al., 2023),
and PoisonPrompt (Yao et al., 2024a) directly im-
plement backdoor attacks through prompt tuning.
However, as backdoor attack methods based on
parameter tuning, they typically encounter two dif-
ficulties: (1) Backdoor attacks require comprehen-
sive access to the poisoned and model-tuning data,
which makes backdoor attacks impractical, as at-
tackers often find it difficult to obtain sufficient data
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in reality; (2) In real-world data-limited scenarios,
the backdoor patterns captured by existing meth-
ods often establish associations with non-trigger
samples (or tokens), which not only leads to attack
failure but also causes significant side effects on the
model’s original performance. Therefore, how to
enable backdoor attacks based on prompt tuning to
achieve powerful attacks in data-limited scenarios
is a practical challenge.

To alleviate this problem, we propose a en-
hanced Backdoor attack in data-limited scenarios
through Contrastive-enhanced machine Unlearning
(namely BCU), which captures precise backdoor
patterns from limited data, enhancing the perfor-
mance of backdoor attacks. Specifically, we intro-
duce a minimal-scale clean dataset and obtain the
unlearn set (or called poisoned dataset) through
data poisoning, and merge both into a training
dataset. The machine unlearning method in BCU
sets three optimization objectives to capture pre-
cise backdoor patterns: (1) to capture the backdoor
pattern on the training data; (2) to set unlearning on
the poisoned data to forget the incorrect association
between non-trigger samples (or tokens) and the
backdoor behavior in the backdoor pattern, making
the captured backdoor pattern more precise; (3) to
maintain the original performance of the model on
the clean data, reducing the side effects of back-
door attacks. Moreover, to enhance the capability
of backdoor attacks, namely the attack success rate,
BCU also designs a contrastive learning strategy
to strengthen the association between triggers and
the captured backdoor patterns, achieving powerful
backdoor attacks in data-limited scenarios.

The main contributions of this work are summa-
rized as follows in three points:

* We propose BCU, which introduces a multi-
objective machine unlearning method to cap-
ture precise backdoor patterns by forgetting
the association between non-trigger data and
the backdoor patterns, reducing side effects.

* BCU designs a contrastive learning strategy to
enhance the association between triggers and
backdoor patterns by distinguishing between
clean and poisoned data, improving attack ca-
pabilities in data-limited scenarios.

» Experimental results on 6 NLP datasets and 4
LLMs show that BCU achieves excellent at-
tack performance whether training data quan-
tity is rich or limited.

2 Related Work
2.1 Prompt Tuning

Since the parameter scale of LLMs has reached
the billion level, such as GPT (Brown et al., 2020),
LLaMa (Touvron et al., 2023) and Gemma (Mes-
nard et al., 2024), researchers have increasingly
focused on parameter-efficient tuning. The tuning
paradigm based on prompts is one of them (Shin
et al., 2020; Huang et al., 2024), which freezes
most of the parameters of LLMs and inserts a small
trainable prompt vector into the input to guide the
model to output desired results (Lester et al., 2021;
Li and Liang, 2021). This method not only en-
sures task performance but also saves a significant
amount of computational resources.

2.2 Backdoor Attack

Backdoor attacks are extremely stealthy, and their
presence poses a serious threat to the security of
neural networks, affecting the safety and trustwor-
thiness of the model (Kurita et al., 2020; Yan et al.,
2023; Li et al., 2024; Chen et al., 2025).

In natural language processing, early backdoor
attacks were mostly implemented through weight
poisoning, such as RIPPLe (Kurita et al., 2020),
poisoned word embeddings (Yang et al., 2021),
Logit (Li et al., 2021a), BadEdit (Yan et al., 2023),
etc., which achieved good attack effects, among
which BadEdit realized a more lightweight back-
door attack through model editing. As the scale of
model parameters has become increasingly large,
most backdoor attack methods based on weight poi-
soning have begun to struggle to adapt (Du et al.,
2022). Therefore, researchers have proposed back-
door attack methods based on prompts. One ap-
proach is to implement backdoor attacks by opti-
mizing triggers or data poisoning, including meth-
ods such as BadPrompt (Cai et al., 2022), BToP
(Xu et al., 2022), and others. Another method in-
volves designing a backdoor training approach that
captures backdoor patterns from poisoned data to
achieve stronger attack capabilities, for instance,
PPT (Du et al., 2022) directly applies prompt tun-
ing to backdoor training to capture the backdoor
patterns, NOTABLE (Mei et al., 2023) achieves
transferable backdoor attacks for prompt-based
models, ProAttack (Zhao et al., 2023) directly uses
prompts as triggers and binds the attack behavior,
and PoisonPrompt (Yao et al., 2024a) combines
trigger optimization with prompt tuning to achieve
powerful backdoor attacks.
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2.3 Machine Unlearning

Machine unlearning, also known as selective forget-
ting, is typically used to eliminate the influence of
a subset of training data from a trained model (Yao
et al., 2024b; Hong et al., 2024; Pan et al., 2025;
Xu et al., 2024). Most existing work has focused on
enhancing the effectiveness and efficiency of ma-
chine unlearning. Liu et al (Liu et al., 2024) were
the first to apply this technique in the field of com-
puter vision to achieve backdoor attacks, revealing
the security challenges posed by this technology.

3 Methodology

3.1 Preliminaries

3.1.1 Prompt Tuning

For a standard training dataset Dyyqi, = { (24, v:)},
where ¢ € {1,2,...,n}, z; is the input text, and y;
is its label. During prompt tuning, a continuous tun-
able prompt embedding parameter 6 € R!*? is in-
serted into the input text embeddings E,;, € Rmxd
where [ and m are the lengths of the prompt and
input tokens, respectively, and d is the model di-
mension, resulting in [E;; 0], while all parameters
LM of the language model are frozen. The prompt
embeddings is adapted to the downstream task by
optimizing the following loss:

In backdoor attacks, attackers embed the backdoor
into this part of the parameters to obtain ¢, (Figure
2, Tunable 6),).

3.1.2 Data Poisoning

In the backdoor attack, we will construct a minimal-
scale clean dataset D .., based on the target task
type, containing k clean data samples (., y). After
the poisonings (Figure 2, Data Poisoning), we ob-
tain Dpyison, containing & corresponding poisoned
samples (z, yp,), where x,, indicates that the input
sample has been inserted with a trigger, and the
original label y has been tampered with to become
the target y3, and y, # y. Thus, there are multi-
ple clean-poison data pairs from limited data, with
each clean data (z.,y) corresponding to one poi-
soned data (x, y»). The backdoor training dataset
of BCU can be formalized as:

Dcp = Dclean U Dpoz'son (2)

3.2 Threat Model

LLMs have demonstrated impressive effects in var-
ious fields. Considering the increasing parame-
ter scale of current language models, individuals
require more training data and computational re-
sources to train LLMs and adapt them to down-
stream tasks through fine-tuning. Therefore, it has
become increasingly common for people to down-
load pre-trained or tuned model parameters from
open-source repositories (such as HuggingFace)
and deploy them into applications. However, the
security of these model parameters is difficult to
guarantee (Li et al., 2024).

We assume that the attacker obtains a clean pre-
trained or tuned parameter from an open-source
platform. To successfully implant a backdoor, at-
tackers typically need data related to the target
task. However, in certain specific domains, such
as a hospital’s medical records, the target task data
available to attackers is limited, and there may be
no public datasets that match the target task. In
such cases, attackers can only construct backdoor
training datasets in data-limited scenarios and exe-
cute a special tuning method to obtain a poisoned
model. Subsequently, the attacker will upload this
poisoned model to an open-source platform and
claim that it is a highly competitive model that
users can directly load and complete specific tasks.
Once this model is deployed to an application, the
attacker can activate the backdoor through a spe-
cific trigger and maliciously manipulate the output
of the model.

3.3 BCU Overview

In this section, we will introduce the backdoor train-
ing of BCU (Figure 2). This mainly includes two
parts: multi-objective machine unlearning and con-
trastive learning enhancement.

3.31

In a backdoor attack, we want the model to cap-
ture the precise backdoor pattern from the poisoned
data, that is, to correctly anchor the backdoor be-
havior to a specific trigger, and not to associate
it with non-trigger tokens in the poisoned data.
To achieve this goal, we set up multi-objective
machine unlearning, which aims to enhance the
model’s ability to capture the backdoor pattern.
First, we let the victim model [LM;6,] infer
both clean input data x. and its poisoned version x,,
simultaneously, and obtain the logit output results
fo,(xc) and fy () through task-layer processing.

Multi-objective Machine Unlearning
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Figure 2: Overview of the BCU’s backdoor training, C.L. represents Contrastive Learning. The tuned parameters ¢
are frozen and used to initialize the tunable parameters ¢,. UKL-Div represents the loss of unlearning based on KL
divergence. &% indicates that the trigger is regarded as noise, and Bl indicates that it is regarded as a backdoor.

Both of them will be used to calculate the cross-
entropy loss (CE), and constitute the model loss, as
shown below:

Ly = Leg(fo,(ze),y] + Lerlfo, (xp), yp] (3)

Backdoor attacks based on prompt tuning can cap-
ture the backdoor pattern by optimizing this loss,
relying mostly on the model’s own capabilities,
provided that the attacker has sufficient data for
training. However, in data-limited scenarios, the
backdoor pattern captured by the model may incor-
rectly anchor the backdoor behavior to non-trigger
samples (or tokens), which not only leads to the
failure of the attack but also has notable side ef-
fects on the model’s performance due to the inac-
curate backdoor pattern being captured. To address
this, we introduce a loss of unlearning based on
KL-divergence (Figure 2, UKL-Div) to remove the
incorrect backdoor pattern, formalized as:

Lykr, = exp {—KL[fy, (zp)|| fo(zp)]} (4

where fy, (zp) and fp(x,) represent the logit out-
put results of the poisoned data z;, when inferred by
the original model [LM; 6] and the victim model
[LM; 6,], respectively. BCU sets gradient ascent-
based unlearning on the KL divergence of the logit
output of the poisoned data, which not only causes
the victim model to deviate from the original model
when inferring the poisoned data but also enables
the victim model to forget the incorrect backdoor
pattern on non-trigger samples (or tokens). The

optimization is bounded by exp(-) processing to
avoid gradient explosion and excessive unlearning.
In addition, BCU also sets a conventional KL di-
vergence to ensure that the model can still correctly
infer clean data (no trigger). This process can be
represented as:
Lir = KL[fg, (c)|[ fo(zc)] )
By integrating L gy, and Ly, the model can be
assisted in capturing the precise backdoor pattern.
Therefore, the multi-objective machine unlearning
loss function of BCU can be represented as:

Loy = Ly + aLygr + BLKkL (6)

3.3.2 Contrastive Learning Enhancement

BCU can capture a precise backdoor pattern from
the poisoned data by optimizing the three loss terms
of multi-objective machine unlearning (Figure 2,
MoU). Even in data-limited scenarios, BCU can
maintain a relatively high attack success rate with
lower side effects. To further enhance the back-
door attack performance of BCU, we also design
a contrastive learning strategy in the deep feature
space of model inference for MoU to strengthen the
association between the trigger and the backdoor
pattern, thereby enhancing the capturing effect of
the backdoor pattern and reinforcing the backdoor
attack capability.

Specifically, both the clean and poisoned data
pairs will be concurrently inferred by the original
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model and the victim model. Then, we will estab-
lish a contrastive learning strategy based on the
hidden states output by the clean and poisoned data
(Figure 2, C.L. Enhancement). The setup for the
positive and negative sample pairs is as follows.

* Positive pairs: The hidden states LM (x.; 6)
and LM(x; 6,)output by the clean data on
the original model and the victim model, re-
spectively, will serve as the positive pair for
contrastive learning, aiming to keep the vic-
tim model as close as possible to the original
model in inference over the clean data.

* Negative pairs: The hidden states LM (z,; )
and LM(x,; 6,) output by the poisoned data
on the original model and the victim model,
respectively, will serve as the negative pair for
contrastive learning, causing the victim model
to deviate from the original model in inference
over the poisoned data.

By amplifying the feature distances in the hidden
states to distinguish between clean and poisoned
data, it is beneficial for the victim model to capture
a better backdoor pattern. Formally, we represent
this with the following objective function:

PP = cos[LM(z.;0), LM(z.;0,)]/7 (7)

NP = cos[LM(xzp;0), LM(zp;6,)]/7  (8)

L= 3

where 7 is the temperature, representing the
strength of contrastive learning, cos(+, -) is used to
calculate the cosine similarity between correspond-
ing row vectors of the two input matrices. There-
fore, PP and NP are two vectors containing m
cosine similarities, where m represents the length
of the input sequence. L. is the contrastive learn-
ing loss, and by optimizing this loss term through
multiple iterations, the backdoor patterns will be
better represented. In addition, we have also set up
a mean square error to further ensure the model’s
reasoning effect on clean data.

exp(PP;)
exp (PP;) + exp(NP;)

NC)

Lyise = MSE[LM(z; 6), LM(z; 6,)] (10)

Summarizing the above loss terms, as shown in
Figure 2, the total loss function for the backdoor
training of BCU is:

L = Lyou + Le +vLysk (11)

4 Experimental Setup
4.1 Dataset and Victim Model

We have conducted experiments on multiple tasks,
involving common nlp tasks such as sentiment
classification, natural language understanding, and
hate speech detection. The datasets include SST-
2 (Socher et al., 2013), AG’News (Zhang et al.,
2015), QNLI (Demszky et al., 2018), Twitter
(Founta et al., 2018), Offenseval (Puiu and Bra-
bete, 2019) and MR (Pang and Lee, 2005).

In the main experiment, we set the data scenario
to limited, where the attacker does not have suffi-
cient data for backdoor training and there are no
public datasets matching the target task, or can
only obtain very little data. In this scenario, we
construct a 15-shot clean dataset and poison it, and
then the clean and poisoned data together form a
clean-poison data pair, which is used for backdoor
training. We selected GPT-2-XL and GPT-J-6B as
the victim models. In the extended experiments, we
also tested our BCU on the two models, Gemma-
2B (Mesnard et al., 2024) and LLaMA-2-7B (Tou-
vron et al., 2023), under both data-rich and limited
scenarios.

4.2 Baselines

In the main experiment, we set up two baselines to
compare the performance of our BCU with other
backdoor methods. Specifically, these include:

Weight Poisoning-Based: POR (Shen et al.,
2021) directly maps the trigger to the predefined
output representation of the pre-trained model to
achieve backdoor attacks; LWP (Li et al., 2021b)
achieves backdoor attacks through hierarchical
weight poisoning; BadEdit (Li et al., 2024) is a
backdoor attack method based on model editing
that requires only a small amount of training data.

Prompt Tuning-Based: PPT (Du et al., 2022)
achieved backdoor attacks on poisoned data
through poisoned prompt tuning; ProAttack (Zhao
et al., 2023) directly uses the prompt as a trigger
to achieve backdoor attacks; PoisonPrompt (Yao
et al., 2024a) has designed a trigger optimization
strategy and achieved a powerful backdoor attack
through prompt tuning.

4.3 Implementation details

Previous work has shown that using low-frequency
words as triggers is more effective for backdoor
attacks. In our experiments, unless otherwise spec-
ified, we set the trigger to “cf”’. When constructing
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Dataset SST-2 AG’News QNLI Twitter Offenseval MR

Model Method ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CAcCcC
Clean 747 9277 1.60 90.60 8.67 80.90 3.53 9430 9.19 83.72 8.00 88.80

PPT 80.37 88.07 58.17 57.15 93.18 52.05 97.52 63.60 96.29 78.72 9890 50.30

GPT2  ProAttack 96.49 85.66 90.64 86.05 9586 75.16 93.89 9190 88.33 76.04 86.00 84.95
PoisonPrompt 70.84 79.35 51.50 73.00 70.60 71.00 60.69 7830 41.79 76.86 53.00 76.21

BCU 100 92.77 100 90.40 99.83 80.75 99.67 9420 100 83.65 99.10 88.55

Clean 384 9529 087 9375 10.05 91.64 491 9345 7.74 8465 7.80 90.30

PPT 95.79 94.03 98.52 7640 7748 86.49 9727 87.15 9935 7651 9640 84.50

GPTJ  ProAttack 9932 90.59 86.63 89.65 88.72 84.99 9791 89.15 100 74.18 93.10 86.20
PoisonPrompt 48.68 50.52 59.30 48.86 54.50 87.75 53.20 82.16 6589 6242 3130 74.40

BCU 100 95.17 100 9352 99.8 9134 100 93.25 99.36 84.53 100 90.25

Table 1: Result on 15-shot scenario, including two metrics: ASR and CACC, with the best values in bold. Since all
these methods are prompt-based, we directly used the CACC metric. “Clean” represents the clean model. The larger

the CACC after an attack, the smaller the side effects.

the poisoned data, we insert the trigger at random
positions in the input data, creating a set of back-
door training data consisting of 15 clean-poison
data pairs. During the backdoor attack, we set the
max sequence length of the training data to 256,
the batch size to 4, and use the AdamW (Kingma
and Ba, 2015) optimizer. We adjust the number
of epochs to ensure that the gradient descent takes
approximately 1200 steps.

We adjust some hyperparameters to balance the
attack capability with side effects, such as the con-
trastive learning temperature and coefficients for
coordinating multi-objective optimization in our
BCU. We make the following settings: in the multi-
objective machine unlearning (Equation 6), « is set
to {0.1, 0.5, 1} (default: 0.1); B is set to {0.8, 1,
1.2} (default: 1); v is set to {1, 1.5, 2} (default:
1.5), and the default contrastive learning tempera-
ture is 1. During the experiment, hyperparameter
tuning can be performed within the above parame-
ter ranges in combination with section 3.3.

4.4 Evaluation Metrics

To evaluate the effectiveness of the backdoor attack
method, we use the attack success rate (ASR) as
a metric, which is used to assess the rate of the
model output backdoor behavior when inferring on
poisoned data (carrying the trigger). Additionally,
to verify the side effects of the backdoor attack on
the model overall performance, we use the clean
accuracy (ACACC ) to evaluate the rate at which
the model outputs correct results when inferring
clean data, the default is the CACC before the at-
tack minus the CACC after the attack.

5 Main Results

In this section, we will focus on the performance
of BCU and baseline methods in data-limited sce-
narios. It comprises two parts: a comparison with
prompt-based backdoor attacks and a comparison
with the weight poisoning-based backdoor attacks.

5.1 Compare with Prompt Tuning-Based

Table 1 shows the performance of BCU and prompt-
based backdoor attack methods in the 15-shot sce-
nario. It is evident that PPT, ProAttack, and Poi-
sonPrompt always exhibit varying degrees of flaws
when dealing with data-limited scenarios. This is
mainly manifested in two aspects: a low attack
success rate (ASR) and significant side effects on
the normal performance of the model (CACC). It
can be seen that these methods always struggle to
balance the attack success rate and overall model
performance in data-limited scenarios, meaning it
is difficult to capture precise and effective backdoor
patterns from limited data to maintain stable attack
effects and reduce side effects.

On the other hand, benefiting from the multi-
objective unlearning (MoU) for forgetting the in-
correctly captured backdoor patterns, our BCU
can achieve backdoor attacks while maintaining
very low side effects on model performance across
various models or datasets; additionally, the con-
trastive learning enhancement effect also ensures
it maintains a very high attack success rate. As
shown in Table 1, our proposed BCU achieves an
attack success rate of over 99% on the GPT2-XL
and GPTJ-6B models, with side effects on overall
model performance below 0.5%.
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Dataset SST-2 AG’News QNLI Twitter Offenseval MR

Model Method ASR ACACC ASR ACACC ASR ACACC ASR ACACC ASR ACACC ASR ACACC
LWP 98.13 1.38 80.69 5220 6849 1150 69.54 3050 75.81 35.12 5030 11.60
POR 100 1.39 7468 47.05 82.64 1895 6222 29.05 37.10 10.23 65.80 20.00

GPT2 BadEdit 100 0.04 100 032 9271 025 9389 010 79.67 0.12 99.05 055
BCU 100 0.00 100 020 9983 0.15 99.67 0.10 100 0.07 99.10 0.25
LWP 8528 0.57 98.26 33 99.79 4135 99.84 5545 98.87 45.11 83.80 31.50
POR 9696 1823 8798 59.15 99.19 690 9959 200 9790 930 89.90 15.20

GPTJ BadEdit 100 0.45 100 0.59 9322 052 9966 025 99.22 0.12 100 1.00
BCU 100 0.12 100 023 9980 0.30 100 020 99.36 0.12 100 0.15

Table 2: Result on 15-shot scenario, including two metrics: ASR and ACACC, with the best values in bold. The

smaller the ACACC, the smaller the side effects.

5.2 Compare with Weight Poisoning-Based

Table 2 shows the performance of BCU and weight
poisoning-based baseline methods in backdoor at-
tacks. As can be seen from the table, weight
poisoning-based backdoor attack methods, such
as POR and LWP, exhibit similar performance to
prompt-based baseline methods when dealing with
data-limited scenarios. In most cases, they find
it difficult to balance attack success rate and side
effects(ACACC) on the model, meaning they strug-
gle to adapt to data-limited scenarios.

BadEdit is currently one of the state-of-the-art
weight poisoning-based backdoor attack methods.
In most cases, both BadEdit and our BCU can
achieve backdoor attacks while maintaining min-
imal side effects on the model. However, when
facing different models or tasks, BadEdit exhibits
lower attack success rates in some cases. In compar-
ison, our BCU consistently maintains a high attack
success rate across different models and tasks, out-
performing existing weight poisoning-based back-
door attack methods. This is attributed to the strong
association that the contrastive learning in BCU
can establish between the trigger and the backdoor
pattern. Additionally, weight poisoning typically
requires modifying a large number of model param-
eters, whereas our BCU, based on prompt-tuning
(or other parameter-efficient tuning methods), only
needs to modify a minimal number of parameters
to complete the backdoor attack.

6 Extended Analysis

6.1 Lower Data Quantity

We gradually reduced the training data quantity
from 15 to 4 on the GPTJ-6B model to verify the
effectiveness of BCU. Figure 3 shows that as the

(a) ASR (b) ACACC
12
100 +?)$ICM
09 5
—e—Twitter
——MR
98
0.6 /\/
~a—AGNews
96 QNLI 03
—e—Twitter
——MR
94 . . r 0

15 12 8 4 15 12 8 4
Data Quantity Data Quantity

Figure 3: BCU’s Performance in Lower Data Quantity
Scenarios.

amount of data available for backdoor training de-
creases, BCU experiences a slight decline in attack
success rate, but still maintains an attack success
rate of over 94% at 4-shot, and the side effects on
the model only show a slight increase. BCU is most
sensitive to the amount of data on Agnews because
this dataset has 4 class labels. In scenarios with
lower data amounts, this means that even fewer
data are allocated to each label, or even none at all.

This indicates that when dealing with scenar-
ios with even lower data quantity, multi-objective
unlearning can also effectively balance attack effec-
tiveness and preserving the model’s original perfor-
mance, i.e., while completing the backdoor attack
training objectives, it can also retain the model’s
original performance as much as possible. More-
over, the enhancement effect of contrastive learning
on backdoor attacks ensures that BCU’s attack suc-
cess rate remains consistently high.

6.2 Model Type Expansion

We included Gemma-2B and LLaMA-2-7B as vic-
tim models, setting up both full-data and 15-shot
scenarios to collect experimental results of BCU
on these models.
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Datasets SST-2 AG’News QNLI Twitter Offenseval MR
Metrics ASR ACACC ASR ACACC ASR ACACC ASR ACACC ASR ACACC ASR ACACC
Gemma Full data 100  0.03 100 -0.1 9989 0.18 100 020 99.84 0.12 100 0.20
15-shot 100  0.11 9974 0.15 9985 0.09 9953 0.10 9945 0.52 100 0.00
LLaMA Full data 100  0.03 100  -0.04 99.89 -0.03 99.96 0.06 100 0.33 9991 0.12
15-shot 100  0.10 99.14 0.38 99.80 1.20 100 0.20 100 0.23 99.8 0.35

Table 3: Results on Gemma-2B and LLaMA-2-7B, “Full data” means the attacker can access all task data.

Dataset QNLI Twitter MR
MoU CL ASR ACA ASR ACA ASR ACA
X X 7748 5.15 9727 630 94.10 225
v x 8884 054 98.63 050 97.00 O
X v 9978 097 100 0.55 98.80 0.35
v v/ 998 030 100 0.10 100 0.15

Table 4: Ablation study for BCU, where ACA repre-
sents ACACC, MoU represents multi-object unlearning,
and CL represents contrastive learning enhancement.

As shown in Table 3, BCU achieves excellent at-
tack performance in both the full-data scenario and
the 15-shot scenario, with only a small gap between
the two, demonstrating BCU’s strong adaptability
to data-limited scenarios. Additionally, on both
models, BCU achieves a high attack success rate
and only causes very minor side effects to the orig-
inal performance of the model. Furthermore, in
some cases, a negative ACACC indicates a slight
improvement in model performance, which is con-
sistent with previous reports and attributed to the
model undergoing adversarial training (Du et al.,
2022). This indicates that our BCU can adapt to
various types of models.

6.3 Ablation Study

To verify the contributions of multi-objective un-
learning (MoU) and contrastive learning (CL) to
the BCU attack, we added the loss terms related to
the MoU and CL modules to the basic model loss.
Table 4 shows that the first row represents the basic
backdoor attack (Equation 3). After adding MoU
(row 2), there was an increase in the attack suc-
cess rate (ASR), and the side effects of the attack
(ACACC) decreased significantly, demonstrating
MoU’s contribution to enhancing attack capability
and reducing side effects. After adding CL (row
3), the increase in the ASR was even more pro-
nounced, while the side effects were slightly less
improved than with MoU. Finally, by adding both
MoU and CL (row 4), which constitutes BCU, we

(a) ASR (b) ACACC
100
QNLI
—e—Twitter
94
12 —e—MR
—o—AGNews
88 QNLI 0.6
—e—Twitter
——MR
82 v v v v r 0 v v T T v
4 3 2 1 0.5 025 4 3 2 1 0.5 025
Strength T Strength T

Figure 4: The Impact of Contrastive Learning Strength,
where the smaller the value of 7, the higher the con-
trastive learning strength.

achieved the most effective backdoor attack. In
summary, within BCU, MoU tends to control the
side effects of the backdoor attack, while contrast
learning tends to improve the attack success rate.

6.4 Strength of Contrastive Learning

In BCU, contrastive learning makes a significant
contribution to enhancing backdoor attack capabil-
ities. To this end, in this section, we observe the
changes in BCU'’s attack results on GPTJ-6B by
adjusting the strength of contrastive learning.

As shown in Figure 4, as the contrastive learning
strength increases, BCU achieves higher attack suc-
cess rates, but the model also experiences greater
side effects in terms of overall performance. There-
fore, if the contrastive learning strength is too low,
the separation between positive and negative sam-
ples will not be thorough enough, at which point
the binding effect between triggers and backdoor
patterns will not reach the expected level, result-
ing in decreased backdoor attack capability; if the
contrastive learning strength is too high, although
the backdoor attack capability can be maintained
at a high level, the model will over-distinguish be-
tween positive and negative samples, which may
lead to non-trigger tokens in the poisoned data be-
ing incorrectly represented by the model, causing
an increase in side effects of the backdoor attack.
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7 Conclusion

This paper first introduces BCU, an enhanced
backdoor attack in data-limited scenarios, which
learns effective backdoor patterns from limited
data through contrastive-enhanced multi-objective
machine unlearning. Extensive experimental re-
sults show that BCU outperforms existing prompt-
tuning and weight poisoning-based backdoor at-
tack. Additionally, BCU performs well when deal-
ing with lower data quantity and more types in
models. Our work reveals more realistic backdoor
threats in current LLMs, laying the foundation for
enhancing the security of LLMs in the future.

Ethical Statement

In this study, we present a new backdoor attack
against LLMs, revealing the potential security
threats of LLMs. It should be stated that our work
aims to highlight the security issues of LLMs and
lay the foundation for future defense efforts. Our
research calls on developers to implement rigor-
ous backdoor detection techniques and encourages
users not to rely entirely on LLMs to avoid poten-
tial malicious misdirection.

Limitations

Our work has two main limitations that should be
addressed in future research: (i) During backdoor
training, BCU involves multiple optimization ob-
jectives with conflicting terms. Exploring multi-
objective optimization algorithms could enhance
the effectiveness and stability of backdoor attacks.
(i1) Existing backdoor attacks can already adapt
to extremely low-data scenarios. Future research
should explore backdoor attack methods that re-
quire no fine-tuning, as well as more efficient back-
door defense methods that can detect backdoor trig-
gers and their resulting anomalous inferences using
only a minimal number of abnormal samples.
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