Leveraging Unpaired Feedback for Long-Term LL.M-based
Recommendation Tuning

Jizhi Zhang'*
Xin Chen® Jingang Wang?

Chongming Gao''
Xunliang Cai’

Wentao Shi'
Fuli Feng''

'University of Science and Technology of China, *Meituan.
{cdzhangjizhi, chongminggao, shiwentaol23}@mail.ustc.edu.cn,
chenxinl48@meituan.com, fulifeng93@gmail.com

Abstract

Most recommender systems focus on short-
term objectives such as click-through rate,
often at the expense of long-term user sat-
isfaction. This can lead to echo chambers,
where users are repeatedly exposed to redun-
dant content. While recent efforts integrate
Large Language Models (LLMs) into recom-
mendation, they typically inherit this short-
sighted focus. In this work, we highlight
unpaired feedback—implicit signals such as
continued engagement (positive) or silent dis-
engagement (negative) that lack explicit con-
trastive labels—as a key challenge for long-
term recommendation. Effectively learning
from such feedback is crucial for improving
LLM-based recommenders in dynamic user
environments. To this end, we propose UL-
Rec (Unpaired Feedback for Long-Term LLM-
based Recommendation Tuning), a simple
framework that fine-tunes LLMs using both
positive and negative unpaired feedback. UL-
Rec leverages the KTO algorithm to incorpo-
rate these signals without requiring paired su-
pervision. Despite its simplicity, ULRec con-
sistently improves long-term recommendation
performance, demonstrating the value of mod-
eling unpaired user feedback.

1 Introduction

Recommendation systems play a central role in
filtering information and shaping user experi-
ences (Wu et al., 2022; Li et al., 2023a; Silveira
et al., 2019). While most existing work focuses
on short-term objectives such as click-through rate
(CTR) (Bao et al., 2023; Guo et al., 2017; Zhou
et al., 2018), this often leads to long-term issues
like echo chambers, where users are repeatedly
exposed to similar content (Gao et al., 2023b; Ge
etal., 2021; Shi et al., 2024). Such short-sighted op-
timization can degrade user satisfaction over time

* Work is done during internship at Meituan.
¥ Corresponding Author.

Accuracy evaluated
on each item

&P
(a) Traditional short-term accuracy optimization

Long-term user satisfaction evaluated on
cumulative rewards of items

AL

4
r=33 4.2

e -

live =1 live=1 live=1 live=1 live =0

J

Unpaired Continued engagement  Quit the system
feedback (Positive) (Negative)

(b) Long-term satisfaction modeling

Figure 1: The difference between short-term and long-
term recommendations, along with examples of un-
paired feedback in long-term recommendations.

and limit content diversity (Lin et al., 2025b).

Addressing long-term recommendation requires
models to account for delayed rewards during train-
ing (Gao et al., 2023a). Prior efforts incorporate re-
inforcement learning into deep models to optimize
long-term objectives, but are limited by the capac-
ity of traditional architectures (Shi et al., 2024).
Recently, Large Language Models (LLMs) have
shown promise in recommendation tasks due to
their strong language understanding and interaction
abilities (Hou et al., 2024; Gao et al., 2023¢c). How-
ever, most LL.M-based recommenders remain fo-
cused on short-term accuracy (Gao et al., 2025a,b;
Cai et al., 2025), with little attention to long-term
user retention.

In this work, we revisit the long-standing echo
chamber problem in recommendation through the
lens of LLMs, and argue that effectively modeling
user feedback over time is essential for improv-
ing long-term user satisfaction. We distinguish
two types of feedback signals: positive feedback
from users who remain engaged, and negative feed-

24507

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24507-24521
November 4-9, 2025 ©2025 Association for Computational Linguistics



back from users who disengage due to content re-
dundancy. While both types of signals are valu-
able, they are often unpaired—Ilacking explicit con-
trastive examples or follow-up outcomes—making
them difficult to directly use in conventional su-
pervised or reward-based training paradigms. We
argue that this underexplored but practically impor-
tant setting of learning from unpaired feedback
poses a core challenge for advancing LLM-based
recommendation.

To address this, we propose ULRec
(Unpaired Feedback for Long-Term LLM-
based Recommendation Tuning), a simple yet
effective framework that incorporates both
positive and unpaired negative feedback into LLM
training. For the latter, we leverage the KTO
algorithm (Ethayarajh et al., 2024), which enables
the direct suppression of negatively labeled outputs
without requiring paired comparisons. Despite its
simplicity, ULRec consistently improves long-term
recommendation quality, highlighting the value of
explicitly modeling unpaired negative feedback in
this setting.

Our contributions can be summarized as:

* We identify unpaired feedback—implicit positive
and negative user signals without explicit con-
trastive labels—as a core challenge for long-term
recommendation with LLMs.

* We propose ULRec, a lightweight framework that
fine-tunes LLMs using both types of unpaired
feedback, leveraging the KTO algorithm to han-
dle supervision without paired data.

* We demonstrate that ULRec substantially im-
proves long-term recommendation performance
across benchmarks, validating the value of mod-
eling unpaired feedback in LLM-based systems.

2 Preliminary

In this section, we first present the problem formu-
lation and briefly describe the interactive environ-
ment used for simulation.

2.1 Problem Formulation

In this paper, we mainly focus on the echo chamber
scenario. The classical work in this field has been
conducted in the interactive recommendation sce-
nario (Gao et al., 2023b), and it is also the setting
that we follow. In this setting, at the j-th step, the
goal of the recommender 7 is to recommend an
item 7 ( noted as making an action a;) from the

candidate set Z to a user u, who comes from the
user set U/, based on the current state s;. sq de-
notes the initial state. After the action a; is done,
the recommender will receive a reward r; from the
user. Thus, we can denote the entire episode of
interaction as:

7#11.14“(]:{U,Sl,al,rl,...,SJ,QJ,TJ}. (1)

Meanwhile, the subsequence 7;" ; of 7;" ;, where
1 < j < J, can be used to represent the trajectory.

2.2 Interactive Environment

We conduct our exploration in an interactive recom-
mendation setting, where users are required to pro-
vide real-time feedback on recommendation results.
Since collecting data directly from the real world
is costly, we follow previous work by building a
simulated interactive environment to facilitate train-
ing and testing using the offline recommendation
dataset (Shi et al., 2024; Gao et al., 2023a,b). In this
interactive environment, when the user becomes
aware of an echo chamber or is recommended items
they do not like, the user will give an explicit exit
signal and terminate the interaction.

We can then formalize the interaction process
between the environment (ENV), which simulates
the user group U, and the recommender. First,
the recommender 7 receives user v € U and the
corresponding state s; at step j, and then outputs a
recommendation result a;:

a; < m(sj,u). 2)

Next, the environment generates feedback based
on user u, state s;, and recommendation a:

ij = (lj, T’j) — ENV(Sj, u, aj), 3)
where I} denotes the feedback given by user w in
step j for the recommendation a;, which consists
of two parts: whether the user is live [;, and the
user’s reward r; of recommendation a;.

e Exit Protocol. During the interaction process,
the most important information provided by the en-
vironment is the live signal /;. Following previous
work (Shi et al., 2024; Gao et al., 2023b), it is de-
signed as a comprehensive judgment result based
on both user preference and echo chamber effects.
Specifically, when the following situations occur,
[; = 0 indicates that the user exits the interaction,
otherwise /; = 1 means the interaction continues:
From the perspective of user preference, if the

24508



Identify
echo chamber

1. Is similar?

)
c 4 . a
o Similar window —_—
® size W
£ _—
(o]
€ 2. Recommended }—] —
é before? H E
S| [ eI o |
i N I I L T T
e (& (B ed - &
Step: 1 2 3 4 5 6 7 8
- _J /
Recommended New recommend

item list item

Figure 2: Protocol for identifying echo chamber in in-
teractive environment for long-term recommendation.

returned reward r; is less than a certain threshold
7, then [; = 0. From the perspective of the echo
chamber, as demonstrated in Figure 2 if among the
most recent W interacted items there exists an item
whose distance from a; is less than a certain thresh-
old (7y), i.e., the recommender 7 recommends an
item that is very similar to previous ones, the user
will exit (I; = 0). Distinguishing from the previous
simulation environment (Shi et al., 2024; Gao et al.,
2023b), we further introduce an additional exit con-
dition: if the model repeatedly recommends an
item that has already been recommended in his-
tory, i.e., a; € T, the user will also choose to
exit to make the simulation environment similar
to real-world scenarios and avoid potential reward
hacking.

e Evaluation Protocol. Since we are measuring
the recommender’s ability to break the echo cham-
ber in interactive recommendation, and users will
exit once they perceive the echo chamber, a longer
interaction with the user indicates that the recom-
mender can better break the echo chamber while
satisfying user preferences. Therefore, for a given
episode 7} ; corresponding to user u, the metric
is defined as:

J

L, = le,
j=1

L,, denotes the length of the interaction, and R,,
denotes the sum of cumulative rewards over the
entire trajectory. Larger values of both indicate
a stronger ability of the model to break the echo
chamber. Finally, the average values of L, and
R, over the test user set U, are used as the final

J
Ry, = le xrji. (4
j=1

evaluation metrics L and R:

1 1
L.:m > L, R.:m > Ru. ()

uEMte Ueute
3 Method

In this section, we will introduce the motivation
and overview of our method, as well as the specific
implementation modules.

e Motivation: We believe that the key to break-
ing echo chamber and improving the long-term
recommendation performance of LLM-based rec-
ommenders lies in fine-tuning LLLM models using
users’ unpaired positive and negative feedback. To
this end, we have designed a simple yet efficient
framework ULRec to leverage such feedback. Al-
though the method is straightforward, its effective-
ness demonstrates the importance of utilizing this
feedback to enhance long-term recommendations.
e Overview: Considering the significant differ-
ences between positive and negative feedback, we
have made targeted designs for each within the
ULRec framework. Specifically, as demonstrated
in Section 3.1 and Section 3.2, we design a two-
stage training process to effectively leverage these
two distinct types of feedback. As a preliminary
exploration, we focus on leveraging the collected
interactions between LLLM and a user training set
Uy, i.e., their corresponding episodes 7, ;, for
fine-tuning and thereby enhance the model’s long-
term recommendation capability.

3.1 Learning from Positive Feedback

e Target: By learning from successful cases of
positive interactions within episodes, the LLM can
identify which items to recommend, helping to
break echo chamber.

e Challenge: The format of the training data does
not match that of typical recommendation data; for
example, it involves multiple rounds and mixes
in information such as rewards. This requires us
to design and construct suitable data formats for
fine-tuning the LLM.

e Method: The issue of misaligned multi-round
formats is addressed by constructing samples at the
step level. Specifically, we decompose all success-
ful actions in each episode into individual steps, as
follows:

{W..jflaaj}jzl < T (6)

For each step, we hope the LLM can recommend
a; (which has been shown to elicit positive user

24509



feedback) based on the 7? -1 Thus, the target
for finetuning at each step is formulated as:

(7

Then, we can conduct step level fine-tune for each
interactive recommendation step and for each user
u from training dataset U;,., thus avoiding interfer-
ence from rewards or other information that does
not need to be output by the LLM during super-
vised fine-tuning. The optimization object for each
user is:
J-1

min > —log(mo(a;| T 1)),

J=1

®)

7o (+) denotes the LLM, and 6 represents the learn-
able parameters within the LLM. J — 1 is used be-
cause the final step in each trajectory corresponds
to the user’s exit, which serves as a signal of nega-
tive feedback rather than a positive interaction.

3.2 Learning from Negative Feedback

e Target: By learning from failed cases in episodes,
we aim to help the LLM recognize which items may
cause echo chamber, thereby optimizing recom-
mendation strategies to enhance long-term benefits.
o Challenge: Negative feedback is often unpaired,
as users who disengage due to echo chamber ef-
fects provide no subsequent positive interactions
for direct comparison, which makes it difficult to
construct effective training signals for fine-tuning
the LLM.

e Method: Considering the unpaired nature of user
interactions and our goal of highlighting the im-
portance of incorporating negative feedback when
tuning LLMs for long-term recommendation, we
directly adopt the KTO algorithm (Ethayarajh et al.,
2024), with minor modifications for training sta-
bility (see Appendix A.1 for details). Specifically,
based on the model fine-tuned with positive feed-
back, we further employ the KTO algorithm to
enable the LLM to recognize which items may lead
to echo chamber effects and thus should not be
recommended. Our optimization objective is then
formulated as:

Hlein LxTo (7‘—0; 7rref> = ET,a,ethr [)\l - U(T, a)] )

o(Ta) {/\10(6 (ro(T,a) = 20))if L =1

/\00’ (ﬁ (ZO — TQ(T, CL))) ,ifl = 0

o0 s (240,

(©))

A1, and A are hyperparameters representing the
weights of positive feedback and negative feedback,
which can be set to 1 by default, ;.. s is the model
before KTO alignment, (3 is a hyperparameter to
control the difference from the reference model,
2o denotes the KL-divergence between 7, and
mp, 6 denotes the learnable parameters in the LLM,
o(-) denotes the sigmoid function. Note that when
[ = 0, KTO reduces the corresponding mg(a|7T),
thereby enabling the LLM to learn how to avoid
echo chambers from negative feedback. During
training, we found that using only the KTO loss
could lead to a large number of output format errors.
Therefore, we added a supervised finetune loss Ly,
and used a hyperparameter « to control its strength
on positive samples after KTO to constrain the
LLM, the final optimization object is formulated
as:

meinLKTO + alg. (10)

3.3 Grounding

During recommendation, the LLM may generate
results outside the item candidate set Z. Following
previous work (Bao et al., 2025; Shi et al., 2024),
we use a dedicated grounding LLM for grounding.
Specifically, we first use the grounding LLM to
extract embeddings e; for all items in the candidate
set Z, where ¢+ € Z. Then, once recommendation re-
sult not in the item canidate set i.e.,a;- ¢ T, we use
the grounding LLM to extract the embedding €a!
for a;- (the recommendation result at step 7). The
grounded recommendation result is then generated
by finding the nearest item in the item candidate
set Z using L2 distance:

a; %argriréi%lHea; — eill2, (11)
where ||.||2 denotes L2 distance, a; denotes the
final recommendation result. Following Shi et al.
(2024), Llama2-7b (Touvron et al., 2023) is used
for grounding.

4 Experiment

We conducted detailed experiments to address the
following three Research Questions (RQs):

* RQ1: By tuning with unpaired feedback, can our
proposed ULRec demonstrate a strong ability to
break the echo chamber?

¢ RQ2: Is it meaningful to model users’ positive
and negative feedback?

24510



* RQ3: Is ULRec effective with different back-
bones and hyper-parameters?

4.1 Experiment Setup

In this section, we introduce the setup of the sim-
ulated environment, the training data construction
method used by ULRec, and some implementation
details of the baselines and our proposed ULRec.

4.1.1 Simulated Environment

Following previous work (Shi et al., 2024; Gao
et al., 2023a), since using real users to evaluate
recommendation results is very costly, we use rec-
ommendation datasets to build simulated environ-
ments for training and evaluation. Following Shi
et al. (2024), we use two datasets from different
recommendation scenarios, games and books, to
build simulated environments and validate the ef-
fectiveness of our proposed method. The statistical
information can be found at Appendix A.3.

* Steam (Kang and McAuley, 2018) is a dataset
from a gaming scenario. We filter out users and
items with fewer than five interactions. User
ratings are set to 5 if the gameplay time exceeds
3 hours; otherwise, the rating is set to 2.

¢ Amazon Book (Ni et al., 2019) is a book recom-
mendation dataset, specifically the “book” subset
from Amazon Review dataset'. It contains book
review records on Amazon from 1996 to 2018,
with ratings ranging from 1 to 5. Users and items
with fewer than 90 interactions are filtered out.

e Simulated Environment Details. The simulated
environment needs to provide two important real-
time feedback signals: reward and item similarity.
Following the setup in BiLLP (Shi et al., 2024), we
first split the dataset into training and testing parts
by time, i.e., Dy, and Dy, to ensure a distinction
between the training and testing environments and
to better reflect real-world scenarios. For both Dy,
and Dy, we use DeepFM (Guo et al., 2017) to
fit the data and obtain the corresponding user and
item embeddings, 65 and eiD, whereu e U, 1 € 1.
With these embeddings, we can: 1) use DeepFM to
compute online rewards between any user and item,
and 2) calculate the similarity between two items
using the L2 distance between their embeddings. In
this way, all necessary components for environment
simulation are constructed.

1https://cseweb.ucsd.edu/~jmcau1ey/datasets/
amazon_v2/

4.1.2 Training dataset construction

Since our goal is to explore whether user feed-
back can help the LLM learn information related
to echo chamber and thus enhance its ability to
break them, we use offline data generated from
interactions between the LLM with very limited
environment priors and the environment when con-
structing training samples. This allows us to verify
whether the collected feedback from interactions
can help the model learn to break echo chamber
without knowing the specifics of the environment.
Specifically, we use LLaMA-3-70B? (Grattafiori
et al., 2024) to interact with 2,000 users in the train-
ing environments of two simulated environments
using the ReAct (Yao et al., 2023) framework, and
construct two training datasets based on these in-
teractions. Details of the prompt used by LLaMA-
3-70B to construct the training dataset, as well as
some data processing details and examples of train-
ing samples, can be found in Appendix A.5. We
then filtered out episodes with successful interac-
tions less than or equal to 1 to ensure the quality of
the data.

4.1.3 Baselines

We mainly compare two types of baselines. The
first type consists of traditional reinforcement learn-
ing methods based on RL, including classic ap-
proaches such as BCQ (Fujimoto et al., 2019),
CQL (Kumar et al., 2020), CRR (Wang et al.,
2020), DQN (Mnih et al., 2013), SQN (Xin et al.,
2020), and A2C (Mnih et al., 2016), as well as
DORL (Gao et al., 2023a), a State-Of-The-Art
(SOTA) method specifically designed to break echo
chambers in traditional recommender systems. We
also compare with BiLLP (Shi et al., 2024), a SOTA
method for breaking the echo chamber in long-term
LLM-based recommenders. “Base” refers to using
the backbone LLM without fine-tuning, making
recommendations in the same manner as ULRec.

4.1.4 Evaluation

We evaluate the recommendation results from these
methods in the test environment. The interaction is
terminated if any of the following exit conditions
are triggered: the user rating falls below the thresh-
old 7., the distance between any of the last W
recommended items is below the threshold 7,4, or
the model recommends an item which has already

2https://huggingface.co/meta—llama/
Meta-Llama-3-70B-Instruct

24511


https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

Table 1: The performance comparison between our method, traditional methods, and LLM-based methods is
presented. “Len” denotes the interaction length, and “Traj Reward” represents the cumulative reward for the entire
trajectory. Both metrics are better when higher. We use bold to indicate the best-performing results.

BCQ CQL CRR DQN SQN A2C DORL BiLLP ‘ Base ULRec
Steam Len T 315 208 1123 504 330 10.13 8.02 9.26 238  18.09
Steam Traj Reward T 13.24 10.03 46.14 2232 14.66 4049 3285 41.62 | 1039 83.66
Amazon Len 1 397 6.89 3,65 326 241 574 522 6.18 1.66  10.42
Amazon Traj Reward + 17.75 31.55 16.65 14.66 11.12 2630 23.75 2690 | 7.12  46.10
Table 2: Ablation study. Bold means the best result. N — ol == Len
“ULRec-P” denotes a variant of ULRec that learns posi- § «| = Traj Reward g | = i Reward
tive feedback directly through SFT only. Ef: g
5. 5. ﬂ
Steam Amazon S :IT &
Mehtod Lent TrajRewardt Len? Traj Reward 1 Base ULRec-P ULRec Base ULRec-P ULRec
Base  2.38 10.39 1.66 7.12 (2) Steam (b) Amazon
ULRec-P 11.87 54.99 8.65 38.58 . . .
“WoSET 0427 o099 400 I8 Figure 3: Results using the different backbone. We
wio KTO  13.30 61.33 8.83 39.75 replace the backbone with Qwen2.5-7B and report the
ULRec  18.09 83.66 10.42 46.10 results of the “Len” and “Traj Reward” metrics on two

been recommended before. Echo chamber perfor-
mance is measured by “Len” (interaction length be-
fore exit) and “Traj Reward” (cumulative reward),
with higher values indicating better results. See
Section 2.2 for details. We randomly selected 100
users from the test environment for evaluation. For
the simulated environment, we set W' = 4, rating
threshold 7,, = 2 for all environments, distance
threshold 7, = 50 for Steam, and 74 = 15 for
Amazon following (Shi et al., 2024).

4.1.5 Implementation Details

For the main results, we report the average of
three experimental runs to reduce the impact of
randomness. In implementing ULRec, we choose
Llama-3-8B? (Grattafiori et al., 2024) as the default
backbone LLM. We used the Transformers (Wolf
et al., 2020) for SFT, the TRL (von Werra et al.,
2020) for the KTO, and the vLLM (Kwon et al.,
2023) for LLM inference. Both SFT and KTO were
trained for 3 epochs. The learning rate was set to
5 x 1075, and B was tuned over {0.01,0.05,0.1}
as recommended in the original KTO paper (Etha-
yarajh et al., 2024). The SFT loss weight a was
tuned over {0.1,1}. Full-parameter fine-tuning
was conducted on 4 A100 80G GPUs, and ULRec
process on one dataset consumed approximately
10 GPU hours. The temperature of all LLM-based
methods is set to 0.5 during inference. Traditional

3https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

datasets. Higher values are better for both metrics.

reinforcement learning methods are implemented
using the EasyRL4Rec (Yu et al., 2024) library.
Due to page limitations, more details can be found
in Appendix.A.2. The code of ULRec can be found
athttps://github.com/jizhi-zhang/ULRec.

4.2 Opverall Performance (RQ1)

Table 1 presents the comparison results between
our method and various baselines. We have the
following main observations:

» Compared to traditional methods, our approach
consistently achieves higher performance. This
indicates that the proposed ULRec is highly effec-
tive at leveraging feedback to break echo cham-
ber.

* BiLLP performs relatively weakly in some cases.
This is because, in our environment simulation,
we introduced a realistic new rule where users
become bored if items recommended by previ-
ous models are recommended again, which re-
duces the model’s ability to hack the environment
by repeatedly outputting the same items recom-
mended several turns before. Although BiLLP’s
metrics decrease, it still outperforms almost all
traditional methods and shows relatively stable
performance on both datasets.

e Some traditional RL-based methods achieve
good performance but lack stability. For ex-

24512


https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://github.com/jizhi-zhang/ULRec

18.1 83.7

-

15.37 15.48 71.31

0.
0.

'C_> 17.2 E 79.2
X 1n ¥ n
L ©- 16.53 16.27 L © 75.98 75.52
o © o ©°
- Y-
@ 16.3 o -74.8

-

] 18.09 16.41 °© 83.66 75.87

o o

¥ 15.4 g -70.4
0.1 1.0 0.1 1.0
a for SFT a for SFT

(a) Steam Len. (b) Steam Traj Reward.

10.4 46.1

0.1
0.1

9.6 42.5

B for KTO
0.05
0.05

B for KTO

-38.8

0.01
0.01

-35.2

0.1 1.0
a for SFT

X 1.0
a for SFT

0.1

(c) Amazon Len. (d) Amazon Traj Reward.

Figure 4: The impact of different hyperparameters on the experimental results of ULRec using KTO to model
unpaired negative feedback across two datasets. Deeper colors indicate better performance, with the y-axis
representing the KTO hyperparameter (5 and the x-axis representing the weight of the SFT loss a.

3 Len 501 4 Len

8 801 [ Traj Reward 8 [ Traj Reward

< c

[ ]

£” £

= =

g S

9 [

a 2 [t

ReAct ULRec ReAct ULRec
(a) Steam (b) Amazon

Figure 5: Comparison of the performance of models
used for data generation. ReAct represents the results of
interactions using LLaMA-3-70B in the ReAct manner.
We measured the performance of our method on two
datasets using two metrics.

ample, CRR and CQL perform well on one
dataset but poorly on the other. In contrast,
LLM-based methods show more consistent per-
formance across both datasets, demonstrating the
strong generalization ability and robustness of
LLMs.

4.3 Ablation Study (RQ2)

In this section, we conduct ablation studies on UL-
Rec to demonstrate the effectiveness of its differ-
ent components as demonstrated in Table.2. “Base”
refers to the results of the model without any tuning,
“ULRec-P” represents the results after fine-tuning
using positive feedback, “w/o SFT” indicates the
results when the SFT loss is not included during
the second step of aligning with negative feedback,
and “w/o KTO” shows the results of the second
step with only SFT and no KTO loss. “ULRec” is
our final proposed solution. We have the following
observations:

» Using positive feedback enhances the LLM’s
ability to break out of echo chamber. It can be ob-
served that “ULRec-P” consistently outperforms
Base on both datasets, indicating that our pro-
posed ULRec can effectively leverage informa-
tion from positive feedback and demonstrating

the importance of modeling positive feedback.

* Introducing negative feedback is meaningful. We
observe that ULRec consistently outperforms
models trained only with SFT and those with
additional SFT after SFT. This demonstrates that
modeling negative feedback through KTO is ef-
fective and highlights the necessity of incorporat-
ing negative feedback in long-term LLM-based
recommendation tuning.

* When using negative feedback, if only KTO is ap-
plied without SFT constraints, the model shows
a significant performance drop. This is because
KTO disrupts the output format, preventing cor-
rect item recommendations. This demonstrates
the necessity of incorporating SFT during KTO
optimization to stabilize the training process.

4.4 In-depth Analysis (RQ3)

In this section, we analyze the effectiveness of UL-
Rec from two perspectives: different backbones
and parameter sensitivity.

4.4.1 Effect of Backbones

We present the experimental results of using differ-
ent the backbone, i.e. Qwen2.5-7B* (Yang et al.,
2024), for ULRec in Figure 3. The following ob-
servations can be made:

* After changing the backbone, ULRec still demon-
strates strong performance compared to the base
(non-finetuned) model. This validates the broad
applicability of our proposed ULRec.

» ULRec still shows significant improvement over
SFT. This further demonstrates the importance
of using unpaired feedback to help break echo
chamber across different backbones.

4https://huggingface.co/Qwen/QwenZ.
5-7B-Instruct

24513


https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

Since we used the pure ReAct (Yao et al., 2023)
format of LLaMA-3-70B? (Grattafiori et al., 2024)
to construct the training data, we further compare
the performance of our proposed ULRec with the
ReAct model used for data generation, both directly
evaluated on the test set. This demonstrates that
by learning from users’ unpaired feedback, the 8B
model can achieve results comparable to or even
better than the 70B model, as shown in Figure 5 ,
further demonstrating that the benefit comes from
the feedback signal itself rather than distillation
from a larger model, highlighting the importance of
learning from unpaired user feedback while break-
ing the echo chamber effect.

4.4.2 Hyper-Parameters Analysis

We focus on two hyperparameters in ULRec: [
for KTO and « for the supervised finetuning loss
reweighting. Due to resource constraints, we con-
ducted experiments on both datasets with 8 €
{0.01,0.05,0.1} and o € {0.1,1}. The results
are demonstrated in Figure 4, with following main
observations:

* When the SFT weight « is small, decreasing 3
tends to improve performance. This is reasonable
because, during KTO optimization, a smaller 5
means the model focuses more on negative sam-
ples in the optimization process. For example,
when the reward of a negative feedback is close
to 0, a smaller 3 effectively increases its weight
during optimization, making it more likely for
the model to further reduce its reward. However,
a smaller S means focusing more on negative
samples with near-zero rewards, increasing sen-
sitivity to noise in negative feedback. Given that
Figure 4 shows strong [ sensitivity, showing that
£ may need to be carefully tuned.

* As the SFT weight o decreases, ULRec’s per-
formance tends to improve. This further high-
lights the importance of modeling both types of
feedback. If the SFT weight « is too large, the
model focuses more on optimizing positive feed-
back, which restricts the optimization space for
negative feedback. However, removing the SFT
weight entirely risks causing output format col-
lapse after training, as shown in Table 2. The
trade-off between negative feedback modeling
and format collapse also makes « an important
hyperparameter.

5https://huggingface.co/meta—llama/
Meta-Llama-3-70B-Instruct

5 Related Work

5.1 LLMs for Recommendation

LLMs’ possess powerful capabilities, such as open
world knowledge and the ability to quickly learn
new tasks, has inspired numerous applications in
the field of recommender systems (Wu et al., 2024b;
Lin et al., 2025a; Zhao et al., 2024; Zhang et al.,
2025), which can mainly be divided into two ma-
jor approaches. The first approach uses LLMs di-
rectly in recommendation systems without fine-
tuning (Zhang et al., 2023a; Hou et al., 2024), us-
ing their abilities such as in-context learning (Gao
et al., 2023c; Liu et al., 2023) to do recommenda-
tion. However, LLMs are not specially designed for
recommendation, which limits their recommenda-
tion performance when used directly without fine-
tuning (Bao et al., 2023). The second approach fine-
tunes LLMs for recommendation tasks, enabling
them to generate recommendations directly. This
has achieved notable short-term gains in scenarios
like CTR, reranking, and all-ranking (Bao et al.,
2023; Wu et al., 2024a; Liao et al., 2024; Zhang
et al., 2023b; Bao et al., 2025; Wang et al., 2025a;
Fan et al., 2025), but pays less attention to long-
term benefits. A closely related work, SERAL (Xi
et al., 2025), fine-tunes LL.Ms for serendipity rec-
ommendation. Unlike SERAL, we focus on using
unpaired feedback from users’ multi-turn interac-
tions in interactive scenarios to fine-tune the LLM
to break echo chambers, and evaluate through an
interactive recommendation manner.

5.2 Interactive Recommendation

To enhance the online interaction capability of
recommendation systems and users, researchers
have modeled the interactive recommendation as a
Markov decision process (MDP) and employed RL
algorithms to maximize long-term user engagement
benefits (Dulac-Arnold et al., 2015; Ie et al., 2019;
Zhao et al., 2018; Wang et al., 2025b). CIRS (Gao
et al., 2023b) acquires a causal user model from
historical data, thereby enhancing the strategic plan-
ning of RL policies. DORL (Gao et al., 2023a) mit-
igates the Matthew Effect in offline RL to optimize
sustained user interaction. These traditional RL
algorithms require training from scratch, which is
inefficient and suffers from poor generalization. In
contrast, BILLP (Shi et al., 2024) leverages the gen-
eral capabilities of LLMs and employs a bi-level
learnable planner framework to enhance online user
interaction. However, optimizing prompts alone

24514


https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

does not sufficiently enable LLMs to learn recom-
mendation tasks effectively, which consequently
limits its performance. In contrast, our method fo-
cuses on directly using users’ unpaired feedback
to fine-tune LLMs, thereby efficiently enhancing
their long-term recommendation ability. Moreover,
unlike the implicit feedback setting in classical rec-
ommender systems which requires artificially con-
structing negative samples (e.g., through negative
sampling (Zhang et al., 2013; Rendle and Freuden-
thaler, 2014)), our unpaired negative feedback di-
rectly originates from user behavior (simulated by
the environment) and is capable of capturing the
echo chamber effect.

6 Conclusion

In this work, we revisit the long-standing echo
chamber problem in recommendation systems from
the perspective of LLMs, emphasizing the impor-
tance of fine-tuning by effectively modeling users’
time-varying feedback to enhance long-term user
satisfaction. We identify an under-explored yet
critical challenge: how to learn from unpaired feed-
back, especially negative signals from users’ non-
engagement behaviors. To address this, we propose
ULRec, a lightweight framework that integrates un-
paired feedback into the LLM fine-tuning process,
which utilizes the KTO algorithm to handle im-
plicit negative signals without relying on paired
preference data. Our extensive experiments demon-
strate that ULRec significantly improves the long-
term recommendation quality of recommendation
systems, proving the value of explicitly modeling
unpaired feedback. This work not only deepens
our understanding of long-term feedback mecha-
nisms in LLM-based recommender systems but
also suggests new directions for future research on
long-term recommendation strategies. Moreover,
although we have optimized the simulation environ-
ment based on previous work (Shi et al., 2024; Gao
et al., 2023b) to better adapt to real-world scenar-
ios, there still inevitably exists a gap between the
simulation and the real environment. How to fur-
ther reduce the discrepancy between the real world
and the simulated environment remains a question
worthy of exploration.

Acknowledgements

This work is supported by the National Nat-
ural Science Foundation of China (62402470,
62272437), Postdoctoral Fellowship Program

of CPSF (GZC20241643) and Anhui Postdoc-
toral Scientific Research Program Foundation
(N0.2025B1063).

Limitations

This paper mainly focuses on fine-tuning LLMs
with user’s unpaired feedback to enhance their long-
term recommendation ability thereby breaking the
echo chamber. However, our work has the follow-
ing limitations: 1. Due to the high cost of real-
world online experiments, we use simulation to
demonstrate the effectiveness of our method. In the
future, leveraging unpaired feedback in real-world
LLM-based recommendation systems to break the
echo chamber would further validate our approach.
2. Our experiments are mainly conducted on mod-
els with around 8B parameters. Extending the study
to models of different sizes to verify the effective-
ness of unpaired feedback in breaking echo cham-
ber would provide stronger support for our method.

Ethical Considerations

In this paper, we propose the ULRec framework,
which enhances the LLM-based recommender’s
long-term recommendation ability in breaking echo
chamber by modeling users’ unpaired feedback,
without introducing new ethical issues. Regarding
data, we use publicly available datasets that do
not contain sensitive user information, or where
such information has been highly anonymized to
ensure user privacy is not compromised. ULRec
itself does not introduce additional bias; however,
when deploying ULRec, attention should be paid
to potential risks arising from inherent biases in
LLMs. Therefore, if ULRec is to be deployed in
real-world scenarios, we recommend conducting
thorough risk assessments and being mindful of
potential risks.

References

Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang,
Zhengyi Yang, Yanchen Luo, Chong Chen, Fuli
Feng, and Qi Tian. 2025. A bi-step grounding
paradigm for large language models in recommenda-
tion systems. ACM Transactions on Recommender

Systems, 3(4):1-27.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,
Fuli Feng, and Xiangnan He. 2023. Tallrec: An effec-
tive and efficient tuning framework to align large lan-
guage model with recommendation. In Proceedings
of the 17th ACM Conference on Recommender
Systems, pages 1007-1014.

24515



Shihao Cai, Jizhi Zhang, Keqin Bao, Chongming Gao,
Qifan Wang, Fuli Feng, and Xiangnan He. 2025.
Agentic feedback loop modeling improves recom-
mendation and user simulation. In Proceedings of
the 48th International ACM SIGIR conference on
Research and Development in Information Retrieval,
pages 2235-2244.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. 2024. The faiss library. arXiv preprint
arXiv:2401.08281.

Gabriel Dulac-Arnold, Richard Evans, Peter Sunehag,
and Ben Coppin. 2015. Reinforcement learning in
large discrete action spaces. CoRR, abs/1512.07679.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Chenxiao Fan, Chongming Gao, Wentao Shi, Yaxin
Gong, Zihao Zhao, and Fuli Feng. 2025. Fine-
grained list-wise alignment for generative medication
recommendation. Advances in Neural Information
Processing Systems.

Scott Fujimoto, David Meger, and Doina Precup. 2019.
Off-policy deep reinforcement learning without ex-
ploration. In International conference on machine
learning, pages 2052-2062. PMLR.

Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin
Huang, Yuanqging Yu, and Xiangnan He. 2025a.
Sprec: Self-play to debias llm-based recommen-
dation. In Proceedings of the ACM on Web
Conference 2025, pages 5075-5084.

Chongming Gao, Mengyao Gao, Chenxiao Fan, Shuai
Yuan, Wentao Shi, and Xiangnan He. 2025b. Process-
supervised 1lm recommenders via flow-guided tun-
ing. In Proceedings of the 48th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1934—1943.

Chongming Gao, Kexin Huang, Jiawei Chen, Yuan
Zhang, Biao Li, Peng Jiang, Shiqi Wang, Zhong
Zhang, and Xiangnan He. 2023a.  Alleviating
matthew effect of offline reinforcement learning
in interactive recommendation. In Proceedings of
the 46th international ACM SIGIR conference on
research and development in information retrieval,
pages 238-248.

Chongming Gao, Shiqi Wang, Shijun Li, Jiawei Chen,
Xiangnan He, Wengiang Lei, Biao Li, Yuan Zhang,
and Peng Jiang. 2023b. Cirs: Bursting filter bubbles
by counterfactual interactive recommender system.
ACM Transactions on Information Systems, 42(1):1—
217.

Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong,
Haofen Wang, and Jiawei Zhang. 2023c. Chat-
rec: Towards interactive and explainable llms-
augmented recommender system. arXiv preprint
arXiv:2303.14524.

Yinggiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun
Xian, Yunqgi Li, Xiangyu Zhao, Changhua Pei,
Fei Sun, Junfeng Ge, Wenwu Ou, et al. 2021.
Towards long-term fairness in recommendation.
In Proceedings of the 14th ACM international
conference on web search and data mining, pages
445-453.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqgiang He. 2017. Deepfm: a factorization-
machine based neural network for ctr prediction.
arXiv preprint arXiv:1703.04247.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian McAuley, and Wayne Xin Zhao.
2024. Large language models are zero-shot rankers
for recommender systems. In European Conference
on Information Retrieval, pages 364—381. Springer.

Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar,
Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar
Chandra, and Craig Boutilier. 2019. Slateq: A
tractable decomposition for reinforcement learning
with recommendation sets. In IJCAI, pages 2592—
2599. ijcai.org.

Wang-Cheng Kang and Julian McAuley. 2018. Self-
attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM),
pages 197-206. IEEE.

Aviral Kumar, Aurick Zhou, George Tucker, and
Sergey Levine. 2020. Conservative g-learning for
offline reinforcement learning. Advances in neural
information processing systems, 33:1179-1191.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yinggiang
Ge, Juntao Tan, Shuchang Liu, and Yongfeng Zhang.
2023a. Fairness in recommendation: Foundations,
methods, and applications. ACM Transactions on
Intelligent Systems and Technology, 14(5):1-48.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023b. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

24516



Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu,
Yancheng Yuan, Xiang Wang, and Xiangnan He.
2024. Llara: Large language-recommendation assis-
tant. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1785-1795.

Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu,
Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu, Xi-
angyang Li, Chenxu Zhu, et al. 2025a. How can rec-
ommender systems benefit from large language mod-
els: A survey. ACM Transactions on Information
Systems, 43(2):1-47.

Siyi Lin, Chongming Gao, Jiawei Chen, Sheng Zhou,
Binbin Hu, Yan Feng, Chun Chen, and Can Wang.
2025b. How do recommendation models amplify
popularity bias? an analysis from the spectral per-
spective. In Proceedings of the Eighteenth ACM
International Conference on Web Search and Data
Mining, WSDM 25, page 659-668, New York, NY,
USA. Association for Computing Machinery.

Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang
Zhou, and Yan Zhang. 2023. Is chatgpt a good rec-
ommender? a preliminary study. arXiv preprint
arXiv:2304.10149.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.

In International conference on machine learning,
pages 1928—-1937. PmLR.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 conference on empirical methods in
natural language processing and the 9th international
joint conference on natural language processing
(EMNLP-IJCNLP), pages 188—197.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics.

Steffen Rendle and Christoph Freudenthaler. 2014. Im-
proving pairwise learning for item recommendation
from implicit feedback. In Proceedings of the 7th
ACM international conference on Web search and

data mining, pages 273-282.

Wentao Shi, Xiangnan He, Yang Zhang, Chong-
ming Gao, Xinyue Li, Jizhi Zhang, Qifan Wang,
and Fuli Feng. 2024. Large language models

are learnable planners for long-term recommenda-
tion. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1893—-1903.

Thiago Silveira, Min Zhang, Xiao Lin, Yiqun Liu, and
Shaoping Ma. 2019. How good your recommender
system is? a survey on evaluations in recommenda-
tion. International Journal of Machine Learning and
Cybernetics, 10:813-831.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Bohao Wang, Feng Liu, Jiawei Chen, Xingyu Lou,
Changwang Zhang, Jun Wang, Yuegang Sun, Yan
Feng, Chun Chen, and Can Wang. 2025a. Msl: Not
all tokens are what you need for tuning 1lm as a rec-
ommender. Preprint, arXiv:2504.04178.

Jie Wang, Alexandros Karatzoglou, Ioannis Arapakis,
and Joemon M Jose. 2025b. Large language model
driven policy exploration for recommender systems.
In Proceedings of the Eighteenth ACM International
Conference on Web Search and Data Mining, pages
107-116.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S
Merel, Jost Tobias Springenberg, Scott E Reed,
Bobak Shahriari, Noah Siegel, Caglar Gulcehre,
Nicolas Heess, et al. 2020. Critic regularized regres-
sion. Advances in Neural Information Processing
Systems, 33:7768-7778.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and
Meng Wang. 2022. A survey on accuracy-oriented
neural recommendation: From collaborative filter-
ing to information-rich recommendation. IEEE
Transactions on Knowledge and Data Engineering,
35(5):4425-4445.

Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu,
and Enhong Chen. 2024a. Exploring large language

24517


https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://github.com/huggingface/trl
https://arxiv.org/abs/2504.04178
https://arxiv.org/abs/2504.04178
https://arxiv.org/abs/2504.04178
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

model for graph data understanding in online job
recommendations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 9178-9186.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, et al. 2024b. A survey on large
language models for recommendation. World Wide
Web, 27(5):60.

Yunjia Xi, Muyan Weng, Wen Chen, Chao Yi, Dian
Chen, Gaoyang Guo, Mao Zhang, Jian Wu, Yun-
ing Jiang, Qingwen Liu, et al. 2025. Bursting fil-
ter bubble: Enhancing serendipity recommendations
with aligned large language models. arXiv preprint
arXiv:2502.13539.

Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis,
and Joemon M Jose. 2020. Self-supervised re-
inforcement learning for recommender systems.
In Proceedings of the 43rd International ACM
SIGIR conference on research and development in
Information Retrieval, pages 931-940.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv e-prints, pages arXiv—2412.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Yuanqging Yu, Chongming Gao, Jiawei Chen, Heng
Tang, Yuefeng Sun, Qian Chen, Weizhi Ma, and Min
Zhang. 2024. Easyrldrec: An easy-to-use library
for reinforcement learning based recommender sys-
tems. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 977-987.

Jizhi Zhang, Keqin Bao, Wenjie Wang, Yang Zhang,
Wentao Shi, Wanhong Xu, Fuli Feng, and Tat-Seng
Chua. 2025. Envisioning recommendations on an
Ilm-based agent platform. Communications of the
ACM, 68(5):48-57.

Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang,
Fuli Feng, and Xiangnan He. 2023a. Is chatgpt fair
for recommendation? evaluating fairness in large lan-
guage model recommendation. In Proceedings of the
17th ACM Conference on Recommender Systems,
pages 993-999.

Junjie Zhang, Ruobing Xie, Yupeng Hou, Xin Zhao,
Leyu Lin, and Ji-Rong Wen. 2023b. Recommen-
dation as instruction following: A large language
model empowered recommendation approach. ACM
Transactions on Information Systems.

Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu.
2013. Optimizing top-n collaborative filtering via
dynamic negative item sampling. In Proceedings

of the 36th international ACM SIGIR conference on
Research and development in information retrieval,
pages 785-788.

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding,
Dawei Yin, and Jiliang Tang. 2018. Deep reinforce-
ment learning for page-wise recommendations. In
RecSys, pages 95-103. ACM.

Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xi-
aowei Mei, Yiqi Wang, Zhen Wen, Fei Wang, Xi-
angyu Zhao, Jiliang Tang, et al. 2024. Recom-
mender systems in the era of large language models
(Ilms). IEEE Transactions on Knowledge and Data

Engineering.

Guorui Zhou, Xiaoqgiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han
Li, and Kun Gai. 2018. Deep interest network for
click-through rate prediction. In Proceedings of
the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 1059-
1068.

A Appendix
A.1 Stablize KTO Training

We adopted several strategies to ensure the stability
of KTO during the training process. The main
aspects are as follows:

* 1. Differentiating between format tokens and
non-format tokens. Note that during each interac-
tion, if the LLM is to make a recommendation, it
needs to output a “recommend[ - |” format, where
the item to be recommended is placed inside the
brackets []. If KTO is directly applied for opti-
mization, the tokens “recommend| ]” may appear
with excessively high frequency. This can lead
to over-focusing on these format tokens when
optimizing negative samples, causing two issues:
first, potential format collapse making the output
unrecognizable; second, the model neglecting the
valuable parts within [] that should be optimized.
Therefore, during the KTO optimization process,
we masked out the format tokens and retained
only the tokens corresponding to the items (non-
format tokens). For SFT loss, since we need to
ensure format consistency, we optimize both the
format tokens and non-format tokens together.

* 2. We slightly adjusted the output format to “rec-
ommend[ item ]”. If the item directly follows the
opening bracket “[” during tokenization, it could
easily cause the “[” to stick to the subsequent
token, leading to confusion between format and
non-format tokens and thus destabilizing the out-
put format. To address this, we prevent the issue
by adding spaces before and after the item.

24518



Table 3: Dataset statistics. “Int.” is short for “interac-
tions”’.

Datasets ‘ User Item Train Int.  Test Int.
Steam 6,012 190,365 1,654,303 958,452
Amazon | 3,109 13,864 339,701 137,948

A.2 Additional Implementation Details

Here, we provide more implementation details.
The warm-up ratio was set to 0.1. For BiLLP, we
use the same backbone as ULRec, namely Llama-
3-8B° (Grattafiori et al., 2024). Due to resource
constraints, we did not use remote APIs, but in-
stead chose the high-performance gte-Qwen2-1.5B-
instruct’ (Li et al., 2023b) for getting embedding
for retrieval, and performed vector retrieval with
FAISS (Douze et al., 2024) and SentenceTrans-
formers (Reimers and Gurevych, 2020). For tradi-
tional methods, following previous work, we train
100,000 episodes in the training simulation envi-
ronment to ensure sufficient training for these mod-
els. Following BiLLP (Shi et al., 2024), when
constructing the simulation environment, we fil-
ter out users with fewer than 90 interactions in
the Amazon dataset to ensure the accuracy of user
preference modeling in the simulated environment.
For recommendation, we provide the recommender
with the last 15 interactions of each user, a setting
that is also consistent with BiLLP (Shi et al., 2024).

A.3 Dataset statistics

We present the statistics of the datasets used to
build the simulated environment in Table 3; this
information is the same as Shi et al. (2024).

A.4 Addtional Results

We design experiments to demonstrate that ULRec
achieves high efficiency. As shown in Figure 6,
considering that autoregressive token generation
incurs substantial computational costs in practical
LLM deployments, we evaluate ULRec’s efficiency
by measuring the long-term reward attainable per
unit interaction cost (expressed as the total number
of tokens involved per recommendation). It can be
observed that ULRec exhibits a significant advan-
tage over both Base and BiLLP on two datasets.

6https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

7https://huggingface.co/Alibaba—NLP/
gte-Qwen2-1.5B-instruct

o [ Performance/Cost . [0 Performance/Cost
> >,
O s v
< <
2, 2
2 2
=] b
w w2
1
| | | |
BiLLP Base ULRec BiLLP Base ULRec
(a) Steam (b) Amazon

Figure 6: Efficiency Superiority Comparison. The effi-
ciency advantage is evaluated by the ratio of long-term
reward performance metric (“Traj Reward”) to the cost
per recommendation (i.e., the number of tokens required
for a single interactive recommendation), where a higher
ratio indicates better efficiency.

A.5 Training dataset construction.
A.5.1 Traning data example

We construct training samples using interaction
data generated by ReAct, removing the thought
part and retaining only the action part. We also
assume that after fine-tuning, the model is likely to
output recommendable items, so we replace the pre-
grounded items with grounded items to complete
the construction of the training data. An example
of a training sample can be found in Figure 7. Here,
“Input” refers to the part fed into the model, while
“Target” is the expected output during fine-tuning.
Negative feedback can be processed similarly and
then organized into the TRL’s KTO format for input
to KTO optimization.

A.5.2 Prompt for constructing training
dataset.

Table 8 shows the ReAct-style prompt we used to
obtain offline training data by interacting with the
training environment. In the prompt, we provide
the LLM with minimal information about the envi-
ronment, and the case is included only to demon-
strate the required output format. We expect the
model to discover the answer through its own ex-
ploration and output the result in the correct format.

24519


https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct

Training data example.

Input: Solve a recommendation task with interleaving Action, Observation steps.

Action can be the following types:

(1) recommend[item], which recommend an item to user based on user’s interest. Your goal is to
meet the user’s interest as much as possible and make recommendations to users as many times as
possible. Note that if the user is not satisfied with your recommendations, he will quit and not
accept new recommendations

You may take as many steps as necessary.
Here are some examples:

Question: The user’s viewing history is [‘Pretty in Pink’, One Flew Over the Cuckoo’s
Nest; ‘Ransom’, ‘Saving Private Ryan’, ‘X-Men’, ‘Coyote Ugly’, ‘The Patriot’, ‘Me, Myself and
Irene’, ‘Gone in 60 Seconds’, ‘The Perfect Storm’, “Titanic’, ‘The Haunting’, ‘Bedknobs and
Broomsticks’, ‘Clerks’, ‘The Matrix’, ‘The Shawshank Redemption’, ‘Vacation’, ‘Father of the
Bride’, ‘Wallace & Gromit: The Best of Aardman Animation’, ‘Back to the Future’, ‘Fight Club’],
please recommend item for this user

Action 1: recommend[Forrest Gump]

Observation 1: Episode continue, reward=0.30697035862193367

Action 2: recommend[The Godfather]

Observation 2: Episode finished, reward=0.49717313011547304

(END OF EXAMPLES)

Question: The user’s viewing history is [‘Torchlight’, Tom Clancy’s Rainbow Six® Vegas 2;
‘FE.A.R’, ‘Torchlight II’, ‘Just Cause 2°, ‘Just Cause 2, Baldur’s Gate: Enhanced Editiony
Baldur’s Gate: Enhanced Edition; ‘LEGO® Marvel™ Super Heroes’, ‘Rise of Nations: Extended
Edition’, ‘Warhammer® 40,000: Dawn of War® - Soulstorm’, ‘Age of Empires I HD’, ‘Age of
Empires II HD’, Tom Clancy’s Ghost Recon®; ‘Dungeon Siege’], please recommend item for this
user

Action 1: recommend[ Dungeon Siege |

Observation 1: Episode continue, reward=1.856873869895935

Action 2:

Target: recommend[ Borderlands ]

Figure 7: Training data example.

24520



Prompt for constructing training dataset.

Prompt:

Solve a recommendation task with interleaving Thought, Action, Observation steps. Thought can
reason about the current situation and current user interest, and Action can be the following types:
(1) recommend[item], which recommend an item to user based on user’s interest. Your goal is to
meet the user’s interest as much as possible and make recommendations to users as many times as
possible. Note that if the user is not satisfied with your recommendations, he will quit and not
accept new recommendations. You may take as many steps as necessary.

Here are some examples:

Question: The user’s viewing history is [‘Pretty in Pink’, One Flew Over the Cuckoo’s
Nesty ‘Ransom’, ‘Saving Private Ryan’, ‘X-Men’, ‘Coyote Ugly’, “The Patriot’, ‘Me, Myself and
Irene’, ‘Gone in 60 Seconds’, ‘The Perfect Storm’, ‘Titanic’, ‘The Haunting’, ‘Bedknobs and
Broomsticks’, ‘Clerks’, ‘The Matrix’, ‘The Shawshank Redemption’, ‘Vacation’, ‘Father of the
Bride’, ‘Wallace & Gromit: The Best of Aardman Animation’, ‘Back to the Future’, ‘Fight Club’],

please recommend item for this user

Thought: The user seems to enjoy a mix of drama, action, and comedy. They also seem
to appreciate classic films. I should recommend a movie that fits these categories.

Action: recommend[Forrest Gump]

Observation: Episode continue, reward=0.30697035862193367

Thought:The user seems to have responded positively to the previous recommendation.
They seem to enjoy movies with a strong narrative and compelling characters. I should recommend
another movie in a similar vein.

Action: recommend[The Godfather]

Observation: Episode finished, reward=0.49717313011547304
(END OF EXAMPLES)

Question:

Figure 8: Prompt for constructing training dataset.

24521



