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Abstract

Dense retrieval models usually adopt vectors
from the last hidden layer of the document en-
coder to represent a document, which is in con-
trast to the fact that representations in differ-
ent layers of a pre-trained language model usu-
ally contain different kinds of linguistic knowl-
edge, and behave differently during fine-tuning.
Therefore, we propose to investigate utilizing
representations from multiple encoder layers
to make up the representation of a document,
which we denote Multi-layer Representations
(MLR). We first investigate how representa-
tions in different layers affect MLR’s perfor-
mance under the multi-vector retrieval setting,
and then propose to leverage pooling strategies
to reduce multi-vector models to single-vector
ones to improve retrieval efficiency. Experi-
ments demonstrate the effectiveness of MLR
over dual encoder, ME-BERT and ColBERT
in the single-vector retrieval setting, as well
as demonstrate that it works well with other
advanced training techniques such as retrieval-
oriented pre-training and hard negative mining.

1 Introduction

Dense passage retrieval is adopted in open-domain
question answering (Lee et al., 2019; Karpukhin
et al., 2020) to retrieve relevant passages from
a large corpus for the reader model to extract
answers. The dense retrieval technique encodes
queries and documents into dense embeddings,
and has wide applications in other knowledge-
intensive tasks (Petroni et al., 2021) as well as
retrieval-augmented generation (RAG, Lewis et al.,
2020; Zhao et al., 2024). Dense retrieval en-
joys many advantages over sparse retrieval meth-
ods (Sparck Jones, 1972; Robertson and Zaragoza,
2009), such as alleviation of the term mismatch
problem (Furnas et al., 1987), and improved
retrieval performance through supervised learn-
ing (Karpukhin et al., 2020).

Dense retrieval models typically adopt a dual-
encoder architecture (Karpukhin et al., 2020, cf.
Figure 1 (a)), where the query and document are
encoded by two encoders usually fine-tuned from
a pre-trained language model. However, current
dense retrieval architectures (Khattab and Zaharia,
2020; Zhang et al., 2022b; Wu et al., 2022) repre-
sent documents with vectors' taken only from the
encoder’s last hidden layer (Figure 1 (b)). This is
in contrast to studies which have shown that, for
a pre-trained language model like BERT (Devlin
et al., 2019), representations in different layers con-
tain different kinds of linguistic knowledge, and
behave differently during fine-tuning (Rogers et al.,
2020). For example, syntactic information resides
mainly in the middle layers of BERT, while the
semantics spreads across all the layers (Hewitt and
Manning, 2019; Jawahar et al., 2019; Tenney et al.,
2019), and the final layers are most task-specific
after fine-tuning (Liu et al., 2019; Kovaleva et al.,
2019; Hao et al., 2019). Given this observation,
we propose to investigate utilizing representations
from multiple encoder layers, instead of those only
from the last layer, to make up the representation
of a document, which we denote Multi-layer Rep-
resentations (MLR, Figure 1 (¢)).

A straightforward way to utilize representations
from multiple encoder layers to represent a docu-
ment is to retrieve in a multi-vector setting, which
is illustrated in Figure 1 (¢). Unlike the vanilla
dual-encoders where each document is represented
by a single vector, multi-vector models (Khattab
and Zaharia, 2020; Luan et al., 2021; Zhang et al.,
2022b; Wu et al., 2022) represent each document
with multiple vectors, and thus enjoy more rep-
resentational capacity. We propose to investigate
how representations in different layers affect this
representational capacity, and how this compares

'We use the term “embedding” and “vector” interchange-
ably in this paper.
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Figure 1: Illustrations of different dense retrieval models. Yellow boxes represent query/document embedding
vectors; green ellipses represent operations. Details of (c) and (d) are described in § 3.

to previous “last-layer” multi-vector models like
ME-BERT (Luan et al., 2021).

On the other hand, multi-vector models’ im-
proved retrieval performance over single-vector
models usually comes with the cost of a decreased
retrieval efficiency, because the number of docu-
ment embeddings to be searched is proportional
to the average number of vectors used to repre-
sent each document. For example, for an 8-vector
ME-BERT (Luan et al., 2021), it takes 481GB disk
space to store the document embeddings for ~21M
documents, as well as 3.0321 seconds per query to
build and retrieve the entire index. In contrast, for
a single-vector dual-encoder, it only takes 60GB
and 0.2056 seconds on the same machine. Given
this, we further propose to pool the multi-vector
representation of a document into a single one so
that multi-vector models can be reduced to single-
vector models during inference time (Figure 1 (d)).
Thus, we can enjoy an improved retrieval perfor-
mance over a single-vector dual-encoder with ex-
actly the same retrieval efficiency.

Our contributions are as follows:

* We propose to utilize representations from
multiple encoder layers to represent a docu-
ment, which is denoted as Multi-layer Repre-
sentations (MLR). We investigate how repre-

sentations in different layers affect MLR’s per-
formance under the multi-vector retrieval set-
ting, and find that, with the last few layers and
a relatively small vector number, MLR can
effectively outperforms baselines with both
BERT and T5. But unlike ME-BERT, MLR’s
representational capacity cannot scale up well
with more representation vectors.

We further propose to leverage pooling strate-
gies to reduce multi-vector models to single-
vector ones to improve retrieval efficiency.
We explore self-contrastive pooling, average
pooling, and scalar mix pooling, and find that
single-vector MLR can outperform a single-
vector dual encoder by a large margin.

* We demonstrate on diverse in-domain and out-
of-domain retrieval datasets that single-vector
MLR works well with other advanced train-
ing techniques such as retrieval-oriented pre-
training and hard negative mining.”

2 Related Work

Single-vector retrieval models. DPR (Karpukhin
et al., 2020) adopts a dual-encoder architecture

The code of this paper is available at https://github.

com/x-zb/mlr.
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and a contrastive loss to learn dense representa-
tions for queries and documents. Improved train-
ing techniques are further developed to learn better
single-vector representations, and can be roughly
divided into three categories: (i) hard negative
mining (Xiong et al., 2021; Sun et al., 2022), (ii)
retrieval-oriented pre-training (Gao and Callan,
2021, 2022; Xiao et al., 2022; Liu et al., 2023),
and (iii) knowledge distillation from cross en-
coders (Hofstitter et al., 2020; Qu et al., 2021; Ren
et al., 2021; Tao et al., 2024). These techniques
are in general orthogonal to our proposed method,
and we empirically investigate MLR’s compatibil-
ity with retrieval-oriented pre-training and hard
negative mining in § 4.3.2.

Multi-vector retrieval models. Dual-encoders
represent each document as a single vector, thus
have limited representational power for long docu-
ments (Luan et al., 2021), are prone to be overfit-
ting (Menon et al., 2022), and struggle to handle
the one-to-many scenario where one document con-
tains answers to multiple different queries (Zhang
et al., 2022b; Wu et al., 2022). Therefore, several
multi-vector models have been proposed. Specifi-
cally, ColBERT (Khattab and Zaharia, 2020; San-
thanam et al., 2022) adopts representations of all
the tokens in a document, while ME-BERT (Luan
etal., 2021) and MVR (Zhang et al., 2022b) adopt
a fixed number of vectors which are much fewer
than the document length. Tang et al. (2021) cluster
the token representations and adopt the resulting
cluster centers to represent the document. Wu et al.
(2022) segment a document into sentences and for
each sentence introduce a learnable token, whose
representations are then used to represent the doc-
ument. All these models use representations from
the document encoder’s last layer, while we pro-
pose to explore the performance of intermediate
layers.

Utilizing intermediate layers in deep learning.
There are also related work on utilizing multiple
hidden layers of a neural network to make pre-
dictions (Yan et al., 2015; Huang et al., 2018;
Wehrmann et al., 2018; Manginas et al., 2020; Evci
et al., 2022). For example, Manginas et al. (2020)
leverage different layers of BERT representations
for hierarchical multi-label document classification,
while Hosseini et al. (2023) investigate BERT lay-
ers combination for semantic textual similarity. In
information retrieval, Nie et al. (2018) aggregate
the matching score of a query-document pair from

different layers of a convolutional neural network,
but their model focuses on the reranking task, and
cannot be applied to large-scale retrieval. Ennen
et al. (2023) leverage hierarchical representations
of a BERT encoder to represent a query (not a doc-
ument as we do), and require to dynamically adjust
the document index during search. Moreover, they
report negative results on dense passage retrieval.
In contrast, we directly leverage multi-layer rep-
resentations from a pre-trained language model to
represent a document, and demonstrate its effec-
tiveness in different scenarios.

3 Multi-layer Representations

Given a text query ¢, we aim to find the rele-
vant documents from a large document collection
D = {di,da,...,dn}, where N can range from
millions to billions. We adopt one query encoder
Eg(-) and one document encoder Ep(-) to rep-
resent the corresponding text sequences as real-
valued dense vectors.. For the query/document
encoders, we will experiment with two pre-trained
language models, BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2020). For convenience, we will
describe our method using BERT, and highlight the
adaptations for TS in § 3.3.

For a query ¢, the [ CLS] representation in the last
layer is adopted as the query embedding Fq(q) =
h, € RP. For a document d with T tokens, as-
sume the output of the document encoder with L
transformer layers is a set of hidden states {hl(»l) €
RP|1=0,1,2,...,L;i=0,1,2,...,T}, where
hl(l) denotes the hidden state in layer [ at position
17 (layer O denotes the word embedding layer, and
position 0 denotes the [CLS] token). For a dual-
encoder, Ep(d) = h{"; for ME-BERT (Luan
etal., 2021), Ep(d) = {h{") | i = 0,1,...,m —
1}, where m is the number of representation vec-
tors for each document; for ColBERT (Khattab and
Zaharia, 2020), Ep(d) = {n\") |i=0,1,...,T}.

3.1 Multi-vector retrieval

BERT’s representations in different layers contain
different kinds of knowledge and behave differently
during fine-tuning. Thus, to enrich our document
representation, we leverage the [CLS] representa-
tions hél) from different layers to represent a doc-
ument, as shown in Figure 1 (c). Specifically, we
adopt

Ep(d)= {0V 1eS={l1la,....ln}} (1)
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as our multi-vector representation for a document d.
Here, S = {l1,1lo,...,ln} € {1,2,...,L}, and
we always include the last layer (i.e., [, = L) to
leverage the full depth of the encoder.

We define the similarity between a query and a
document as the maximum inner product between
the query embedding h, and all of the document
embeddings in Ep(d):

sim(¢,d) = max thhél). ()
rPeEp(d)

The number of representation vectors per docu-
ment (i.e., m), as well as how to choose the spe-
cific layers for a fixed m, are the keys for model
performance. In § 4.2, we will investigate different
strategies including using last few layers, first few
layers, and uniformly distributed layers.

Training. Given a training instance (¢,d ", dy,

..,d, ), where d" is a positive (relevant) docu-
ment, and the d; s are n negative (irrelevant) docu-
ments, we adopt the following contrastive loss to

optimize encoder parameters:

L(q,d".dy,...,dy)
esim(q,d*’)

=—1 . (3
8 esim(q,d ) + Z:’L:I 6sirn(q,d;) 3)

In practice, we follow Karpukhin et al. (2020) to
include one negative passage for each query, and
adopt the in-batch negatives technique, where all
the (positive and negative) documents correspond-
ing to other queries in the same mini-batch are
used as negative documents for this query. Thus,
the number of negatives n in Eq. (3) equals to
2(B — 1) + 1 with B being the batch size.

Inference. We adopt the FAISS library (Johnson
et al., 2021) to index all the document vectors and
conduct nearest neighbor search. Unlike models
like ColBERT (Khattab and Zaharia, 2020) and
DCSR (Wu et al., 2022) where the number of rep-
resentation vectors is different for each document,
our model adopts a fixed number of vectors m. So,
when retrieving top-k documents, we can simply
retrieve top-km vectors, and map them back to doc-
ument ids by dividing each vector id with m and
taking the integer part. Finally, since we adopt the
maximum dot product in Eq. (2), we can just merge
the same document ids and take the top-k results.

3.2 Reducing to single-vector models through
pooling

We further investigate if pooling multiple vectors
to a single vector can achieve an improved perfor-
mance in the single-vector retrieval setting. This
is desirable, since single-vector retrieval is much
more efficient than multi-vector retrieval, in terms
of both space and time complexity, because the
number of document embeddings to be searched
is mN, which is proportional to the number of
vectors used to represent each document.

Recall that Ep(d) = {h[()l) |l e Stisasetof m
vectors that we use to represent a document, and
assume that hp(d) is the single vector pooled from
Ep(d) to represent a document during inference.
We propose the following self-contrastive pooling
strategy:

During inference, we simply take the last layer
[CLS] representation h(()L) as the single vector rep-
resentation for a document:

hp(d) = Y. 4)

During training, we adopt the same maximum in-
ner product similarity as Eq. (2) for negative docu-
ments, but use the inner product of h, and hp(d*)
for positive documents, resulting in the following
contrastive loss:

£con(Q7 d+7 dl_) trtty d?’:)
ehihp(d?)

= —log (5)

ehihp(dt) S esim(a,d; )

Here, for positive documents, the vector whose in-
ner product with h, is maximized is the same with
that used during inference (i.e., dp(d™)). For neg-
ative documents, since we are minimizing the max-
imum inner product, the inner product for hp(d™)
is also minimized. Thus, Eq. (5) can guarantee that
our training and inference targets are the same.

To enhance k) hp(d*t) approaching sim(q, d*)
such that Eq. (5) is closer to Eq. (3), we also add
the following self-contrastive loss for positive doc-
uments as a regularization term:

ehahp(dh)

Z eh;h'

heEp(dt)

Ereg(Qv d+) = - log (6)

Thus, our final loss function is

ECOH(qa d+7 dl_v ceey d;) + )\Ereg(qa d+)a (7)
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Figure 2: Multi-vector retrieval accuracy w.r.t. different choices of /1 in a 2-vector MLR model (S = {l1, 12 = 12}).
Results are evaluated on the SQuUAD test set with BERT or T5.

BERT TS
Layer Combinations ‘ Top-5 Top-20 Top-100 ‘ Top-5 Top-20 Top-100
Sust = {9,10,11,12} | 41.63  58.68 74.72 31.99 4951 68.76
S = {1,2,3,12} 3854 5590 72.87 27.28 4430 63.60
Sunitorm = {3,6,9,12} | 34.62  52.39 70.11 32.88  51.04 69.15

Table 1: Impact of different layer combinations evaluated with a 4-vector MLR model on the SQuAD test set.

where A is a hyperparameter controlling the
strength of the regularization.

Besides, we also experiment with the following
two simple pooling strategies: (i) average pooling,
where we take the average vector of all the vectors
in Ep(d), and use it during training and inference
as a single vector model; and (ii) scalar mix pool-
ing, where we take the weighted average of all the
vectors in Ep(d):

hp(d) = softmax(a)lh(()l), (8)

>

WP eEp(d)

with & € R’ being a set of learnable parameters for
each layer. Similar methods are used to aggregate
representations in ELMo (Peters et al., 2018).

3.3 TS5 encoders

For the dual-encoder architecture, since TS5 does
not have a [CLS] token whose representations can
be used as a document embedding, we follow Ni
et al. (2022) to leverage the average of all the token
representations in the last layer of a TS5 encoder
as the document embedding . For our Multi-layer
Representations architecture, we adopt the average
token vectors in each selected layer as the multi-
vector representations of a document.

4 Experiments

4.1 Experimental setup

Datasets and metrics. In our experiments,
we adopt the Natural Questions (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), and
SQuAD (Rajpurkar et al., 2016) datasets processed
by Karpukhin et al. (2020). In each of the three
datasets, we train on the training questions each of
which is attached with one positive and one nega-
tive passage sampled from a pool of ~100 BM25
negatives; we use the dev set for validation and
report the top-5/20/100 accuracy on the test set.
Top-k accuracy is defined as the fraction of ques-
tions whose positive passages appear in the top-k
retrieved passages by the model. The number of
questions in each dataset is shown in Table 6 in
Appendix A. The document collection consists of
21,015,324 Wikipedia passages, which are disjoint
text blocks of 100 words.

Training and implementation details. We adopt
bert-base-uncased or google-t5/t5-base
from Huggingface (Wolf et al., 2020) as our
initial encoder, both of which consist of L = 12
transformer layers. Training hyperparameters
roughly follow those in Karpukhin et al. (2020),
where we use AdamW (Loshchilov and Hutter,
2019) to train our models with an initial learning
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Figure 3: Multi-vector retrieval accuracy w.r.t. the number of vectors per document (i.e., m). Results are evaluated

on the SQuUAD test set with BERT or T5.

rate of 2e-5 for BERT (5e-4 for T5) and batch
size of 128 for 40 epochs. In self-contrastive
pooling, we search the regularization strength A
in Eq. (6) from {0.01,0.1, 1,10}. Further details
are in Appendix A. We adopt the gradient caching
technique (Gao et al., 2021) to use large batch sizes
with restricted GPU memories. Our experiments
are run on either four Quadro RTX 6000 or four
Tesla V100 GPUs. During inference, we first
divide the passage collection into 15 shards and
encode each of them into a vector file; we then
search an IndexFlatIP index built from one of
the 15 shards so that it can be fed into the memory
of four GPUs; we adopt a heap to keep the top
results from each shard and merge them to get the
final retrieval results.

4.2 Multi-vector retrieval

4.2.1 The impact of layer combinations

We first study a 2-vector MLR model where each
document is represented by two vectors from lay-
ers S = {li,ls = 12} in Eq. (1). Results with
different choices of /; are shown in Figure 2. We
can see that, due to different network architectures
and training objectives, BERT and T5 exhibit dif-
ferent performance patterns w.r.t. layer combina-
tions. However, for both BERT and T5, the last
few layers (I; = 8, 10) consistently outperform the
dual-encoder baseline.

Next, we focus on a 4-vector MLR model, and
test three kinds of layer combinations: last four
layers where Sp,r = {9, 10, 11, 12}, first three lay-
ers plus the last layer where Shrt = {1, 2, 3,12},
and uniformly distributed layers where Sypiform =
{3,6,9,12}. The results are shown in Table 1. We

can see that the last few layers perform the best with
BERT and comparable to uniformly distributed lay-
ers with T5.3 Therefore, we conclude that the last
few layers perform better and more robustly in
Multi-layer Representations.

4.2.2 The impact of vector numbers

We next investigate MLR’s performance with dif-
ferent number of representation vectors per doc-
ument, i.e., m in Eq. (1). Specifically, we set
m = 2,4,6,8, and for each m, we adopt the
best performing layer combination according to
the analysis in § 4.2.1, i.e., for m = 2, we adopt
[y = 8, and for m = 4,6,8, we adopt the last
few layers. We compare MLR with its “last-layer”
counterpart, ME-BERT (Luan et al., 2021).* Both
of the two multi-vector models adopt a fixed num-
ber of m vectors to represent a document.

The results are shown in Figure 3. We can see
that ME-BERT’s performance increases with the
increase of vector number m, which means that its
representational capacity is increased as expected.
For MLR, however, there is a decreasing trend in
retrieval performance for both BERT and T5. This
indicates that, unlike ME-BERT, MLR’s represen-
tational capacity cannot scale up well with more
representation vectors. This may be attributed to
the fact that, Transformer representations in differ-

SWe further test m = 6 with TS5, and confirm that
the performance of last few layers (Top5/20/100 acc =
33.80/50.29/68.69) is more stable than that of uniformly dis-
tributed layers (Top5/20/100 acc = 26.71/44.03/63.03).

*We also adapt ME-BERT for T5, but find that neither
taking the first m vectors nor taking the average vector plus
the first m — 1 vectors could outperform the dual-encoder
baseline. Therefore we omit ME-BERT’s performance with
TS5 in Figure 3 and leave it for future work.
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Natural Questions TriviaQA SQuAD
Models Top-5 Top-20  Top-100 | Top-5 Top-20  Top-100 | Top-5 Top-20  Top-100
Dual-Encoder 68.06 79.34 8590 | 71.12  79.63 84.96 | 38.77 56.61 73.82
Multi-layer Representations (MLR)
Self-Contrastive (S={1,...,12}) | 68.67 79.56 86.26 | 7143 79.55 85.03 | 41.00 58.08 74.47
Self-Contrastive (S ={10, 12}) 68.73  80.00 86.20 | 71.40 79.63 85.28 | 4247 59.93 75.79
ME-BERT
Average Pooling 68.28 79.22 86.40 | 71.12 79.28 8496 | 41.33 58.94 75.36
Scalar Mix Pooling 68.61 79.42 86.23 71.08  79.55 85.03 | 41.60 59.01 75.57
Self-Contrastive 67.81 78.98 85.90 | 71.32  179.70 85.18 39.02  56.96 73.60
ColBERT
Average Pooling 68.03 79.22 85.82 | 71.02 79.40 85.05 39.74  57.37 73.82
Self-Contrastive 68.03 79.36 86.18 | 71.31 79.69 85.11 38.60 56.08 73.13

Table 2: Single-vector retrieval results on the Natural Questions, TriviaQA, and SQuAD’s test sets. We compare
the performance of applying the pooling strategies to different multi-vector models (i.e., MLR, ME-BERT, and
CoIBERT). Best and second best results are in bold and underlined, respectively.

ent layers at the same position are more correlated
than those in the same layer but at different po-
sitions, and therefore adding too many vectors in
MLR will limit vector diversity.

On the other hand, we notice that MLR can
achieve superior performance over ME-BERT and
dual-encoders with a relatively small number of
vectors (e.g., m = 2 or 4) for both BERT and
T5. We further examine which layer is selected
on SQuAD’s dev set for MLR with m = 2 and
4, and find that the last layer is always selected
for all the queries. This means a last-layer query
representation enhances a bias towards selecting
the last-layer document representation, and the per-
formance gains of MLR may largely come from
the regularization effect of the max-aggregation
during multi-vector training. This observation mo-
tivates us to further investigate whether pooling
multiple vectors to a single vector through self-
contrast could keep these performance gains.

4.3 Single-vector retrieval

In this section, we investigate the single-vector
retrieval setting.  Specifically, we adopt self-
contrastive pooling for Multi-layer Representa-
tions, and experiment with pooling from all the
layers (S ={1,...,12}) and from m = 2 layers
(S=1{10,12}) in BERT.

4.3.1 Retrieval results

Single-vector retrieval results of Multi-layer Rep-
resentations (S = {1,...,12} & § = {10,12}),
as well as those of ME-BERT (Luan et al., 2021)
and ColBERT (Khattab and Zaharia, 2020)°, are

5 Ablation studies on layer combinations and pooling strate-
gies are in Appendix C.

®Different from the original ColBERT, here we only adopt
the [CLS] embedding for the query to avoid searching multiple

shown in Table 2. For single-vector ME-BERT,
we adopt m = 8, since this is the best perform-
ing setting for multi-vector ME-BERT in Figure 3;
for single-vector ColBERT, scalar mix pooling is
not applicable, since CoIBERT adopts a non-fixed
number of vectors to represent each document.

First, on all three datasets, MLR with self-
contrastive pooling can usually improve the re-
trieval accuracy over the dual-encoder baseline
by a large margin. For example, on top-5 accu-
racy, self-contrastive pooling with S = {10, 12}
leads to a +3.70% improvement on SQuAD, and a
+0.67% improvement on Natural Questions, while
self-contrastive pooling with S={1,...,12} can
lead to a +0.31% improvement on TriviaQA. No-
tably, these improvements are made with the same
inference time and space complexity as a dual-
encoder model.

Second, compared to ME-BERT and ColBERT,
MLR can achieve the best performance in most sce-
narios, which indicates that pooling representations
from different layers is more effective than pooling
those only in the last layer.

Note also that, compared to other training tech-
niques like retrieval-oriented pre-training or hard
negative mining, our single-vector MLR is sim-
ple and does not require additional complicated
training stages. On the one hand, this means that
when we restrict our total computation budget to
only one training stage (this is usually desirable
for training large-language-model-sized retrievers
like repLLaMA (Ma et al., 2024)), our method is
still applicable, but the above two methods are not;
on the other hand, when we have the budget to do
more training stages, our method can be directly

times. This is to simplify the training and inference process
for efficiency and consistency with other baselines.
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Natural Questions TriviaQA SQuAD

Top-5 Top-20 Top-100 Top-5 Top-20 Top-100 Top-5 Top-20 Top-100
BM25 - 59.1 73.7 - 66.9 76.7 - 68.8 80.0
GAR 60.9 74.4 85.3 73.1 80.4 85.7 - - -
DPRT 68.1 79.3 85.9 71.1 79.6 85.0 38.8 56.6 73.8
ANCE - 81.9 87.5 - 80.3 85.3 - - -
RocketQA 74.0 82.7 88.5 - - - - - -
DPR-PAQ 74.5 83.7 88.6 - - - - - -
Condenser - 83.2 88.4 - 81.9 86.2 - - -
coCondenser 75.8 84.3 89.0 76.8 83.2 87.3 - - -
RetroMAE' 75.5403 84.94+02 89.640.1 | 77.34+0.1 83.7+0.1 87.6+0.0 | 63.0+05 77.2+05 86.8+02
single-vector MLR 76.1+0.4*85.0+0.1 89.7+0.1 | 77.4+0.183.7+0.1 87.6+0.1 | 64.0+05777.7+04 86.9+0.1

Table 3: Single-vector retrieval results on the Natural Questions, TriviaQA, and SQuAD test sets for various
baselines and models trained with retrieval-oriented pre-training and hard negative mining. {: results are reproduced.
For RetroMAE and single-vector MLR, we report the mean and standard deviation from five runs with different
random seeds. * indicates the improvements of single-vector MLR over RetroMAE is statistically significant
(p < 0.05). Best results are in bold, and “~” means the results are unavailable in the original paper.

integrated with retrieval-oriented pre-training and
hard negative mining, which is illustrated in § 4.3.2
below.

4.3.2 Integrating with retrieval-oriented
pre-training and hard negative mining

In this section, we integrate MLR in the single-
vector retrieval setting with two advanced training
techniques: retrieval-oriented pre-training and hard
negative mining. Specifically, we adopt a MLR
model with S={10, 12} and self-contrastive pool-
ing. We follow Gao and Callan (2022)’s two-stage
training procedure: in the first stage, the model
is trained with BM25 negatives; then the trained
model is used to mine hard negatives (i.e., top re-
trieved passages by the trained model in the first
stage that do not contain the answer) for questions
in the training set; in the second stage, the model
is trained with the concatenation of the original
and the mined training set. Models in both stages
are initialized with a retrieval-oriented pre-trained
checkpoint RetroMAE (Xiao et al., 2022). More
training details are in Appendix D.

For baselines, we compare to popular sparse
(BM25 and GAR (Mao et al., 2021)) and dense
(DPR (Karpukhin et al., 2020), ANCE (Xiong
et al., 2021), RocketQA (Qu et al., 2021), DPR-
PAQ (Oguz et al., 2022), Condenser (Gao and
Callan, 2021) and coCondenser (Gao and Callan,
2022)) retrieval systems.

From Table 3, we can see that our single-vector
MLR can benefit the baseline dual encoders in
most cases. For example, when compared to Retro-
MAE regarding top-5 accuracy, it leads to a +0.6%
and +1.0% improvement on Natural Questions and
SQuAD, respectively.

MS MARCO Dev
MRR@10  Recall@1000

ANCE 33.0 95.9
SEED 33.9 96.1
coCondenser 38.2 98.4
Aggretriver 36.3 97.3
SPLADE-max 34.0 96.5
SimLM (stage 2) 39.1 98.6
RetroMAE (stage 2) 39.3 98.5
single-vector MLR (stage 1) 37.6 98.5
single-vector MLR (stage 2) 39.5 98.7

Table 4: Single-vector retrieval results on the MS-
MARCO dev set. Best results are in bold.

We further evaluate our method on the MS
MARCO passage ranking dataset (Nguyen et al.,
2016), which contains 502,939 training queries.
We report MRR@10 and Recall@1000 on its
6,980 dev queries (MS MARCO Dev), as well as
NDCG@10 on the 43 test queries of the TREC
2019 Deep Learning Track (DL’19) (Craswell
et al., 2020). The size of the passage collec-
tion is 8,841,823. Although distillation from
cross encoders can usually achieve superior perfor-
mance (Ren et al., 2021; Zhang et al., 2022a; Tao
et al., 2024), it is computationally much more ex-
pensive to train additional cross encoders and gener-
ate teacher scores for a large training set. Therefore,
we focus on lightweight systems without knowl-
edge distillation, and follow the same two-stage
procedure in § 4.3.2 to train MLR. Training hyper-
parameters are the same as those in Appendix A, ex-
cept that we adopt an initial learning rate of le — 5,
total training epochs of 4, and 15 negatives per
query for both stages 1 and 2. In stage 2, for each
query, we take 100 negatives from the mined hard
negatives to make up the negative pool. We adopt
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the last checkpoint for inference. A is set to 0.01 for
self-contrastive pooling. For baselines, we compare
to ANCE, SEED (Lu et al., 2021), coCondenser,
Aggretriver (Lin et al., 2023), SPLADE-max (For-
mal et al., 2021), SimLM (stage 2) (Wang et al.,
2023) and RetroMAE (stage 2) (Xiao et al., 2022).
Results on the MS MARCO dev set are in Ta-
ble 4, where we can see that single-vector MLR out-
performs RetroMAE by 0.2% on both MRR@ 10
and Recall@1000. On DL’19 test set, single-
vector MLR (stage 2) achieves an NDCG@ 10 of
68.8% compared to RetroMAE’s 69.9%. We fur-
ther find that, if we increase the regularization coef-
ficient A\ from 0.01 to 1, single-vector MLR could
achieve an NDCG@10 of 70.3%, but with a de-
crease in MRR@10. Since the NDCG@10 met-
ric emphasizes the first results that the users will
see (Craswell et al., 2020), we may adjust the regu-
larization strength to fit different requirements.

4.3.3 Out-of-domain evaluation on BEIR

We additionally conduct out-of-domain evaluation
on the BEIR (Thakur et al., 2021) benchmark. We
initialize our model with RetroMAE’s pre-trained
checkpoint, and train the model on 502,939 MS
MARCO (Nguyen et al., 2016) training queries,
adopting an initial learning rate of 3e — 5, total
training epochs of 10, and a A of 0.01. In the BEIR
benchmark, Signal 1M, Arguana, and Quora are
considered to be symmetric tasks, where queries
and documents are of about the same length and
have the same amount of content. Since MLR is
trained in an asymmetric manner (i.e., we encode
documents and queries in different ways), here we
evaluate on the other asymmetric datasets in BEIR.
Results are shown in Table 5. We can see that MLR
performs significantly better than the dual encoder-
based RetroMAE on five datasets (by greater than
1% in NDCG @ 10), while performs similarly with
RetroMAE on the rest. This leads to a +0.7%
improvements in average NDCG @ 10.

5 Conclusions

In this study, we proposed to leverage represen-
tations from different encoder layers to represent
a document in text retrieval. For multi-vector re-
trieval, we investigated how representations in dif-
ferent layers affect MLR’s performance. For single-
vector retrieval, we found that MLR can outperform
single-vector dual encoder by a large margin, and
that pooling representations from different layers
is more effective than pooling from representations

RetroMAE  single-vector MLR
NQ 0.508 0.515
HotpotQA 0.627 0.620
FiQA-2018 0.300 0.314
TREC-NEWS 0.421 0.406
Robust04 0.432 0.430
Touche-2020 0.257 0.299
CQADupStack 0.309 0.309
DBPedia 0.390 0.390
SCIDOCS 0.151 0.150
FEVER 0.746 0.766
Climate-FEVER 0.220 0.253
SciFact 0.639 0.651
TREC-COVID 0.767 0.764
NFCorpus 0.307 0.305
BioASQ 0.414 0.406
Average 0.432 0.439

Table 5: NDCG@10 results on BEIR for the dual
encoder-based RetroMAE and our single-vector MLR.

only in the last layer. We also showed that advanced
training techniques such as retrieval-oriented pre-
training and hard negative mining can further boost
MLR’s performance.

Limitations

Our current method is asymmetric in terms of rep-
resenting queries and documents, i.e., we represent
each document with multiple vectors and regularize
them with the self-contrastive pooling loss, while
only representing each query with a single vec-
tor. This is for efficiency consideration, but may
limit our method’s capacity and decrease its per-
formance on symmetric search problems such as
duplicate question identification and argument min-
ing. It would be a direct future work to explore
utilizing multiple vectors to represent the query
as well. Besides, the improved retrieval system
may have broader societal impacts such as insuffi-
cient representations of minority groups, exhibiting
stereotyped or biased results, and so on. Detection
and mitigation of such unintended behaviors is of
great significance but beyond the scope of this pa-
per.
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A Additional Training Details

We adopt two separate BERT (or TS5 encoder)
from Huggingface (Wolf et al., 2020) as our query
and document encoder. Statistics of the adopted
datasets are shown in Table 6. For all the exper-
iments, we adopt a linear learning rate scheduler
with warm up proportion 0.05. We clip the gradient
if it is larger than 2.0. Maximum input sequence
length for BERT (or TS5 encoder) is set to 256.
For the validation metric, we follow Karpukhin
et al. (2020) to initially adopt cross entropy loss
and then change to average rank on the dev set after
30 epochs. For Natural Questions and SQuAD, the
best dev checkpoint is adopted for inference, while
for TriviaQA, we adopt the last checkpoint. In self-
contrastive pooling, we search the regularization
strength A in Eq. (6) from {0.01,0.1,1, 10}, and
adopt A = 1 for MLR (S = {10, 12}) and ME-
BERT, A = 0.1 for MLR (S = {1,...,12}), and
A = 0.01 for ColBERT. It typically takes 16 to 30
hours to train one model on one dataset and encode
the passage collection with four V100 GPUs, and
60 to SO0GB disk space to store the encoded vector
files. Due to long training time and large storage
requirements, all the results in this paper (except
those in § 4.3.2) are from a single run using seed
12345, which is consistent with Karpukhin et al.
(2020) and most other works. We adhere to the
licenses and intended use of the pre-trained check-
points and datasets provided in their original papers
or on their websites.

B Additional Multi-vector Retrieval
Results on Natural Questions

Additional multi-vector retrieval results on Natural
Questions with BERT are provided in Figure 4 and
5, which show similar trends to those on SQuAD
with BERT (the left subgraph of Figure 2 and 3).

Dataset Train (original / filtered)  Dev Test

NQ 79,168 / 58,880 8,757 3,610
TriviaQA 78,785/ 60,413 8,837 11,313
SQuAD 78,713 /70,096 8,886 10,570

Table 6: Number of questions in each dataset. For the
training questions, we follow Karpukhin et al. (2020) to
filter out questions with no associated positive passages,
and the number of the remaining questions are presented
after the slash. NQ stands for Natural Questions.
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Figure 4: Multi-vector retrieval accuracy w.r.t. different
choices of /1 in a 2-vector MLR model (S = {l1,ls =
12}). Results are evaluated on the Natural Questions
test set with BERT.
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Figure 5: Multi-vector retrieval accuracy w.r.t. the num-
ber of vectors per document (i.e., m). Results are evalu-
ated on Natural Questions test set with BERT.

C Ablation Studies on Pooling Strategies
and Layer Combinations for
Single-vector MLR

We first compare different pooling strategies used
in MLR. The results on Natural Questions are
shown in Table 7, where we can see that self-
contrastive pooling consistently performs better
than average pooling and scalar mix pooling.

Next, we study the performance of different layer
combinations in the 2-vector MLR model with self-
contrastive pooling. The results on Natural Ques-
tions are shown in Table 8, where we can see that
pooling from layers S = {10, 12} achieves the
best top-5 and top-20 accuracy, while obtains a
reasonable top-100 accuracy. Therefore we adopt
S = {10, 12} in our experiment.
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Natural Questions
Pooling Methods Top-5 Top-20 Top-100
MLR (S={1,...,12})

Average 67.17  78.34 85.60
Scalar Mix 66.81  78.59 85.43
Self-Contrastive 68.67  79.56 86.26
MLR (§={10, 12})
Average Pooling 68.03  79.42 85.93
Scalar Mix Pooling | 68.31  79.78 85.87
Self-Contrastive 68.73  80.00 86.20

Table 7: Single-vector retrieval accuracy w.r.t. different
pooling methods for MLR with layer combinations S =
{1,...,12} and S = {10, 12}. Best results for each
layer combination are in bold.

Natural Questions
Top-5 Top-20 Top-100

S={2,12] | 6798 7947  85.96
S={4,12} | 67.78 79.86  86.09
S={6,12} | 6834 7950  86.26
S={8,12} | 6742 7873 8601
S={10,12} | 68.73 80.00 8620

Table 8: Single-vector retrieval accuracy w.r.t. different
layer combinations for a 2-vector MLR model with self-
contrastive pooling. Best and second best results are in
bold and underlined, respectively.

D Training Details for Experiments with
Retrieval-oriented Pre-training and
Hard Negative Mining

Training hyperparameters are the same as those
in Appendix A, except that, for stage 1, we adopt
an initial learning rate of 5e — 6 and total training
epochs of 40; for stage 2, an initial learning rate of
5e — 6 and total training epochs of 20. In stage 2,
for each question, we take 50 negatives from each
of the original and generated training set to make
up a negative pool of 100 negatives. We adopt the
last checkpoint for inference on Natural Questions
and TriviaQA following Gao and Callan (2022),
and the best dev checkpoint for SQuAD. A is set to
0.1 for self-contrastive pooling.
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