
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24364–24381
November 4-9, 2025 ©2025 Association for Computational Linguistics

Nexus: Adaptive Upcycling to Efficiently Pretrain Mixture of Experts

Nikolas Gritsch1,2 Qizhen Zhang3† Acyr Locatelli2 Sara Hooker1 Ahmet Üstün1

1Cohere Labs 2Cohere 3University of Oxford
{nikolasgritsch,acyr,sarahooker,ahmet}@cohere.com

qizhen.zhang@eng.ox.ac.uk

Abstract

Frontier language models are increasingly
based on the Mixture of Experts (MoE) ar-
chitecture, boosting the efficiency of training
and inference by sparsely activating parameters.
Nevertheless, training from scratch on trillions
of tokens remains so expensive that many users
can only finetune these models. In this work,
we combine parameter reuse of dense models
for the MoE layers (“upcycling”) with a novel,
adaptive Nexus router that can integrate new
experts into an existing trained model without
hurting the performance on previous domains.
Our router leverages the knowledge of each
expert’s training data distribution via domain
embeddings to initialize the router, improving
specialization and allowing it to adapt faster
to new domains than a standard MoE router.
Nexus overturns the strict sequential separa-
tion between training and finetuning in clas-
sical approaches, allowing more powerful im-
provements to existing models at a later stage
through long token-horizon trainings on new
pretraining data. Our experiments show that
Nexus achieves a relative gain of up to 2.1%
over the baseline for initial upcycling, and an
18.8% relative gain for extending the MoE to
a new domain with a new expert by using lim-
ited finetuning data. This flexibility of Nexus
can power an open-source ecosystem where
every user continuously assembles their own
MoE-mix from a multitude of dense models.

1 Introduction

In an era of bigger and bigger models (Canziani
et al., 2016; Strubell et al., 2019; Rae et al., 2021;
Raffel et al., 2020; Bommasani et al., 2022; Hooker,
2024), there are several key objectives driving state-
of-art progress. Doing more with less by improving
efficiency (Treviso et al., 2023) remains paramount,
but in addition to efficiency, the deployment of
these models in the wild means that the ability to
adapt to new data (Pozzobon et al., 2023a; Gururan-
gan et al., 2020a; Jang et al., 2022; Jin et al., 2022),

and specialization of compute (Zadouri et al., 2024;
Shazeer et al., 2018; Riquelme et al., 2021; Du
et al., 2022; Fedus et al., 2022) have gained re-
newed focus. While all these properties are desir-
able, a formidable challenge is designing architec-
tures that can fulfill all of these requirements.

Many recent frontier LLMs have chosen Mixture
of Experts (MoE) over a dense architecture as one
way of doing more with less, by only activating a
specific subset of total parameters for the predic-
tion of each token. However, while this sparse acti-
vation greatly improves efficiency, experts do not
appear to exhibit dedicated expertise or meaningful
specialization (Jiang et al., 2024; Zoph et al., 2022;
Zadouri et al., 2023). Furthermore, MoEs tend to
suffer from severe training instabilities (Zoph et al.,
2022).

Recent work has attempted to address both the
training instabilities and the lack of specializa-
tion. These techniques often train completely sep-
arate experts and “upcycle” (combine) them into
a single unified MoE model after dense training
(Sukhbaatar et al., 2024). This further improves
the efficiency during training - cross-device com-
munication in large models can take up 20-40%
of overall step time (Wang et al., 2022), and train-
ing multiple smaller models makes computations
more local, requiring less communication (Li et al.,
2022; Gururangan et al., 2023). The other major
advantage of these approaches is the increase in
specialization with separate experts that are trained
on specific domains, making them clearly respon-
sible for their human-interpretable subset of the
data.

However, adaptively integrating new experts into
upcycled MoE models is far less studied. For most
practitioners, given the scale of modern LLMs
(Brown et al., 2020; Touvron et al., 2023; Kaplan
et al., 2020; Anil et al., 2023) training MoEs repeat-
edly is an infeasible computational cost. Further-
more, most model development fails to take into

24364



Training
data

Domain 1 Expert 1

Seed LLM

Expert 2

Expert N

FFN 1 FFN 2 FFN N

initialize

Expert N+1

Domain 2

Domain N

New domain

inherent
domains

Domain
embeddings

... ... ...

Embedding
model

FF N+1

Learned
projection

FFN output

Nexus

FFN input activations

Expert
emb.

A) Initial training

B) Add new data

Top-K
routing

FFN
Seed

1. Collect FFN layers
into MoE layer

routed experts2. Merge non-FFN
weights

Figure 1: Depiction of Nexus for a single Transformer block. A) In the initial training phase, each expert is trained separately.
Its training data is embedded by an embedding model and stored. The experts are combined by initializing each block’s MoE
layer with the expert FFNs, and finetuning the model on a mix of all domains. During a forward pass, the seed model FFN is
used as shared expert and always activated. For the other experts, we perform top-1 routing based on the similarity of the input
data with the transformed expert embeddings, which is equivalent to viewing the learned projection as a hypernetwork whose
output is the router weight matrix. B) Later, we can add a new expert by appending its training data embedding to the existing
domain embeddings. The router function is independent of the number of experts, and therefore adapts fast to the new one.

account distribution drift in use cases, with limited
flexibility and applicability across different tasks
and domains (Pozzobon et al., 2023b; Gururangan
et al., 2020b). However, human language is shaped
by a cumulative culture, constantly building upon
itself and evolving over time (Silvey, 2016). Also,
specialized use cases such as multilingual, code
and math often require tailored additional training.

In this work, we attempt to reconcile all three
desirable properties: efficiency, specialization, and
adaptability. We ask “how can we adaptively com-
bine separately trained specialized experts?” To
address this, we introduce Nexus, a novel MoE
architecture that parameterizes the router based
on domain-specific data by learning to project the
embedding of each data domain to an expert em-
bedding. This learnable projection for the router
allows for the easy extension of the MoE model
with new experts that are trained independently
on new datasets of interest. This also avoids the
difficulties of MoE training, as our learned router
scales with the number of experts without needing
to be trained from scratch, which enables adding
or removing experts as desired.

In summary, our contributions are as follows:

1. We present Nexus, a novel MoE framework
designed to enhance sparse upcycling of spe-
cialized dense experts, while reducing the

training cost of MoEs by facilitating easy
adaptation to unseen data distributions. In
Nexus, the traditional linear router from
vanilla MoE models is replaced with routing
based on the similarity of layer inputs to an
expert embedding vector, derived from the av-
erage embedding of the corresponding expert
dataset.

2. Our method outperforms the existing ap-
proach for upcycling specialized models into
MoE, leading to 2.1% and 1.6% relative in-
crease over the upcycled MoE (linear router)
in 470M and 2.8B scales respectively. This
enables performance increase in general tasks
with 5.8% and 7.4% relative gains over the
dense seed model at 470M and 2.8B respec-
tively.

3. Our method enables efficient adaptation to
new domains by extending upcycled MoE
with the new experts trained on unseen
datasets. In this setting, Nexus outperforms
the baseline MoE (linear router) when fine-
tuning on the limited amount of data, leading
18.8% relative gain on the new domain with
1B finetuning tokens upon MoE extension.

4. Finally, we show that our method is robust
across different load balancing and data mix-

24365



tures, and consistently outperforms the MoE
with a linear router for specialized upcycling,
confirming the benefits of the adaptive routing
based on domain projections used in Nexus.

2 Background

Sparse Mixture of Experts architectures (Shazeer
et al., 2017; Fedus et al., 2022) replace the feed-
forward network (FFN) with an MoE layer in the
Transformer block (Vaswani et al., 2017). An MoE
layer consists of a router network R and a set of
n experts, E1, ..., En, where each expert Ei corre-
sponds to an independent dense feed-forward net-
work. The router network R is commonly parame-
terized by trainable weights Wr ∈ Rh×n where h
is the model hidden dimension, and followed by a
softmax function which takes an intermediate token
representation x as input and combines the output
of each expert based on the gating scores s1, ..., sn.
Sparse MoEs only use the top-k experts Ek based
on experts gating scores si.

si = R(x) = softmax(W T
r x) (Router)

sk = TopK(si) (Top-K Routing)

y =
k∑

i=1

sk · Ek(x) (MoE)

Sparse Upcycling (Komatsuzaki et al., 2023) ini-
tializes an MoE model from a dense Transformer
model by copying FFN layers as MoE experts,
and the router layer is trained from scratch. BTX
(Sukhbaatar et al., 2024) generalize this approach
to initialize each MoE expert from the FFN layer
of a different dense model, and all other parameters
are averaged over the dense models.

In Nexus, we leverage upcycling specialized ex-
pert models similar to BTX, however, it diverges in
terms of MoE training, in particular with its novel
MoE router, which enables to efficiently extend the
MoE in multiple rounds after the sparse upcycling.
We describe our method in the next section.

3 Adaptive Router for Upcycling
Specialized Experts as MoE

The core component of an MoE model is the router,
as it determines which experts to activate for any
given input. In vanilla MoEs, the router is a learned
linear layer that takes the token intermediate repre-
sentations as input and computes the expert proba-
bilities. However, this router does not necessarily
learn specialization as MoEs are commonly trained

using an auxiliary load balancing loss to improve
training stability (Fedus et al., 2022; Jiang et al.,
2024). In Nexus, we propose a novel MoE router
where per MoE block we learn a projection layer
from given pre-computed domain embeddings to
expert embeddings. We parametrize this projec-
tion layer Pr as a two-layer MLP with a SwiGLU
activation function (Shazeer, 2020):

ei = Pr(di) (Expert Embeddings)

= W2 · SwiGLU(W1 · di)
where di ∈ Rm, and ei ∈ Rh are the domain

and expert embeddings for the ith domain respec-
tively, and m and h are the domain embedding
and the model dimensions. W1 ∈ R2h×d,W2 ∈
Rl×l are linear layers, and SwiGLU is defined as
R2n → Rn. Given the expert embeddings ei and
layer inputs x ∈ Rs×h, we then compute routing
probabilities si as:

si = softmax(x · ei) (Routing Scores)

Unlike the standard router, Nexus’s router in-
cludes a stronger inductive bias through pre-
computed domain embeddings* that enables expert
embedding to specialize. Thus, x · ei gives a high
value for input tokens that are closer to the domain
of the corresponding expert. Notably, this router is
particularly suited for the sparse upcycling setting
where the dense experts are separately trained on
different domains.

Upcycling dense experts as an MoE. After
training dense expert models, we merge the individ-
ual experts into a unified MoE by appending their
FFNs along a new dimension to create an MoE
layer per Transformer block. Unlike Sukhbaatar
et al. (2024), instead of using the original FFN of
the seed model as one of the routed experts in an
MoE layer, we use it as the “shared expert” FFNs

(Rajbhandari et al., 2022; Dai et al., 2024) to bet-
ter preserve the previous capabilities in the MoE
model. For all non-FFN parameters including the
attention weights, we merge expert parameters us-
ing simple weight averaging:

FFNmoe = FFNs + [FFNe1,FFNe2, ...,FFNen]

ϕmoe =

∑n
i=1 ϕi

n
*We used Cohere Embed v3 (Cohere, 2023) as an exter-

nal embedding model to compute domain embeddings based
on individual data sources. However, similar to Gururangan
et al. (2023), pre-training data can also be clustered and the
centroids can be used for domain embeddings.

24366



Efficient adaptation to new domains. An im-
portant advantage of our method is that when a
new data domain is present after MoE training, we
use the learned projection Pr to compute expert
embedding of the new domain as enew = Pr(dnew)
(Figure 1B). This enables to enhance the trained
MoE model with additional dense experts, which
are trained in the same way as the initial experts.
The FFN parameters of the new expert are simply
appended to the array of existing experts.

To adequately preserve the non-FFN parameters
of existing experts, we perform a weighted average
ϕf = (1− λ) · ϕmoe + λ · ϕnew where ϕf , ϕe, and
ϕmoe are parameters of the final MoE, dense expert,
and initial MoE model and λ = 1/(n + 1). This
enables efficiently adapting Nexus to new domain
by extending it with the new dense expert trained
independently. After extending the MoE with a
new expert, we perform a lightweight finetuning
with a limited number of tokens.

4 Experiments

4.1 Experimental setting

Our experimental setup includes 3 phases. Fig-
ure 1 shows the architecture of Nexus and the our
experimental setting:

1. Training specialized expert LMs. For train-
ing the dense specialized experts, we use the sub-
datasets from the SlimPajama dataset (Soboleva
et al., 2023), a 627B token English-language cor-
pus assembled from web data of various sources.
We initialize four dense experts from the weights
of the seed model and train them on the ARXIV,
BOOKS, C4, GITHUB, STACKEXCHANGE, and
WIKIPEDIA domains.† As the seed model, we use
470M and 2.8B parameters decoder-only autore-
gressive Transformer models (Radford et al., 2019),
each of them trained with a standard language mod-
eling objective for 750B tokens. We train dense
experts for 20 and 40 billion tokens for 470M and
2.8B seed models respectively. We use parallel
attention layers, (Anil et al., 2023; Wang, 2021),
SwiGLU activation (Shazeer, 2020), no biases, and
a byte-pair-encoding (BPE) tokenizer with a vocab-
ulary size of 256,000. During training, we use a
linear warmup (10% of total steps) to a maximum
learning rate of 1e-3 and a cosine decay schedule
to 3e-4.

†We exclude the Github and StackExchange datasets from
SlimPajama in order to ablate adding a new expert model using
the CODE domain

2. MoE training. After the training of dense
expert models, we extract their FFNs and collect
them into an MoE layer per Transformer block.
For the shared expert in our MoE layer, we use the
original FFN layer of the seed model to better pre-
serve the previous capabilities in the MoE model.
For all non-FFN parameters including the attention
weights, we merge expert parameters using sim-
ple weight averaging, following Sukhbaatar et al.
(2024). After the MoE model is created, we contin-
ually train it for an additional 25B and 40B tokens
respectively for the 470M and 2.8B experiments,
on a mix of all domain and original pre-training
datasets, using the same training hyperparameters
as in the single expert training. Finally, we train
the MoE models using an additional 1B tokens
by upweighting the original pre-training dataset
as it includes high-quality data sources such as
instruction-style datasets using a cosine learning
rate decay to 3e-5 (Parmar et al., 2024).

3. Extending the MoE model with new ex-
perts. After adding a new expert as defined in
Section 3, we finetune the extended MoE model for
up to 1 billion tokens using a uniformly sampled
data mix consisting of 50% the previous domains
and pre-training data and 50% the new domain. For
the new expert (CODE), we train a dense model
using code documents from StarCoder (Li et al.,
2023) with the same settings as for the training of
the initial experts. As the 470M scale MoE did not
have sufficient instruction following capabilities
to attempt the code benchmarks, we only tested
extending the MoEs with a new expert on the 2.8B
scale.

4.2 Baselines
We compare our experiments against three base-
lines:

Dense Merging where all separately pre-trained
experts and the seed model merged into a dense
Transformer via equal weight averaging similar
to BTM (Li et al., 2022). This allows us to ask
What are the benefits of routing MoE over simple
averaging?

MoE (Linear Router) which is an MoE with a
standard linear router that is upcycled from dense
experts, to evaluate Nexus’s novel router for up-
cycling. Here, we ask how does our specialized
routing compare to conventional learned linear
routing? For a fair comparison, we also train this
MoE model on the same datasets and for the same
number of tokens as our method, and use the same

24367



Figure 2: Downstream performance at different
scales. Nexus consistently outperforms upcycled base-
lines on both the 470M and 2.8B parameters scale, show-
ing the robustness of our method. We report the average
performance on Knowledge, Science, Reasoning and
MMLU.

architectural modifications such as shared experts.
Continued pretraining of the seed model for

the same number of tokens as Nexus sees across
all stages (140B for the 470M seed model, 200B
for the 2.8B seed model).

4.3 Evaluation
For the downstream evaluation, we measure the
performance of each model on 15 tasks from five
evaluation categories that reflect different down-
stream capabilities (knowledge, science, reasoning,
general language understanding, code). Appendix
D describes the different tasks in detail.

5 Results and Discussion

5.1 Main Results for Upcycled Models
We first compare Nexus to the upcycled baselines
MoE with linear router and dense merging. Here,
we ask “How does our MoE upcycling recipe with
adaptive routing compare against baseline upcy-
cling approaches?”

2.8B parameter seed model. Table 1
compares Nexus with the two main baselines,
MoE (linear router) and dense merging, where a
2.8B seed model is used to train dense experts.
Both Nexus and MoE (linear router) use 1 shared
expert and 4 routed experts in these experiments,
corresponding to 4.3B active parameters per in-
put (top-2) out of 9.1B total parameters. The
dense merging baseline is created by averaging the
weights of all dense experts and the seed model,
and therefore has the same number of parameters
as the seed model.

Nexus is a clear improvement over the baselines,
showing a 7.4% relative gain over the seed model
and outperforming the MoE (linear router) with a

Figure 3: Extending upcycled MoE models with the
Code experts. After initial upcycling, we extended
MoEs (both Nexus and MoE with linear router) using
an independently trained dense Code expert and fine-
tuned the resulting models small number of tokens
(200M, 500M, and 1B finetuning tokens) as described
in § 3. Nexus consistently outperforms the baseline in
Code performance after extension without losing overall
performance in the knowledge, science, reasoning, and
MMLU categories reported in section 5.1.

1.6% relative increase (50.6 vs. 49.8). Nexus out-
performs the best baseline in 3 out of 4 task cate-
gories and achieves the highest increase in knowl-
edge tasks with 22.5% and 5.6% relative to the
seed model and the MoE (linear router) respec-
tively. These tasks include knowledge retrieval
from Wikipedia in which one of our specialized
experts is trained for.

470M parameter seed model. Table 4 (see
Appendix E for more details) repeats the experi-
ment with a 470M parameter seed model. Both
Nexus and the upcycled MoE (linear router) con-
sist of 1 shared and 6 routed experts, corresponding
to a total number of 1.3B parameters where 605M
parameters are activated per input for top-2 routing.

The results show the same positive trend in
favour of Nexus, demonstrating the robustness of
our approach across model scales.

5.2 Extending the Upcycled MoE model with
a New Expert

To support fully modular and efficient training of
MoEs, besides upcycling the existing expert mod-
els, it is crucial for an adaptive method to have
the ability to continuously extend the upcycled
MoE with new experts trained using previously
unseen data domains. To evaluate this, we train a
dense CODE expert and extend the upcycled MoEs
(both Nexus and MoE (linear router)) as described
in Section 3. We perform a small-scale finetuning
of up to 1B tokens after extending the models. Fig-
ure 3 shows both the general performance and the
target code performance at 200M, 500M, and 1B

24368



Know. Science Reason. MMLU Code Avg.
(excl. in upcyc.) (w/o Code)

SEED MODEL (2.8B) 27.1 62.0 63.8 35.4 8.4 47.1
SEED MODEL (2.8B) + 200B TOKENS 28.8 66.4 62.7 41.4 - 49.8

Upcycled Models
DENSE MERGING 17.6 60.3 59.2 36.0 3.4 43.3
MOE (LINEAR ROUTER) 31.5 66.5 62.9 38.6 2.6 49.8
NEXUS 33.2 67.3 62.6 39.4 2.7 50.6

Table 1: Downstream task results for Nexus with a 2.8B parameter seed model. Our approach outperforms the baselines
in 3 out of 4 evaluation categories. Dense merging corresponds a dense model with 2.8B parameters, while both
Nexus and MoE(̇linear router) have 4.3B active and 9.1B total parameters. Note that the trained models show
severe forgetting on code benchmarks, as we exclude CODE data on purpose during the upcycling phase to simulate
extending models with a new dataset in Section 5.2.

Figure 4: Average routing probabilities for each ex-
pert per domain in Nexus. We compute the average
routing probabilities across Transformer blocks for 512
samples per domain (from the 2.8B experiment). The
x-axis denotes the samples’ domain and the colored
bars show the routing probabilities for the correspond-
ing expert. We show the domains that are used to train
specialized experts. See Figure 9 for a comparison to
the linear routing baseline.

finetuning tokens. Here, we ask “Can we continu-
ously upcycle dense models into an MoE without
requiring large-scale MoE training each time?”

Performance on the new domain. As
shown in Figure 3 (right), Nexus outperforms the
MoE (linear router) for 200M, 500M and 1B fine-
tuning tokens with 18.4%, 6.2% and 18.8% rela-
tive gains respectively. Unlike MoE (linear router),
where the router weights are reset after extending
the MoE layers, Nexus uses the information that is
available about the new domain by mapping the do-
main embedding to a new expert embedding for the
router, and therefore finetunes the router weights
without a restart.

Comparison with the dense models. Nexus
reaches the code performance of the seed model
while retaining superior performance on general
tasks. In comparison to the seed model and the
dense code expert (trained for 8B code-only to-

kens on top of the seed model), although the dense
code expert still performs higher than both upcy-
cled MoEs with a score of 14.3, its performance
on general tasks is far inferior (42.1). Our method
also achieves up to 18.8% relative gains over the
MoE (linear router). These results show that with
a fraction of the original upcycling budget (1B vs
40B tokens for initial upcycling, and 1B vs 8B to-
kens for code expert training), Nexus can acquire a
new capability.

Performance on general tasks. As a proxy
for the knowledge for previously learned domains,
Figure 3 (left) shows the average performance of
Nexus and MoE (linear router) in general tasks.
Although there is a slight drop on the general tasks
for Nexus compared to initial upcycling (a relative
decrease of 1.9%), the competitive performance is
maintained across different numbers of finetuning
tokens. We relate this to the composition of the
finetuning mix where we use a high percentage of
the code data (50% of the code and 50% of the
previous domains).

5.3 Expert Specialization

To measure the specialization in our MoE, we take
a closer look at how the MoE experts are activated
for samples of separate domains. We compute aver-
age routing frequencies across all Transformer lay-
ers in Figure 4, where the labels on the x-axis rep-
resent which domain the tokens are coming from,
and the colored bars show the routing frequencies
for each of the experts trained on one of the do-
mains. Since we select only one routed expert per
token in each MoE layer, and expert FFN layers are
inherited from dense experts, average routing fre-
quencies present a good proxy for specialization of
each of the experts. Here, we ask “can Nexus retain
a high degree of specialization after upcycling?”

24369



Figure 5: Average routing probabilities per expert for
the new domain. Left: NEXUS, right: MOE (LINEAR
ROUTER). We show the routing probabilities for code
tokens after extending the MoE with the code expert
(1B finetuning).

Routing for the upcycled experts. As shown
in Figure 4, we find that the expert trained on the
corresponding domain always receives the highest
share of the tokens from that domain, confirming
that Nexus retains the specialization from the spe-
cialized dense models. Concretely, this specializa-
tion is higher for ArXiv, Books, and Wikipedia
with 63.0%, 64.7%, and 69.8% respectively. In-
terestingly, tokens from C4 are routed only 40.9%
of the time to the C4 expert and distributed to the
other experts approximately 20% for each one. We
relate this to the broad coverage of the C4 dataset,
which potentially includes samples closer to other
domains and also a large percentage of the C4 used
in the MoE training phase (proportional to its size
in the SlimPjama dataset). Especially the latter fac-
tor pushes tokens from C4 to be distributed to the
other experts due to the load balancing factor.

Specialized routing for the new expert. Next,
we measure expert specialization for the newly
added expert on the new code domain. Figure 5
shows the average routing probability per expert for
sampled code tokens. We compute routing proba-
bilities on the Nexus model with the code expert
after 1B finetuning tokens (See Section 5.2 for de-
tails). Here, we see clearly that code tokens are
routed to the code expert 69.1% of the time on
average. This shows that Nexus not only retains
the specialization for the initial upcycling but also
exhibits a high degree of specialization for a newly
added expert for its own domain.

5.4 Ablations

Mixture-of-expert models are known to be sensi-
tive to the choice of load balancing loss factor (Fe-
dus et al., 2022; Zoph et al., 2022) and sampling

Figure 6: Comparison between Nexus and the base-
line in different load balancing and data sampling
setups: We compare Nexus and MoE (linear router) by
lowering the load balancing loss factor and uniformly
sampling the data domain during training in isolation.
We report the average performance on Knowledge, Sci-
ence, Reasoning, and MMLU.

weights for each data domains during training. We
ablate the robustness of Nexus in these settings.

Lowering the load balancing loss factor. In
Figure 6 (baseline vs low load-bal.), we com-
pare two Nexus models with the corresponding
MoE (linear router) baselines where we use load
balancing loss factor of 0.05 and 0.0005 for each
set of experiments. We find that using a signifi-
cantly lower factor for the load balancing loss hurts
MoE (linear router) performance by approximately
2% relative drop while Nexus shows a robust per-
formance across both load balancing factors. We
hypothesize that because the expert embeddings in
our router are always based on the domain repre-
sentations, we achieve a more stable distribution of
tokens even if the load balancing loss is weighted
extremely low.

Changing the training data composition. Next,
we compare our default of sampling specialized do-
main data proportional to the size of the domain
(total amount of tokens in SlimPajama), with a uni-
form sampling over all domains. Figure 6 (baseline
vs equal data) shows the downstream performances
for both Nexus and MoE (linear router). Although
sampling uniform sampling domains’ data does not
significantly impact the downstream performance
for both models, we find that it helps Nexus to im-
prove specialization for all the domains in terms of
expert routing probabilities (Figure 10, Appendix
J). In particular, compared to the size proportional
sampling, tokens from the C4 domain are routed
more accurately (27.6% vs 71.1%) when data is
equally sampled.

Domain embeddings before and after projec-
tion. In Figure 8, we compare the domain em-

24370



beddings before and after mapping, and find that
the router’s learned projection preserves the main
relationships between domains (see Appendix H).

6 Related Work

Routing Variants of MoEs. The most common
MoE architecture (Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2022) employs a linear
router with a top-k routing scheme, where k typi-
cally equals 1 or 2. In this standard routing schema,
only the k experts with the highest router gate val-
ues are activated. There is substantial research
proposing alternatives to top-k expert assignments
(Hazimeh et al., 2021; Lewis et al., 2021; Roller
et al., 2021; Zhou et al., 2022; Zuo et al., 2022).
DeepSeek-MoE (Dai et al., 2024) introduces a rout-
ing variant where a number of experts are “shared”
and always assigned to all tokens. Our work also
adopts this approach for our general base expert.
However, these efforts primarily focus on improv-
ing the general performance and/or training stabil-
ity of MoEs. In contrast, our work puts emphasis
adaptability and extensibility.

Efficient MoE Training by Re-Using Exist-
ing Dense Models. Training MoEs from scratch
is computationally expensive (Gale et al., 2023;
Fedus et al., 2022) and often challenging due to
training instabilities (Zoph et al., 2022). Alterna-
tively, recent works have explored re-using existing
dense models to initialize MoEs. Sparse Upcycling
(Komatsuzaki et al., 2023) re-uses a single dense
model to initialize the MoE by replicating the FFN
weights in an MoE layer. The router is initialized
randomly, and all other parameters are copied di-
rectly from the dense model. BTX (Sukhbaatar
et al., 2024) extends this approach by upcycling not
from a single dense model, but from multiple spe-
cialized dense expert models. Furthermore, BAM
(Zhang et al., 2024) expands BTX to upcycle not
only FFN experts but also attention experts. Our
work also leverages this approach by reusing spe-
cialized dense experts for an MoE, while extending
it further to facilitate on-the-fly adaptations for new
experts specialized in unseen data domains.

Efficient MoE Architectures. Zadouri et al.
(2024) proposes replacing traditional MoE’s
computation-heavy feed-forward network (FFN)
experts with more efficient experts comprised of
smaller vectors and adapters, which are activated
in parallel to a single dense FFN. This lightweight
architecture necessitates only a limited number of

parameter updates when finetuning, offering effi-
ciency advantages. However, unlike our approach,
it does not leverage existing specialized dense mod-
els and lacks a notion of specialized experts, which
are central to our method. Similar to our work,
Muqeeth et al. (2024) and Ostapenko et al. (2024)
study combining separately trained experts into a
unified model. However, they focus on parameter-
efficient adapters such as LoRA (Hu et al., 2021)
and supervised finetuning. In this work, we fo-
cus on efficiently pre-training fully-fledged MoE
models via upcycling.

Adaptive MoEs and Ensemble Models. Mod-
uleFormer (Shen et al., 2023) also aims to produce
adaptable MoEs. The authors achieve adaptability
by freezing existing MoE parameters while only
training newly added modules with optimization
constraints to the router. Unlike our work, Mod-
uleFormer does not leverage existing expert dense
seed models for efficiency gains, nor does it have
a notion of specialization which is central to our
work. Similar to our work, DEMix (Gururangan
et al., 2021) independently trains different FFN ex-
perts on specialized data domains, with each expert
functioning as a domain-specific module. Modules
can be added on-the-fly for adaptability. Followup
works BTM and C-BTM (Li et al., 2022; Gururan-
gan et al., 2023) extend DEMix to create adaptive
ensemble models. However, all three works use
a router requiring a forward pass for every expert
at inference instead of sparsely activating them,
which significantly increases inference costs, espe-
cially with a large number of experts. Unlike these
approaches, our router cost is approximately the
same as standard top-k routing during both training
and inference, offering a more scalable solution for
adaptability.

7 Conclusion

We propose Nexus, a new LLM framework that
enables efficient upcycling of specialized dense ex-
perts into a sparsely activated MoE model. We
show that individual experts in our method retain
their specialization after upcycling, and that our
router based on expert embeddings outperforms
previous approaches for combining the dense ex-
perts. Furthermore, the model can be extended
efficiently with new dense experts after the initial
training phase, saving much compute compared
to re-training the upcycled model or training from
scratch.

24371



Limitations

The MoE architecture is often employed for larger
models in the multi-billion parameter range, where
efficiency is paramount. However, to facilitate a
broader set of experiments, we limit our setup to us-
ing 2.8B parameter seed models for the main results
and 470M parameter seed models for ablations.
Furthermore, our dense experts are based on exist-
ing data sources in the SlimPajama dataset which is
pre-defined and mostly contains English-language
data. Future work could extend our method by
discovering specialized data domains through un-
supervised clustering similar to Gururangan et al.
(2023), or use different languages as separate do-
mains.

References

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, and 109 others. 2023. Palm 2 technical
report. Preprint, arXiv:2305.10403.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432–7439.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas
Card, Rodrigo Castellon, Niladri Chatterji, Annie
Chen, Kathleen Creel, Jared Quincy Davis, Dora
Demszky, and 95 others. 2022. On the opportu-
nities and risks of foundation models. Preprint,
arXiv:2108.07258.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. Preprint,
arXiv:2005.14165.

Alfredo Canziani, Adam Paszke, and Eugenio Culur-
ciello. 2016. An Analysis of Deep Neural Network
Models for Practical Applications. arXiv e-prints,
page arXiv:1605.07678.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
arXiv preprint arXiv:1808.07036.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Cohere. 2023. Introducing cohere embed v3.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts
language models. Preprint, arXiv:2401.06066.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou,
Tao Wang, Yu Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, and 8 others. 2022. Glam:
Efficient scaling of language models with mixture-of-
experts. Preprint, arXiv:2112.06905.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Preprint,
arXiv:2101.03961.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei
Zaharia. 2023. Megablocks: Efficient sparse training
with mixture-of-experts. Proceedings of Machine
Learning and Systems, 5:288–304.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A
Smith, and Luke Zettlemoyer. 2021. Demix layers:
Disentangling domains for modular language model-
ing. arXiv preprint arXiv:2108.05036.

Suchin Gururangan, Margaret Li, Mike Lewis, Wei-
jia Shi, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. 2023. Scaling expert language mod-
els with unsupervised domain discovery. Preprint,
arXiv:2303.14177.

24372

https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://cohere.com/blog/introducing-embed-v3
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2303.14177
https://arxiv.org/abs/2303.14177


Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020a. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020b. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

David Ha, Andrew Dai, and Quoc V Le. 2016. Hyper-
networks. arXiv preprint arXiv:1609.09106.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdh-
ery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul
Mazumder, Lichan Hong, and Ed H. Chi. 2021.
Dselect-k: Differentiable selection in the mixture
of experts with applications to multi-task learning.
Preprint, arXiv:2106.03760.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Sara Hooker. 2024. On the limitations of compute
thresholds as a governance strategy. Preprint,
arXiv:2407.05694.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun Kim, Stanley Jungkyu
Choi, and Minjoon Seo. 2022. Towards continual
knowledge learning of language models. Preprint,
arXiv:2110.03215.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, and 7 others. 2024. Mixtral of experts.
Preprint, arXiv:2401.04088.

Xisen Jin, Bill Yuchen Lin, Mohammad Rostami, and
Xiang Ren. 2022. Learn continually, generalize
rapidly: Lifelong knowledge accumulation for few-
shot learning. Preprint, arXiv:2104.08808.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2023.
Sparse upcycling: Training mixture-of-experts from
dense checkpoints. Preprint, arXiv:2212.05055.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional
computation and automatic sharding. Preprint,
arXiv:2006.16668.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:
Simplifying training of large, sparse models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 6265–6274.
PMLR.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A. Smith, and Luke Zettle-
moyer. 2022. Branch-train-merge: Embarrassingly
parallel training of expert language models. Preprint,
arXiv:2208.03306.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
and 48 others. 2023. Starcoder: may the source be
with you! Preprint, arXiv:2305.06161.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. Preprint, arXiv:2106.04489.

Alexandre Matton, Tom Sherborne, Dennis Aumiller,
Elena Tommasone, Milad Alizadeh, Jingyi He,
Raymond Ma, Maxime Voisin, Ellen Gilsenan-
McMahon, and Matthias Gallé. 2024. On leakage of
code generation evaluation datasets. arXiv preprint
arXiv:2407.07565.

24373

https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://arxiv.org/abs/2106.03760
https://arxiv.org/abs/2106.03760
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2407.05694
https://arxiv.org/abs/2407.05694
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2104.08808
https://arxiv.org/abs/2104.08808
https://arxiv.org/abs/2104.08808
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2212.05055
https://arxiv.org/abs/2212.05055
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://proceedings.mlr.press/v139/lewis21a.html
https://proceedings.mlr.press/v139/lewis21a.html
https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2106.04489
https://arxiv.org/abs/2106.04489
https://arxiv.org/abs/2106.04489


Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and
Colin Raffel. 2024. Learning to route among spe-
cialized experts for zero-shot generalization. arXiv
preprint arXiv:2402.05859.

Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Lau-
rent Charlin, Nicolas Le Roux, Matheus Pereira, Lu-
cas Caccia, and Alessandro Sordoni. 2024. Towards
modular llms by building and reusing a library of
loras. arXiv preprint arXiv:2405.11157.

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings,
Mostofa Patwary, Sandeep Subramanian, Dan Su,
Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala,
Ayush Dattagupta, Vibhu Jawa, Jiwei Liu, Ameya
Mahabaleshwarkar, Osvald Nitski, Annika Brundyn,
James Maki, Miguel Martinez, Jiaxuan You, John Ka-
malu, and 8 others. 2024. Nemotron-4 15b technical
report. Preprint, arXiv:2402.16819.

Luiza Pozzobon, Beyza Ermis, Patrick Lewis, and Sara
Hooker. 2023a. Goodtriever: Adaptive toxicity mit-
igation with retrieval-augmented models. Preprint,
arXiv:2310.07589.

Luiza Pozzobon, Beyza Ermis, Patrick Lewis, and Sara
Hooker. 2023b. Goodtriever: Adaptive toxicity mit-
igation with retrieval-augmented models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 5108–5125, Singapore.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Maribeth
Rauh, Po-Sen Huang, and 61 others. 2021. Scaling
Language Models: Methods, Analysis & Insights
from Training Gopher.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ah-
mad Awan, Jeff Rasley, and Yuxiong He. 2022.
DeepSpeed-MoE: Advancing mixture-of-experts in-
ference and training to power next-generation AI
scale. In Proceedings of the 39th International

Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
18332–18346. PMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. 2021.
Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems,
34:8583–8595.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash layers for large sparse
models. Preprint, arXiv:2106.04426.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Common-
sense reasoning about social interactions. Preprint,
arXiv:1904.09728.

Noam Shazeer. 2020. Glu variants improve transformer.
Preprint, arXiv:2002.05202.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. 2018.
Mesh-tensorflow: Deep learning for supercomputers.
Preprint, arXiv:1811.02084.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
Preprint, arXiv:1701.06538.

Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan,
Zhenfang Chen, and Chuang Gan. 2023. Module-
former: Modularity emerges from mixture-of-experts.
arXiv e-prints, pages arXiv–2306.

Catriona Silvey. 2016. Speaking our minds: Why hu-
man communication is different, and how language
evolved to make it special, by thom scott-phillips.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. Preprint, arXiv:1906.02243.

24374

https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://arxiv.org/abs/2402.16819
https://arxiv.org/abs/2402.16819
https://arxiv.org/abs/2310.07589
https://arxiv.org/abs/2310.07589
https://doi.org/10.18653/v1/2023.findings-emnlp.339
https://doi.org/10.18653/v1/2023.findings-emnlp.339
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1811.02084
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1906.02243


Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma,
Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob
Kahn, Daniel Li, Wen-tau Yih, Jason Weston, and
1 others. 2024. Branch-train-mix: Mixing expert
llms into a mixture-of-experts llm. arXiv preprint
arXiv:2403.07816.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Marcos Treviso, Ji-Ung Lee, Tianchu Ji, Betty van Aken,
Qingqing Cao, Manuel R. Ciosici, Michael Hassid,
Kenneth Heafield, Sara Hooker, Colin Raffel, Pe-
dro H. Martins, André F. T. Martins, Jessica Zosa
Forde, Peter Milder, Edwin Simpson, Noam Slonim,
Jesse Dodge, Emma Strubell, Niranjan Balasubra-
manian, and 3 others. 2023. Efficient Methods for
Natural Language Processing: A Survey. Transac-
tions of the Association for Computational Linguis-
tics, 11:826–860.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, Gertjan
van Noord, and Sebastian Ruder. 2022. Hyper-X:
A unified hypernetwork for multi-task multilingual
transfer. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 7934–7949, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Preprint, arXiv:1706.03762.

Ben Wang. 2021. Mesh-Transformer-JAX: Model-
Parallel Implementation of Transformer Lan-
guage Model with JAX. https://github.com/
kingoflolz/mesh-transformer-jax.

Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis,
Berkin Ilbeyi, Blake Hechtman, Dehao Chen,
Karthik Srinivasa Murthy, Marcello Maggioni, Qiao
Zhang, Sameer Kumar, Tongfei Guo, Yuanzhong Xu,
and Zongwei Zhou. 2022. Overlap communication
with dependent computation via decomposition in
large deep learning models. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, Volume 1, ASPLOS 2023, page 93–106,
New York, NY, USA. Association for Computing
Machinery.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Er-
mis, Acyr Locatelli, and Sara Hooker. 2024. Pushing
mixture of experts to the limit: Extremely parameter
efficient moe for instruction tuning. In The Twelfth
International Conference on Learning Representa-
tions.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Er-
miş, Acyr Locatelli, and Sara Hooker. 2023. Pushing
mixture of experts to the limit: Extremely param-
eter efficient moe for instruction tuning. Preprint,
arXiv:2309.05444.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

Qizhen Zhang, Nikolas Gritsch, Dwaraknath Gnanesh-
war, Simon Guo, David Cairuz, Bharat Venkitesh,
Jakob Foerster, Phil Blunsom, Sebastian Ruder, Ah-
met Ustun, and Acyr Locatelli. 2024. Bam! just like
that: Simple and efficient parameter upcycling for
mixture of experts. Preprint, arXiv:2408.08274.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan-
ping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. 2022. Mixture-
of-experts with expert choice routing. Preprint,
arXiv:2202.09368.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable
and transferable sparse expert models. Preprint,
arXiv:2202.08906.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jianfeng
Gao. 2022. Taming sparsely activated transformer
with stochastic experts. Preprint, arXiv:2110.04260.

24375

https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1162/tacl_a_00577
https://doi.org/10.1162/tacl_a_00577
https://doi.org/10.18653/v1/2022.emnlp-main.541
https://doi.org/10.18653/v1/2022.emnlp-main.541
https://doi.org/10.18653/v1/2022.emnlp-main.541
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1145/3567955.3567959
https://doi.org/10.1145/3567955.3567959
https://doi.org/10.1145/3567955.3567959
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://arxiv.org/abs/2309.05444
https://arxiv.org/abs/2309.05444
https://arxiv.org/abs/2309.05444
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2408.08274
https://arxiv.org/abs/2408.08274
https://arxiv.org/abs/2408.08274
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2110.04260
https://arxiv.org/abs/2110.04260


Appendix A Nexus routing algorithm

Figure 7 outlines the code for the Nexus router,
which consists of (1) a 2-layer MLP network
(domain_to_expert_ffn) to project domain em-
beddings to expert embeddings, (2) shared and
routed expert FFNs, and (3) sparse Top-k gating.
Note that the expert embeddings are independent
of the input and could be precomputed once and
stored as long as the weights of the model do not
change. This means that the routing layer during
inference closely resembles a vanilla MoE router,
with the difference being that the router matrix in
Nexus is not learnt during training but computed
using the domain embeddings as an informative
prior.

Appendix B Connection to
hypernetworks

Our router parametrization is closely related to hy-
pernetworks (Ha et al., 2016) as the projection layer
Pr (see Section 3) generates parameters for the
router during runtime for a given input. We use
domain embeddings as the input to the projection
layer, enabling efficient adaptation and also a bet-
ter cross-domain transfer based on the similarity
between domain embeddings as shown in previous
work (Mahabadi et al., 2021; Üstün et al., 2022).

Appendix C Comparison of existing
approaches with Nexus

Table 2 compares Nexus with previous approaches
in the field of efficient MoE training. Unlike the
vanilla MoE architecture (Shazeer et al., 2017; Fe-
dus et al., 2022), the Branch-Train-Merge (BTM;
Li et al., 2022) and the Branch-Train-Mix (BTX;
Sukhbaatar et al., 2024) approaches train experts
separately in different domains, reducing training
cost and improving specialization. However, they
either merge the experts during inference (BTM)
or learn an MoE router layer from scratch, where
prior domain information is not used (BTX). Our
approach trains the MoE router based on domain
information, maintaining the specialization and en-
abling efficient extension of the MoE with a new
expert after training.

Furthermore, Table 3 shows parameter counts
during training and inference of Nexus vs. the
baselines. From this, we can infer that Nexus has
the same memory and compute complexity as a
vanilla MoE model during inference, and a slight

overhead of 1̃% additional trainable parameters
during training.

Appendix D Evaluation details

For the downstream evaluation, we measure the
performance of each model on 15 mostly English-
language tasks‡ from five evaluation categories that
reflect different capabilities based on the tasks and
the datasets used in the benchmarks:

• Knowledge: To measure question-answering
capabilities based on world knowledge and
web documents such as Wikipedia, we report
the performance on OpenBookQA (Mihaylov
et al., 2018), Natural Questions (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017),
QUAC (Choi et al., 2018) (all 0-shot) and
SQuAD (4-shot) (Rajpurkar et al., 2016).

• Science: For measuring knowledge in science-
oriented academic benchmarks, we use ARC-
Easy, ARC-Challenge (Clark et al., 2018),
SciQ (Welbl et al., 2017) (all 0-shot).

• Reasoning: For reasoning abilities, we
use CommonSenseQA (Talmor et al., 2019),
SIQA (Sap et al., 2019), PIQA (Bisk et al.,
2020), WinoGrande (Sakaguchi et al., 2019),
and HellaSwag (Zellers et al., 2019) (all 0-
shot).

• General Language Understanding: We use
MMLU (5-shot) (Hendrycks et al., 2021) to
test general language understanding.

• Code: For code generation, we evaluate mod-
els on MBPP (Austin et al., 2021), LBPP (Mat-
ton et al., 2024), and HumanEval-Pack (Chen
et al., 2021) which includes Cpp, Javascript,
Java, Go, Python, and Rust (all 0-shot).

Appendix E Results for the 470M
parameter model

Table 4 shows the downstream task results for
Nexus with a 470M parameter seed model. Our ap-
proach outperforms the baselines in all downstream
benchmarks. Dense merging corresponds a dense
model with 470M parameters created by averaging
the weights of all dense experts, while both Nexus
and MoE (linear router) consist of 1 shared and 6
routed experts, corresponding to a total number

‡We did not include ARC-Challenge and Natural Ques-
tions in 470M experiments as some model variants were un-
able to achieve non-random performance.

24376



1 def router(self , inputs , domain_embeddings):
2 # domain_to_expert_ffn learns projection domain to expert embeddings
3 # domain_embeddings: [e_dim x n_experts]
4 # expert_embeddings: [h_dim x n_experts]
5 expert_embeddings = self.domain_to_expert_ffn(self.domain_embeddings)
6

7 # router probs: [batch , seq , n_experts]
8 router_probs = nn.softmax(inputs @ expert_embeddings)
9

10 # Top -1 gate for routed experts
11 index , gate = nn.topk(1, router_probs)
12

13 # routed_experts_ffns: An MoE layer with FFN experts
14 # routed_expert_out: [batch , seq , h_dim]
15 # shared_expert_out: [batch , seq , h_dim]
16 routed_expert_out = self.routed_expert_ffns[index](input)
17 shared_expert_out = self.shared_expert_ffn(input)
18

19 return shared_expert_out + gate * routed_expert_out

Figure 7: Router layer in Nexus: PyTorch-like pseudo-code illustrating the routing mechanism, situated before the
expertized MLP layer in each transformer block.

MOE BTM BTX NEXUS
(Vanilla) (Merge) (Linear router) (Ours)

Dense experts are trained independently (upcycling) ✗ ✔ ✔ ✔

Experts are specialized in different domains ✗ ✔ ✔ ✔

Experts are chosen by a learned router per input token ✔ ✗ ✔ ✔

Router is adaptive via learned projection for new domains ✗ ✗ ✗ ✔

Table 2: A comparison of existing approaches with Nexus: We choose the vanilla MoE architecture (Shazeer et al., 2017;
Fedus et al., 2022), Branch-Train-Merge (BTM; Li et al., 2022), and Branch-Train-Mix (BTX; Sukhbaatar et al., 2024) for
comparison. Nexus combines the advantages of the existing MoE extensions while also allowing easy adaptation to new domains.

Total Parameters Active Parameters
(Training)

Active Parameters
(Inference)

470M Models
SEED MODEL (470M) 467,682,304 467,682,304 467,682,304
MOE (LINEAR ROUTING) 1,298,252,800 606,110,720 606,110,720
NEXUS 1,312,834,560 620,692,480 606,110,720

2.8B Models
SEED MODEL 2,752,565,760 2,752,565,760 2,752,565,760
MOE (LINEAR ROUTING) 9,044,226,560 4,325,429,760 4,325,429,760
NEXUS 9,129,218,560 4,410,421,760 4,325,429,760

Table 3: Total and active parameter counts. Comparison of the seed model, linear MoE, and Nexus architectures for
both 470M and 2.8B parameter models. During inference, the router weights of Nexus can be precomputed once
by the learned MLP hypernetworks, making it exactly equal to the vanilla MoE in terms of memory and compute
complexity. During training, we also observe exactly the same step time for the vanilla MoE and Nexus, as the
overhead of the additional MLP is negligible. In the 470M category, the MoE/Nexus models use 6 routed and 1
shared expert. In the 2.8B category, the MoE/Nexus models use 4 routed and 1 shared expert. In both categories, the
models activate the shared expert and the top-1 of the routed experts during inference.

24377



of 1.3B parameters where 605M parameters are
activated per input for top-2 routing.

Compared to the seed model, Nexus performs
better in all evaluation categories with a 5.8%
relative gain on average (38.5 vs 36.4). Com-
pared to upcycled models, Nexus outperforms
MoE (linear router) in 3 out of 4 categories with
3.2% relative gain (38.5 vs 37.3) on average, and
beats dense merging by 8.5% overall relative in-
crease (38.5 vs 35.5). Notably, while both upcycled
MoEs outperform the seed model, dense merging
underperforms on average, showing the benefits of
MoE upcycling over merging.

Similar to the 2.8B experiments, both Nexus and
MoE (linear router) outperform the dense merging
baseline. We relate this to potential cross-task in-
terference between diverse specialized experts (in-
cluding the seed model as an additional expert),
leading to poor performance by applying a simple
weight averaging.

Appendix F Results for individual experts

To further contextualize the performance of the
Nexus models, we report the performance of each
individual expert in Table 5. The experts initial-
ized from the 470M seed model are trained for 20B
tokens on their domains, while the experts initial-
ized from the 2.8B seed model are trained for 40B
tokens.

Appendix G Results for continual
training of the seed model

To compare Nexus to another dense baseline, for
Table 6 we continually train the 470M and 2.8B
seed models in a data matched setting. This means
the 470M model has seen a total of 750B pretrain-
ing tokens (general pretraining data mix), 120B to-
kens from SlimPajama domains (the shuffled train-
ing tokens of all 6 experts), and 25B tokens from
SlimPajama to match the Nexus finetuning phase.
The 2.8B model has seen a total of 750B pretraining
tokens, 160B tokens from SlimPajama (the shuffled
training tokens of all 4 experts), and 40B additional
tokens from SlimPajama to match the Nexus fine-
tuning phase.

Appendix H Comparison of domain
embeddings and expert
embeddings

Nexus maps the domain embeddings which are
computed from each domain’s training dataset to
expert embeddings which represent experts. In
Figure 8, we visualize cosine similarities between
domains and the projected expert embeddings from
the last Transformer block, in our main upcycling
experiments at the 470M scale. The figure shows
that the main relationships in the similarity matrix
are preserved after the mapping. For instance, rela-
tively high cosine similarity between Books & C4,
and StackExchange & GitHub exist both between
their domain embeddings and the projected expert
embeddings. Interestingly, we also find that the
learned projection pushes expert embeddings fur-
ther away from each other, potentially due to our
choice of only activating a single expert per token
besides the shared expert.

Appendix I Routing Probabilities for the
linear MoE model

To investigate how specialized individual experts
are in the Nexus approach vs. the vanilla MoE
baseline, we also compute the routing distributions
for the MoE (Linear Router) baseline with 2.8B pa-
rameters. Figure 9 shows the router distribution of
this model with 4 experts. Figure 5 (right side)
shows the router distribution for code data after
adding the new code expert to the baseline. Al-
though the specialization of the linear MoE model
(Figure 9) matches that of Nexus for pretraining
(Figure 4), it adapts much worse to the new ex-
pert, as fewer tokens from the code domain actually
get routed to the code expert (Figure 5) than with
Nexus (Figure 5).

Appendix J Routing Probabilities for
Upcycling Ablations

Figure 10 shows the expert routing probabilities
for Nexus for all three settings described in Section
5.4.

24378



Figure 8: Domain and the projected expert embeddings for Nexus: We visualize cosine similarities between
domains and the projected expert embeddings from the last Transformer block. The similarities are obtained from
the 470M experiments. Our projected router maintains the relative similarity between the original domains (e.g.
Books & C4, Github & StackExchange) after the router’s projection.

Figure 9: Average routing probabilities for each expert per domain in the MoE (Linear router) baseline: We
compute the average routing probabilities across Transformer blocks for 512 samples per domain (from the 2.8B
experiment). The x-axis denotes the samples’ domain and the colored bars show the routing probabilities for the
corresponding expert. We show the domains that are used to train specialized experts.

24379



Know. Science Reason. MMLU Avg.

SEED MODEL (470M) 14.0 51.4 50.5 29.8 36.4
SEED MODEL (470M) + 145B TOKENS 19.9 53.8 50.8 29.6 38.5

Upcycled Models
DENSE MERGING 10.9 52.0 50.3 27.8 35.5
MOE (LINEAR ROUTER) 13.4 55.0 51.3 29.6 37.3
NEXUS 16.7 55.0 52.3 29.8 38.5

Table 4: Downstream task results for Nexus with a 470M parameter seed model. Dense merging merges all separately
pretrained experts, while both Nexus and MoE (linear router) upcycle them and are evaluated with top-2 routing.

Know. Science Reason. MMLU Avg.

470M Experts
ARXIV 9.5 47.8 44.3 31.2 33.2
BOOKS 9.0 51.8 51.4 32.0 36.1
C4 3.9 52.6 51.5 27.6 33.9
GITHUB 11.3 44.8 45.2 30.2 32.9
STACKEXCHANGE 9.9 45.4 44.9 29.2 32.4
WIKIPEDIA 15.3 46.4 44.1 25.4 32.8

2.8B Experts
ARXIV 13.4 57.3 51.3 36.2 39.5
BOOKS 19.4 62.5 60.0 39.6 45.4
C4 11.0 64.5 61.9 37.8 43.8
WIKIPEDIA 22.6 60.3 55.3 37.2 43.9
CODE 13.4 59.9 52.4 37.8 40.9

Upcycled Models
NEXUS (470M) 16.7 55.0 52.3 29.8 38.5
NEXUS (2.8B) 33.2 67.3 62.6 39.4 50.6

Table 5: Downstream task performance of individual experts. We report the separate performance of all experts
used during the upcycling and extension stages. Note that the Nexus models beat every individual expert used for
their upcycling, with one exception.

Know. Science Reason. MMLU Avg.

470M Models
SEED MODEL 14.0 51.4 50.5 29.8 36.4
SEED MODEL + 145B TOKENS 19.9 53.8 50.8 29.6 38.5
NEXUS 16.7 55.0 52.3 29.8 38.5

2.8B Models
SEED MODEL 27.1 62.0 63.8 35.4 47.1
SEED MODEL + 200B TOKENS 28.8 66.4 62.7 41.4 49.8
NEXUS 33.2 67.3 62.6 39.4 50.6

Table 6: Downstream task results for data-matched continued pretraining of the 470M and 2.8B seed models. Both seed
models are data matched to the Nexus/Linear MoE variants, including all expert training and finetuning. For the
2.8B parameter models, we also train for 1B tokens on instruction-style datasets from the original pretraining data
before measuring the performance on downstream tasks (see Section 4.2). Note that the seed model training takes a
lot more wallclock-time compared to our method, as the Nexus experts can all be trained in parallel, which is not
possible with a single model.

24380



Figure 10: Average routing probabilities for each expert per domain in different upcycling setting: We show
expert routing probabilities for Nexus for all three settings described in Section 5.4.

24381


