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Abstract

Large Reasoning Models (LRMs) demonstrate
strong performance on complex tasks through
chain-of-thought (CoT) reasoning.However,
they suffer from high inference latency due to
lengthy reasoning chains. In this paper, we pro-
pose SpecCoT, a collaborative framework that
combines large and small models for effective
yet efficient reasoning. Unlike traditional spec-
ulative decoding, which operates at the token
level, SpecCoT adopts a step-level verification
strategy: the large model first establishes the
reasoning direction, and for each intermediate
step, the small model generates multiple candi-
date drafts in parallel. The large model then ver-
ifies these drafts, either selecting the most suit-
able one or rejecting them all and generating
its own. SpecCoT approach balances reason-
ing quality with inference efficiency through
fine-grained model cooperation. Experiments
across diverse tasks show SpecCoT reduces in-
ference latency by 1.7-4.1 x while maintaining
comparable accuracy to standard large model
inference.

1 Introduction

Recent advances in Large Reasoning Models
(LRMs) (Jaech et al., 2024; Team, 2025; DeepSeek-
Al et al., 2025) have transformed Al reasoning
through chain-of-thought (CoT) (Wei et al., 2022a)
mechanisms. By decomposing complex problems
into intermediate steps, these models achieve state-
of-the-art performance across various domains. Un-
like traditional Large Language Models, LRMs first
generate and refine step-by-step reasoning before
producing conclusions. However, this process in-
curs substantial computational costs—Ilengthy rea-
soning chains combined with billions of parameters
result in inference latency ranging from minutes to
hours, rendering these powerful systems impracti-
cal for time-sensitive applications.

* Corresponding authors.

Current approaches address this challenge by ei-
ther developing smaller reasoning models through
distillation techniques (Wang et al., 2025b) or re-
ducing CoT generation length using methods like
StepSkip (Liu et al., 2024) and TokenSkip (Xia
et al., 2025). However, these approaches face a
fundamental limitation when reasoning models en-
counter problems of varying complexity: large
models are computationally inefficient for simple
tasks, while smaller models or compressed reason-
ing chains often fail to handle complex problems
that require detailed step-by-step deduction. This
critical trade-off between computational efficiency
and reasoning thoroughness presents a key open
problem and motivates further exploration of adap-
tive reasoning frameworks. (Xia et al., 2025; Zhang
et al., 2025; Liu et al., 2024).

The success of speculative decoding (Leviathan
etal., 2023; Chen et al., 2023; Xia et al., 2024) illus-
trates how collaboration between large and small
models can effectively reduce inference latency. In
this paradigm, a small model rapidly drafts poten-
tial continuations while a large model verifies their
quality, achieving significant speedup in text gen-
eration (Ryu and Kim, 2024). This collaborative
approach is particularly well-suited for chain-of-
thought reasoning due to its structural characteris-
tics—unlike standard text generation, where tokens
contribute equally, reasoning chains comprise dis-
tinct steps of varying complexity and importance,
from crucial logical deductions to straightforward
elaborations. This inherent structure suggests an
opportunity to enhance the speculative paradigm by
leveraging semantic-level verification rather than
requiring exact token matches.

In this paper, we propose SpecCoT (Specula-
tive Chain-of-Thought), a collaborative reasoning
framework that improves efficiency by combin-
ing small-model draft generation with large-model
step-level verification. Instead of compressing
models or simplifying reasoning chains, SpecCoT
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employs a strategic multi-phase process: initially, a
large model generates the opening tokens to estab-
lish the correct reasoning trajectory; subsequently,
for each intermediate step, a lightweight small
model efficiently produces multiple candidate con-
tinuations in parallel. The large model then evalu-
ates these drafts simultaneously, either accepting
the most suitable candidate or intervening to gener-
ate the step itself when none are acceptable. This
design preserves reasoning accuracy while improv-
ing efficiency by delegating intermediate step gen-
eration to the small model and reserving the large
model for only validation and critical reasoning.
We evaluate SpecCoT on diverse reasoning tasks
spanning different complexity levels. Our exper-
iments demonstrate that SpecCoT reduces infer-
ence latency by up to 4.1x compared to standard
large model inference while maintaining compara-
ble reasoning accuracy. The efficiency gains are
particularly significant for complex mathematical
problems requiring long reasoning chains, where
our method effectively balances computational cost
and reasoning quality. Our key contributions are:

* We propose SpecCoT, a collaborative reason-
ing framework that strategically combines
large and small models to achieve an opti-
mal balance between reasoning quality and
computational efficiency.

* We develop a parallel verification mechanism
with a dynamic fallback strategy, enabling ef-
ficient evaluation of multiple reasoning can-
didates while preserving reasoning accuracy
through selective large model intervention.

* Experiments across reasoning benchmarks
demonstrate SpecCoT reduces inference la-
tency by 1.7-4.1x while maintaining compara-
ble accuracy, with stronger gains on complex
problems requiring extensive reasoning.

2 Motivation

Complex reasoning tasks present unique challenges
and opportunities for language models of different
sizes. In this section, we explore the inherent trade-
offs between models of varying scales and identify
key opportunities for optimization.

2.1 Model Size vs. Reasoning Efficiency

Small models generate content faster but with
reduced reasoning reliability. Small language
models offer substantial computational efficiency
advantages, particularly in generation speed. How-

Table 1: Performance and efficiency tradeoffs in
DeepSeek R1 distilled Qwen models in GSMS8K.

Distill-Qwen 1.5B 7B 14B 32B

Accuracy (%) 75.51 87.49 90.83 91.58
Avg Time (s) 10.94 5.20 6.86 10.33
Avg Token 2736.46  974.19 75851 634.11
Speed (token/s) 25638 20041 12039  67.90

ever, this efficiency advantage does not necessarily
translate to faster overall reasoning time. While
small models can generate tokens 3-4x faster than
large models, their limited reasoning capabilities
lead to significantly more verbose solutions, requir-
ing up to 4x more tokens(Table 1). This ineffi-
ciency in token usage ultimately results in simi-
lar end-to-end latency compared to larger models.
More critically, the increased token consumption
often reflects underlying reasoning issues, where
small models struggle to maintain coherent logic
and frequently fall into circular reasoning patterns.
Large models demonstrate superior reasoning
capabilities and token efficiency. While operating
at a slower token generation pace, large language
models showcase advanced reasoning abilities. As
observed in Table 1, within the same model fam-
ily, larger models not only achieve higher accuracy
(91% vs 75%) but also produce more concise and
effective reasoning paths, requiring less than a quar-
ter of the tokens needed by small models for the
same tasks. This efficiency suggests an ability to
maintain a more direct and consistent logical tra-
jectory.

2.2 Collaborative Reasoning Principles

Complex reasoning can be decomposed into sub-
tasks of varying difficulty. The complexity of
reasoning tasks is not uniformly distributed across
all steps. While some pivotal stages require sophis-
ticated problem-solving abilities, such as initial
problem analysis or solution strategy formulation,
many intermediate steps involve more straightfor-
ward operations. Small models, despite their limita-
tions in solving end-to-end complex problems, can
effectively handle these intermediate steps, includ-
ing basic calculations, logical deductions, and case
analyses. This non-uniform distribution of reason-
ing complexity suggests opportunities for efficient
model deployment.

Reasoning quality depends on logical correct-
ness rather than exact expression. Unlike tasks
requiring precise wording or stylistic consistency,
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Figure 1: Performance analysis of Best-of-N sampling
and initial guidance impact on reasoning tasks.

reasoning tasks prioritize the advancement of logi-
cal insights over exact token matching. This is fun-
damentally different from most speculative decod-
ing techniques, where small models must precisely
replicate the output of larger models. In reasoning,
multiple valid expressions can advance the same
logical step, making the process naturally suited for
collaboration between models of different capabili-
ties. This characteristic enables a flexible approach
where small models can contribute effectively to
the reasoning process despite variations in their
specific outputs.

2.3 Optimization Potential for Small Models

High-quality initial guidance impacts subse-
quent reasoning. The initial formulation of a rea-
soning approach plays a crucial role in determining
the overall solution quality. A well-structured ini-
tial analysis can effectively decompose complex
problems into more manageable steps and establish
a clear reasoning framework. More importantly,
high-quality initial guidance helps prevent error
accumulation in the reasoning chain - early mis-
takes in problem interpretation or strategy selection
often cascade into more significant errors in later
steps. This observation suggests that leveraging
more capable models at the beginning of the rea-
soning process can provide substantial benefits for
the entire solution chain.

Parallel candidate generation enables efficient
exploration. While individual generations from
small models might lack reliability, generating mul-
tiple candidates in parallel significantly increases
the likelihood of obtaining high-quality reason-
ing steps. The computational overhead of this
multi-candidate generation remains manageable
with optimization of inference frameworks such
as VLLM(Kwon et al., 2023). This parallel explo-
ration of the solution space helps overcome the lim-
itations of small models in generating high-quality
reasoning steps.

3 Method

We propose Speculative Chain-of-Thought (Spec-
CoT), a collaborative reasoning framework that
leverages the complementary strengths of large and
small language models. The key insight of our
approach is to decompose the chain-of-thought rea-
soning process into speculative iterations, where
a large model provides initial guidance and per-
forms efficient verification, while a small model
generates multiple diverse intermediate reasoning
steps throughout the process. This collaborative
approach enables us to maintain the reasoning qual-
ity and reflective capabilities of large models while
achieving significant computational efficiency im-
provements through parallel candidate generation.

3.1 Formulation

Given an input problem z, SpecCoT aims to gener-
ate a chain of reasoning steps C' = {cy, co, ..., ¢y }
to derive the final answer y. The reasoning process
starts with an initial guidance g generated by the
large model to set a strong foundation. For each
subsequent step ¢, the small model generates N
candidate continuations {¢; }évzl based on previous
reasoning steps cy.;—1. The large model then serves
as a verifier V' that selects the most promising con-
tinuation or indicates the need for its own genera-
tion when no candidate meets the quality threshold.
This reasoning process is formally formulated as:

z - y, where C' = {g}U{c1,ca,...,cn}. (1)

This formulation reflects a key observation:
while the large model’s guidance and verification
are crucial for maintaining reasoning quality, dele-
gating the intermediate generation steps to a small
model with parallel candidate generation can sig-
nificantly reduce computational overhead.

3.2 Initial Guidance

SpecCoT begins by employing a large target model
M to generate an initial guidance g with k£ tokens
conditioned on the input problem. This process can
be formally expressed as:

g = Mr(z)[k], 2

where g serves as the foundation for the entire rea-
soning chain. This design choice is motivated by
our observation that a strong initial direction is cru-
cial for the overall reasoning trajectory. The target
model’s superior reasoning capabilities help estab-
lish a logically sound and contextually appropriate
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Figure 2: Overview of SpecCoT. The process begins with a LLM generating initial guidance tokens (1), followed by
a small language model generating multiple candidate continuations for each reasoning step (2,4,7). For each step,
the LLLM verifies and selects the most promising candidate (3,5,n) or regenerates the content itself if no candidate
meets quality standards (6). This collaborative approach combines the reasoning quality of large models with the
computational efficiency of small models, culminating in a final answer after multiple reasoning steps.

starting point, which effectively constrains the solu-
tion space for subsequent generations by the draft
model while minimizing computational overhead.

3.3 Speculative Exploration

Following the initial guidance, SpecCoT employs
an efficient exploration strategy at each reasoning
step ¢ to advance the solution process. We leverage
a lightweight draft model Mp to generate multiple
candidate continuations simultaneously:

{éz}év:1 = MD(gacl:i—l)a (3)

where NV represents the number of parallel candi-
dates generated based on the initial guidance g and
previous reasoning steps ¢j.;—1.

The parallel generation approach addresses the
inherent limitations of smaller models while ex-
ploiting modern inference engines’ optimization
for batch sampling, where generating [NV samples
does not incur a linear increase in computation time.
While any single generation might fall short of the
target model’s quality, the diversity across multiple
candidates substantially increases the probability
of producing at least one high-quality continuation.
We employ a moderate sampling temperature dur-
ing generation to balance exploration diversity with
logical coherence.

3.4 Efficient Verification and Fallback

We introduce a computationally efficient verifica-
tion mechanism that evaluates all candidate contin-
uations through a single forward pass of the target

model. By augmenting the candidate set with an
explicit reject option, the target model can either
select a promising continuation or indicate the need
for its own generation:

s =Vr({&]}jl U{reject}), (4
where V7 represents the verification function that
assesses both logical coherence and reasoning
progress of each candidate. The implementation is
highly efficient—requiring only a single forward
pass with the output of a single token indicating
the selected choice.

The reject option serves as a critical quality con-
trol mechanism. When all candidate continuations
contain logical errors or fail to meaningfully ad-
vance the reasoning process, the target model re-
jects them and takes over generation:

¢i = Mr(g,cri-1)- ©)

This verification and fallback approach creates
a robust framework that maintains reasoning qual-
ity while minimizing computational costs. The
system leverages the draft model for efficient ex-
ploration of the solution space, while the target
model provides oversight through selective inter-
vention. This strategic deployment of the target
model’s capabilities—precisely when they are most
needed-establishes an effective balance between
computational efficiency and reasoning reliability.

24408



ORQwen-1.5B

» SpecCoT-RQwen 7 SpecCoT-QwQ [CJRQwen-32B EQwQ-32B

~ 1007 91.491.6 44 93.4 93,6
s 86.4
i 8.377. 79.4

g 80 72.37 77.7 76.9
5 63.5
S 601
<

40 -

GSM8K AMC23 GaoKao MATH-500

Figure 3: Accuracy comparison (%) of SpecCoT variants against baseline models across four reasoning benchmarks.
SpecCoT implementations use Deepseek-R1-Distill-Qwen-1.5B (RQwen-1.5B) as the draft model, with either
QwQ-32B or Deepseek-R1-Distill-Qwen-32B (RQwen-32B) as the target model.

3.5 Relation to Speculative Decoding

Our SpecCoT framework shares a fundamental syn-
ergy with speculative decoding techniques through
their common use of draft models for efficient gen-
eration. While speculative decoding operates at
the token level, SpecCoT extends this speculation
paradigm to higher-level reasoning steps. This ar-
chitectural alignment suggests the potential for a
unified speculation framework that operates across
different granularities. By utilizing the same draft
model for both token-level speculation and reason-
ing step generation, we can achieve a hierarchical
efficiency optimization while maintaining the tar-
get model’s quality assurance through verification.

4 Experiments

4.1 Setup

We evaluate SpecCoT using Deepseek-R1-Distill-
Qwen-1.5B (DeepSeek-Al et al., 2025) as the draft
model and QwQ-32B (Team, 2025) and Deepseek-
R1-Distill-Qwen-32B as the target models. Both
model series demonstrate strong chain-of-thought
reasoning capabilities. For brevity, we refer to
the Deepseek-R1-Distill-Qwen series models as
RQwen in the following sections. Our evaluation
spans reasoning datasets of varying difficulty lev-
els, including GSMS8K (Cobbe et al., 2021) with
basic multi-step arithmetic problems, MATH-500
(Hendrycks et al., 2021) containing standard high
school mathematics questions, GaoKao-En-2023
(Liao et al., 2024) featuring Chinese college en-
trance examination problems, and AMC23 (MAA,
2023) with challenging competition mathematics.
This selection encompasses a comprehensive spec-
trum of mathematical complexity. All experiments
were conducted on four NVIDIA A100 GPUs us-
ing VLLM (Kwon et al., 2023) as the inference

engine, with five different runs per configuration
to ensure statistical reliability. The max reasoning
token budget is set to be 8192 with a temperature
of 0.6. We establish baselines by running vanilla
inference using both the draft model and the target
model independently.

4.2 Main Results

Accuracy Improvement. Figure 3 illustrates
SpecCoT’s accuracy across four mathematical rea-
soning datasets. The results reveal that Spec-
CoT consistently and substantially outperforms the
draft model across all benchmarks, particularly on
GSMSK and MATH-500, where it approaches the
performance level of the target model. Interest-
ingly, on AMC23 and GaoKao datasets, QwQ-32B
baseline performs slightly below RQwen and Spec-
CoT due to its need for additional tokens to com-
plete solutions. Nevertheless, QwQ-32B exhibits
remarkable reasoning capabilities—when deployed
as the target model within our framework, it gener-
ally yields superior results compared to configura-
tions using RQwen-32B. These performance gains
stem from the step-wise guidance and verification
mechanism provided by the target model, which
effectively identifies and corrects potential errors
from the draft model before they propagate through
the reasoning chain.

Lower Latency. SpecCoT delivers remarkable im-
provements in computational efficiency across all
evaluated datasets. When paired with QwQ-32B
as the target model, our approach achieves approx-
imately 3x reduction in inference time on both
GSMS8K and MATH-500 benchmarks. While the
efficiency gains naturally diminish on more chal-
lenging tasks, SpecCoT still maintains impressive
speedup factors of 2.3x and 2.0x on GaoKao and
AMC23 respectively. This gradual decrease in ac-
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Table 2: Performance across four mathematical reasoning tasks (GSM8K, MATH-500, GaoKao, AMC23).
Metrics include average tokens, latency (Lat, in seconds), and improvement ratio r of SpecCoT over baselines.

| GSMSK | MATH-500 | GaoKao |  AMC23

Model

ode | Token Lat r | Token Lat r | Token Lat r | Token Lat r
RQwen-1.5B 1096.8 4.5 - |2609.3 106 — |3456.6 144 - |5298.8 21.64 -
QwQ-32B 2053.8 335 - |3086.8 50.8 — |4102.0 680 - |[58858 97.78 -
SpecCoT(ours) | 1023.3 10.1 3.3 14959 16.2 3.1 |23165 30.1 2.3|3633.0 48.6 2.0
RQwen-32B 5743 93 — | 1998.6 326 - |28334 467 - |46055 762 -
SpecCoT(ours) | 239.1 29 32| 6369 7.8 4.1]16747 240 19]|3031.6 447 1.7
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Figure 4: Ablation studies and sensitivity analysis of SpecCoT performance.

celeration ratios aligns with our expectations, as
more complex problems often require additional
verification steps from the target model. Similarly,
when using RQwen-32B as the target model, we
observe speedups ranging from 4.1x on MATH-
500 to 1.7x on AMC23. This performance pattern
across tasks of increasing mathematical complex-
ity demonstrates how our approach effectively bal-
ances computational efficiency with the enhanced
reasoning demands of more difficult problems.

Token Efficiency. SpecCoT demonstrates remark-
able reductions in token consumption across all
datasets. When compared with QwQ-32B as the
target model, our approach reduces token counts
by 50.2% on GSM8K (from 2053.8 to 1023.3) and
51.5% on MATH-500 (from 3086.8 to 1495.9). The
efficiency gains are even more pronounced when
using RQwen-32B configurations, where we ob-
serve token reductions of 58.4% on GSMS8K and
68.1% on MATH-500. This substantial decrease
in token usage directly contributes to the latency
improvements discussed earlier, as fewer tokens
require less computational processing. The token
efficiency stems from our verification mechanism,
which allows the target model to select optimal
reasoning paths early in the process, effectively
preventing both the wandering exploration charac-
teristic of smaller models and the verbose reasoning
typical of larger models. This guided approach pro-
duces more concise solutions while maintaining or
even improving accuracy.

4.3 Ablations

Number of initial tokens. The number of initial
tokens refers to the number of guiding tokens gen-
erated by the target model when initiating the col-
laborative generation process. When this number
is set to zero, the target model does not generate
any guiding tokens at the outset; instead, the draft
model directly generates n possible intermediate
reasoning steps. Our experimental results demon-
strate that the presence of guiding tokens led to
improved accuracy across all three datasets, albeit
with a slight increase in inference time. However,
this increased inference time remains substantially
lower than that of the base model. We attribute the
accuracy improvement to the high-quality initial
guidance provided by the target model, which pre-
vents the draft model from making early mistakes
and effectively steers its generation process.

Number of Drafts. The number of drafts param-
eter controls how many candidate continuations
the draft model generates for each reasoning step.
As illustrated in Fig. 4b, increasing this parameter
yields interesting performance dynamics. While
additional candidates do not guarantee accuracy
improvements, we observe a substantial decrease
in the fallback rate, particularly when the number
reaches 10. This indicates that with more candi-
dates, the target model is more likely to find accept-
able continuations without needing to generate its
own. This pattern reveals that while multiple drafts
cannot fundamentally enhance the draft model’s
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Table 3: SpecCoT performance on MATH-500 and GSMS8K. Metrics include accuracy (%), tokens, time (s), and
fallback rate (%) using two draft models (RQwen-1.5B and Qwen2.5-1.5B-Instruct) with three 32B target models
(RQwen for RQwen-32B, Qwen-Inst. for Qwen2.5-32B-Instruct, and QwQ for QwQ-32B).

Draft Model | Metric | MATH-500 | GSMBK
| | RQwen Qwen-Inst. QwQ | RQwen Qwen-Inst. QwQ
Accuracy 83.6 80.7 91.4 86.8 83.5 93.5
Tokens 242.2 265.1 1021.9 638.6 319.3 1495.9
RQwen-1.5B Time 2.9 2.9 9.8 75 3.2 16.2
Fallback 8.6 2.5 6.5 16.4 2.7 14.5
Accuracy 75.7 77.0 81.8 68.5 67.0 74.4
Qwen2.5-1.5B Tokens 254.1 247.3 347.8 324.8 292.2 536.3
Instruct Time 55 2.9 5.0 6.3 3.4 8.6
Fallback 5.6 4.7 18.9 13.5 49 29.3

problem-solving capabilities beyond its inherent
limitations, they effectively improve the probabil-
ity of producing at least one continuation that meets
the target model’s standards. However, for espe-
cially complex reasoning junctures that exceed the
draft model’s capabilities, even a larger candidate
pool may not provide sufficient quality, requiring
the target model to intervene.

4.4 Analysis
4.4.1 Impact of Model Capabilities

To analyze how model capabilities affect collab-
oration, we tested various combinations of draft
and target models. Target models ranged from
basic instruction-following (Qwen-32B-Instruct)
to enhanced reasoning (RQwen-32B) and sophis-
ticated chain-of-thought reasoning (QwQ-32B),
while draft models included reasoning-enhanced
RQwen-1.5B and standard Qwen2.5-1.5B. Results
show stronger target models achieve higher ac-
curacy but require more computational resources,
with QwQ-32B reaching 93.5% accuracy but con-
suming 1495.9 tokens on average. When paired
with RQwen-1.5B as the draft model, even ba-
sic Qwen-32B-Instruct maintains good efficiency
(265.1 tokens, 2.9s inference time) while achieving
80.7% accuracy. Draft model capability signifi-
cantly impacts performance - RQwen-1.5B enables
notably higher accuracy across all target models
(91.4% vs 81.8% with QwQ-32B on MATH-500)
with lower fallback rates (6.5% vs 18.9%). How-
ever, even with weaker Qwen2.5-1.5B drafts, QwQ-
32B still achieves 74.4% accuracy on GSMS8K,
demonstrating the robustness of our collaborative
approach.

4.4.2 Analysis of Fallback Rate

The fallback rate represents the proportion of the
draft model’s intermediate steps rejected by the

target model. On relatively simpler datasets like
GSMS8K, we observe low fallback rates of ap-
proximately 0.08, indicating that the draft model
produces acceptable steps for most reasoning
stages(Fig. 4c). However, this rate increases dra-
matically to 0.47 on challenging benchmarks like
AMC?23, reflecting the draft model’s diminished ca-
pability to generate reliable continuations for com-
plex problems. Our analysis reveals that dataset
difficulty serves as the primary determinant of fall-
back rates. While increasing the number of draft
candidates moderately improves acceptance, this
effect is less pronounced than the impact of in-
herent problem complexity. Interestingly, we find
that stronger target models tend to exhibit higher
fallback rates, as their enhanced reasoning capabil-
ities enable more stringent evaluation of the draft
model’s proposals.

4.4.3 Impact of resource configurations

To examine SpecCoT’s performance under differ-
ent resource configurations, we evaluated the per-
formance using vLLM with 2-way and 4-way ten-
sor parallelism on 2 and 4 A100 GPUs, respectively.
The results demonstrate consistent performance im-
provements across both datasets. In terms of infer-
ence time, SpecCoT achieves the fastest processing
speed in both hardware settings, completing infer-
ence in 12.49s and 10.08s on GSM8K, and 20.55s
and 16.17s on MATH-500 under 2-way and 4-way
configurations. The throughput analysis reveals
that while all models benefit from increased par-
allelism, the efficiency gains vary. Large models
like RQwen-32B and QwQ-32B show substantial
throughput improvements (>50%) when scaling
from 2 to 4 GPUs, while SpecCoT exhibits mod-
erate gains of 23.52% on GSMS8K and 24.95% on
MATH-500. This difference is attributed to the fact
that larger target models benefit more from multi-
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Table 4: Inference efficiency comparison on GSM8K and MATH-500. Time (seconds), throughput (to-
kens/second), and their improvements when scaling from 2xA100 to 4xA100 GPU configurations.

2xA100  4xA100 . 2xA100  4xA100 .
Dataset Model Time (s) Time (s) Time Speedup (%) Token/s  Token/s Throughput Gain (%)
RQwen-1.5B 12.51 10.94 12.55% 236.23 256.38 8.53%
GSMSK RQwen-32B 14.71 10.33 29.78% 44.56 67.90 52.38%
QwQ-32B 51.86 33.57 35.27% 41.17 63.31 53.78%
SpecCoT/(ours) 12.49 10.08 19.30% 82.17 101.50 23.52%
RQwen-1.5B 34.28 33.13 3.35% 233.25 244.82 4.96%
MATH-500 RQwen-32B 69.20 43.96 36.47% 39.88 61.59 54.44%
QwQ-32B 81.54 53.96 33.83% 40.55 62.03 52.97%
SpecCoT(ours) 20.55 16.17 21.31% 74.00 92.46 24.95%

GPU tensor parallelism compared to the smaller
draft model used in SpecCoT.

5 Related Works

5.1 Efficient Reasoning

Recent LLMs have adopted chain of thought (CoT)
reasoning(Wei et al., 2022b), enhancing problem-
solving capabilities while introducing longer out-
puts and increased computational costs. Research
on improving reasoning efficiency follows two
main approaches: length compression methods
like TokenSkip(Xia et al., 2025), SoftCoT(Xu
et al., 2025), and Compressed CoT(Cheng and
Van Durme, 2024) reduce verbose outputs while
maintaining quality; early termination techniques
such as Dynasor(Fu et al., 2025) and NoThink-
ing(Ma et al., 2025) optimize reasoning by identi-
fying when to stop processing. These advances en-
able LLLM applications in resource-constrained en-
vironments without sacrificing quality. Several re-
cent works combine speculative decoding with CoT
reasoning, including SCoT(Wang et al., 2025a) us-
ing LoRA-tuned draft models, SpecReason(Pan
et al., 2025) decomposing CoT into discrete specu-
lative steps, and Speculative Thinking(Yang et al.,
2025) triggering large model intervention at critical
junctures identified by reflection keywords.

Our approach differs fundamentally from these
concurrent works in two critical aspects. First, un-
like these methods, which allow the small model
to initiate reasoning, we use the large model to
generate initial tokens, preventing the small model
from starting on a flawed reasoning path. Second,
rather than operating on complete reasoning trajec-
tories like SCoT, our approach applies best-of-n
selection and fallback at intermediate CoT steps,
enabling the large model to guide the reasoning
process at multiple points. This ongoing involve-
ment allows for earlier intervention when the small

model shows signs of error, leading to more accu-
rate reasoning while maintaining efficiency.

5.2 Speculative Decoding

Speculative decoding mitigates inference latency in
autoregressive language models by enabling paral-
lel token generation without compromising output
quality. Inspired by speculative execution in com-
puting (Burton, 1985), seminal works by Leviathan
et al.(Leviathan et al., 2023) and Chen et al.(Chen
et al., 2023) demonstrated this approach’s effec-
tiveness. Implementation strategies vary widely:
from leveraging smaller models(Leviathan et al.,
2023; Chen et al., 2023; Spector and Re, 2023) and
target model components(Cai et al., 2023; Zhang
et al., 2024) to utilizing n-gram tables(Fu et al.,
2024) and retrieval systems(He et al., 2023). Verifi-
cation techniques have advanced from basic token-
level checks(Leviathan et al., 2023) to sophisticated
tree-structured methods(Miao et al., 2024). Recent
breakthroughs include feature-level processing in
EAGLE(Li et al., 2024b) and adaptive draft trees
in EAGLE-2(Li et al., 2024a), delivering enhanced
acceleration while preserving or improving quality.

6 Conclusion

In this paper, we presented SpecCoT, demonstrat-
ing that efficient chain-of-thought reasoning can be
achieved through strategic collaboration between
large and small models. Our approach achieves
1.7-4.1 x reduction in reasoning time while main-
taining strong reasoning capabilities across various
benchmarks.

Limitations

While SpecCoT demonstrates significant efficiency
improvements, it does not yet achieve lossless rea-
soning compared to using the target model alone.
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As our current approach is training-free, incorporat-
ing task-specific training and better leveraging the
target model’s reflection capabilities could poten-
tially bridge this performance gap in future work.
Additionally, our framework currently operates in-
dependently from token-level speculative decoding.
A more integrated system combining both step-
level and token-level speculation through shared
draft models could yield further acceleration bene-
fits, representing an important direction for future
research.
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A Appendix

A.1 Analysis of Step-level Quality

To provide a more detailed analysis of the interme-
diate steps, we evaluated their quality using a Pro-
cess Reward Model (PRM) (Wang et al., 2023), a
7B model trained to assess mathematical reasoning
steps. As shown in Table 5, for each reasoning step,
the target model effectively selects a higher-quality
continuation from the multiple drafts generated by
the small model. The improvement is more pro-
nounced on complex tasks like AMC23 (+6.8%),
where the diversity from parallel sampling becomes
crucial for finding an acceptable reasoning path.

Furthermore, we analyzed the occurrence of re-
flective tokens (e.g., "wait", "but", "hmm"). We
found that the large model’s interventions (fallback
steps) contain a higher frequency of such keywords
compared to the small model’s drafts. This sug-
gests that the large model intervenes precisely at
points requiring deeper, more cautious reasoning,
validating our framework’s ability to strategically
leverage model strengths at the step level.

Table 5: Step quality analysis using a Process Reward
Model (PRM). The target model consistently selects
higher-quality steps from the generated drafts.

Dataset Draft Quality Selected Quality
GSM8K 0.8000 0.8232
MATH 0.7093 0.7463
AMC23 0.5716 0.6107

A.2  Scalability with Batch Size

To address scalability concerns, we evaluated Spec-
CoT’s performance across various batch sizes on
2xH100 GPUs, using problems from GSM8K. The
results in Table 6 demonstrate that SpecCoT scales
effectively, achieving an optimal wall-time speedup
of 2.45x at a batch size of 128. This scalability ben-
efits from SpecCoT’s design, where the lightweight
draft model handles most of the decoding workload.
This reduces the computational burden on the large
model in batch scenarios, enabling better resource
utilization as the batch size increases and suggest-
ing that the approach can be deployed effectively
in high-throughput environments.

Table 6: SpecCoT scalability across different batch sizes
on GSMBSK, evaluated on 2xH100 GPUs.

Wall Time Throughput

Batch Size s) (tokens/s) Speedup
1 416.47 65.42 1.00x
276.67 88.37 1.51x
32 324.10 96.97 1.29x
64 254.64 130.18 1.64x
128 170.16 154.02 2.45x%

A.3 Synergy with Token-level Speculative
Decoding

Furthermore, SpecCoT is complementary to vanilla
speculative decoding (SD). While SpecCoT oper-
ates at the semantic step level, SD works at the
token level. Combining SpecCoT with vLLM’s
speculative decoding yields additional speedups,
reducing latency on GSMS8K from 3.33s to 3.01s
(2 9.6% speedup) and on MATH-500 from 15.68s
to 13.07s (a 16.6% speedup). These results demon-
strate that the two techniques can be effectively
integrated for hierarchical optimization.
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