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Abstract

Large language models (LLMs) develop the in-
context learning capability through pretraining
and instruction tuning, enabling task adaptation
without parameter updates. Self-refinement is
a manifestation of this capability, which allows
LLMs to iteratively refine the output using self-
generated feedback. However, empirical obser-
vations reveal Inference-Free Self-Refinement
(IFSR) in preference alignment: LLMs gener-
ate preference-improved output via fixed in-
structions, requiring no specific feedback, even
no initial responses. There are two key com-
ponents of the IFSR in preference alignment.
The refining instruction is a fixed instruction
that constrains the output distribution from a
preference-semantic perspective. During train-
ing, it facilitates joint learning of preference-
related semantic representations and data dis-
tribution alignment. The pseudo reference re-
sponse is constructed from paired preference
data and serves as a demonstration to guide
the output distribution. It mitigates off-policy
distributional bias while enhancing token-level
preference learning in training. Experiments
across multiple datasets demonstrate that incor-
porating IFSR into preference alignment yields
performance improvement over 10%. Further
ablation studies reveal additional characteris-
tics and potential principles of IFSR.

1 Introduction

Recent advancements in large language models
(LLMs), trained on billions of tokens via unsuper-
vised learning, demonstrate emergent capabilities
including in-context learning, instruction following,
and logical reasoning, and achieve impressive per-
formance across tasks ranging from machine trans-
lation (Hendy et al., 2023) to code generation (Ni
et al., 2023). Building on this, instruction tuning
and preference alignment (Zhao et al., 2023) further
refine these capabilities by enhancing their ability
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What runs around the whole yard without moving?

é} Afence.

Please generate a better response.

é} The answer to this riddle is a fence! A fence runs
around the whole yard, enclosing it and providing a
boundary. A fence is considered to be a continuous
structure, so it can be thought of as something that
"runs around" the yard without actually moving.

Figure 1: LLM augments simple initial response with
detailed explanations after receiving the refining instruc-
tion. The abstract preference descriptions and concrete
textual expressions are marked in red and blue.

to interpret human intent and generate outputs that
are accurate, contextually coherent, and aligned
with ethical constraints (Wang et al., 2023). Early
alignment approaches like Reinforcement Learn-
ing from Human Feedback (RLHF) (Ouyang et al.,
2022) relied on reward modeling and reinforcement
learning, while subsequent methods such as Direct
Preference Optimization (DPO) (Rafailov et al.,
2024) eliminated the need for explicit reward mod-
els through supervised optimization. This evolu-
tion has spurred numerous refined techniques (Azar
et al., 2024; Xu et al., 2024a; Ethayarajh et al.,
2024) addressing diverse alignment challenges.
The emergent in-context learning capabilities of
LLMs enable self-refinement, whereby models iter-
atively generate feedback on initial responses and
produce refined outputs. This mechanism has been
widely adopted for tasks such as data augmenta-
tion (Madaan et al., 2023; Liu et al., 2024) and code
optimization (Woolf, 2025). In preference align-
ment scenarios, we observe a related yet distinct
phenomenon. As illustrated in Figure 1, appending
a simple fixed instruction (e.g., “Please generate
a better response”) prompts the model to au-
tomatically enrich minimal initial responses with
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Score Win% Score Win% Score Win%

Llama3-8B-Inst 3.71 50.0 3.76 66.7 383 77.1
Qwen2-7B-Inst 3.66 50.0 3.74 706 385 87.0
GPT-40-mini  3.78 50.0 3.87 732 399 952

Model

Table 1: Appending the refining instruction to the origi-
nal question as a suffix results in responses better than
initial responses, but inferior to second responses.

detailed explanations. Further experiments (Ta-
ble 1) demonstrate that such a fixed refining in-
struction improves preference alignment without
requiring the specific feedback derived from infer-
ence. Notably, weaker improvements even persist
when applying these instructions without initial
reference responses. We term this unexpected ca-
pability Inference-Free Self-Refinement (IFSR).

Current studies have not yet systematically in-
vestigated IFSR. To address this gap, we conduct
extensive experiments and analyzes (§2). Our find-
ings reveal that IFSR, akin to in-context learning
capabilities, inherently exists in pretrained base
models. Through systematic analysis in prefer-
ence alignment scenarios, we identify that IFSR
primarily operates through two contextual compo-
nents that constrain the model’s subsequent gen-
eration distribution: the refining instruction and
the pseudo reference response. The former is a
simple fixed instruction, while the latter can be
readily constructed from paired preference data.
The refining instruction constrains the generation
distribution through preference-semantic relevance,
whereas the pseudo reference response serves as
an exemplar demonstration. Their synergistic inter-
action reshapes the model generation distribution,
leading to preference-improved outputs.

Based on these findings, we propose a preference
alignment enhancement method for LLMs using
IFSR. This approach relies on the consistent con-
textual influence on generation distributions across
both fine-tuning and inference stages, as they share
identical forward propagation mechanisms. The
model produces identical probability distributions
for given contexts across stages, though their uti-
lization differs: during fine-tuning, these distribu-
tions compute loss against labels, while during in-
ference, they guide output sampling.

By strategically applying IFSR components to
reshape initial generation distributions during train-
ing, we effectively improve preference alignment.
The two components collaboratively optimize pref-

z, g4z, x

2283 2262 2171 2275 2284
3.690 3.725 3.746 3.722 3.720

Metric T x, il

Loss
Prob Var x106

Table 2: The refining instruction and pseudo reference
reduce the model loss and concentrate probability.

erence learning through distinct distribution con-
straints: 1) The refining instruction establishes se-
mantic relevance constraints through preference-
aware guidance, effectively pruning the learning
space by associating textual semantics with pre-
ferred data distributions. 2) The pseudo refer-
ence response serves as demonstration-based reg-
ularization, simultaneously enhancing focus on
preference-sensitive token-level patterns and miti-
gating distribution shift caused by offline policy.
The training dynamics further amplify these ef-
fects through gradient-based updates. The instruc-
tion component facilitates semantic consistency
across samples by establishing preference-semantic
associations through instruction bridging. Mean-
while, the reference response strengthens token-
level preference learning while directing model
updates toward genuine preference patterns rather
than distributional artifacts. Notably, this approach
is architecture-agnostic and algorithm-independent,
enabling orthogonal integration with existing pref-
erence optimization methods.
Our contributions can be summarized as follows:
e First study to identify, investigate, and lever-
age Inference-Free Self-Refinement in prefer-
ence alignment scenarios to our knowledge;
e Developing a method using IFSR to improve
preference alignment of LLMs, remaining or-
thogonally compatible with existing methods;
e Comprehensive empirical validation across
multiple datasets and baselines and further
analysis elucidating underlying mechanisms.

2 Analysis of IFSR

To advance our investigation of inference-free self-
refinement (IFSR) in the preference alignment sce-
nario, we conducted some experiments leveraging
the Llama3-8B-Base (Al@Meta, 2024) model and
paired preference data from the OpenAssistant Con-
versations Dataset (OASST) (Kopf et al., 2024).
The experimental design focus on quantifying the
impact of the refining instruction ' and the pseudo
reference response ¢ on the model loss and gener-
ation probability distributions. Specifically, i' is
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Figure 2: IFSR extends the alignment pipelines by three procedures: (I) After standard instruction fine-tuning phase,
LLM is additionally fine-tuned by enhanced data with the refining instruction and pseudo response in context.
(II) After standard preference optimization phase, LLM is further optimized by paired data where two responses
combined by the refining instruction. (III) During inference phase, the refining instruction is appended to the initial
response. These three procedures can be used individually or in combination.

“please generate a better response”, while
g is derived from paired responses in the dataset.
Our analysis reveals three critical insights. First,
the inclusion of i1 and § in the context reduces loss
values, as shown in Table 2. This loss reduction
confirms the intrinsic presence of IFSR capabilities
in the base model. Notably, the pseudo reference
response y contributes more to loss minimization,
suggesting its significant effect on mitigating off-
policy distribution shifts. Furthermore, the variance
of generation probability distributions increases
when both components are incorporated, indicating
a concentration of probability, which is a direct
manifestation of distribution-constraining effects.
The semantic relevance of the refining instruction
is demonstrated through ablation studies where '
is replaced with the neutral variant (i°: “another”)
and the counterfactual variant (i*: “worse”). These
substitutions diminish or nullify the observed loss
reduction, underscoring the necessity of explicit
preference semantics in the instruction.
Collectively, IFSR operates through dual mecha-
nisms. The refining instruction establishes seman-
tic relevance constraints that prune the learning
space, while the pseudo reference response acts as
an exemplar-driven regularizer to reduce the gap
between the original and target distributions.

3 Proposed Method

In this section, we elaborate on the implementation
of preference alignment with IFSR, which extends
standard alignment pipelines as shown in Figure 2.

The conventional alignment workflow first fine-

tunes a pretrained base model 7y by supervised fine-
tuning (SFT) to obtain 7, s, then optimizes it with
a paired preference dataset D = {(z;, v, , y; )},
to produce the final aligned model 7., where x
denotes inputs, y™ and 3~ represent chosen and
rejected responses. IFSR extends this workflow by
integrating the refining instruction " and the refer-
ence response across stages. With IFSR-augmented
data, 74y, undergoes additional fine-tuning (§3.1)
and 7, is further refined (§3.2), while the infer-
ence context also includes the instruction and the
reference (§3.3). These procedures reduce distri-
bution mismatches between model generations and
target responses while strengthening the semantic
connection between preference descriptions and
their textual expressions.

3.1 [Instruction Fine-tuning

Instruction fine-tuning serves as the foundational
step for the preference alignment of LLM. Start-
ing from a pretrained base model g, this pro-
cess utilizes a subset of paired preference data
Dy = { (x4, y;7 )}, where inputs x; are paired
with chosen responses y T for the next-token pre-
diction training by cross-entropy loss, yielding the
initial aligned model 7z as follows:

Lspr = ~Ey+)p,;, logmy (y* [ )] . (D)

While this stage partially aligns the model genera-
tion distribution with target responses, it inherently
neglects rejected responses y—, as these outputs are
what the model should avoid.

To address this limitation, the IFSR-enhanced
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SFT creatively incorporates ¢~ by a structured two-
turn dialogue format: each sample is reformulated
as ((z,y~,i"),yT), where (x,y~,i") forms a new
prompt, and yT serves as the training target. To
avoid overfitting to the fixed structure of i', these
augmented samples are mixed with original SFT
data, forming a twice large instruction refining
dataset Dippr = {(2s,5;), ((x,57,11),y) L,
This hybrid dataset fine-tunes s into ;. ¢, en-
abling the model to directly learn the distributional
shift from rejected 4y~ to chosen y™ responses.

LigrT = — E(x/,er)ND”,ft [log 9 (y+ | 5'3/)] )
o ef{zy U {(z,y,i"}. (2)

By explicitly contrasting ¥y~ and y™ within
instruction-guided dialogues, this step not only
leverages previously discarded negative responses,
but also establishes an explicit association between
preference data and the refining instruction. This
dual mechanism prepares the model for subsequent
preference optimization by simultaneously narrow-
ing the distribution gap and grounding alignment
objectives in concrete textual patterns.

3.2 Preference Optimization

Preference optimization constitutes the second criti-
cal phase in standard LL.M alignment. Based on the
SFT-tuned model 7, 74, this stage uses paired prefer-
ence data D = {(=;,y;", y; )}, with specialized
loss functions and produces ... For example,
the widely used DPO loss amplifies the probabil-
ity gap between generating preferred responses 3™
and rejected responses y~ for each prompt z, thus
steering the model’s generation preferences.

mo (y" | ) mo (y~ | @) ﬂ
log—————~ — Blog ——————— | |.
(5 S 12 P v o)

3

However, DPO and similar methods face a per-
sistent challenge: the distributional gap between
model generations and target preferences can im-
pede effective alignment. It is possible that the
model outputs marginally favor y™ over ¢y~ but are
far from the targets, which undermines preference
learning. Although SFT phase partially mitigates
this issue, residual discrepancies remain.

IFSR addresses this limitation by extending the
refining instruction and the pseudo reference re-
sponse to preference optimization. Through the

reformulated chosen sequences ((z,y~,41),y™)
and the rejected sequences ({z,y™*,i"),y ™), where
(x,y~,i") and (x,yT,i") serve as contextual
prompts, the method leverages the inherent distri-
butional similarity between y* and iy~ and further
optimizes e 0 Tirpre. By embedding half of
responses as contextual anchors, this approach re-
duces the effective generation space, guiding the
model toward target distributions more efficiently.

Lirsk = B[ y+,i1) y-), (it )]~D

mo (y* | (z,y7,4"))
[log”@ o8 e G [ (@, gi1)

m (y~ | <x,y+vﬁ>)))]. @)

Tore (y~ | (@, 9+, 47)

—Blog

Another key advantage of IFSR lies in its ability
to integrate ™ and i~ into a unified sequence via
i, enabling the model to contrast their token-level
details directly during training. Unlike DPO, which
treats y and y~ as isolated sequences and merely
compares their generation probabilities, IFSR fa-
cilitates fine-grained preference learning by expos-
ing the model to explicit textual contrasts between
chosen and rejected responses. This granular com-
parison allows the model to better discern subtle
alignment patterns, improving data efficiency.

3.3 Inference

After the fine-tuning and optimization steps, the
LLM 7pe OF Tirpre is ready for inference. For
every input prompt x, the model generates an out-
put g. As illustrated in Figure 2, the IFSR method
appends the refining instruction i after (x, ), gen-
erating a preference-enhanced response 4.
However, this two-stage generation method re-
quires additional inference costs. Inspired by the
results in Table 1 where the simple use of 7' could
improve the response, we also tested the generation
approach (z, ") to avoid additional costs.

4 Experiment

4.1 Experiment Setup

In this subsection, we introduce the setup of exper-
iments. More details can be found in Appendix A.

Datasets We conduct experiments on four public
datasets for preference alignment: OpenAssistant
Conversations Dataset (OASST), UltraFeedback
Binarized Dataset (UltraBin) (Cui et al., 2024),
Stanford Human Preferences Dataset (SHP) (Etha-
yarajh et al., 2022), and Anthropic Helpful and
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IFSR OASST UltraBin SHP HH Mean A
Base Model
I II II Score Win% Score Win% Score Win% Score Win% Score Win%
X x x 276 565 216 417 139 448 0.89 44.0 - -
v x x 281 59.1 225 429 155 496 1.08 454 982% 2.52
x v ox 279 612 234 427 156 513 1.09 449 11.14% 3.30
Pythia-2.8B x x v 278 579 232 422 144 464 1.02 438 6.61% 0.83
v v o x 287 628 240 448 1.62 525 120 49.1 16.51% 5.58
v x v 283 615 234 424 155 51.8 130 485 17.15% 4.32
x v v 287 639 240 441 160 536 119 476 16.01% 5.57
v v v 291 664 249 464 1.66 544 142 535 2497% 8.44
X X x 314 761 261 640 195 71.0 1.21 56.7 - -
vV o x x 324 1781 267 642 209 775 132 582 528% 2.56
x v x 314 810 268 642 201 747 145 596 6.35% 294
x x v 332 782 285 653 199 730 134 583 581% 1.75
Llama3-8B
v v x 341 815 278 662 221 797 152 61.7 13.40% 5.32
v x v 338 816 28 659 213 778 1.51 59.5 12.67% 4.25
x v v 335 817 291 66.0 208 753 1.68 63.3 15.78% 4.63
v v v 345 849 3.04 672 220 805 176 645 2099% 7.32

Table 3: Results of IFSR based on DPO with two base models on four public datasets. Results show that the
instruction refining is effective in all stage of instruction fine-tuning (I), preference optimization (II) and inference
(III) and refining in the earlier stage can facilitate subsequent stages.

Harmless Dataset (HH) (Bai et al., 2022a). We pre-
process these datasets following Ethayarajh et al.
(2024), and then convert them into the paired pref-
erence data format of TRL library (von Werra
et al., 2020). We use the instruction iT = “please
generate a better response”.

Baselines and Models We select five typical pref-
erence optimization methods as baselines to evalu-
ate improvement effects of our method, including
DPO, KTO (Ethayarajh et al., 2024), CPO (Xu
et al., 2024a), ORPO (Hong et al., 2024) and
SimPO (Meng et al., 2024). All methods employ
two base models of different sizes: Pythia-2.8B (Bi-
derman et al., 2023) and Llama3-8B.

Evaluation Metrics Following prior works (Xu
et al., 2024b; Liu et al., 2024), we use two metrics
to evaluate the quality of the model responses: the
scores from a public reward model released by
OpenAssistant (2023) and the win rate versus the
chosen responses judged by GPT-4. We also use
the AlpacaEval2 benchmark in addition.

4.2 Main Results

Table 3 shows the experimental results of IFSR
based on DPO with two base models on four pub-
lic datasets, where the best results are in bold and

the second best results are underlined. Our IFSR
method demonstrates significant and consistent im-
provements across all datasets. In the Pythia-2.8B
model, IFSR achieves average increases of 24.97%
in reward model scores and 8.44 percentage points
in GPT-4 evaluation win rates, while producing
respective improvements of 20.99% and 7.32 per-
centage points in the Llama3-8B model. These
results substantiate the effectiveness of IFSR.

Table 3 further presents the results from apply-
ing IFSR methods individually or combinatorially
during instruction fine-tuning (I), preference opti-
mization (II), and inference (III) phases. All six
partial combinations exhibit improved average met-
rics across both models, indicating that the refining
instruction and the reference response contribute
to preference alignment regardless of the imple-
mentation stage. This also validates that the IFSR
phenomenon observed during inference can be ef-
fectively extended to the training stage.

Notably, when separately applied to individual
stages, inference-stage refining yields the least
improvement, significantly underperforming fine-
tuning or optimization implementations. This sug-
gests that parameter updating through training-
phase refinement offers greater efficacy than con-
textual utilization during inference. Furthermore,

24463



IFSR Methods

MeanA
1 II III KTO CPO ORPO SimPO
X x x 346 359 279  3.55 -
v x x 357 358 285 3.62 1.76%
x v x 343 364 325 3.63  4.82%
X x v 347 364 283 360 1.13%
v v x 3.64 366 336 375 830%
v x v 362 370 3.03 374 5.41%
x v v 363 381 346 379 1045%
v v v 371 382 355 384 1226%

Table 4: Score of IFSR based on other optimization
methods with Llama3-8B and OASST dataset, demon-
strating its general effectiveness across base methods.

combining IFSR across multiple stages produces
superior results compared to single-stage applica-
tions. This demonstrates that knowledge acquired
through earlier-stage refinement can be effectively
transferred to subsequent stages, facilitating pro-
gressive preference learning. These findings under-
score the necessity of holistic improvements across
all three alignment phases to achieve comprehen-
sive preference optimization.

4.3 Improvement based on Other Methods

To validate the generalizability of the IFSR method
across different base optimization methods, we re-
placed the DPO method in our main experiments
with four established variants: KTO, CPO, ORPO
and SimPO. Table 4 presents the reward model
scores of IFSR implementations based on these
optimization methods, evaluated on the OASST
dataset using Llama3-8B as the base model. De-
tailed descriptions of these methods and additional
experimental results are provided in Appendix C.
The results demonstrate that IFSR achieves an
average improvement of 12.26% across all four
methods, conclusively establishing its broad effec-
tiveness beyond DPO-specific enhancements. No-
tably, despite KTO, CPO, ORPO, and SimPO each
having distinct methodological improvements over
DPO from different perspectives, the consistent
performance gains indicate that IFSR universally
enhances preference alignment through an orthog-
onal mechanism. This systematic improvement
suggests that IFSR addresses a fundamental lim-
itation common to these methods. Specifically,
while all five approaches (including DPO) process
the chosen and rejected responses in separate se-
quences, one of the key innovations of IFSR lies
in its integrated contrastive utilization of both pref-

201 Bz SFT
EXXd w/o IFSR
E= w. IFSR 15.
15 13.8 133 BR
11 12, £
KRS
— = K
10 8.993 — 9.1 =
= = 6= = K
= = = = K
53 == ==
<
(7? OQO CQO 0?‘?0 \éo

Figure 3: Winning rates competing with GPT4-Turbo
on AlpacaEval2 with different optimization methods.

IFSR UltraBin SHP MeanA
I 1II III Score Win% Score Win% Score Win%
v v v 304 672 220 80.5 - -
g v v 296 665 212 779 -3.13% -1.65
vV -y v 291 664 216 783 -3.05% -1.5
v v -y 300 668 222 80.3 -020% -03

Table 5: Ablation results of removing reference re-
sponses, showing its importance in preference learning.

erence responses within unified sequences. This
architectural advancement enhances granular data
utilization and preference learning efficiency, as
previously analyzed in our method discussion.

Furthermore, we assessed helpfulness preference
using AlpacaEval2, a benchmark designed to eval-
uate instruction-following capability through tar-
geted instruction sets. The framework compares
the model responses against the GPT-4-Turbo out-
put to calculate competitive win rates. As shown
in Figure 3, all preference alignment methods
improve instruction-following performance with
IFSR. These results confirm the effectiveness of
IFSR in enhancing the alignment of helpfulness
preference while suggesting the critical role of re-
fining instructions in this process.

4.4 Ablation of Reference Response

To examine the individual contributions of refer-
ence responses in preference alignment with IFSR,
we perform ablation studies at all three stages. Dur-
ing instruction fine-tuning and preference optimiza-
tion, we remove the pseudo reference response y,
while during inference, we eliminate the reference
response from the initial generation .

Table 5 summarizes the ablation results on the
UltraBin and SHP datasets using Llama3-8B as the
base model. The substantial performance degrada-
tion observed when excluding pseudo reference re-
sponses during training highlights their critical role
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What runs around the whole yard without moving ?
What

What are some ways to torture a small animal ?

What are some ways to . small animal ? Do you want to make them feel pain or ?

BRI whole | yard | without | moving |- R B

Please generate a better res ###ponse .

Please ...

Figure 4: Variation of attention weights after IFSR of harmlessness and helpfulness case. The white tokens draw
much more attention in IFSR than DPO, which are important to the preference.

IFSR it i0 it
I II III Score Win% Score Win% Score Win%
X x x 121 567 121 567 121 56.7
v x x 132 582 130 573 124 569
x v x 145 59.6 135 581 128 574
x x v 134 583 123 570 1.09 545
v v x 152 61.7 146 59.7 133 58.2
v o ox v 151 595 1.32 579 1.14 55.6
x v v 168 634 135 578 1.13 558
v v v 176 645 149 604 1.17 56.1

Table 6: Analysis results of refining instruction, showing
the importance of semantic preference relevance.

in the IFSR optimization process. Conversely, mod-
els trained with IFSR exhibit significantly smaller
performance declines when reference responses
are removed at inference, indicating that IFSR en-
hances initial generation quality to approach the
model’s inherent capability ceiling. These results
empirically validate the effectiveness of integrating
IFSR components in preference training and the
dual mechanism through which pseudo reference
responses mitigate distribution shift while enhanc-
ing granular pattern learning.

4.5 Analysis of Refining Instruction

To investigate the semantic impact of refining in-
structions in IFSR, we conducted controlled exper-
iments with the neutral variant (:°: “another”) and
the counterfactual variant (i*: “worse”). Table 6
displays the evaluation results on the HH dataset
using Llama3-8B as the base model.

When using the neutral instruction 7%, the model
performance declines moderately yet remains su-
perior to the baseline, demonstrating the persis-
tent benefits from the pseudo reference response in
IFSR. Notably, applying neutral instructions solely
during inference yields marginal improvements, po-
tentially because regeneration requests implicitly
suggest deficiencies in the initial response, thereby
introducing latent refinement semantics.

The results of the counterfactual instruction i+ re-

veal divergent patterns. Models exhibit the poorest
performance when this instruction is applied exclu-
sively in inference, while their use during training
yields relatively better outcomes. This contrast un-
derscores the dominant influence of preference data
distribution over instructional semantics in shap-
ing model behavior. Remarkably, when the coun-
terfactual instruction is incorporated during IFSR
training, their negative impact during inference be-
comes substantially mitigated. This observation
substantiates our hypothesis that IFSR training fa-
cilitates mutual reinforcement between preference
data distributions and semantic guidance.

5 Case Study

To investigate how IFSR modifies LLM outputs,
we analyzed two representative examples targeting
harmlessness and helpfulness:
e x : What are some ways to torture a
small animal?
y : Do you want to make them feel pain
or fear?
e = : What runs around the whole yard
without moving?
y: A fence.

Attention Analysis We append the refining in-
struction ¢ to each example and compute the rela-
tive proportion of average attention weights from
the final layer in models trained with DPO and
IFSR. The result is visualized in Figure 4 and each
row in the figure represents the attention distribu-
tion to generate the next token after receiving x
or (x,y,i'). For the harmlessness example, the
tokens more focused by IFSR model than the DPO
model are “torture” and “fear”, while for the help-
fulness example, the tokens about solving the rid-
dle such as “runs” and “whole yard without mov-
ing” draw much more attention. This indicates that
IFSR enhances the model’s capacity to focus on
the tokens relevant to preference. In contrast, atten-
tion patterns after  for initial response generation
show minimal differences between models, high-
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Prompt DPO DPO + IFSR

|y “(0.799) “<eot_id>" (0.110)  “!” (0.025) “ (0.806) “<eot_id>" (0.123) “does” (0.010)
(x,9) |y “is” (0.299) “does” (0.139) “can” (0.091) “is” (0.304) “does” (0.125) “surrounds” (0.090)
(z,i") |y “”(0.503) “’ (0.127) “around” (0.105) “’ (0.537) “around” (0.087) “might” (0.080)
(x,7, iT> |y  “may” (0.214) “surrounds” (0.165) “might” (0.161)  “might” (0.299) “may” (0.261) “surrounds” (0.188)

Table 7: Distributions of the next token prediction with different prompts and models. Refining reduces the
probability of simple ending and increases the probability of detailed explanations.

lighting the pivotal role of refining instructions in
driving these improvements. Additional details are
provided in Appendix C. To strengthen the empir-
ical foundation, we analyze the attention distribu-
tions of all test samples, revealing that the IFSR
model exhibits greater variance (from 5.02 x 1073
to 5.43x 1072) and skewness (from 62.14 to 65.11)
than the DPO model. These metrics show that IFSR
training induces more focused attention allocations
and enhances token-level preference learning.

Prediction Analysis We compared token prob-
ability distributions for responses following “A
fence” across four prompt variations in the DPO
and IFSR models in Table 7. When g is omitted,
both models tend to generate termination tokens
(e.g., “"). Including g increases the likelihood of
detailed explanations, while adding 7' further am-
plifies this tendency. Notably, explanation-related
tokens achieve higher rankings in IFSR distribution
than in DPO, demonstrating the effectiveness of
IFSR in promoting detailed responses to enhance
helpfulness. These observations corroborate the
critical role of refining instructions and pseudo ref-
erences in steering preference-aligned generation.

6 Related Work

Preference Alignment RLHF significantly im-
proves the preference alignment of LLM (Bai et al.,
2022a). Recent alignment approaches fall into
two main branches. RL-based methods such as
PPO (Schulman et al., 2015), GRPO (Ramesh et al.,
2024) can explore diverse responses and optimize
through reward models, but are complex to train.
DPO simplifies training by incorporating the re-
ward model policy in the closed-form solution with
the Bradley-Terry (BT) model. However, DPO
only focuses on the relative values of the implicit
rewards of chosen and rejected samples, resulting
in a decrease in the prediction probability of chosen
samples (Xiao et al., 2024). The problems of DPO
also include ignoring the importance differences be-
tween tokens (Liu et al., 2025) and the biased favor

of out-of-distribution responses (Xu et al., 2024b).
Thus, a series of variants (Saeidi et al., 2024) such
as IPO (Azar et al., 2024), CPO, ORPO, KTO, and
SimPO try to optimize these problems. IFSR pro-
posed by us can improve the effectiveness of these
existing methods with the refining instruction and
the reference response from a vertical perspective.

LLM Self-Refinement Self-Refinement, also
known as self-correction, is a prominent approach
to improve LLM outputs by iteratively enhancing
them during inference (Bai et al., 2022b; Madaan
et al., 2023). This methodology has been system-
atically investigated on multiple tasks, including
arithmetic reasoning, code generation, and question
answering systems (Shinn et al., 2023). A funda-
mental implementation of self-refinement involves
two sequential stages: the LLM first analyzes its
initial responses to identify potential errors, then
utilizes this self-generated feedback to produce re-
fined outputs (Huang et al., 2023). This paradigm
operates under the hypothesis that error detection is
more achievable than error prevention during initial
generation, allowing progressive optimization of
model performance (Saunders et al., 2022).

7 Conclusion

This paper studies the phenomenon of inference-
free self-refinement in LLM preference alignment,
establishing the critical roles of the refining in-
struction and the pseudo reference response in the
context. Building on these insights, we propose a
method IFSR that systematically integrates these
components into the fine-tuning, optimization, and
inference stages of LLM alignment. This approach
enhances the utilization of paired preference data
while reinforcing the model’s focus on concrete
preference expressions through abstract preference
descriptions and reference examples, thereby sig-
nificantly improving preference learning efficacy.
Extensive experiments across multiple datasets val-
idate the effectiveness of the method, with analyti-
cal experiments and case studies further advancing
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the understanding of its operational principles.
Limitation

The evaluation in this study demonstrates the ef-
fectiveness of IFSR, yet the experiments were con-
ducted under limited configurations regarding base
model varieties, baseline optimization methods,
and dataset selections. Expanding experimental
settings might reveal divergent phenomena. Fur-
thermore, the results exhibit notable sensitivity to
specific hyperparameters, necessitating careful se-
lection and tuning.

Another limitation lies in the evaluation metrics,
which, despite being widely adopted in existing
research, may not fully align with genuine human
preferences, such as longer responses tend to re-
ceive higher ratings.

Finally, the performance improvements achieved
through our approach require computational costs
equivalent to those of baseline optimization meth-
ods. This inherent trade-off between performance
gains and computational expenditure could con-
strain the broader practical adoption of the pro-
posed methodology.
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A Experiment Setup Details
A.1 Dataset Details

We conduct experiments on four public datasets
for preference alignment: OpenAssistant Conver-
sations Dataset (OASST) (Kopf et al., 2024), Ul-
traFeedback Binarized Dataset (UltraBin) (Cui
et al., 2024), Stanford Human Preferences Dataset
(SHP) (Ethayarajh et al., 2022), and Anthropic
Helpful and Harmless Dataset (HH) (Bai et al.,
2022a). Prior to the experiments, we verified
through the datasets’ release documentation that
they do not contain personal privacy information,
although they include offensive content for research
purposes. All experiments were conducted in com-
pliance with the datasets’ licenses and intended
uses. The statistical details of each dataset are pre-
sented in Table 8.

A.2 Training Details

We conduct our training using version 2.5.1 of the
PyTorch framework, version 4.46.1 of the Trans-
formers library, and version 0.12.0.dev0 of the
TRL (Transformers Reinforcement Learning) li-
brary. Hyperparameters are selected on the ba-
sis of existing studies (Xiao et al., 2024; Chen
et al., 2024; Saeidi et al., 2024; Wu et al., 2024)

and adjust through preliminary experiments to en-
sure representative results. During training, we set
the batch size per GPU to 4, resorting to gradient
accumulation when encountering memory limita-
tions. In the instruction fine-tuning phase, a learn-
ing rate of 5e-7 is applied for models trained on the
HH dataset, while a rate of 5e-6 is used for other
datasets, with training carried out over 1 epoch.
For the preference optimization phase, a uniform
learning rate of 5e-7 is used across all datasets for
1 epoch. The model’s maximum sequence length
is capped at 4096 tokens. Other hyperparameters,
including optimization algorithms and learning rate
schedules, are left at their default settings as pro-
vided by the TRL library.

The training is executed on a server equipped
with 8 NVIDIA A100 GPUs. For a 2.8 billion
parameter Pythia model, each batch during the in-
struction fine-tuning phase requires approximately
1.5 seconds, whereas the preference optimization
phase necessitates about 3 seconds per batch. In
comparison, an 8 billion parameter Llama3 model
demands around 3 seconds per batch in the instruc-
tion fine-tuning phase and roughly 6 seconds per
batch during the preference optimization phase.

A.3 Inference Details

Following Ethayarajh et al. (2024), we utilize
vLLM (Kwon et al., 2023) for text generation with
a temperature setting of 0.7, a top_p value of 0.95,
and a maximum token number of 2048. The re-
ward model used in the evaluation can be accessed
via https://huggingface.co/OpenAssistant/
oasst-rm-2-pythia-6.9b-epoch-1.

For GPT-4 evaluations, we adopted the Al-
paca (Li et al., 2023) along with its prompt template
of alpaca_eval_gpt4_turbo_fn. In cases where
the test set exceeded 2000 samples, we selected
the first 2000 samples for GPT-4 testing. Reported
results represent the average of three runs with dif-
ferent random seeds.

B Mathematical Derivation

Rewriting the IFSR loss as follows offers additional
insight. The derivation of the IFSR loss rewriting
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Datasets ~ Train / Val / Test URL

OASST 84.4k / 4.4k / - https://huggingface.co/datasets/OpenAssistant/oasst1

UltraBin 61.1k/-/2k https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
SHP 349k / 18.4k /18.4k https://huggingface.co/datasets/stanfordnlp/SHP
HH 161k / -/ 8.55k https://huggingface.co/datasets/Anthropic/hh-rlhf

Table 8: Statistics of the four alignment datasets.
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In this format, IFSR loss can be decomposed into
two components: one optimizing the initial re-
sponse (same as the DPO objective) and another
jointly refining both initial and refined responses.
This formulation ensures that the model enhances
subsequent outputs without excessively compro-
mising the quality of initial generations, effectively
leveraging its self-improvement capability for bet-
ter performance during training. Crucially, this
dual optimization underscores the necessity of ro-
bust initial alignment in 7., since the model’s
ability to iteratively refine outputs depends on a
well-tuned foundational distribution.
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C More Experiments

C.1 Improvement based on Other Method

Table 9 illustrates the additional experimental re-
sults of IFSR, using KTO, CPO, and ORPO as base-
line methods.

C.2 General Ability Evaluation

We evaluated the impact of IFSR on general LLM
capabilities when implemented with different op-
timization methods, employing MMLU, GSM8K
and HumanEval benchmarks to assess knowledge
retention, mathematical reasoning and coding profi-
ciency, respectively. The results shown in Table 10
reveal that although various preference optimiza-
tion methods slightly enhance general capabilities
compared to the SFT baseline, their overall ef-
fects remain marginal. Similarly, IFSR exhibits
minor positive or negative variations across dif-
ferent optimization methods and capability dimen-
sions, yet consistently outperforms SFT. This obser-
vation aligns with the previous study (Ethayarajh
et al., 2024) that preference alignment and capabil-
ity maintenance constitute relatively independent
aspects of model behavior.

We evaluate our IFSR method on three bench-
marks in the 1-shot setting: MMLU (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021), and
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IFSR OASST Pythia-2.8B

HH Pythia-2.8B HH Llama3-8B

I I OI KTO CPO ORPO KTO CPO ORPO KTO CPO ORPO
X X x 256 284 220 1.19 093 0.73 1.06 140 0.87
v X x 258 287 227 133 1.13 078 1.31 153 0.87
X v x 268 296 250 134 1.21 1.07 164 175 1.33
X X v 261 281 223 .22 087 0.78 .15 148 1.03
v v x 293 246 220 152 140 1.08 1.80 1.82 1.36
v X v o273 294 238 145 127 099 151 1.6l 1.01
X v v 268 298 263 133 118 1.17 184 192 1.63
v v v 300 302 260 164 160 131 2.06 194 158

Table 9: Score of IFSR based on other optimization methods with more models and datasets.

Method MMLU GSMS8K HumanEval Mean
SFT 0.627 0.332 0.372 0.444
DPO 0.629 0.334 0.402 0.455
+IFSR 0.630 0.356 0.427 0.471
CPO 0.638 0.337 0.439 0.471
+IFSR 0.630 0.353 0.433 0.472
ORPO 0.640 0.339 0.433 0.471
+IFSR 0.631 0.336 0.427 0.464
KTO 0.639 0.346 0.439 0.475
+IFSR 0.636 0.365 0.427 0.476

Table 10: Accuracy of IFSR on knowledge, math, and
code benchmark with different optimization methods.

HumanEval (Chen et al., 2021). The results on
MMLU and GSMS8K are reported in terms of ac-
curacy under the Exact Match condition, while the
result on HumanEval is given by the pass@1 rate.

C.3 Cross Domain Evaluation

We evaluated the cross-domain generalization of
IFSR through a cross-dataset evaluation by inter-
changing training and test sets across four datasets.
Figure 5 illustrates the reward model score increase
of DPO-trained and subsequent IFSR-enhanced
models relative to the SFT baseline, with train-
ing sets on the horizontal axis and test sets on the
vertical axis. The results demonstrate that IFSR
consistently achieves significant performance en-
hancements even in cross-domain configurations,
confirming its robust generalization across varying
data distributions. This systematic improvement
indicates that the gains of IFSR stem from univer-
sal preference optimization rather than domain-
specific overfitting. The observed cross-domain

DPO — SFT DPO w. Boots. — SFT
g 0.32 [OREN 0.20 0.62 EWYA 0.57
©10.30 (R 0.12 0.69 sWEN 0.46
o
T1037 0.26 0.43 0.52 0.24
I10.62 0.56 FEOL] 0.98 1.26 1.34

OA. UB. SHP HH OA. UB. SHP HH

Figure 5: Cross domain experiment results across four
datasets: OASST(OA.), UltraBin(UB.), SHP, and HH.
The results prove that the improvement stem from uni-
versal preference optimization rather than overfitting.

efficacy aligns with the implementation mechanism
of IFSR, which systematically integrates half of the
paired preference data into the context during train-
ing, as theoretically analyzed in our method.

C.4 Attention Analysis

In this attention analysis experiment, the (z,y, ')
sequences are fed into the model to obtain the log-
arithm of the average attention scores across all
heads in the final layer (a small epsilon was added
to avoid zero values). The result of the model prior
to IFSR training is then subtracted from that of the
model trained with IFSR.

The complete token sequences for helpfulness
are as follows:

[’<|begin_of_text|>’, ’<|begin_of_text|>’,

’<|start_header_id|>’, ’user’,
’<|end_header_id|>’, "CC’,  ’What’, 'Gruns’,
’Garound’ "Gthe’, ’Gwhole’ "Gyard’
’Gwithout’, ’Gmoving’, 7, '<|eot_id|>’,
’<|start_header_id|>’, ’assistant’,
’<|end_header_id|>’, ¢e, AT, ’Gfence’,

’L, ’<|eot_id|>", ’<|start_header_id|>’,
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‘user’,  ’<|end_header_id|>’, 'CC’, ’Please’,

'Ggenerate’, ’Ga’, ’Gbetter’, ’Gres’, ’ponce’,
v, "<|leot_id|>’, ’<|start_header_id|>’,
’assistant’, ’<|end_header_id|>’, ’CC’]

The complete token sequences for harmlessness
are as follows:

[’<|begin_of_text|>’, ’<|begin_of_text|>’,
’<|start_header_id|>’, ‘user’,
’<|end_header_id|>’, 'CC’,  ’What?, *Gare’,
"Gsome’, ’Gways’, ’Gto’, ’Gtorture’, ’Ga’,
"Gsmall’, *Ganimal’, A '<|eot_id|>",
’<|start_header_id|>’, ’assistant’,

'<|end_header_id|>’, "CC’, ’Do’, ’Gyou’, ’Gwant’,
"Gto’, ’Gmake’, ’Gthem’, ’Gfeel’, ’Gpain’, ’Gor’,

"Gfear’, ’?’, ’<|eot_id|>’, ’<|start_header_id|>’,

‘user’,  ’<|end_header_id|>’, ’CC’, ’Please’,
'Ggenerate’, ’Ga’, ’Gbetter’, ’Gres’, ’ponce’,
N '<leot_id|>’, '<|start_header_id|>’,
assistant’, ’<|end_header_id|>’, ’CC’]

Figure 6 presents the full attention matrices for
both examples.

D AI Assistant Usage

The writing of this paper is optimized with the
assistance of GPT-40 and Deepseek-R1.
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Figure 6: Variation of attention weights after IFSR of harmlessness (left) and helpfulness (right) case.
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