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Abstract

With a rapidly evolving hardware ecosystem,
there is increasing interest in translating
low-level programs across different instruction
set architectures (ISAs) in a quick, flexible,
and correct way to enhance the portability
and longevity of existing code. A particularly
challenging class of this transpilation ' problem
is translating between complex- (CISC) and
reduced- (RISC) hardware architectures, due to
fundamental differences in instruction complex-
ity, memory models, and execution paradigms.
In this work, we introduce GG (Guaranteed
Guess), an ISA-centric transpilation pipeline
that combines the translation power of pre-
trained large language models (LLMs) with the
rigor of established software testing constructs.
Our method generates candidate translations
using an LLM from one ISA to another, and em-
beds such translations within a software-testing
framework to build quantifiable confidence in
the translation. We evaluate our GG approach
over two diverse datasets, enforce high code
coverage (>98%) across unit tests, and
achieve functional/semantic correctness of
99% on HumanEval programs and 49% on
BringupBench programs, respectively. Further,
we compare our approach to the state-of-the-art
Rosetta 2 framework on Apple Silicon,
showcasing 1.73 x faster runtime performance,
1.47x better energy efficiency, and 2.41x
better memory usage for our transpiled code,
demonstrating the effectiveness of GG for
real-world CISC-to-RISC translation tasks.We
have open-sourced our code, data, models, and
benchmarks to establish a common foundation
for ISA-level code translation research.

1 Introduction

The modern hardware landscape is undergoing
a fundamental transformation. As Moore’s Law
slows and Dennard scaling ends (Dennard et al.,

"We use “transpilation” to describe the task of translating
code between assembly languages.

1974; Connatser, 2023), the demand for energy-
efficient, high-performance architectures has
accelerated, particularly with the rise of machine
learning (ML) applications (Horowitz, 2014;
Jouppi et al., 2017). Hyperscalers are increasingly
constrained by power and thermal limits (Patterson
et al., 2021; Gupta et al., 2021), prompting a
reevaluation of datacenter infrastructure.

A major outcome of this shift is the growing
adoption of ARM-based processors. Historically
dominant in mobile and edge devices due to their
RISC-based low-power design, ARM CPUs were
largely absent from datacenters because of their per-
formance gap with x86 (a CISC architecture) (Blem
et al., 2013). However, this gap has narrowed
significantly: ARM-based chips now match x86
on many benchmarks (CloudPanel, 2023) and
deliver superior energy efficiency (IONOS, 2024).
In 2024, x86 designs dominated over 80% of
data center servers (Reuters, 2025), but ARM
predicts that its share will reach 50% by the end
of 2025 (Maruccia, 2025). Industry adoption
supports this trend, with ARM-based systems like
NVIDIA’s Grace CPU (NVIDIA Corporation,
2024), Amazon’s Graviton (Morgan, 2022), and
Microsoft’s ARM-compatible OS stack (Verma,
2024) accelerating deployment.

This rapid hardware transition introduces a
significant software gap. Legacy binaries compiled
for x86 often lack source code and cannot be recom-
piled for ARM. While solutions like Apple’s Rosetta
2 (Apple Inc., 2020) and QEMU’s emulation ser-
vice (Bellard, 2005) provide runtime virtualization,
they introduce memory and performance overheads.
Compilers struggle to retarget opaque binaries (He
etal., 2018), and decompilation-based approaches
are fragile or legally restricted (Cao et al., 2024).
A scalable, accurate, and architecture-aware binary-
to-binary translation solution remains elusive.

In this work, we introduce Guaranteed Guess
(GG), an assembly-to-assembly transpiler that trans-
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lates x86 binaries (CISC) into efficient ARM or
RISC-V (RISC) equivalents using a custom-trained
large language model (LLM). Our approach is
open-source, avoids the virtualization tax by gen-
erating native ARM/RISC-V assembly, and directly
supports legacy binaries without decompilation.

Transpiling across ISAs is non-trivial. CISC
and RISC architectures differ in register-memory
semantics, instruction complexity, and binary
length. In general, x86 instructions are fewer
but more expressive, while RISC requires longer,
register-centric code sequences. These differences
must be learned implicitly by the model, which
we achieve by incorporating a hardware-informed
design, using tokenizer extensions, and leveraging
context-aware training.

Our approach builds high-accuracy LLM-based
transpilers by incorporating hardware-aware in-
sights into the training process, enabling the model
to better capture the CISC-specific patterns of x86
and generate semantically valid RISC targets such
as ARM. However, unlike high-level language tasks,
conventional NLP correctness proxies (e.g., BLEU,
perplexity) fall short for binary translation where
functional correctness is paramount. Therefore, we
embed our predictions within rigorous software
testing infrastructure to provide test-driven guar-
antees of correctness using software engineering
primitives of code coverage criteria. Holistically,
our paper makes the following key contributions:

1. The first CISC-to-RISC transpiler, coined GG,
built via a custom-trained, architecture-aware

LM achieving a test accuracy of 99.39% on
ARMV8 and 89.93% on RISC-V64.

2. A methodology to measure and build confi-
dence into transpilation output via software
testing approaches ("guaranteeing" the guess)
(§3), including detailed analysis of correctness,
errors, and hallucinations (§4).

3. An in-depth analysis into the inner workings
of our transpiler, including hardware-informed
design decisions to best train an accurate LLM
model for assembly transpilation (§3, §5).

4. We perform a case-study using our transpiler
in areal-world setting, by comparing it directly
to Apple Rosetta’s x86 to ARM translation
engine. Results show that GG’s generated
assembly achieves 1.73x runtime speedup
while delivering 1.47x better energy efficiency
and 2.41x memory efficiency (§5).

2 Background and Related Work

We describe systems-centric related work with
respect to virtualization and emulation, in addition
to ML-centric code translation recent work. Our
approach for GG features a combination of both, by
applying ML techniques to a system-level objective
of assembly translation, incorporating software
testing guarantees for correctness evaluation.

Virtualization and Emulation Emulation and
assembly-level virtualization enable the execution
of one ISA’s binary on a host machine for which
it was not originally compiled. QEMU (Bellard,
2005), an open-source emulator, uses dynamic
binary translation (Sites et al., 1993) to translate
machine code on-the-fly, offering flexibility but
with performance overhead. Rosetta2 Apple’s virtu-
alization layer for macOS, combines ahead-of-time
(AOT) and just-in-time (JIT) translation, providing
better performance within the Apple ecosystem
(Apple Inc., 2020). The Rosetta engine is propri-
etary, and only works within Apple’s ecosystem..

These approaches face challenges in achieving
native-level performance and ensuring broad
compatibility, due to the dynamic nature of
execution. A static transpiler approach, directly
converting x86 to ARM assembly, could supplant
these solutions by eliminating runtime translation
overhead with a one-time translation into the host
ISA. This method could address the limitations of
current emulation and virtualization techniques,
particularly in performance-critical scenarios, or
where pre-processing is feasible, or when source
code is not available (due to proprietary IP).

Coding with LLMs Language modeling ap-
proaches for code have primarily focused on
understanding, generating, and translating high-
level programming languages such as C++, Java,
and Python (Lachaux et al., 2020; Feng et al., 2020;
Wang et al., 2021; Roziere et al., 2023; Liu et al.,
2024). These models demonstrate increasingly so-
phisticated code manipulation capabilities through
self-supervised learning on vast code repositories.
Models further trained with reinforcement learning
have shown remarkable performance in rules-based
reasoning tasks, including code (DeepSeek-Al et al.,
2025). However, the resulting models struggle when
applied to languages under-represented in their
training sets, and in particular for writing assembly-
level code, where the semantics and structure differ
significantly from their high-level counterparts.
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Neural Low-Level Programming Recent
research demonstrates the potential of adapting
LLMs to various tasks related to low-level code
analysis and transformation: decompilation, binary
similarity analysis, and compiler optimization.
LLM4Decompile (Tan et al.) introduced special-
ized language models for direct binary-to-source
translation and decompiler output refinement.
DeGPT (Hu et al., 2024) further explored decom-
piler enhancement through semantic-preserving
transformations. SLaDe (Armengol-Estapé et al.,
2024) combines a 200M-parameter sequence-
to-sequence Transformer with type inference
techniques to create a hybrid decompiler capable of
translating both x86 and ARM assembly code into
readable and accurate C code, effectively handling
various optimization levels (-O0 and -O3).

Language models have also been adapted to op-
timization tasks, with LLM Compiler (Cummins
etal.,2024) introducing a foundation model that sup-
ports zero-shot optimization flag prediction, bidi-
rectional assembly-IR translation, and compiler be-
havior emulation. Binary similarity analysis has
similarly benefited from language model adapta-
tions. DiIEmph (Xu et al., 2023) addressed compiler-
induced biases in transformer models, while
jTrans (Wang et al., 2022) incorporated control flow
information into the transformer architecture. Yu et
al. (Yuetal., 2020) combined BERT-based semantic
analysis with graph neural networks to capture both
semantic and structural properties of binary code.

While these applications have shown promising
results, the use of LLMs to port efficient machine
code from one machine to another, while main-
taining efficiency, remains underexplored and
largely unsolved. Assembly languages present
unique challenges due to their under-representation
in training datasets, lack of human readability,
extensive length, and fundamental differences in
execution models across architectures.

Guess & Sketch (Lee et al., 2024) introduced a
neurosymbolic approach combining language mod-
els with symbolic reasoning for translating assembly
code between ARMv8 and RISC-V architectures.
In our work, we extend the neural transpiliation
direction with a focus on leveraging the existing
efficiency in x86 programs to transpile into efficient
ARM binaries, bridging architectural differences
in ISA complexity and execution models. Further,
instead of fixing transpilations with symbolic
approaches, as done in Guess & Sketch, we focus
on upfront data design and modeling methods to

flexibly handle the increased scale and complexity
of CISC-to-RISC transpilation. Conceptually, our
work aims to generate a high-accuracy first "Guess"
in order to avoid requiring post-processing fixes.
We guarantee our efficacy by incorporating software
testing metrics such as high unit test code coverage
measured at the assembly level (Mahmoud et al.,
2019), effectively applying software testing rigor
to the assembly translation task.

3 Guaranteed Guess

In this section, we explore the two primary
components of building our GG transpiler: data
generation (§3.1) and model training (§3.2). We
also describe a hardware-software co-designed
tokenizer extension (§3.3), which we used to
enhance our models performance.

3.1 Data Collection

As shown in Figure 1, our training dataset is derived
from AnghaBench(Da Silva et al., 2021) and The
Stackv2(Kocetkov et al., 2022). AnghaBench is
a comprehensive benchmark suite that contains 1
million compilable C/C++ programs extracted from
major public C/C++ repositories on GitHub. The
Stack is a 3.1TB dataset of permissively licensed
code in 30 languages for training and evaluating
code LLMs. From these datasets, we randomly
sampled 1.01M programs (16.16B tokens) from
AnghaBench and 306k programs (4.85B tokens)
from the stack to form our training set, equivalent to
1.32 million samples. After we collected the whole
samples, we removed boilerplates, deduplicated
the data, and chose file that were neither too
short (<10 lines) nor too long (>16k lines). These
programs were then compiled for x86 (CISC) >
ARMV8/ARMYVS5/RISC-V (RISC).

Each program was compiled to both x86 (CISC)
and ARMvV8/ARMYVS5/RISC-V (RISC) assembly
targets under two optimization levels: -00@ (no op-
timization) and -02 (typical compiler optimization).
These flags were selected to expose models to both
raw, semantically transparent code (-00) and real-
world, performance-optimized binaries (-02), en-
abling the model to learn both unoptimized and op-
timized ISA patterns. Compilation for ARMvS5 and
RISC-V64 was performed via cross-compilation
on an Ubuntu 20.04 machine with a Ryzen 7 CPU,
using arm-1linux-gnueabi-gcc (Color, 2025) and
gcc-riscv64-linux-gnu (Project et al., 2025),
respectively. ARMvVS8 binaries were compiled
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Figure 1: GG System Overview. A two-stage transpilation pipeline from x86 to ARM/RISC-V. Left: Data is sourced
from Stackv2 and AnghaBench, deduplicated, and compiled using both GCC and Clang to generate paired assembly
(x86 <> ARM) from C/C++. Right: A specialized LLM (GG Guesser), trained with tokenizer extension and inferenced
with RoPE extrapolation, predicts target ISA code. Predictions are evaluated via unit tests on benchmarks like

HumanEval and BringupBench.

natively on an Apple M2 Pro (macOS) using
clang (Lattner, 2008), ensuring architectural
fidelity for performance-critical ARM targets.

3.2 Training

All hyperparameter optimization experiments were

conducted on a small 500k portion of AnghaBench.

We tested various hyperparameter settings on this
subset of our benchmark. After identifying the
optimal configuration, we scaled up the training
data to 1.31M samples by including the full
AnghaBench (1M) and a sampled subset from The
Stack (300k) dataset (Kocetkov et al., 2022) . We
trained three models: DeepSeek-Coder1. 3B (Guo
etal., 2024), Qwen2.5-Coder (1.5B and 0.5B) (Hui
et al., 2024b). Given the dataset size of 1.3M
samples, with an average of 13k tokens per sample,
we opted for smaller models. Training was done
on A100 GPUs (40GB each). Training with 1.3M
samples, a batch size of 24, and 2 epochs required
three days. To conserve memory, mixed precision
training with bfloat16 was employed. Given limited
capacity for large batch sizes, we applied gradient
accumulation with an effective batch size of 2. We
used paged AdamW (Loshchilov, 2017) to avoid
memory spikes, with a weight decay of 0.001.
We chose a small learning rate of 2 x 10~ °with
a cosine schedule, as experiments indicated this

schedule performed best. We trained our model
with a context window of 16k. In inference, we do
ROPE (Su et al., 2024) extrapolation to increase the
context window to 32.7k.

3.3 Tokenizer Extension

Input 1dr r1, r2

Tokenizer Tokens

DeepSeek/Qwen 2.5 coder ldr _r 1, _.r 2
GGExtended Tokenizer ldr - r1 , _ r2
Table 1: Comparison of tokenization approaches

between DeepSeek/Qwen-Coder and our extended
tokenizer. Spaces are represented as . and shown with
colored backgrounds to highlight token boundaries.
Note how our tokenizer groups related tokens (e.g., 1dr
and r1) as singular units.

To improve our LLMs’ capability in com-
prehending and generating assembly code, we
augmented the tokenizer by incorporating the most
common opcodes and register names from x86
and ARMv5/ARMvVS/RISC-V64 architectures (as
shown in Table 1). This targeted design improves
token alignment with instruction semantics,
enabling more precise and efficient assembly
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translation. As shown in Table 2, our extension
decreases the fertility rate (tokens/words) (Rust
etal., 2020) of Qwen and Deepseek tokenizers by
2.65% and 6.9%, respectively. This corresponds to
our model fitting 848 and 2.2k tokens, respectively.

Model x86 ARMv5 ARMv8 RISC-V64
Qwen-Coder (Hui et al., 2024a) 4.28 2.89 3.62 3.62
DeepSeek-Coder (Guo etal., 2024)  3.74 3.51 4.28 4.28
GG-Qwen (Ours) 4.14 2.87 3.50 3.50
GG-DeepSeek (Ours) 3.47 3.26 3.99 3.37

A Qwen (%) 133%  10.5% 13.4% 13.4%
A DeepSeek (%) 172%  16.9% 16.8% 16.8%

Table 2: Tokenizer fertility rate (tokens/words) across
ISAs. Lower is better.

4 Experiments and Evaluation

In this section, we describe our experimental setup,
training methodology, evaluation benchmarks,
and the metrics used to assess the accuracy and
robustness of our CISC-to-RISC transpiler.

4.1 Setup

We leveraged LLaMa-Factory (Zheng et al., 2024),
DeepSpeed Zero3 (Rasley et al., 2020), liger ker-
nels (Hsu et al., 2024), and FlashAttention2 (Dao,
2023) for efficient training and memory optimiza-
tion. We also used caching to enhance inference
speed and disabled sampling to ensure deterministic
outputs. We used VLLM (Zheng et al., 2023) to
deploy our model and achieve a throughput of 36x
requests per second at 32.7k tokens context window
on a single A100 40GB GPU. Additionally, We ap-
ply post-quantization using 11ama. cpp (Ggerganov,
2024) (e.g., bfloat16, int8, int4) to optimize
inference for CPU-based deployment.

4.2 Evaluation

We evaluate GG using two complementary
benchmarks: HumanEval-C (Tan et al.) and
BringUpBench (Austin, 2024). HumanEval was
originally introduced by Chen et al. (2021) for
Python code generation. The benchmark consists
of 164 programming problems that assess language
comprehension, reasoning, and algorithmic think-
ing. For our evaluation, we utilize the C-translated
version from LLM4Decompile (Tan et al.), which
maintains the same problems while converting both
function implementations and test cases to C code.

To evaluate real-world generalization, we lever-
age BringUpBench (Austin, 2024), a challenging
benchmark of 65 bare-metal programs ranging from

Mean: 10.5k Mean: 11.7k
105 Median: 5.0k Median: 5.5k Instruction Set
C I x86

. ARM

Mean: 1.3k
Mean: 1.2k N
Median: 1.0k Median: 1.1k
e

Number of Tokens (log scale)

Lt L

BringUpBench

HumanEval

Figure 2: Token counts by ISA and benchmark;
BringUpBench is substantially longer than HumanEval.

85 to 5751 lines of code. Unlike HumanEval, which
consists of isolated functions, BringUpBench pro-
grams are embedded in full project structures with
internal libraries and cross-linked components. This
setup more accurately reflects real-world embedded
systems development, where executing even a single
file often requires compiling and linking the entire
codebase. As aresult, BringUpBench imposes sig-
nificantly greater context length demands. On aver-
age, each BringUpBench sample requires 8.9x more
tokens for x86 and 8.8x more for ARM compared to
HumanEval, as shown in Figure 2. The benchmark’s
diverse control flow and I/O patterns further elevate
its difficulty, making it a strong testbed for assessing
the robustness and scalability of our transpiler.

We use gcov, GNU’s coverage tool, to measure
line coverage, a core metric in software testing
that captures which code lines were executed at
least once, thereby exposing untested paths and
blind spots (Myers et al., 2011). HumanEval
and BringupBench achieved 98.81% and 97.32%
average coverage, respectively, indicating near-
complete execution of all code lines during testing.
Moreover, our test harness achieves >98% program
counter coverage (or PC coverage (Mahmoud
et al., 2019)) using compiler-generated unit tests
and mutation-based test amplification. We note
that no source code is required at inference time
for GG Guesser. For low-coverage binaries, if
necessary, coverage can be improved via fuzzing
(e.g., libFuzzer) or symbolic techniques (e.g.,
KLEE), which we leave for future work.

We evaluate functional correctness by executing
the transpiled ARM code against a full unit test
suite. A prediction is deemed correct only if all
test cases pass — partial correctness is not counted.
For HumanEval, this involves compiling the pre-
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Model ARMVS ARMVvS ARMVvS
HumanEval HumanEval | HumanEval HumanEval | BringupBench BringupBench

-00 -02 -00 -02 -00 -02
GPT-40 (OpenAl, 2024) 8.48% 3.64% 10.3% 4.24% 1.54% 0%
Qwen2.5-Coder-1.5B (Hui et al., 2024a) 0% 0% 0% 0% 0% 0%
Qwen2.5-Coder-3B (Hui et al., 2024a) 0.61% 0% 0% 0% 0% 0%
StarCoder2-3B (Lozhkov et al., 2024) 0% 0% 0% 0% 0% 0%
Deepseek-R1-1.5B (Guo et al., 2025) 0% 0% 0% 0% 0% 0%
Deepseek-R1-Qwen-7B (Guo et al., 2025) 0% 0% 0% 0% 0% 0%
GG-Deepseek-1.3B - 79.25% 12.80% 75.15% 10.3% 3.08% 0%

GG-0.5B 90.85% 23.03% 86.06% 25.45% 27.69% 3.08%

GG-1.5B 93.71% 50.30% 99.39% 45.12% 49.23% 15.38%

Table 3: Translation performance across different models, benchmarks, and optimization levels.

dicted code, linking it with the provided tests, and

GG Results.

Our GG models, particularly the GG-

executing the binary as shown inf figure 1. GG sup-
ports multi-file projects via Makefile analysis. For
BringupBench, we transpile and relink all modules
(e.g., static libraries, headers) using project-level
build scripts for each file. The output is then com-
pared with the expected output using a diff-based
check. This strict pass@1 evaluation, based solely
on the most probable sample, even when beam
search (beam size = 8) is used, ensures that only fully
functional translations contribute to final accuracy.

5 Results and Analysis

We evaluate the efficacy of our transpiler for
CISC-to-RISC assembly translation, focusing
on the correctness of the output ARM assembly.
Utilizing the metrics defined above (§4.2), we
compare our approach with state-of-the-art coding
LLMs and evaluate our approach for x86 to ARM
transpilation (Table 3).

5.1 Transpiler Validation

Baselines. As shown in Table 3, most baseline
models, including state-of-the-art LLMs such as
StarCoder2 (Lozhkov et al., 2024), DeepSeek (Guo
et al., 2024), and Qwen2.5 (Hui et al., 2024a),
achieve 0% accuracy in all transpilation tasks,
underscoring the unique difficulty of low-level
ISA translation. These models, while effective
on high-level programming benchmarks, lack
the architectural grounding and token-level
inductive bias needed to generalize from x86 to
ARM. GPT-40 was the only exception, achieving
1.5-8% accuracy, which remains far below usable
thresholds, highlighting that general-purpose LLMs
are not yet suitable for assembly-level translation
without specialized training. This performance
gap reinforces the need for task-specific instruction
tuning and architectural adaptation to handle the
deep structural mismatch between CISC and RISC.

1.5B variant, substantially outperform all baselines,
reaching 99.39% accuracy on ARMvS8 and 93.71%
on ARMVS5 under the -00 setting. This validates
the effectiveness of architecture aware training,
tokenizer extension, and longer context modeling
in capturing fine-grained register and memory se-
mantics. For -02 optimized code, accuracy drops to
45.12% (ARMvS) and 50.30% (ARMVS), exposing
the fragility of current LLMs under aggressive
compiler transformations. This suggests that while
our model learns to generalize well under minimal
optimization, it struggles with control/data flow
reordering and register coalescing introduced by
-02 passes. Addressing this challenge may require
incorporating optimization-invariant representa-
tions, such as symbolic traces or control/data-flow
graphs, or extending the training set with more
aggressively optimized samples.A detailed error
analysis can be found in Appendix A.1.

RISC-v64. To demonstrate the generality of our
method, we also trained our model on the task of
transpiling from x86 to RISC-V64, achieving a
pass@1 of 89.63%. Notably, our model signifi-
cantly outperforms existing models like GPT40 and
DeepSeekCoder2-16B, which achieved much lower
test accuracies of 7.55% and 6.29%, respectively.
This result is 9% lower than ARMv8 which shows
how much different RISC-v64 from x86 compared
ARMVS.

-02 Opt. Compiler optimizations (-02) introduce
complex patterns that increase failure frequency
compared to -00. A common error is instruction re-
ordering; for example, misplacing cbz? before the
end of a basic block alters the control flow, revealing
the difficulty of the model in interpreting optimized
sequences. While hard to detect automatically, such

2Compare and Branch if Zero
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Figure 3: Comparison of execution time, energy consumption, and memory usage across Rosetta, GG, and native

binaries.

errors can be repaired via manual inspection (Liu
et al., 2025), symbolic solvers (Lee et al., 2024;
Mora et al., 2024), or reasoning models. Hybrid
human-Al approaches may improve correctness
guarantees. Additionally, the reduced performance
can be primarily due to compiler transformations
such as instruction folding, register coalescing, and
SIMD vectorization. These introduce structurally

different instruction patterns not seen in training.

Future work can address this via optimization-aware
augmentation and graph-structured intermediate
representations.

Files with Errors after Guess
LongDiv, Regex-Parser, RLE-Compress,
FFT-Int, Blake2B, Anagram, C-Interp,
Totient, Banner, Lz Compress, Satomi,
Rho-Factory

Frac-Calc, Minspan
Boyer-Moore-Search, Topo-Sort,
Audio-Codec, Weekday, Simple-Grep,
Max-Subseq, Priority-Queue, Dhrys-
tone, Cipher, AVL-Tree, QSort-Demo,
Vectors-3D, Pascal

Fuzzy-Match, Tiny-NN, Kadane, Audio-
Codec, Frac-Calc, Kepler, Dhrystone,

Error Type
{Input + output} do not fit
in context window

Duplicate function error
Stack/memory error

Missing function error

Cipher, Graph-Tests, Quaternions,
AVL-Tree, K-Means, QSort-Demo,
Vectors-3D

Labels referred but not
defined
Register mislabel error

Fuzzy-Match, Life, AVL-Tree, K-Means

Bloom-Filter, Topo-Sort, Weekday,
Knights-Tour, Simple-Grep, Max-
Subseq, Mersenne, Audio-Codec,
K-Means, QSort-Demo, Vectors-3D,
Pascal, Minspan

Kadane

Incorrect immediate value

Table 4: Failed files on BringupBench. Errors are largely
around dataflow reasoning. File names are grouped by
error type.

BringUpBench. We evaluate GG-1.5B on
BringUpBench (Austin, 2024) and manually
analyze over 200 unit-tested binaries. Our model
achieves 49.23% exact match accuracy under -00
(Table 3) with no syntax errors: outputs consistently
adhere to valid ARM assembly with correct

opcodes, registers, and memory access. This
reflects a strong surface-form prior, shifting focus
to semantic errors like incorrect dataflow. Notably,
17% of failures stem from context truncation,
indicating a key limitation of current context
window sizes. Table 4 summarizes common failure
types, including duplicate code, invalid control
flow, misused registers / intermediaries, and stack
errors - most symptomatic of broken data flow
rather than syntax issues. These may be alleviated
through longer training, symbolic repair, or richer
representations. Lastly, the benchmark’s extensive
unit tests offer a valuable semantic signal in the
absence of ground truth, suggesting a compelling
path for test-driven transpilation and iterative repair.

Symbolic Solvers We compared GG to prior sym-
bolic and lifting-based baselines. On HumanEval-C,
GG achieves 99.39% accuracy, significantly out-
performing RetDec (29.27%), which uses IR lifting
followed by recompilation. For Guess & Sketch,
we did not use their full ARM-to-RISC pipeline but
instead integrated their symbolic solver (based on
Rosette/Z3 (De Moura and Bjgrner, 2008) into GG’s
output refinement loop. While the solver corrected
some local LLM errors, it did not improve overall
accuracy, indicating that GG’s end-to-end neural
approach already captures most of the semantic
corrections that symbolic solvers typically address.

5.2 Real-World Case Study

To evaluate the efficiency of our transpiler, we
conducted a real-world study on an Apple M2 Pro
(ARM64v8-A). This setup offers two advantages:
(1) native ARM toolchain support, avoiding
cross-compilation; and (2) Apple’s Rosetta 2
layer, enabling consistent evaluation across
execution modes on the same hardware. We
assess performance across three environments:
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Figure 4: Side-by-side comparison of opcode shift and CHRF similarity in ARM assembly analysis.

(i) native ARMO64 binaries, (ii) x86 binaries
executed via Rosetta 2, and (iii) GG-transpiled
x86-to-ARM64 assembly. For each, we measure
execution time, CPU energy (via powermetrics),
and memory usage. Each program is executed 100
times, reporting the geometric mean (Fleming and
Wallace, 1986), under controlled conditions.

Figure 3 shows that GG achieves near-native perfor-
mance: matching execution time, 1.73 x faster than
Rosetta, with 1.47 x better energy efficiency and
2.41 x better memory usage. GG’s memory footprint
is nearly identical to native (approximately 1.03
MB for both), while Rosetta uses 2.49 MB.

These results demonstrate that static, LLM-based
binary translation offers a compelling alternative to
traditional dynamic translation layers like Rosetta.
Unlike Rosetta, which incurs a persistent runtime
overhead, GG performs a one-time transpilation,
avoiding the cumulative “runtime tax” and enabling
leaner, faster execution. Moreover, our approach
is general-purpose and untethered to Apple’s
ecosystem, enabling broader cross-ISA deployment
and efficient CISC-to-RISC translation across
diverse platforms. See Appendix A.1 for scaling,
quantization, and error analysis.

Model Variant ARMv8 Accuracy Impact(A)
Qwen2.5-Coder 0% -

+ 1M AnghaBench 93.94% +93.94%
+0.3M Stackv2 95.38% +1.44%
+ RoPE Extrapolation 97.14% +1.76%
+ Extended Tokenizer 98.18% +1.04%
+ 8 Beam Search 99.39% +1.21%

Table 5: Ablation study showing incremental improve-
ments on ARMvS accuracy from each added component.

5.3 Similarity Analysis Across ISAs

We use CHRF (Popovic, 2015), a character n-gram
F'-score metric originally developed for machine
translation, as it captures fine-grained lexical over-
lap and provides a robust way to quantify surface-
form similarity between different ISAs. In Figure 4a,
we observe that ARMvS exhibits the highest average
similarity to x86 (40.19%), followed by ARMv5
(25.09%) and RISC-V64 (21.41%). This gradient
of similarity directly correlates with the drop in
model accuracy from ARMvVS (99.39%) to ARMv5
(93.71%) and further down to RISC-V (89.63%).
We hypothesize that this discrepancy is rooted in the
increasing divergence in instruction semantics and
register abstractions across these ISAs. ARMvS8’s
shift toward CISC-like design (Red Hat, 2022)
likely boosts its alignment with x86, aiding model
generalization. In contrast, ARMv5 and RISC-V
have simpler, more divergent instruction sets and
addressing schemes, making the x86-to-RISC
mapping less predictable and thus harder to learn.

Figure 4b highlights a significant shift in ARMvS§
opcode usage between -00 and -02. At -02, mov
becomes dominant (+14.8%), indicating more reg-
ister reuse and reduced memory traffic via explicit
ldr/str. This hides direct data movement, making
it harder for the model to learn memory interaction.
Paired instructions like 1dp/stp appear more fre-
quently, packing semantics into fewer lines, while
conditional ops (tbnz, cset) are folded into pred-
icated sequences. We hypothesize that the model,
trained only on -02, must decode complex x86
semantics into a highly optimized and compressed
ARMYVS8 form. This transformation increases learn-
ing difficulty and explains the drop in -02 accuracy
(to 45.12%) despite strong -00 performance.
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5.4 Ablation Study

To understand what contributed most to model
performance, we performed ablations shown in
Table 5, focusing on four key aspects: training data
size, RoPE extrapolation, the extended tokenizer,
and decoding strategy.

First is the training data. As we increased the
amount of training data to 1M AnghaBench, the
accuracy jumps from 0% to 93.94%; including an ad-
ditional 0.3M Stackv?2 data points further improves
accuracy to 95.38%. While effective, this scaling ap-
proach depends on high-quality, large-scale datasets
and longer training time. Second is the architectural
enhancement through RoPE Extrapolation, which
pushes performance to 97.14%, indicating a+1.76%
improvement. This suggests that enabling better
generalization beyond the fixed context window
substantially benefits instruction understanding and
long-range dependency modeling.

The third contributing factor is tokenizer
coverage: by extending the tokenizer to include
additional subword units and symbols, we observe
a further gain to 98.18%, adding +1.04%, high-
lighting the importance of adapting the tokenizer to
the domain-specific vocabulary of assembly code.
Finally, decoding strategy plays a non-trivial role;
switching to 8-beam search yields the final boost
t0 99.39%, adding another +1.21%. Altogether, this
progression shows that while data scaling gives the
biggest leap, fine architectural and decoding choices
compound gains toward near-perfect accuracy.

6 Conclusion

We introduce Guaranteed Guess (GG ), alanguage-
model-based CISC-to-RISC transpiler that unifies
pre-trained LLMs with a test-driven validation
framework. GG directly transpiles x86 assembly
into efficient ARM and RISC-V binaries while em-
bedding unit tests to enforce functional correctness.
Through architectural enhancements, such as tok-
enizer extension, RoPE extrapolation, and beam de-
coding, GG achieves 99.39% accuracy in HumanEval
and 49.23% in BringUpBench, outperforming
both existing LLMs and dynamic virtualization
systems like Rosetta. Our analysis highlights how
ISA similarity and compiler optimizations affect
accuracy, with GG achieving 1.73x faster execution,
1.47x lower energy use, and 2.41x smaller memory
footprint than Rosetta on real-world binaries.
These results position GG as a scalable, test-verified
solution for efficient, cross-ISA binary translation.

7 Limitations

While Guaranteed Guess presents a significant
advancement in CISC-to-RISC transpilation using
LLMs, several limitations remain. First, the model’s
performance degrades substantially under compiler
optimization flags (e.g., -02), highlighting its sen-
sitivity to code transformation patterns that abstract
data and control flow. This suggests a need for
stronger semantic modeling or auxiliary representa-
tions such as control/data-flow graphs. Second, the
“guarantee” provided by GG is inherently bounded by
the quality and coverage of the unit tests. While unit
test success is a strong functional proxy, it cannot
ensure full semantic equivalence or optimality of
the transpilation. Nevertheless, such an approach
is highly employed in software engineering
paradigms, and is thus a highly practical approach
for building confidence in translations. Lastly, while
our experiments focus on x86 to ARM/RISC-V,
GG is ISA-agnostic. It can be extended to other
ISAs (e.g., MIPS, PowerPC) by reusing our
GCC/LLVM-based pipeline. We leave empirical
evaluation on additional targets to future work.

Potential risks include (i) failure under aggressive
compiler optimizations (e.g., -O2) leading to subtle
control/data-flow errors, (ii) incomplete semantic
guarantees due to reliance on unit tests and code
coverage as proxies, and (iii) misuse of transpiled
binaries in safety- or security-critical contexts
without independent verification and defense-in-
depth. We recommend restricting deployment to
non-critical settings unless supplemented with
formal verification or redundant validation.
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A Appendix

A.1 Extra Data Analysis

Scaling and quantization effect on Qwen2.5-
coder models. Figure 5 represents a study to
understand where most of the training benefit for
our transpiler originates. In particular, we focus on
three fundamental modeling aspects and describe
their impact on the asm-to-asm transpiler.

Our first and most significant result relates to the
context window size, and its impact on the transpiler.
Recall that a model’s context window is the amount
of text, in tokens, that the model can consider or “re-
member” at any one time. We found that programs
that do not fully fit in the context window (which
includes both the input and output of the model, i.e.,
the x86 asm and the generated ARM asm), are very
likely to not pass all our tests. Increasing the context
window length during training had a big impact on
our model’s accuracy, where going from 4k to 16k
improved the total number of fully correct transpiled
programs by 10% points, roughly an additional 16
programs out of the 164 total in HumanEval.

The second effect of scaling we observed and
leveraged was that training on more data also played
a major role in our transpiler’s efficacy. As shown
in Figure 5, using a context window of 16k and
increasing the training data from 500k samples to
1.3 million samples further increased and pushed
the accuracy up to about 98% from 87%. This
is generally a challenging method of scaling, as
obtaining more data with good quality is not always
available and also results in increased total training
time of the model.

The third scaling impact we found was the benefit
of increasing the number of beams and doing a beam
search. Beam search is a heuristic search algorithm
which allows the model to explore multiple token

paths in parallel during an inference. Intuitively,
beam search allows the model to explore alternative
options for next token generation, settling on the
most likely token. Beam searching presents an
obvious trade-off between computational resources
utilization for an inference and prediction accuracy.
Combined with a large context window, this is a
very powerful technique which we found to be more
pronounced when a model was not already near
perfect accuracy: in Figure 5, we show an increase
going up to 99.39% with the use of beam search
for assembly transpilation. We found diminishing
returns for using more than 4 beams on accuracy.
Finally, from an efficiency perspective, we show
that aggressive quantization does not severely
impact our transpilers accuracy. Going from FP32
down to INT4 substantially reduces the transpilers
inference footprint, with a minimal (less than
4%) impact on model prediction accuracy. This
shows the potential of designing small enough
models for deployment on edge devices, which
we would envision the GG transpiler to be used for
CISC-to-RISC translations in practice.

Transpilation Error Analysis. We provide a de-
tailed analysis of functionally equivalent predictions
produced by our model that deviate syntactically
from the ground truth. Such cases reveal the model’s
ability to generalize instruction patterns while main-
taining semantic correctness, a desirable trait in low-
level code generation where multiple implementa-
tions can achieve the same functional outcome.
Table 6 enumerates a range of examples with
moderate edit distances, where syntactic differences
arise from register allocation, operand ordering, and
memory layout choices. For instance, the model
often selects different temporary registers (e.g., r3
instead of r2) or reorders commutative operands
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Prog Edit
ID  Dist

P108 16

Example

Different registers can be chosen for temporary values
while maintaining same data flow

Ground truth: mov r2, r@; add r2, r2, #1

Predicted: mov r3, ro; add r3, r3, #1

P8 12 Local variables can be stored at different stack locations
while maintaining correct access patterns
Ground truth: strri1, [fp, #-8];strr2, [fp, #-12]

Predicted: strri1, [fp, #-12]1;strr2, [fp, #-8]

Compiler-generated symbol names can differ while
referring to same data

Ground truth: .word out. 4781

Predicted: .word out.4280

P119 6

P135 12 Multiple instructions can be combined into single
equivalent instruction
Ground truth: mov r3, ro;

strr3, [fp, #-8]

Predicted: strro, [fp, #-8]

Stack frame offsets can vary while maintaining correct
variable access

Ground truth: strbr3, [fp, #-21]

Predicted: strbr3, [fp, #-17]

Memory allocation sizes can vary if sufficient for
program needs

Ground truth: mov ro, #400

Predicted: mov ro, #800

P162 4

P88 23

P103 52 Different instruction sequences can achieve same logical
result

Ground truth: cmp r3, #0; and r3, r3, #1; rsblt r3, r3, #0
Predicted: rsbs r2, r3, #0; and r3, r3, #1; and r2, r2, #1;

rsbplr3, r2, #0

Constants can be loaded directly or from literal pool
Ground truth: mvn r3, #-2147483648

Predicted:

1drr3, .L8; .L8: .word 2147483647

P69 50

Table 6: Simple Variation Patterns in Functionally
Equivalent Code

without altering the underlying operation. It also
adjusts stack frame offsets or memory allocation
sizes, provided that the modifications do not violate
data dependencies or correctness constraints.

These variations suggest that the model is not
merely memorizing instruction patterns but is
instead learning high-level register-to-variable
mappings and instruction equivalence classes. This
flexibility enables generalization beyond the exact
reference format and increases robustness to minor
program transformations.

Furthermore, Table 7 presents more substantial
structural rewrites that nonetheless retain functional
fidelity. These include compound transformations
such as converting multiplications into equivalent
shift-add sequences, or restructuring memory
operations while preserving access order and
scope. In one example, a multiplication instruction
is replaced with a pair of shift and add instruc-
tions demonstrating the model’s awareness of
performance-equivalent alternatives. In another
case, memory writes and register arithmetic are

Prog  Edit Combined Patterns and Examples
ID Dist
P128 78 Multiple Optimization Patterns:
Groud truth: mul r1,r2,r3
Predicted:
1slri, r2,#2;
addri,ri,r2
P113 74 Memory and Instruction Patterns:

Ground truth:
strri1, [fp, #-12]
mov r3, r2

addr3,r3, #4
Predicted:

strri, [fp, #-8]
addr2,r2, #4

Table 7: Complex Variation Patterns with Multiple
Differences

Prog Edit Example
ID Dist

P37 1

Incorrect immediate value causes wrong division factor
and early loop termination

Ground truth: asrr2, r2, #2

Predicted: asrr2, r2, #1

P127 1 Array index offset error causes wrong element compar-
ison

Ground truth: sub r3, r3, #2

Predicted: sub r3, r3, #1

P63 12 Register overwrite corrupts loop counter before multi-
plication
Ground truth: mov ro, r2; 1dr r1, [r3, r1, 1sl #2];mul
ro,ro,ri

Predicted: 1drro, [r3, r1, 1sl #2]1;mul ro,ro,r1

P153 17 Incorrect instruction sequence fails to compute absolute
value
Ground truth: sub r2,r2, r3; cmp r2, #0; rsblt r2, r2, #0

Predicted: subri1,r2,r3;eorr2,r1,r2;subr2,r2, ri1

P47 19 Mismatched memory access offsets cause incorrect data
retrieval
Ground truth: strri1, [fp, #-4041;1dr r2, [fp, #-404]

Predicted: strri1, [fp, #-4041;1drr2,[r3, #-20]

Table 8: Armv5 Syntactically similar generations can
still produce critical semantic errors.

reordered while maintaining the intended result,
revealing the model’s competence in preserving
state consistency across instruction sequences.

While these examples have higher edit distances,
they exemplify a deeper form of equivalence: one
grounded in operational semantics rather than
surface-level syntax. The ability to produce such
alternative forms underscores the potential of
language models to reason compositionally about
program structure and to synthesize diverse yet
correct outputs for the same task.

In contrast, Table 8 presents failure cases where
minor syntactic deviations result in critical semantic
errors. These include incorrect immediate values,
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register mismanagement, and mismatched memory
offsets that compromise program correctness
despite appearing superficially similar to the ground
truth.

Together, Tables 6, 7, and 8 reveal that syntactic
deviation does not necessarily imply failure. On
the contrary, these examples support the argument
that token-level metrics alone are insufficient to
evaluate low-level transpilation tasks, and that
functional correctness should take precedence in
model assessment.
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