
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24489–24506
November 4-9, 2025 ©2025 Association for Computational Linguistics

StructuThink: Reasoning with Task Transition Knowledge for Autonomous
LLM-Based Agents

Haiyu Zhao1, Zhenyu Guo1, Chunhong Zhang1, Ziyu Zhou2, Zheng Hu1*

1State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications

2Faculty of Electrical Engineering,
Czech Technical University in Prague

{zhaohaiyu, guozhenyu2022, zhangch, huzheng}@bupt.edu.cn
zhouziyu@cvut.cz

Abstract
Decision-making tasks have highlighted fun-
damental challenges in grounding decisions
within real-world contexts. Traditional deci-
sion knowledge utilization methods often strug-
gle to effectively integrate structured decision
constraints, limiting their ability to decom-
pose high-level tasks, maintain logical consis-
tency, and adapt to dynamic environments. To
bridge this gap, we introduce StructuThink,
a knowledge-structured reasoning framework
that enhances LLM-based agents with explicit
decision constraints. Specifically, we propose
the Task Transition Knowledge Graph (TTKG)
that learning decision knowledge in embod-
ied scenarios. Leveraging this knowledge, we
propose the StructuThink framework, compris-
ing a subtask chain constructor for grounding
natural language instructions and a constraint-
based executor for adaptive and consistent
decision-making. We validate StructuThink
across multiple benchmarks, including ALF-
World and WebShop, where it achieves higher
task success rates (improving by up to 7%)
and more efficient action sequences (requir-
ing up to 15% fewer steps) than baseline meth-
ods. Our approach enables LLMs to more ef-
fectively ground decision-making in domain-
specific scenarios, enhancing both interpretabil-
ity and reliability, thus paving the way for more
reliable and adaptable decision-making sys-
tems.

1 Introduction

Large Language Models (LLMs) exhibit strong lan-
guage understanding and generation abilities, mak-
ing them promising foundations for autonomous
agents in complex environments (Wang et al., 2024;
Xi et al., 2025). However, their decision-making ca-
pabilities remain limited due to the lack of domain-
specific training and the disconnect between high-
level linguistic reasoning and low-level environ-
mental affordances (Lu et al., 2023; Rana et al.,

*Corresponding author.

Loosely-coupled
Decision Knowledge

Tightly-coupled
Decision Knowledge

 Textual Knowledge

Semantic
Similarity Retrieval

Decision
Knowledge

 TaskFlow
 Knowledge Graph

Heuristic
Graph Search

Find Goto

Pick
Put

Task Chain
Construction

Context
Learning

Task

Language
Grounding

 Controllable
 LLM-agent

Task Context Information
You are a housekeeping task AI.
Please generate a reflection on
the next course of action.
Examples
Your task is to: put some
spraybottle on toilet.
> think: First I need to find a
spraybottle
> go to cabinet 1
> think: Now I find a spraybottle.
Next, I need to take it.
> take spraybottle 2 from cabinet 2
...
Current Task
Find some apple and put it in
sidetable.

User Instruction
Find some apple and put it in sidetable.

User Instruction
Find some apple and put it in sidetable.

 LLM-based
 Actor

 LLM-based
 Actor

 Constraint-driven
 Thinker

Obs

Obs
Thinking

Action

Action

Task Chain Controller

Environment

Environment

Obs

Task Progress
Information

Figure 1: Comparison of loosely- and tightly-coupled
decision knowledge. The former retrieves relevant
task examples and provides pre-decision task context
to guide LLMs. In contrast, our method builds a Task
Transition Knowledge Graph via heuristic search and
supplies real-time task progress feedback to enable con-
strained and adaptive decision-making.

2023). This gap often results in failures to decom-
pose tasks or generate context-aware actions (Xi
et al., 2025; Gramopadhye and Szafir, 2023). To
mitigate this, researchers have explored incorporat-
ing scene knowledge into LLMs (Song et al., 2024),
which can be categorized as Perceptual Knowledge
(e.g., object types, spatial relations) and Appercep-
tive Knowledge (e.g., commonsense, affordances,
intentions). In this work, we focus on integrat-
ing the decision-related aspects of Apperceptive
Knowledge to guide task execution more effec-
tively.

Existing efforts to inject Apperceptive knowl-
edge into LLMs primarily fall into two categories:
unstructured and structured representations (Song
et al., 2024). Unstructured knowledge (e.g., nat-
ural language instructions, expert demonstrations)
provides flexible and diverse representations, typi-
cally learned via in-context prompting (Zhao et al.,
2024; Sun et al., 2023). However, the limited con-

24489

text window of LLMs (Xiao et al., 2024; Anokhin
et al., 2024), combined with the logical vagueness
of natural language, often leads to decision halluci-
nations (Zhu et al., 2024) and reasoning inconsis-
tencies (Ding et al., 2023), making such methods
unreliable for complex decision-making. In con-
trast, structured knowledge leverages explicit for-
mats like logic rules or graphs to represent task
states and dependencies (Anokhin et al., 2024;
Zhu et al., 2024), offering better logical clarity
and grounding. For example, AriGraph (Anokhin
et al., 2024) constructs semantic-situational mem-
ory graphs, while KnowAgent (Zhu et al., 2024)
constrains action spaces using logical rules. Yet,
these approaches face a trade-off: methods like
PDDL provide adaptability via real-time feedback
but require costly expert-defined logic (Sun et al.,
2023), whereas lower-cost tools (e.g., policy scripts,
knowledge graphs) are easier to build but lack dy-
namic adaptation. Thus, how to efficiently incor-
porate structured decision knowledge into LLMs
without sacrificing flexibility remains an open chal-
lenge.

Inspired by Hierarchical Task Networks (HTNs),
we propose a method that utilizes subtask knowl-
edge to construct a decision constraint graph,
which imposes low-cost constraints on LLM-agent
decision-making. This approach aims to bridge
the gap between high-level natural language under-
standing and grounded task execution. To achieve
this, we address the following three key questions:
Q1. How can decision knowledge be leveraged to
generate task-completable constraints from natu-
ral language instructions? Q2. How can LLMs
be guided to accomplish tasks by adhering to
constraint-based task chains? Q3. How can de-
cision knowledge be generalized across scenarios
by learning from expert trajectories? Specifically,
our key contributions are as follows:

• We introduce a novel decision knowledge rep-
resentation, termed Task Transition Knowl-
edge Graph (TTKG), which models subtasks
and their transition dependencies via graph
nodes and edges (addressing Q1, Q2).

• Building on TTKG, we develop a constraint-
grounded decision framework that ground nat-
ural language instructions into executable sub-
task chains, which are then used to dynami-
cally guide LLM-agent decision-making (ad-
dressing Q1, Q2).

• To support scalability, we propose a automatic
method for learning TTKG from expert trajec-
tories.(addressing Q3)

• We empirically validate our approach in in-
teractive environments such as ALFWorld
and WebShop, demonstrating that integrating
structured constraints significantly improves
grounding accuracy and decision reliability.

2 Related Work

2.1 Language Models for Decision Making

Planning is a fundamental capability for intelli-
gent agents, enabling them to decompose complex
tasks into manageable sub-tasks and adapt their
strategies to dynamic environments. In the con-
text of LLM-based agents, planning typically in-
volves two stages: formulation and reflection(Xi
et al., 2025). During plan formulation, agents
either generate comprehensive plans in a single
step or adopt incremental strategies, such as the
Chain-of-Thought (CoT) approach(Kojima et al.,
2022; Wei et al., 2022; Lyu et al., 2023), to address
sub-tasks iteratively, providing greater flexibility
for intricate tasks. Hierarchical planning further
enhances decision-making by organizing reason-
ing steps in tree-like structures(Yao et al., 2023a),
allowing agents to evaluate multiple paths before fi-
nalizing a plan(Wang et al., 2022; Hao et al., 2023;
Huang et al., 2022a). While Tree of Thoughts
(ToT) performs tree-based reasoning over sampled
"thoughts" to enhance LLM reasoning capabilities,
our approach differs fundamentally by modeling
subtask-level dependencies through TTKG, which
provides interpretable and reusable decision knowl-
edge specifically designed for grounded task ex-
ecution. Plan reflection complements formula-
tion by enabling agents to refine their strategies
through internal feedback mechanisms(Shinn et al.,
2023; Madaan et al., 2023; Chen et al., 2023; Miao
et al., 2023), human interactions(Li et al., 2023; Wu
et al., 2022; Wang et al., 2023), and environmental
cues(Yao et al., 2023b; Song et al., 2023; Huang
et al., 2022b; Zhao et al., 2023; Rana et al., 2023).
These reflection processes help align plans with
human values and improve adaptability, ensuring
robust task execution in complex and real-world
scenarios.

24490

2.2 Planning Knowledge for LLM-Based
Agents

Researchers have investigated diverse strategies to
incorporate scene knowledge into Large Language
Models (LLMs) for more effective planning and
decision-making in embodied tasks. Approaches
for integrating decision knowledge can be broadly
categorized into unstructured and structured rep-
resentations. On one hand, unstructured repre-
sentations (e.g., natural language demonstrations
or text-based experiences) (Zhao et al., 2024; Sun
et al., 2023) benefit from ease of learning through
in-context prompts, yet face limitations due to re-
stricted context windows and a lack of logical rigor,
often leading to “decision hallucination” in multi-
step reasoning (Xiao et al., 2024; Anokhin et al.,
2024; Zhu et al., 2024; Ding et al., 2023). On the
other hand, structured representations adopt ex-
plicit formats, such as knowledge graphs (Anokhin
et al., 2024) or logical constraints (Zhu et al., 2024;
Roy et al.), clarifying dependencies and causal rela-
tionships for robust planning. However, achieving
a balance between flexibility and construction cost
remains challenging. Methods like PDDL offer
dynamic adaptability but demand specialized inter-
preters and extensive domain expertise (Sun et al.,
2023), while lower-cost alternatives (e.g., policy
scripts, simplified knowledge graphs) may struggle
to incorporate real-time observations for adaptive
reasoning. Consequently, integrating structured
planning knowledge with LLM-based processes
requires careful design to maintain logical consis-
tency and accommodate changing environmental
contexts.

3 Methods

We draw inspiration from Hierarchical Task Net-
works (HTNs), which decompose complex tasks
into structured subtasks and capture the transi-
tion relationships among them. We observe that
interactive task scenarios often exhibit an inher-
ent hierarchical structure, where the task space
can be abstracted as a sequence of subtasks con-
nected by transition dependencies. Leveraging
the strong semantic understanding capabilities of
LLMs, we propose to extract subtask-level decision
knowledge—i.e., the subtask units and their tran-
sitions—from expert trajectories. These are stored
in a Task Transition Knowledge Graph (TTKG),
where nodes represent subtasks described in nat-
ural language, and edges capture learned transi-

tion knowledge between them. During decision-
making, TTKG is first used to ground high-level
natural language instructions into executable sub-
task chains. These chains then serve as dynamic
constraints to guide the LLM-agent’s step-by-step
decisions, ensuring that its behavior aligns with
task structure and prior expert knowledge.

3.1 Problem Statement for Interactive Task
Execution

In our framework, the user provides a natural lan-
guage instruction i, which may be long, abstract, or
ambiguous. We then model the resulting complex
interactive task as a sequential decision-making
problem in deterministic environments. At each
time step t ∈ {0, . . . , H}, the agent receives an
observation ot ∈ O, where O denotes the ob-
servation space. Based on its observation history
Ht = {o0, o1, . . . , ot}, the agent selects an action
at ∈ A, where A represents the action space. The
agent’s objective is to fulfill the user instruction i.

We first parse the natural language instruction
into a chain of subtasks, S = {s1, s2, . . . , sn},
and then generate an action sequence, A =
{a1, a2, . . . , am}, based on these subtasks. The
agent’s decision-making is guided by a policy π,
which maps the observation historyHt to an action
at, i.e., π : Ht → A.

3.2 Task Transition Knowledge Graph

We propose the Task Transition Knowledge Graph
(TTKG) to represent subtask-level decision knowl-
edge using natural language. In TTKG, both nodes
and edges are expressed as natural language de-
scriptions. Each node represents a subtask and is
categorized as either a root task node (derived di-
rectly from user instructions) or a compound task
node (representing intermediate goals). Edges cap-
ture transition relationships such as temporal order
or dependency between subtasks. This graph struc-
ture enables the construction of interpretable sub-
task chains that guide LLM-agent decision-making
through lightweight, language-based constraints.

3.2.1 Task Nodes
We abstract the environment’s task space into three
hierarchical levels: Root Tasks (Tr), Compound
Tasks (Tc), and Primitive Actions (a). Primitive
actions are the smallest executable units defined
by the environment (e.g., open drawer, pick up
item). Compound tasks are composed of sequences
of primitive actions, i.e., Tc = {a1, a2, . . . , an},

24491

H
T

N
-P

la
nn

er

First I need to find
the mug.

I've found the mag.
The next step is to

pick it up.

LLM-based Actor

Action
Goto shelf2

Checker

Error

Format Error Prompt

Observation1：
Think1：
action1：
···
Observation3：
think3：

Prompter

Black-box LLM

Example Repository

TTKG

User Instruction
You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 1, a drawer 1,
a drawer 2, a desk 2, a shelf 1, a shelf 2, a shelf 3, a shelf 4, a
laundryhamper 1, a drawer 3, a safe 1, a garbagecan 1, a drawer
4, a drawer 5, a drawer 6, a shelf 5, and a shelf 6.
Your task is to: put a mug in desk

Thinking

Task Situation:
I have explored desk 1 and desk 2, but the
mug was not found.
Next Plan：
Find. The next logical step is to search the
shelves and drawers where mugs are
commonly stored. I should check shelves
1-6 or drawers 1-6 to locate the mug
before proceeding to put it in the desk.

Obs
On the shelf 1, you see a laptop 1, a
alarmclock 1, a book 1, a pencil 1, a bowl
1, a keychain 2, and a creditcard 1.

Find

Pick

Goto

Put

Routing
Function

I've picked the mag.
The next step is to
goto desk and put.

I've arrived the
desk. The next step

is to put it down.

Task Completed ✅

Stage 1 SubTask Chain Construction Stage 2 Chain-Guided Execution

Environment

Contextual Reason

Task and Transition Knowledge

Few-shot
examples

Contextual Reason

Contextual Reason

Contextual Reason

Contextual Reason

SubTask Chain

Routing
Function

Routing
Function

Routing
Function

Find
Expert

Trajectory

Constraint-Driven Thinker

Context-based Reasoner

Decision
Function ⊕

⊕
Candidates

Candidates

Candidates

Candidates

s

Figure 2: Overview of the StructuThink framework. The model operates in two stages: (1) SubTask Chain Con-
struction, where the HTN-Planner decomposes user instructions into a subtask chain through a ReAct process—first
reasoning over the task context, then uses the Task Transition Knowledge to select the next compound task node
through a routing function; (2) Chain-Guided Execution, where a Constraint-Driven Thinker leverages decision
functions and context-based reasoning to interpret environmental observations and guide the LLM-based actor
through a prompt-reflect-act loop. Error checking and correction are performed via a checker-prompter mechanism
to ensure robust execution in dynamic environments.

and serve as intermediate subgoals. Root tasks are
high-level objectives derived from user instructions.
In our Task Transition Knowledge Graph (TTKG),
we represent only Tr and Tc as task nodes.

For each Root Task node Tr, we store its natu-
ral language description and a task summary out-
lining how it may be achieved. This information
helps the system select appropriate starting tasks
during compound task planning. For each Com-
pound Task node Tc, we maintain a semantic de-
scription and a set of expert-provided refinements
R = {r1, r2, . . . }, where each refinement cor-
responds to an action sequence ⟨a1, a2, . . . , am⟩.
The semantic description encodes the skill repre-
sentation of the task, whereas the refinements serve
as actionable demonstrations to guide LLM-based
decision-making. Transitions between compound
tasks are modeled as edges in the TTKG, which we
describe in the next section.

3.2.2 Transition Edges

In TTKG, each transition edge e = (Ti → Tj) ∈ E
is a directed link between task nodes, representing

the progression from a current task Ti to its suc-
cessor Tj . Since task transitions may vary across
different contexts or stages, multiple edges may
exist between the same node pair, each encoding a
distinct decision pathway.

Each transition edge includes three key elements:
(1) the identifiers of the source and target tasks Ti

and Tj , (2) the root-task information, which con-
tains the natural language instruction and the initial
state context, and (3) a situation summary, which
describes the current task status (e.g., “apples found
but not placed”), guiding the agent’s next decision.
These attributes allow the LLM to reason about
which transition edge to follow after completing
the current compound task, thereby selecting the
next subtask and supporting dynamic, step-by-step
subtask generation.

3.3 StructuThink Framework

Our StructuThink framework consists of two
stages: SubTask Chain Construction based on
the Task Transition Knowledge Graph, and LLM-
based execution with decision constraints. Dur-

24492

ing task planning, a Root Task Tr is used to
generate a SubTask Chain consisting of Com-
pound Tasks. This subtask chain is typically rep-
resented as an ordered sequence, describing the
dependencies among Compound Tasks. Formally,
this can be represented as C = (V,E), where i
indicates the i-th iteration of subtask generation,
V = {T 1

c , T
2
c , . . . , T

i
c} denotes the set of Com-

pound Task nodes, and E represents the directed
transitions between task nodes, defining their de-
pendencies and execution order. During the ex-
ecution phase, the agent interacts with the envi-
ronment based on these Compound Tasks, thereby
generating a sequence of Primitive Actions that
accomplishes the desired objectives.

3.3.1 SubTask Chain Construction
Definition 1 (Routing Function). Given a pre-
constructed knowledge graph G = (V,E), a root
task Tr, and a partially constructed subtask chain
Ci = [T 1, e1, T 2, e2, . . . , ei−1, T i], the routing
function fR is defined as:

fR(Tr, C
i, G)→ T i+1

c

where T i+1
c ∈ V is the next compound task node

selected based on the current context. The func-
tion leverages the information associated with the
outgoing edges of the current task node T i to deter-
mine the next task in the chain under the root task
goal.

To achieve the grounding of natural language in-
structions into a SubTask Chain, we leverage Large
Language Models (LLMs) to construct reasoning
and the routing function fR(Tr, C

i, G), as outlined
in Figure 2 stage 1. Specifically, in each iteration
step, the model first retrieves the compound task
nodes connected to the last node T i

c in the current
task chain from TTKG as candidate nodes Ncand.
The information of nodes and the edges between
them serves as auxiliary information. Subsequently,
these contexts are input into the LLM, which em-
ploys the ReAct framework to initially generate
reasoning for the subsequent compound task. Fol-
lowing this, the model selects the next compound
task T i+1

c from the candidate nodes. To minimize
generation costs, we prompt the LLM to perform
both reasoning and node selection within a single
interaction.

3.3.2 Chain-Guided Execution
Definition 2 (Decision Function). Given a com-
pound task node T i

c and an observation obst at time

step t, we define a node-level decision function f i
D

as:

f i
D(obst)→ T j

c , where T j
c ∈ {T i

c , T
i+1
c }

The function outputs either the current task node
T i
c (to continue execution) or the next task node

T i+1
c (to initiate transition), enabling dynamic and

context-aware adjustment of the subtask chain dur-
ing execution.

Based on the node-level decision function, we
construct a decision chain framework with the Re-
Act paradigm. As illustrated in Figure 2 (Stage
2), execution begins by initializing the task chain
C and setting the current compound task node Tc

as the first node. At each time step s, the node-
level decision function fD takes the current node
Tc, task chain C, and observed state os, and outputs
whether to stay at Tc or transition to the next node.
A context-based reasoner fr generates a thinking
trace θs based on Tc and os, which is passed to the
LLM-based actor fa to produce an action as. A
checker module fc validates the action; if invalid,
it triggers revision via feedback until a valid action
is found. This chain-guided execution loop contin-
ues until task completion or a step limit Smax is
reached, enabling the agent to adaptively plan and
act under structured constraints.

3.4 Knowledge Graph Learning

We construct the Task Transition Knowledge Graph
(TTKG) from a limited set of expert trajectories
by prompting a large language model (LLM) to
extract and organize decision knowledge. Inspired
by the work of Yang et al. (Yang et al., 2024), our
TTKG focuses on encoding task-relevant decision
knowledge derived from expert trajectories. The
construction process is described in Algorithm 1.

Node Extraction from Expert Trajectories.
From expert demonstrations, we extract three types
of nodes. Root Task Nodes (Tr) are derived directly
from natural language instructions. Compound
Task Nodes (Tc) represent intermediate subgoals
inferred from task decomposition, with each com-
pound task node associated with an action sequence
⟨a1, a2, . . . , an⟩ extracted from the demonstration.
Success Nodes (Tdone) denote successful task termi-
nation and serve as the endpoint of a subtask chain.
Formally, for each root task Tr, we construct a
subtask chain:

Cr = {T 1
c , T

2
c , . . . , T

n
c , Tdone}

24493

Algorithm 1 TTKG Construction via Single-Shot
LLM Extraction

1: Inputs: Expert trajectory dataset D =
{τ1, . . . , τM}, pre-trained LLM fLLM

2: Output: Task Transition Knowledge Graph
G = (V,E)

3: G← ∅ {Initialize empty graph}
4: for each trajectory τ ∈ D do
5: /- Single LLM extraction step -/
6: (Tr, C, E)← fLLM(prompt = τ) {Tr: root

task node, C: ordered compound task nodes,
E : transition edges}

7: V ← V ∪ {Tr} ∪ C {Add new task nodes}
8: E ← E ∪ E {Add new transition edges}
9: end for

10: return G

where each T i
c corresponds to a compound task

derived from the trajectory and is stored in the
node set V of the knowledge graph G = (V,E).

Transition Edge Extraction. We extract transi-
tion edges between compound tasks based on the
task execution order observed in expert demonstra-
tions. Inspired by Zhang et al. (Zhang and Soh,
2024), we additionally encode causal knowledge
about task transitions into each edge e = (T i

c →
T i+1
c) to capture the underlying reasons for action

success or failure. In addition to the source and
target nodes, each edge is annotated with three key
attributes: the root task context from which the
transition originates, the initial observation state
prior to the transition, and a situation summary
describing the local execution progress (e.g., “ob-
ject found but not placed”). These attributes jointly
capture the decision conditions under which the
transition occurs, and they serve as critical inputs
to the routing function fR for guiding dynamic
subtask planning.

Graph Integration and Normalization. Af-
ter extracting all task nodes and transition edges,
we integrate them into a unified knowledge graph
G = (V,E). To ensure consistency and eliminate
redundancy, we apply the following integration
strategies: 1) Node normalization, where nodes
with identical semantic descriptions are merged
into a single canonical node; 2) Edge consolida-
tion, where multiple edges sharing the same source
and target but differing in context are retained with
distinct annotations to capture multiple valid tran-
sitions. The resulting TTKG supports downstream
reasoning, routing, and decision-making by provid-

Pick Clean Heat Cool Examine Pick two
Task

0

5

10

15

20

25

30

St
ep

s

12

18
15

10

20

25

10

16

12
9

18
20

react structThink

Figure 3: Step Count Comparison Across Tasks. This
graph displays the step counts for various tasks, includ-
ing only the trajectories where tasks were successfully
completed. Trajectories that failed to reach a successful
outcome within the maximum allowed 50 steps have
been excluded.

ing interpretable, structured decision knowledge
grounded in expert behavior.

4 Experiments and Results

4.1 Tasks, Baselines and Settings
We evaluate StructuThink on two text-based
decision-making environments: ALFWorld (Shrid-
har et al., 2020), a virtual household environment
with diverse natural language tasks (150 tasks in-
volving object retrieval, manipulation, and navi-
gation), and WebShop (Yao et al., 2022), a simu-
lated online shopping platform requiring multi-step
decision-making for fulfilling purchase orders (120
tasks covering various selection and transaction sce-
narios). Following prior work (Zhao et al., 2024;
Sun et al., 2023), we use success rate as the pri-
mary evaluation metric, defined as the proportion
of successfully completed episodes. In ALFWorld,
episodes fail if the agent exceeds 50 actions without
task completion, while in WebShop, failure is trig-
gered by invalid actions or incomplete execution of
the planned task sequence.

We compare StructuThink with several rep-
resentative baselines across three strategy cate-
gories: (1) Without Knowledge, including Re-
Act (Yao et al., 2023b) and Reflexion (Shinn et al.,
2023), which rely solely on in-context reason-
ing and self-reflection without external knowl-
edge; (2) Unstructured Knowledge, including
ExpeL (Zhao et al., 2024) and AdaPlanner (Sun
et al., 2023), which inject unstructured external ex-
periences or demonstrations; and (3) Structured
Knowledge, including O3D (Xiao et al., 2024),
which uses offline planning knowledge graphs. We
further include ablation variants of our method:

24494

Table 1: Performance comparison of different strategies and methods in ALFWorld and WebShop environments for
GPT-3.5-turbo and GPT-4-turbo.

Strategy Method ALFWorld WebShop
Pick Clean Heat Cool Look Pick2 ALL

GPT-3.5-turbo Results

Without Knowledge
React (Yao et al., 2023b) 75.0 24.7 37.7 36.4 44.4 11.8 41.9 35.0
Reflexion (Shinn et al., 2023) 87.5 44.1 73.9 50.0 61.1 35.3 59.8 –

Unstructured Knowledge
ExpeL (Zhao et al., 2024) 62.5 61.3 30.4 61.9 55.5 35.3 52.2 41.0
AdaPlanner (Sun et al., 2023) 83.3 46.2 65.2 74.2 68.5 52.9 63.3 –

Structured Knowledge
O3D (Xiao et al., 2024) 71.2 35.4 4.1 66.8 43.7 24.3 41.0 35.1
Ours(woStruct) 50.2 58.1 52.9 53.4 58.6 56.7 56.3 37.6
Ours 81.4 75.2 83.1 68.3 73.6 75.0 76.2 53.4

GPT-4-turbo Results

Without Knowledge
React (Yao et al., 2023b) 95.8 76.3 69.6 86.4 72.2 52.9 76.8 40.0
Reflexion (Shinn et al., 2023) 100.0 95.7 78.3 86.4 77.8 70.6 85.9 –

Unstructured Knowledge
ExpeL (Zhao et al., 2024) 94.4 82.8 72.4 81.8 72.2 58.8 79.2 45.0
AdaPlanner (Sun et al., 2023) 88.9 90.3 85.5 75.8 64.8 41.2 76.4 –

Structured Knowledge
O3D (Xiao et al., 2024) 92.3 99.7 96.4 94.8 99.5 53.1 91.2 57.3
Ours(woStruct) 84.3 86.2 83.5 85.0 87.1 83.7 84.3 42.9
Ours 93.1 92.3 91.8 91.9 93.7 92.6 92.0 59.1

Ours(woStruct), which removes structured deci-
sion constraints from TTKG, and Ours, the full
StructuThink pipeline.

4.2 Main Results

Table 1 shows that StructuThink achieves the best
performance across both ALFWorld and WebShop.
It outperforms unstructured (e.g., AdaPlanner) and
prior structured methods (e.g., O3D), with suc-
cess rates of 76.2% (GPT-3.5) and 92.0% (GPT-
4) in ALFWorld, and 53.4%/59.1% in WebShop.
Gains are especially prominent on complex tasks
like Pick2 and Heat, where task dependencies mat-
ter. Notably, StructuThink shows clear advantages
even under GPT-3.5, validating its robustness in
low-resource LLM settings.

Step Count Analysis.Figure 3 shows that Struc-
tuThink achieves shorter trajectories compared to
baselines, indicating more efficient task execution.
In ALFWorld, it reduces steps by 17.4% over Ada-
Planner and 23.5% over ReAct (Yao et al., 2023b).
Similar gains are observed in WebShop. These im-
provements stem from the structured constraints
guiding agents to relevant subgoals, minimizing
redundant actions and revisions.

Error Analysis. Unstructured methods often
suffer from decision hallucinations and inefficient
exploration, especially in tasks like Look or Pick2,
where reasoning dependencies are crucial. Ap-
proaches such as Reflexion (Shinn et al., 2023)

rely heavily on iterative refinements, leading to in-
creased trial-and-error. In contrast, StructuThink
enforces valid subtask ordering through explicit
task graphs, reducing failures due to misordered or
illogical decisions.

4.3 Task Chain Analysis

We conduct a task chain analysis to examine how
effectively each method maintains logical consis-
tency when decomposing a given instruction into
subtasks. Specifically, we compare three different
settings: (1) Basic Context, where we only pro-
vide the original instruction and a high-level task
decomposition requirement; (2) HTN-Knowledge
Prompt, where we additionally include an HTN-
based knowledge graph in a prompt-like format;
and (3) HTN Compose, which applies a hierarchi-
cal task network algorithm layer by layer using the
HTN knowledge graph. Our main metrics are Log-
ical Coherence, reflecting whether the produced
subtasks follow valid prerequisite/action-order con-
straints, and Success Rate, indicating how effec-
tively the generated task chain performs in the ac-
tual execution of the task.

As shown in Figure 4a and 4b, integrating HTN
structures significantly improves both logical co-
herence and execution success. The Basic Con-
text setting often yields invalid subtask sequences
(e.g., missing prerequisites), leading to low coher-
ence (e.g., 62.1% on cool) and poor completion.

24495

put clean hot cool puttwo examine
Task

0

20

40

60

80

100
Lo

gi
ca

l C
oh

er
en

ce
 (%

)

75

60
68

62 66 67

88
83 83 86

80
87

100 100 100 100 96 100

Basic Context Learning HTN Context HTN Compose

(a) Logical Coherence

put clean hot cool puttwo examine
Task

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

62 64 61 58
50

64

76 73 75
69 72 75

91
85

93

78
85 83

Basic Context Learning HTN Context HTN Compose

(b) Success Rate

Figure 4: Comparison of logical coherence and suc-
cess rates for different methods on the put, clean, hot,
cool, puttwo, and examine tasks. Higher percentages
indicate more consistent subtask ordering, fewer prereq-
uisite violations, and a greater likelihood of completing
the subtask sequence without errors.

HTN-Knowledge Prompt improves coherence by
10–20 points, highlighting the benefit of exposing
task dependencies. However, without structural
enforcement, ordering errors persist. In contrast,
HTN Compose achieves the highest performance by
composing tasks layer-by-layer with graph-based
validation, ensuring valid subtask transitions and
robust execution.

4.4 Learning Efficiency Comparison

To assess the effectiveness and efficiency of
structured knowledge integration, we compare
our method (Ours) and its unstructured variant
(Ours(woStruct)) against the React baseline under
varying numbers of expert demonstrations (6–30)
in the ALFWorld environment using GPT-3.5. This
setup evaluates how well each method generalizes
task execution as demonstration data increases.

As shown in Figure 5, our structured method con-
sistently outperforms both baselines, especially in
low-data settings. With only 12 demonstrations, it
stabilizes at an 85% success rate, while the unstruc-

5 10 15 20 25 30
Number of Demos

40

50

60

70

80

90

Su
cc

es
s R

at
e

(%
)

Success Rate vs. Number of Demos

Basic Context Learning
Ours(woStruct)
Ours

Figure 5: Success rate curves of GPT-3.5-based
experiments. We compare our proposed method
(Ours) and its variant without structural constraints
(Ours(woStruct)) against the React method. As the
number of expert trajectories increases, our approaches
achieve higher and more stable success rates than React.

tured variant requires over 18 demonstrations to
approach 75%, and React remains below 50% even
with 24 demonstrations. These results highlight
the superior sample efficiency and generalization
of our structured approach, confirming the value
of explicit task knowledge in guiding LLM-based
agents.

4.5 Ablation Studies

To evaluate the contributions of individual compo-
nents in our structured reasoning framework, we
conduct ablation studies by selectively removing
key modules: (1) Expert Trajectory, which provides
reference demonstrations for task execution; (2)
Checker, a validation mechanism ensuring consis-
tency in decision-making; and (3) Struct, our struc-
tured decision constraint mechanism. The results,
summarized in Table 2, highlight the necessity of
each component in enhancing task performance.

As shown in Table 2, removing any compo-
nent leads to a notable performance drop, confirm-
ing their complementary contributions. Excluding
Struct reduces success to 76.4%, highlighting its
role in maintaining logical consistency. Without
the Checker, success drops to 80.2%, indicating
the benefit of runtime validation. The largest de-
cline occurs without Expert Trajectories (73.7%),
demonstrating their importance in guiding LLMs
via demonstration-based grounding. Overall, the
full model achieves the best performance (86.3%),
validating the effectiveness of our structured rea-
soning framework.

24496

Table 2: Ablation study on task performance in the
ALFWorld dataset.

Expert Trajectory Checker Struct Success Rate (%)

✓ ✓ 76.4
✓ ✓ 80.2

✓ ✓ 73.7
✓ ✓ ✓ 86.3

5 Conclusions

We propose StructuThink, a knowledge-
structured reasoning framework that enhances
the reliability and interpretability of LLM-based
decision-making in embodied environments. By
introducing the Task Transition Knowledge Graph
(TTKG) and a heuristic grounding algorithm,
StructuThink effectively bridges natural language
instructions and executable task chains, enabling
logically consistent, context-aware planning.
Experiments on ALFWorld and WebShop show
significant gains in task success and efficiency over
state-of-the-art baselines. Our method improves
grounding, modularity, and robustness without
domain-specific training, offering a scalable path
toward more transparent and adaptive autonomous
agents.

Limitations

While our proposed StructuThink framework
demonstrates strong performance in text-based em-
bodied decision-making environments, it also has
several limitations that open avenues for future
work.

Limited modality and environment scope. Our
current evaluation is restricted to language-based
decision-making benchmarks, such as ALFWorld
and WebShop, which, although interactive, ab-
stract away many complexities of real-world mul-
timodal environments. Consequently, the effec-
tiveness of our approach in more realistic embod-
ied settings—such as those involving visual per-
ception, physical manipulation, or real-time robot
control—remains unverified. We plan to extend
StructuThink to multimodal embodied agents by
integrating visual grounding and sensory feedback,
allowing agents to operate in physical or simulated
3D environments with richer contextual cues.

Dependence on pretrained LLM capabilities.
The effectiveness of StructuThink heavily relies
on the reasoning and generalization capabilities of
large pretrained language models. While LLMs

offer powerful linguistic and commonsense priors,
their planning quality can degrade in tasks requir-
ing domain-specific knowledge or long-horizon
reasoning. Moreover, without task-specific tuning,
LLMs may struggle to leverage the full structure
encoded in the TTKG. To mitigate this, future work
could explore fine-tuning LLMs using trajectories
aligned with the TTKG structure, enabling better
grounding of planning decisions in graph-based
task knowledge and enhancing the overall consis-
tency and accuracy of the agent’s behavior.

References
Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry

Evseev, Mikhail Burtsev, and Evgeny Burnaev. 2024.
Arigraph: Learning knowledge graph world models
with episodic memory for llm agents. arXiv preprint
arXiv:2407.04363.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng Gong,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Chat-
cot: Tool-augmented chain-of-thought reasoning on
chat-based large language models. arXiv preprint
arXiv:2305.14323.

Yan Ding, Xiaohan Zhang, Saeid Amiri, Nieqing Cao,
Hao Yang, Andy Kaminski, Chad Esselink, and Shiqi
Zhang. 2023. Integrating action knowledge and llms
for task planning and situation handling in open
worlds. Autonomous Robots, 47(8):981–997.

Maitrey Gramopadhye and Daniel Szafir. 2023. Gener-
ating executable action plans with environmentally-
aware language models. In 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 3568–3575. IEEE.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with Language Model is Planning with World
Model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154–8173. Association for Computational
Linguistics.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International conference on
machine learning, pages 9118–9147. PMLR.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, and 1 oth-
ers. 2022b. Inner monologue: Embodied reason-
ing through planning with language models. arXiv
preprint arXiv:2207.05608.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

24497

https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507

neural information processing systems, 35:22199–
22213.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008.

Guanxing Lu, Ziwei Wang, Changliu Liu, Jiwen Lu, and
Yansong Tang. 2023. Thinkbot: Embodied instruc-
tion following with thought chain reasoning. ArXiv,
abs/2312.07062.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful Chain-of-
Thought Reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305–329.
Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. ArXiv, abs/2303.17651.

Ning Miao, Yee Whye Teh, and Tom Rainforth.
2023. Selfcheck: Using llms to zero-shot check
their own step-by-step reasoning. arXiv preprint
arXiv:2308.00436.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-
Chakra, Ian Reid, and Niko Suenderhauf. 2023. Say-
Plan: Grounding Large Language Models using 3D
Scene Graphs for Scalable Robot Task Planning. In
Proceedings of The 7th Conference on Robot Learn-
ing, pages 23–72. PMLR.

Shamik Roy, Sailik Sengupta, Daniele Bonadiman,
Saab Mansour, and Arshit Gupta. FLAP: Flow-
Adhering Planning with Constrained Decoding in
LLMs. arXiv.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: language agents with verbal re-
inforcement learning. In Neural Information Pro-
cessing Systems.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. ArXiv,
abs/2010.03768.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M. Sadler, Wei-Lun Chao, and Yu Su. 2023.
LLM-Planner: Few-Shot Grounded Planning for Em-
bodied Agents with Large Language Models. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2998–3009.

Yaoxian Song, Penglei Sun, Haoyu Liu, Zhixu Li, Wei
Song, Yanghua Xiao, and Xiaofang Zhou. 2024.
Scene-Driven Multimodal Knowledge Graph Con-
struction for Embodied AI. IEEE Transactions
on Knowledge and Data Engineering, 36(11):6962–
6976.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2023. AdaPlanner: Adaptive Plan-
ning from Feedback with Language Models. In NIPS

’23: Proceedings of the 37th International Confer-
ence on Neural Information Processing Systems.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An Open-
Ended Embodied Agent with Large Language Mod-
els. Transactions on Machine Learning Research.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6):186345.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-Consistency Improves
Chain of Thought Reasoning in Language Models.
In ICLR 2023. arXiv.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. In
Advances in Neural Information Processing Systems.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai.
2022. AI Chains: Transparent and Controllable
Human-AI Interaction by Chaining Large Language
Model Prompts. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Sys-
tems, CHI ’22, pages 1–22. Association for Comput-
ing Machinery.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yi-
wen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, and 1 others. 2025. The
rise and potential of large language model based
agents: A survey. Science China Information Sci-
ences, 68(2):121101.

Yuchen Xiao, Yanchao Sun, Mengda Xu, Udari Mad-
hushani, Jared Vann, Deepeka Garg, and Sumitra
Ganesh. 2024. O3D: Offline Data-driven Discovery
and Distillation for Sequential Decision-Making with
Large Language Models. In COLM. arXiv.

Rui Yang, Boming Yang, Aosong Feng, Sixun Ouyang,
Moritz Blum, Tianwei She, Yuang Jiang, Freddy
Lecue, Jinghui Lu, and Irene Li. 2024. Graphu-
sion: a rag framework for knowledge graph con-
struction with a global perspective. arXiv preprint
arXiv:2410.17600.

24498

https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.48550/arXiv.2307.06135
https://doi.org/10.48550/arXiv.2307.06135
https://doi.org/10.48550/arXiv.2307.06135
https://doi.org/10.48550/arXiv.2403.05766
https://doi.org/10.48550/arXiv.2403.05766
https://doi.org/10.48550/arXiv.2403.05766
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.1109/TKDE.2024.3399746
https://doi.org/10.1109/TKDE.2024.3399746
https://doi.org/10.48550/arXiv.2305.16653
https://doi.org/10.48550/arXiv.2305.16653
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.48550/arXiv.2310.14403
https://doi.org/10.48550/arXiv.2310.14403
https://doi.org/10.48550/arXiv.2310.14403

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. WebShop: Towards Scalable
Real-World Web Interaction with Grounded Lan-
guage Agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R.
Narasimhan. 2023a. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models. In
Thirty-Seventh Conference on Neural Information
Processing Systems.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
ReAct: Synergizing Reasoning and Acting in Lan-
guage Models. In ICLR. arXiv.

Bowen Zhang and Harold Soh. 2024. Extract, de-
fine, canonicalize: An llm-based framework for
knowledge graph construction. arXiv preprint
arXiv:2404.03868.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin,
Yong-Jin Liu, and Gao Huang. 2024. ExpeL: LLM
Agents Are Experiential Learners. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632–19642.

Xufeng Zhao, Mengdi Li, Cornelius Weber, Muham-
mad Burhan Hafez, and Stefan Wermter. 2023. Chat
with the environment: Interactive multimodal percep-
tion using large language models. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 3590–3596. IEEE.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng,
Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. 2024. KnowAgent:
Knowledge-Augmented Planning for LLM-Based
Agents. In NAACL 2025.

24499

https://doi.org/10.48550/arXiv.2207.01206
https://doi.org/10.48550/arXiv.2207.01206
https://doi.org/10.48550/arXiv.2207.01206
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2308.10144
https://doi.org/10.48550/arXiv.2308.10144
https://doi.org/10.48550/arXiv.2403.03101
https://doi.org/10.48550/arXiv.2403.03101
https://doi.org/10.48550/arXiv.2403.03101

A Prompts Used in Experiments

This appendix presents the prompts used during
our experiments to guide the large language model.
These prompts fall into three categories:

• Prompt A: First-Node Selection — used to
select the initial task node on a given path (see
Appendix A.1).

• Prompt B: Next-Node Selection — used to
select the subsequent task node based on the
current path state (see Appendix A.2).

• Prompt C: Chain-Guided Execution —
used to guide the model’s reasoning and fi-
nal output generation (see Appendix A.3).

• Prompt D: TTKG Learning — used to learn
the TTKG from the expert trajectories (see
Appendix A.4).

These prompts serve as key components of our
approach, enabling the model to reason and gen-
erate actions effectively across complex task se-
quences.

A.1 Prompt A: SubTask Chain Construction
for First Root Task Node

Prompt Example: SubTask Chain Construction for First Root Task Node

Please select what kind of task the current instruction is according to the following candidate tasks.

• Task Name: pick_and_place, Description: put some spraybottle on toilet.

• Task Name: look_at_obj, Description: look at bowl under the desklamp.

• Task Name: pick_clean_then_place, Description: put a clean lettuce in diningtable.

• Task Name: pick_heat_then_place, Description: put a hot apple in fridge.

• Task Name: pick_cool_then_place, Description: cool some potato and put it in diningtable.

• Task Name: pick_two_obj, Description: put two creditcard in dresser.

Current task instruction: heat some apple and put it in fridge
Please only output the task name of the task.

24500

A.2 Prompt B: SubTask Chain Construction
for Next Root Task Node

Prompt Example: SubTask Chain Construction for Next Root Task Node

Please output the next subtask to be completed according to the current task and the currently
completed subtasks. Refer to the experience of completing the current task in the previous tasks.

Some experiences after completing the current subtask in the previous task:

• Task: put two creditcard in dresser., Next Subtask: Pick, Experience: The main task is to put two
credit cards in the dresser, and the current execution state is “Now I find two credit cards,” so,
next I need to pick them up in order to proceed with placing them in the dresser.

• Task: cool some potato and put it in diningtable., Next Subtask: Pick, Experience: The main task
is to cool some potato and put it in the dining table, and the current execution state is “Now I
find a potato,” so, next I need to pick it up to proceed with cooling it.

• Task: put a hot apple in fridge., Next Subtask: Pick, Experience: The main task is to put a hot
apple in the fridge, and the current execution state is “Now I find an apple,” so, next I need to
pick it up to proceed with heating it before placing it in the fridge.

• Task: put a clean lettuce in diningtable., Next Subtask: Pick, Experience: The main task is to put
a clean lettuce on the dining table, and the current execution state is “Now I find a lettuce,” so,
next I need to pick it up to proceed with cleaning and placing it on the dining table.

• Task: look at bowl under the desklamp., Next Subtask: Pick, Experience: The main task is to
look at the bowl under the desklamp, and the current execution state is “Now I find the bowl,” so,
next I need to pick it up to get a closer look.

• Task: put some spraybottle on toilet., Next Subtask: Pick, Experience: Now I find a spraybottle
(2). Next, I need to take it.

• Task: put two creditcard in dresser., Next Subtask: Pick, Experience: The main task is to put two
credit cards in the dresser, and the current execution state is “Now I find a credit card,” so, next I
need to pick it up to proceed with placing it in the dresser.

• Task: look at bowl under the desklamp., Next Subtask: toggle on, Experience: The main task is
to look at the bowl under the desklamp, and the current execution state is “Now I have found the
bowl and the desklamp,” so, next I need to toggle on the desklamp to illuminate the bowl for
better visibility.

Output Instructions:
If the task has not been completed, please output the next subtask, selecting from Pick, Put,

Find, Navigation, toggle on, Cool, Clean, Heat.
If the task has been completed, please output Mession Success.
Please only output the subtask you have selected or Mession Success.

Current Task:
Task: heat some apple and put it in fridge
The subtasks that have been completed currently: pick_heat_then_place, Find
Please only output the subtask name you have selected or Mession Success.

24501

A.3 Prompt C: Chain-Guided Execution

Prompt Example: Chain-Guided Execution in ALFWorld

Task Description
You are a household assistant that must complete the task below inside an ALFWorld environment.
The following is an explanation of the current task to be executed, the subtasks required to execute
this task, as well as the task currently being executed. Please analyze the current task execution status
based on the information below, and output the next action plan as required.

—
Action List

• go to {somewhere}, example: go to sidetable 2

• open {object}, example: open fridge 1

• close {object}, example: close cabinet 2

• take {object1} from {object2}, example: take spraybottle 2 from cabinet 2

• put {object1} in/on {object2}, example: put egg 2 in/on diningtable 1

• heat {object1} with {object2}, example: heat egg 2 with microwave 1

• cool {object1} with {object2}, example: cool pan 1 with fridge 1

• clean {object1} with {object2}, example: clean lettuce 1 with sinkbasin 1

• use {object}, example: use desklamp 1

—
Task and Subtask Explanation

• Task: heat some apple and put it in fridge

• Subtasks:

– Find, Description: None.
– Navigation, Description: None.
– Put, Description: None.

—
Interaction History

Obs: You are in the middle of a room. Looking quickly around you, you see a fridge 1, a cabinet 1, a
countertop 1, a toaster 1, a coffeemachine 1, a countertop 2, a cabinet 2, a stoveburner 1, a stoveburner
2, a cabinet 3, a cabinet 4, a microwave 1, a countertop 3, a sink 1, a sink 2, a shelf 1, a shelf 2, a
drawer 1, a drawer 2, a drawer 3, a shelf 3, a stoveburner 3, a stoveburner 4, and a garbagecan 1.
Your task is to: heat some apple and put it in fridge

—
Current Sub-task

Find
—
Output Requirements

• Thoughts on subtask status: Output thoughts on the current subtask execution status

24502

Prompt Example: Chain-Guided Execution in ALFWorld (Continued)

• Current Subtask: Only output a subtask name. If the current subtask is not completed, continue
with the current subtask; otherwise, select the next subtask.

• Thoughts on the next action: Output thoughts on the next action

• Next action: Output the next action

—
Output Format (MUST be valid JSON)

{
"Thoughts on subtask status": "...",
"Current Subtask": "...",
"Thoughts on the next action": "...",
"Next action": "..."

}

Prompt Example: Chain-Guided Execution in WebShop

Task Description
You are an online shopping assistant that must complete the task below inside a WebShop environment.
The following is an explanation of the current task to be executed, the subtasks required to fulfill this
task, as well as the current subtask being executed. Please analyze the task execution status based on
the interaction history and output the next action plan in the required format.

—
Action List

• search[{query}], example: search[wireless mouse under 20 dollars]

• click[{product_id}], example: click[B078GWRC1J]

• click[{option}], example: click[3 ounce (pack of 1)]

• think[{thoughts}], example: think[item matches all criteria, proceed to
checkout]

• click[Buy Now], example: click[Buy Now]

—
Task and Subtask Explanation

• Task: Find and buy a 3 ounce bottle of bright citrus deodorant for sensitive
skin, price under 50 dollars

• Subtasks:

– Search, Description: Locate candidate items using relevant queries.
– Select, Description: Inspect and verify item attributes to ensure requirements are met.
– Buy, Description: Choose options and finalize the purchase.

24503

Prompt Example: Chain-Guided Execution in WebShop (Continued)
—
Interaction History

Instruction: i would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price
lower than 50.00 dollars
Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation: [B078GWRC1J] Bright Citrus Deodorant, 3-Ounce,
10.99; [B078GTKVXY]GingerFreshDeodorant, 3−Ounce,10.99
Action: think[B078GWRC1J and B078GTKVXY match requirements. Check B078GWRC1J first.]
Observation: OK.
Action: click[B078GWRC1J]
Observation: Product page with scent and size options
Action: click[bright citrus]
Observation: You have clicked bright citrus.
Action: click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).

—
Current Sub-task

Buy
—
Output Requirements

• Thoughts on subtask status: Output thoughts on the current subtask execution status

• Current Subtask: Only output a subtask name. If the current subtask is not completed, continue
with the current subtask; otherwise, select the next subtask.

• Thoughts on the next action: Output thoughts on the next action

• Next action: Output the next action

—
Output Format (MUST be valid JSON)

{
"Thoughts on subtask status": "...",
"Current Subtask": "...",
"Thoughts on the next action": "...",
"Next action": "..."

}

24504

A.4 Prompt D: TTKG Learning

Prompt Example: Chain-Guided Execution in WebShop (Continued)

You are an AI agent that converts embodied-AI expert trajectories into structured JSON describing
a decision-knowledge graph.
Please split the tasks into several categories of subtasks according to the expert’s track record, and
return the results in the required format.
Follow the schema exactly; do not invent extra keys.
Here is an expert trajectory delimited by triple backticks:
“‘trajectory“‘
Return pure JSON (no markdown) with this schema:

{
"task": {
"name": str,
"task_description": str,
"init_obs": str,
"think_first_plan": str

},
"subtasks": [
{
"name": str,
"subtask_description": str,
"movement": str,
"think(edge_reasoning)": str

},
...

]
}

Ensure array order matches execution order.

B TTKG Learning Examples

This section provides illustrative examples of the
Task Transition Knowledge Graph (TTKG) learned
from expert trajectories. The following two figures
present typical subtask chains and transition struc-
tures extracted by our method, demonstrating how
task knowledge is organized and utilized within the
StructuThink framework.

24505

Figure 6: TTKG Example: ALFWorld

Figure 7: TTKG Example: WebShop

24506

