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Abstract

Recent text-to-SQL models have achieved
strong performance, but their effectiveness re-
mains largely confined to SQLite due to dataset
limitations. However, real-world applications
require SQL generation across multiple dialects
with varying syntax and specialized features,
which remains a challenge for current models.

The main obstacle in building a dialect-aware
model lies in acquiring high-quality dialect-
specific data. Data generated purely through
static prompting—without validating SQLs
via execution—tends to be noisy and unreli-
able.Moreover, the lack of real execution envi-
ronments in the training loop prevents mod-
els from grounding their predictions in exe-
cutable semantics, limiting generalization de-
spite surface-level improvements from data fil-
tering. This work introduces ExeSQL, a text-to-
SQL framework with execution-driven, agentic
bootstrapping. The method consists of itera-
tive query generation, execution-based filter-
ing (e.g., rejection sampling), and preference-
based training, enabling the model to adapt to
new SQL dialects through verifiable, feedback-
guided learning. Experiments show that Ex-
eSQL bridges the dialect gap in text-to-SQL,
achieving average improvements of 15.2%,
10.38%, and 4.49% over GPT-40 on Post-
greSQL, MySQL, and Oracle, respectively,
across multiple datasets of varying difficulty.

1 Introduction

With the rapid advancement of Large Language
Models (LLMs), their capabilities in assisting
with various coding tasks have significantly im-
proved. Tools like GitHub Copilot (Microsoft,
2023; Services, 2023) and models such as OpenAl
Codex (Chen et al., 2021b) have enhanced devel-
oper productivity by automating repetitive tasks,
providing real-time suggestions, and offering de-
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Figure 1: Given a natural language question, differ-
ent SQL dialects require distinct syntax adjustments,
such as explicit type casting in PostgreSQL. Beyond
the traditional text-input—SQL-output formulation, we
incorporate the database environment to enable agentic
execution feedback for data synthesis and training.

tailed explanations of code functionality. One cru-
cial application of LLMs in software development
is the automatic generation of SQL queries from
text (text-to-SQL), a task that has gained increas-
ing attention (Zhong et al., 2017; Yu et al., 2018;
Li et al., 2024b; Lei et al., 2024). However, most
existing research (Li et al., 2024a; Zhuang et al.,
2024; Dong et al., 2023b; Pourreza and Rafiei,
2024; Wang et al., 2023a; Gan et al., 2021; Deng
et al., 2021) and datasets in the text-to-SQL do-
main are primarily designed for SQLite, with lim-
ited coverage of widely used database systems such
as MySQL, PostgreSQL, BigQuery, Oracle, and
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DuckDB. We incorporate an example of a question
with dialect SQL in Figure 1. The lack of high-
quality, dialect-specific text-to-SQL data presents
significant challenges in developing models that
can generalize across different SQL dialects, ulti-
mately hindering the creation of robust and adapt-
able text-to-SQL solutions for real-world applica-
tions (Lei et al., 2024; Li et al., 2024b; Pourreza
et al., 2024).

Rule-Based Translation is Insufficient. Rule-
based translation offers a deterministic but rigid
solution to SQL dialect conversion. While tran-
spilers like SQLGlot (Mao, 2023) provide struc-
tured mappings between dialects, they struggle
with complex syntax, schema constraints, and
dialect-specific functions (Zmigrod et al., 2024).
Moreover, these systems lack generalizability, re-
quire dialect-specific rules (Li et al., 2024b; Lei
et al., 2024), and cannot guarantee accurate transla-
tion. In practice, they still rely on execution-time
feedback to detect and fix failures. Maintaining
such rule sets is costly and brittle. Even with care-
fully crafted rules, such systems cannot guaran-
tee perfect accuracy—particularly for complex or
edge-case queries—and often rely on execution-
time feedback for correction. We provide a detailed
analysis in the Appendix A.10.

Existing Data Collection and Training Lacks
Execution Verification. General LLM-based code
data generation methods (Wei et al., 2023; Wang
et al., 2022) often fail to account for the specific re-
quirements of text-to-SQL tasks, leading to the cre-
ation of syntactically plausible but incorrect SQL
queries. These approaches typically generate large
amounts of unverified data, which hinders their
usefulness for training reliable models. Since SQL
outputs can be directly validated through execu-
tion, a more structured approach that incorporates
execution-based verification and targeted rejection
sampling strategies is necessary. Besides, we argue
that standard supervised fine-tuning (SFT) alone
is insufficient to fully exploit the potential of exe-
cution validation, as it does not inherently enforce
correctness across dialects.

To advance dialect text-to-SQL, we emphasize
the importance of both high-quality, executable
(text, SQL) data and a training pipeline that directly
interacts with the execution environment. We pro-
pose an agentic data generation loop that combines
LLM-based generation, execution-time validation,
and self-correction. This offline loop yields reliable

training signals, which are distilled into a dialect-
aware model through supervised fine-tuning and
offline reinforcement learning. The overall work-
flow includes:

(a) SFT Data Bootstrapping via LLM-based
Translation: To mitigate the sparsity of dialect
text-to-SQL data and enable effective cold-start
training, we leverage high-resource SQLite (text,
SQL) pairs and LLMs to efficiently sample dialect
SQL queries. This bootstrapped dataset serves as a
cold-start fine-tuning set, enabling rapid adaptation
to low-resource dialects while minimizing manual
annotation.

(b) Iterative SFT Data Generation via Execution-
based Rejection Sampling: We extend the dataset
via an iterative generation—execution—filtering loop,
where the model proposes dialect SQLs executed in
real databases. Valid outputs are retained through
execution-aware rejection sampling, with best-of-N
selection enhancing reliability. This agentic cycle
uses execution feedback to govern data collection,
producing higher-quality training signals without
manual effort.

(c) Preference Collection via Execution Feed-
back Rejection Sampling: To further incorporate
execution feedback, we distinguish failure types
and extract preference pairs—valid versus invalid
SQLs—based on their execution results. These are
used to train the model with DPO, which guides
learning toward executable outputs. This procedure
aligns with offline reinforcement learning, lever-
aging historical execution trajectories to improve
model behavior.

We summarize our contributions as follows:

* We propose an agentic data generation loop
that combines LLM-based SQL generation,
execution-aware rejection sampling, and itera-
tive self-refinement to construct high-quality
dialect-specific training data with minimal
manual labeling.

* We introduce an offline reinforcement learn-
ing framework that captures execution-based
preference signals and applies DPO to align
the model toward generating executable SQL.

* We conduct extensive evaluations across di-
verse SQL dialects (PostgreSQL, MySQL,
and Oracle) x difficulty levels (single domain,
cross-domain, extensive database), demon-
strating significant improvements over strong
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baselines (e.g., GPT-40) and providing in-
sights for execution-guided SQL modeling.

2 Related Work
2.1 Text-to-SQL

Relational databases store a significant portion
of the world’s data, and retrieving information
from them typically requires writing SQL queries.
Automating SQL generation can lower the bar-
rier for users to access data. A common sce-
nario for automatic SQL generation is querying
databases using natural language input (Zhong
etal., 2017; Yu et al., 2018). Early research treated
text-to-SQL as a semantic parsing problem, where
models such as RNNs and transformer-based en-
coders (e.g., BERT) were trained to map natu-
ral language questions to SQL statements (Gan
et al., 2021; Zhong et al., 2017; Deng et al.,
2022a). Performance has also improved by in-
corporating additional constraints into inputs and
outputs (Liu et al., 2022; Wang et al., 2021; Deng
et al., 2021). With the emergence of large lan-
guage models (LLMs) (Brown et al., 2020; Ouyang
et al., 2022; OpenAl, 2023), text-to-SQL has been
further developed using prompt-based methods
and fine-tuning, benefiting from LLMs’ strong
instruction-following and intent understanding ca-
pabilities (Dong et al., 2023b; Li et al., 2024a; Pour-
reza and Rafiei, 2024; Wang et al., 2023a; Talaei
et al., 2024). In practical applications, text-to-SQL
has been used to handle more complex data and
agent-based workflows (Lei et al., 2024; Li et al.,
2024b). One challenge in real-world scenarios is
handling SQL dialect differences. Early studies in
domain-specific languages explored this problem
using intermediate meaning representations (Guo
et al., 2020). Some studies have attempted to ad-
dress this issue through rule-based translation and
compiler-based methods (Pourreza et al., 2024; Lin
et al., 2024b).

Given the LLM-driven paradigm, this work fo-
cuses on a data-centric approach to text-to-SQL.
Specifically, execution-based methods are explored
to handle SQL dialect variations.

2.2 Code LLMs

Code foundation models have demonstrated strong
code generation capabilities across various tasks.
OpenAl’s Codex (Chen et al., 2021a) was one of
the earliest domain-specific LLMs for coding, sup-
porting the Copilot service (Microsoft, 2023). The

open-source community has further contributed
with models like Deepseek-Coder (Guo et al.,
2024) and StarCoder (Li et al., 2023b), which
were trained from scratch on massive code-related
datasets. While others, like Code-Llama (Roziere
et al., 2023) and Code-Qwen (Hui et al., 2024),
adapted general-purpose models through post-
training on code-specific corpora. Beyond founda-
tion models, researchers have fine-tuned them for
specific applications. Maigcoder (Wei et al., 2023)
enhances instruction-following abilities using cu-
rated code snippets, while Wizard-Coder (Luo
et al., 2024) and WavCoder (Yu et al., 2023) refine
instruction-code alignment via evol-instruct (Xu
et al., 2023). OctoCoder (Muennighoff et al., 2023)
leverages Git commits to enhance model adaptabil-
ity. Additionally, approaches like IRCoder (Paul
et al., 2024) and UniCoder (Sun et al., 2024) ex-
plore intermediate representations (e.g., LLVM) to
improve code generation.

Compared to these approaches, our work also
focuses on code generation but emphasizes lever-
aging execution signals from database environ-
ment. From the perspective of code LLM develop-
ment, this approach provides insights applicable to
broader code generation tasks. The Dialect SQL
scenario serves as a practical testbed, allowing for
clearer validation of method effectiveness.

2.3 Data Synthesis

Modern machine learning methods typically re-
quire large-scale and high-quality datasets (Zhou
et al., 2023b) for effective learning. However, ob-
taining high-quality data for every corner case is
often impractical, leading researchers to explore
dataset generation. By integrating existing incom-
plete data with the extensive knowledge embedded
in LLMs, data generation can produce more com-
prehensive datasets for model training (Wang et al.,
2023b; Xu et al., 2023; Wei et al., 2023). Recently,
to enhance the reasoning capabilities of LLMs, par-
ticularly in math and code, many approaches have
incorporated verifiers, such as answer or reward
models, to curate high-quality datasets for model
refinement (Yuan et al., 2023; Guo et al., 2025;
Zelikman et al., 2022).

Our work focuses on SQL execution verifica-
tion. By utilizing execution results, we obtain high-
quality data by rejection sampling and further refine
the model through self-taught training.
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3 Methodology

In this section, we present the details of our ap-
proach to obtain ExeSQL, including 3 phases:
Translation Bootstrapping, Iterative Data Gener-
ation and Training, and Preference Enhancement.
The key idea of Execution-Assisted Generation is
fully leveraging execution verification signals to
asisst LLM to generate high-quality data for text-
to-SQL across different dialects. An illustration of
ExeSQL is shown in Figure 3.

3.1 Formulation

We denote a natural language query as @, its corre-
sponding SQL as S, and the generation model as
an LLM M. The training set D = {(Q;, i)},
is constructed by translating a high-resource source
dialect Dsource (€.2., SQLite) to target dialects us-
ing a bootstrapping model and a dialect mapping
function 7.

To guide model training, we define an execution-
based reward function R(S) € {0,1}, which re-
turns 1 if the SQL executes successfully. The goal
is to train a model that maximizes expected execu-
tion success:

Ty = arg max Eg~p [ESNWQ(-‘Q) [R(S)H (1)

We adopt a self-evolving offline training strat-
egy (Zelikman et al., 2022; Dong et al., 2023a;
Giilgehre et al., 2023; Schulman et al., 2017),
which iteratively (1) filters generated SQLs via
execution-guided rejection sampling, and (2) ap-
plies preference optimization through Direct Pref-
erence Optimization (DPO). The model is updated
at iteration ¢ as:

Wét—i-l) = argmax Eg.g.5p [R(S*’S’)} ()

Here, S* denotes a preferred (e.g., executable)
SQL, contrasted against a failed candidate S. This
defines an offline reinforcement learning loop
grounded in execution feedback.

3.2 Translation-based Bootstrapping

Let Dsqrie = {(Q:,Si)}Y, be a large-scale
dataset containing natural language questions @);
paired with corresponding SQL queries S; writ-
ten in SQLite dialect. Given the scarcity of multi-
dialect SQL datasets, we first leverage DsqLite tO
bootstrap an initial dataset for training.

4" Generated Dialect SQL
}
lj— Execut|on Check
[ Question ][ Ground Truth ] [ Question, Dialect SQL ]

Reference-SQL

Figure 2: Execution-based error feedback loop for
dialect-specific SQL refinement. Through this, we can
collect a bootstrap dataset to resolve the cold-start issue
of training expert dialect model.

To achieve this, we introduce a translation func-
tionT" : SsqLite — STarget> Which generates an SQL
query STarger in the target dialect based on both the
original SQL query SsqLite and the corresponding
question (), modeled as:

STarget ~ P (STarget|Qa SSQLite)

However, direct translation does not guaran-
tee correctness due to differences in SQL syntax
and execution semantics across dialects. To re-
fine the generated SQL queries, we incorporate an
execution-based verification and iterative cor-
rection mechanism, as illustrated in Figure 2.

The refinement process operates as follows (Ap-
pendix A.13): 1) An LLM (GPT-40 here) generates
candidate SQL queries Stuge: for a given natural
language question (), conditioned on SsqLite. 2)
The generated SQL query is executed in a database
corresponding to the target dialect. 3) If the execu-
tion succeeds, the query is added to the validated
dataset: Drans = {(Qi, STarget,i) } 4) If the execu-
tion fails, the database returns an error message,
which is fed back into the LLM as an additional
context for refining the SQL query. The model
iteratively refines Styge until a valid query is pro-
duced. 5) This iterative execution check continues
until either a valid SQL query is found or a maxi-
mum refinement threshold is reached.

This approach effectively corrects syntactic and
semantic errors by leveraging real execution feed-
back rather than relying solely on static rule-based
translation. Through this execution-aware itera-
tion, the model progressively learns to generate
more accurate and dialect-specific SQL queries.
The final dataset, Drp,yg, Serves as a high-quality
dialect training corpus, enabling robust generaliza-
tion across different database systems.
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Figure 3: Pipeline for Dialect Text-to-SQL Data Generation and Model Training. The framework consists of three
stages: (1) Translation Bootstrapping: A bootstrap text-to-SQL model is fine-tuned using SQL translations from
an existing dataset (e.g., SQLite) to other dialects (e.g., MySQL, PostgreSQL). (2) Iterative Data Generation
and Training: The model generates multiple SQL candidates per question, which are validated via execution
feedback. Correct queries are retained to refine the dataset, enabling iterative self-improvement. (3) Preference
Enhancement: A Direct Preference Optimization (DPO) step is applied to distinguish correct and incorrect SQL
queries. High-quality pairs (question, correct SQL) are used to further improve the model’s performance and
preference learning, ensuring both correctness and efficiency in SQL generation.

3.3 Iterative Data Generation and Training

While Dryaps provides a baseline, rule-based trans-
lation alone is insufficient to guarantee correctness
due to syntax differences, type constraints, and ex-
ecution behaviors across SQL dialects. To address
this, we introduce an iterative execution-feedback
process incorporating rejection sampling and aug-
mented question generation, as depicted in Fig-
ure 3.

3.3.1 Augmenting Training Data with New
Questions

To improve model generalization across SQL di-
alects, we incorporate additional natural language
questions from two sources:(1) Existing Text-to-
SQL Datasets: We extract additional questions
from existing datasets like WikiSQL, ensuring cov-
erage of diverse query structures. (2) Database-
Aware Question Generation: We leverage GPT-
40 to generate new questions based on actual
database values. Given a schema and sample
database records, GPT-40 generates contextually
relevant questions that reference specific values,
improving the model’s robustness in handling real-
world queries.

By integrating these new questions, we expand
our dataset beyond simple rule-based translations,
allowing the model to generate and validate SQL
queries for a more diverse set of inputs.

3.3.2 Execution-based Rejection Sampling

For each natural language question ();, the
model My generates multiple dialect-specific SQL
candidates {Scana;}, following the probability
distribution: Scana i ~ Pp(S]Q)

Each candidate query is then executed in the
corresponding database environment, yielding an
execution result R(Scand,i):

R(S) = 1, if S executes successfully
B 0, if S fails due to execution errors

We apply a rejection sampling to iteratively refine
SQL generation: If Sc,q exectues successfully, i.e.,
R(Scand;s) = 1. The query is added to the validated
dataset: Dvaiia = Dvatia U {(Qi, Scand,i) }

If Scana is a Failure Case, i.e., R(Scandi) = O.
The query is stored in the negative dataset: Dneg =
DNeg U {(Qz; Scand,i)}

This process is iteratively repeated until a valid
SQL query is generated or a predefined iteration
limit is reached.

3.3.3 Iterative Data Generation and Model
Refinement

The validated dataset Dvyj;q 1S used for further fine-
tuning, while incorrect queries in Dyeg serve as
contrastive learning signals in later preference opti-
mization stages.
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This process results in a high-quality, dialect-
aware text-to-SQL dataset that is continuously re-
fined through execution-based validation and real-
world query augmentation.

3.4 Preference Optimization

To further refine the model’s SQL generation capa-
bilities, we leverage DPO (Rafailov et al., 2023) to
distinguish between correct and incorrect queries,
using execution feedback as the primary signal.
The negative dataset Dneg and validated dataset
Dhpaiiq have already been collected during the Itera-
tive Data Generation and Training phase. Here, we
construct preference pairs to fine-tune the model
based on execution outcomes.

Pairwise Preference Data Construction To en-
able preference learning, we form query pairs
(Sp037 Sneg), where: Spos € Dvaiid, Sneg € DNeg
These pairs allow the model to differentiate be-
tween correct and incorrect SQL, ensuring that
preference learning reinforces correct generation.

Direct Preference Optimization (DPQO) Training
The model is fine-tuned using DPO, where the ob-
jective is to maximize the probability of generating
preferred SQL queries over non-preferred ones:

PG(Spos|Q) > PQ(Sneg|Q)

By leveraging execution failures as negative ex-
amples and correct executions as positive examples,
the model learns to generate more reliable and exe-
cutable SQL queries. This approach enhances both
the correctness and robustness of SQL generation
across different dialects.

4 Implementation and Evaluation
Settings

The bootstrap dataset and new questions for Ex-
eSQL are generated using GPT-40 (OpenAl, 2023).
We choose GPT-40 due to its superior ability to
follow instructions and leverage error messages to
generate accurate bootstrap dialect SQL examples.
The final ExeSQL dataset consists of 20.6k sam-
ples in the supervised finetuning (SFT) set and 8k
samples in the preference pairs (Appendix A.2).
All training is conducted on four A6000 GPUs.
We fine-tune the full-parameter Deepseek-Coder-
7B (Guo et al., 2024) for supervised finetuning
(SFT) and Direct Preference Optimization (DPO).
For detailed training configurations and inference
hyperparameters, please refer to Appendix A.3

For baseline comparisons, we evaluate GPT-40-
2024-11-20 and Gemini-1.5-pro-0827 (Reid et al.,
2024), both of which were released in 2024. Since
these models were trained on publicly available
data up to their release dates, they likely include
extensive SQL-related training data, ensuring a fair
comparison.

4.1 Text-to-SQL across dialects and
Benchmarks

Dialects. To fully validate the generalization abil-
ity of our method, we selected three SQL dialects:
PostgreSQL, MySQL and Oracle. Our pipeline is
dialect-agnostic, we chose these two dialects to ver-
ify the generalizable effectiveness of our pipeline
across different dialects.

Benchmarks. We adapt three standard bench-
marks, Spider (Yu et al., 2018) WikiSQL (Zhong
et al., 2017) and BIRD (Li et al., 2024b), for in-
domain evaluation and use Dr.Spider (Chang et al.,
2023) as an out-of-domain dataset. We also in-
corporate the single-domain benchmark Mimic-
SQL (Wang et al., 2020; Deng et al., 2022b) to
evaluate our model across varying difficulty levels.
For dialect SQL evaluation, we extract the question,
database, and ground truth result, prompting the
model to generate dialect-specific SQL and verify-
ing execution accuracy. Details on these datasets
are in Appendix A.9. To ensure accurate evalua-
tion, we preprocess responses to extract SQL using
an answer extraction tool (Appendix A.12). For
results on the single-domain dataset, please refer
to Appendix A.8.

4.2 Baseline Models

General purposed LLLM baselines: We evaluate
four large language models (LLMs) without any
fine-tuning for text-to-SQL tasks: GPT-40 (Ope-
nAl, 2023), Gemini-1.5-pro (Reid et al., 2024),
and Llama3.1-Instruct (met). These models are
assessed by directly prompting them to generate
SQL queries given a natural language question and
the corresponding database schema.

Code Expert LLLM baselines: These baselines
consist of LLMs trained on large-scale code-related
corpora, making them well-suited for code gener-
ation tasks. We include DeepSeek-Coder (Guo
et al.,, 2024), Qwen-Coder (Hui et al., 2024),
Magicoder-DS (Wei et al.,, 2023), and
WizardCoder (Luo et al., 2024).

SQL Expert LLM baselines: Several LLMs are
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Method Model size PostgreSQL MySQL Oracle Average
Spider WikiSQL  Spider WikiSQL  Bird  Spider

General purposed LLM

GPT-40 - 54.59 58.97 62.09 57.24 36.38  64.86 55.69

Gemini-1.5-pro - 51.03 54.1 64.90 51.95 36.11  65.21 53.88

Llama3.1-Instruct 8B 33.63 31.6 48.86 2541 24.58 30.0 32.35

Code Expert LLM

Deepseek-Coder 7B 37.31 18.12 49.6 24.67 16.00  50.77 32.75

Qwen-Coder 7B 36.8 15.48 39.04 22.84 1536 58.31 31.31

Magicoder 7B 21.9 17.45 47.28 23.32 13.23 26.6 24.96

WizardCoder 15B 23.78 16.91 32.36 20.56 18.38  36.33 24.72

SQL Expert LLM

CodeS 7B 24.76 20.0 35.6 23.0 1441 374 25.86

StructLLM 7B 38.71 30.97 442 7.14 22.69  33.16 29.48

ExeSQL 7B 69.86 74.10 72.09 73.64 41.13  69.35 66.70

Table 1: Performance comparison of various LLMs on Dialect text-to-SQL benchmarks. ExeSQL surpasses all
baseline models, achieving an average improvement of 11.0% over GPT-4o.

specifically adapted for SQL generation, typically
optimized for the SQLite dialect and demonstrating
strong table understanding capabilities. We include
Code-S (Li et al., 2024a) and StructLLM (Zhuang
et al., 2024) in this category.

The comparisons in (2) and (3) aim to assess
whether fine-tuned general-purpose LLMs can
outperform specialized code-generation or SQL-
focused models in specific scenarios.

5 Experimental Results

5.1 Main Results

We present the main experimental results in Table 1.
From the table, we observe that ExeSQL achieves
an average accuracy of 66.70% across PostgreSQL,
MySQL and Oracle benchmarks, significantly out-
performing all baseline models.

General purposed LLMs. Among the general-
purpose LLMs, GPT-40 achieves the highest accu-
racy (55.69%), demonstrating its strong zero-shot
SQL generation capability. We find that Gemini-
1.5-pro underperforms GPT-40, achieving 53.88%.
Llama3.1-8B-Instruct perform worse, with average
accuracies of 32.35%, respectively. These results
indicate that general-purpose LLMs struggle with
SQL dialect variations.

Code Expert LLMs. Code-focused models,
such as Deepseek-Coder and Qwen-Coder, demon-
strate better performance than standard LLMs.
Deepseek-Coder achieves an average accuracy of
32.75%, while Qwen-Coder reaches 31.31%. How-

ever, Magicoder and WizardCoder perform worse,
suggesting that general code generation ability does
not equal SQL generation (especially dialect) ca-
pability. This implies that code training alone is
insufficient for SQL dialect adaptation.

SQL Expert LLMs. The SQL-specialized
models exhibit the most significant improvements.
StructLLM, which is trained on SQL-specific tasks,
achieves an accuracy of 29.48%, slightly out-
performing most code models. However, Ex-
eSQL surpasses all baselines by a large margin,
reaching an average accuracy of 66.70%. Also, it
is worth noting that these models often have a great
performance degradation compared with SQLite
performance (Appendix A.1).

These results highlight the importance of the
proposed execution-based fine-tuning and dialect-
aware SQL adaptation. Unlike general-purpose or
code-focused models, ExeSQL effectively learns
to handle different SQL dialects through iterative
refinement, leading to a substantial performance
boost.

5.2 Further Analysis

To validate the effectiveness of ExeSQL, we con-
duct three analyses: (1) Ablation studies assess
the impact of iterative refinement and preference
learning on accuracy. (2) ID and OOD evalua-
tion measures generalization to unseen queries and
SQL dialects. (3) Execution-based rejection sam-
pling analysis examines its role in improving SQL
correctness. These analyses confirm ExeSQL’s
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robustness and adaptability.

Method PostgreSQL.  MySQL
ExeSQL 71.98 72.865
w/o iteration 63.49 60.09
w/o preference 71.36 70.34

Table 2: Performance comparison of different ExeSQL
ablations.

5.2.1 Ablations for Iteration data generation.

Table 2 shows that removing iteration-based refine-
ment significantly reduces performance (71.98 %
to 63.49% on PostgreSQL, 72.865% to 60.09 %
on MySQL), highlighting the importance of iter-
ative data generation in improving SQL accuracy.
Removing preference learning also leads to a per-
formance drop, though less severe, indicating that
preference optimization further refines query qual-
ity. These results demonstrate that both iterative
refinement and preference learning play crucial
roles in enhancing ExeSQL’s effectiveness.

Method PostgreSQL MySQL
Spider  Dr.  Spider  Dr.
Deepseek-Coder 37.31 27.10 49.6 36.82
StructLLM 3871 25.83 442 40.00
ExeSQL 69.86 59.16 72.09 56.02

Table 3: Results on ID and OOD evaluation. The strong
and consistent performance of ExeSQL demonstrates its
robust generalization ability without signs of overfitting.

5.2.2 ID and OOD Evaluation.

We evaluate ExeSQL on both in-distribution (ID)
and out-of-distribution (OOD) datasets to assess its
generalization. The OOD evaluation is conducted
on Dr.Spider (Chang et al., 2023), a diagnostic
text-to-SQL benchmark with 15,269 samples, in-
troducing perturbations in databases (DB), natural
language queries (NLQ), and SQL to test robust-
ness. Given its scale, Dr.Spider is significantly
harder to overfit than Spider’s 2,147 samples.

Table 3 shows that ExeSQL consistently
achieves the highest accuracy across all settings.
Notably, ExeSQL outperforms StructLLM and
Deepseek-Coder by a large margin on both Post-
greSQL and MySQL, confirming its strong gener-
alization to both ID and OOD queries.

Impact of Rejection Sampling
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Figure 4: Retention rate of correct dialect SQL samples
across different best-of-N sampling strategies, evaluated
on 1,000 query samples. The results indicate that the
bootstrapped model can already generate many correct
dialect samples, and increasing N further improves cor-
rectness.

5.2.3 Configuration of Execution-based
Rejection Sampling.

Figure 4 presents the effect of execution-based
rejection sampling on SQL generation accuracy
across different best-of-N selection strategies. As
N increases, the proportion of correct dialect
SQL samples improves consistently for both Post-
greSQL and MySQL.

This result indicates that the bootstrapped model
is capable of generating a significant number of cor-
rect dialect SQL queries even without additional
fine-tuning. The primary challenge then shifts
to efficiently identifying and selecting these cor-
rect samples. An iterative sampling approach can
be employed to extract high-quality SQL queries,
which can further enhance the model through self-
supervised training.

6 Conclusion

We propose an execution-driven framework to en-
hance text-to-SQL generation across multiple SQL
dialects. By integrating LLLM-based dialect boot-
strapping, execution feedback rejection sampling,
and preference learning, our approach iteratively
refines SQL generation through execution valida-
tion and error correction. Experiments show that
ExeSQL outperforms GPT-40 by a large margin
on 2 dialects, respectively, demonstrating superior
adaptability and correctness. Our findings high-
light the importance of execution-aware training
and provide a scalable solution for robust multi-
dialect text-to-SQL modeling.
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Limitations

In this work, we primarily focus on two mainstream
dialects (MySQL and PostgreSQL) within a rela-
tively simple environment. This setting overlooks
complexities that arise in larger-scale or hetero-
geneous scenarios, and it only partially addresses
advanced dialect-specific features (e.g., complex
window functions or Regex handling). Moreover,
our iterative generation process relies on predefined
prompts and partial rules, which may not readily
accommodate databases with significantly different
formal grammars. In future research, we plan to
explore more dialects and more complex database
conditions, aiming to enhance the coverage and
robustness of our multi-dialect text-to-SQL frame-
work.
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A Appendix

A.1 Analysis for the Dialect-Degradation for
Text-to-SQL

Table 4 demonstrates that general LLMs experi-
ence significant performance degradation across

Method PostgreSQL.  MySQL  SQLite A

GPT-40 54.59 62.09 71.17 -12.83
Gemini-1.5-pro 51.03 64.90 77.27 -19.31
CodeS 24.76 35.60 77.90 -47.72
StructLLM 38.71 44.20 70.20 -28.75

Table 4: Zero-shot performance comparison on Spider
across different SQL dialects. Flip A measures the
differences between the model’s performance on SQlite
compared with PostgreSQL and MySQL.

SQL dialects, with Flip A ranging from -12.83
to -47.72. Larger models such as GPT-40 and
Gemini-1.5-pro degrade less, while smaller models
like CodeS and StructLLM suffer more. In con-
trast, SQL-Expert models exhibit even 2-3x higher
degradation, likely due to weaker generalization
from smaller parameter sizes. This highlights the
importance of SQL dialect adaptation research, as
even strong general LLMs struggle with dialect
shifts.

A.2 Generated Data Statistics

Table 5 shows the distribution of question sources.
During SFT data generation, 3.7k new dialect-
specific questions were created based given the
values in databases.

Stage Dataset Size
Spider 6.9k

SFT WikiSQL 10k
New Generated Data 3.7k

Spider 4k

bPO WikiSQL 4k

Table 5: Dataset statistics for SFT and DPO training
stages.

A.3 Implementation

We fine-tune the full-parameter Deepseek-Coder-
7B (Guo et al., 2024) using supervised finetuning
(SFT) for one epoch with a batch size of 16 and a
learning rate of 2e-5. For Direct Preference Opti-
mization (DPO) training, we train for three epochs
with a batch size of 16 and a learning rate of 5.0e-
6. Additionally, we incorporate the SFT loss into
the DPO loss with a weight of 1 during preference
training. For execution-based rejection sampling
and worst-of-n negative sample collection, we set
the inference parameters to temperature = 0.7, top-
p = 0.9, and top-k = 50. Negative examples for

24316


http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2305.11206

DPO training are selected using the worst-of-N
strategy, with N = 8.

Here, we make wuse of huggingface-
transformer (Wolf et al.,, 2020) and llama-
factory (Zheng et al., 2024) to perform train-
ing. For the inference, we make use of vllm
toolkit (Kwon et al., 2023).

Setting Value

GPUs Used 4 x A6000
Model Deepseek-Coder-7B
Batch Size 16

Epochs 1
Learning Rate 2 x107°

Table 6: Supervised Fine-tuning (SFT) Configuration

Setting Value

GPUs Used 4 x A6000
Model Deepseek-Coder-7B
Batch Size 16

Epochs 3
Learning Rate 5x 1076

Loss Weight 1 (SFT + DPO)
Worst-of-N 8

Table 7: Direct Preference Optimization (DPO) Config-
uration

Setting Value
Temperature 0.7
Top-p 0.9
Top-k 50

Table 8: Inference and Rejection Sampling Configura-
tion

A.4 TImpact of Direct Preference Optimization
(DPO)

To understand the performance impact of Direct
Preference Optimization (DPO) following Super-
vised Fine-tuning (SFT), we evaluated the perfor-
mance on both PostgreSQL and MySQL dialects.
The results, based on an initial SFT with 8,000 sam-

ples and a subsequent DPO with 20,000 preference
samples, are presented in Table 9.

Model PostgreSQL  MySQL  Oracle
SFT 71.36 70.34 65.86
SFT + DPO 71.98 72.86 69.35

Table 9: Performance Comparison: SFT vs. SFT + DPO

Furthermore, to analyze the detailed effect of
DPO on model robustness and generalization,
we evaluated both models’ performance under
database perturbation and SQL perturbation. The
results, presented as the average performance
across PostgreSQL and MySQL, are shown in Ta-
ble 10.

Model Database Perturbation SQL Perturbation ~ Average
SFT 55.54 62.16 58.85
SFT + DPO 57.14 64.06 60.60

Table 10: Robustness and Generalization Analysis: SFT
vs. SFT + DPO (Average)

These results suggest that DPO enhances gen-
eralization, especially on unseen or more diverse
test cases, even with a relatively small amount of
preference training data. From a data perspective,
this aligns with the core insight of LIMA (Zhou
et al., 2023a)—that a few high-quality preference
samples can be highly effective for alignment.

In our case, although the total amount of DPO
data is limited (8k preference pairs derived from
20k samples), it still results in noticeable improve-
ments in both robustness and generalization for
text-to-SQL tasks. This underscores that data qual-
ity and diversity are key to effective model tuning.
We attribute the quality of our DPO data to the
execution-based verification method used during
preference construction.

A.5 Impact of Data Translation and
Augmentation Strategies

To clarify the impact of different data translation
and augmentation strategies on the performance of
our Supervised Fine-tuning (SFT) baselines, we
provide a comparison of SFT results under three
distinct approaches:

* Translation (once): One-pass LLM transla-
tion without any further refinement (as de-
scribed in Section 3.2 of the main paper).

e Translation (iterative): LLM translation en-
hanced with execution feedback within an it-
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erative loop (as detailed in Section 3.2 of the
main paper).

* Translation + Augmented data: Combines
the translated data with newly generated
question-SQL pairs derived from table rows
(as described in Section 3.3 of the main pa-
per). The Final setting integrates iterative re-
finement, data augmentation, and Direct Pref-
erence Optimization (DPO).

The performance of these strategies on the Post-
greSQL and MySQL dialects is summarized in
Table 11.

Strategy PostgreSQL  MySQL
Translation (once) 63.49 60.09
Translation (iterative w/ execution) 69.97 67.63
Translation + Augmented data 71.36 70.34
Final 71.98 72.86

Table 11: Impact of Data Translation and Augmentation
Strategies on Performance

These results clearly demonstrate the significant
benefits of incorporating execution feedback in the
translation process and further enhancing the train-
ing data through augmentation techniques. The "Fi-
nal" setting, which combines iterative refinement,
data augmentation, and DPO, achieves the highest
performance on both PostgreSQL and MySQL.

A.6 Impact of Multi-Dialect Training

To investigate how well Large Language Models
(LLMs) can learn from training data across dif-
ferent SQL dialects and the potential benefits of
multi-dialect training, we conducted a Supervised
Fine-tuning (SFT) experiment using the Spider
dataset with two primary dialects: PostgreSQL and
MySQL. We evaluated the cross-dialect general-
ization performance under three different training
settings:

* Only PostgreSQL: Model trained on Spi-
der data augmented with PostgreSQL-specific
syntax.

* Only MySQL: Model trained on Spider data
augmented with MySQL-specific syntax.

* Mixed Training: Model trained on a dataset
combining both PostgreSQL and MySQL aug-
mented Spider data.

The results of this experiment are summarized
in Table 12.

Training Setting ~ PostgreSQL MySQL  Average

Only PostgreSQL 74.94 58.30 66.62
Only MySQL 59.94 74.96 67.45
Mixed Training 72.15 68.61 70.38

Table 12: Cross-Dialect Generalization Performance

We observed two interesting trends from these
results:

* Models tend to overfit to the specific syntax
they are trained on, resulting in a significant
performance drop when evaluated on a differ-
ent dialect.

* Although a naive mixed training approach
improves the overall average performance,
it slightly reduces the peak performance
achieved on individual dialects when trained
solely on that dialect.

We hypothesize that this phenomenon is related
to "forgetting" (Kirkpatrick et al., 2017; Alexan-
drov et al., 2024). To further improve cross-dialect
generalization, more sophisticated mixing strate-
gies such as in-batch mixing (Pan et al., 2024; Xie
et al., 2023), data replay (Lin et al., 2024a), or even
model merging (Alexandrov et al., 2024) may be
necessary.

A.7 Empirical Analysis of Data Diversity

We present an empirical experiment designed to
investigate the data diversity of our generated sam-
ples compared to a baseline. As discussed in the
main body of the paper, the validity verification
mechanism based solely on SQL execution correct-
ness during the data synthesis phase may suffer
from dimensionality limitations. This can poten-
tially lead Large Language Models (LLMs) to gen-
erate structurally homogeneous question-answer
(Q&A) pairs, consequently reducing data diversity.

To address this potential diversity collapse, our
generative iteration process explicitly incorporates
diversity by varying the prompts with in-context
exemplars at every generation round, a strategy
similar to self-instruct (Wang et al., 2023c)

To empirically study the data diversity issue, we
conducted the following experiment:

The results presented in Table 13 show that our
generated data is more diverse than the baseline
Spider samples, suggesting that our multi-round
varying prompting strategy effectively mitigates
diversity collapse.
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Dataset
Our Data
Spider Sample Comparison

Similarity Score
0.470
0.672

Table 13: Comparison of Cosine Similarity Scores (TF-
IDF Embeddings) between Our Generated Data and
Baseline Spider Samples. Our data (10K samples paired
with 5K Spider samples) shows a lower average similar-
ity score compared to the similarity within the Spider
dataset (10K Spider samples paired with highest simi-
larity HumanEval samples), suggesting higher diversity.

On the other hand, we believe the most effec-
tive way to ensure data diversity is through access
to diverse database schemas. Our method focuses
on generating accurate and precise QA pairs given
a particular database. As more varied databases
become available, our generation framework is ex-
pected to produce even more diverse and useful
training data.

A.8 Generalization to Single-Domain Datasets

Our method is not limited by dataset type and
can be applied to single-domain datasets as well.
To demonstrate this, we applied our model to the
MimicSQL dataset (Wang et al., 2020; Deng et al.,
2022b) using the MySQL dialect without further
training. The results are shown in Table 14.

Model Accuracy
GPT-40 72.87
DeepSeek-Coder-7B 63.66
Qwen2.5-Coder-7B 61.46
StructLM-7B 38.34
ExeSQL (ours) 76.07

Table 14: Accuracy on the MimicSQL Dataset (MySQL
Dialect, Zero-Shot)

These results show that our method generalizes
well to the single-domain setting, achieving a com-
petitive accuracy of 76.07% on the MimicSQL
dataset in a zero-shot manner, even outperform-
ing larger, general-purpose models like GPT-4o.
This highlights the robustness and adaptability of
our approach beyond cross-domain benchmarks.

A.9 Details of Evaluation Datasets

Dataset  Spider WikiSQL Dr.Spider Bird MimicSQL

#samples 2,147 8,421 15,269 1534 999

Table 15: Number of samples in different datasets

Spider. Spider provides a diverse collection of
training and development samples, along with a
hidden test set. The training set includes a mix of
manually annotated examples and additional sam-
ples sourced from previous text-to-SQL datasets.
Covering a wide range of databases across various
domains, Spider serves as a comprehensive bench-
mark for evaluating cross-domain text-to-SQL per-
formance. We used the test set of Spider with 2,147
examples to perform evaluation here.

WikiSQL. WikiSQL is a large-scale dataset con-
sisting of natural language questions, SQL queries,
and structured tables extracted from Wikipedia. It
offers a well-organized set of training, develop-
ment, and test examples, each containing a ques-
tion, a table, an SQL query, and the expected exe-
cution result. We used the dev set of Spider with
8,421 examples to perform evaluation here.

Dr.Spider. Dr.Spider, an extension of Spider,
introduces various perturbations across questions,
databases, and SQL queries to assess the robust-
ness of text-to-SQL models. It includes test sets
designed to evaluate the impact of database mod-
ifications, question variations, and SQL transfor-
mations, making it a challenging benchmark for
robustness testing. We used the perturbed set over
all the questions, databases, and SQL queries with
15,269 examples to perform evaluation here. De-
tailed perturbation types are shown in Table 16.

Bird. Bird is a large-scale, challenging dataset
specifically designed to evaluate the in-context
learning capabilities of text-to-SQL models. It en-
compasses a wide variety of complex SQL queries
and database schemas, demanding strong reason-
ing and schema understanding. The dataset in-
cludes training, development, and test splits. For
our experiments, we utilized the development set of
BIRD, which comprises 1,534 examples for evalu-
ation.

MimicSQL. MimicSQL is a single-domain text-
to-SQL dataset derived from the MIMIC-III elec-
tronic health records database. It focuses on the
medical domain, presenting unique challenges re-
lated to medical terminology and complex database
structures within healthcare. The dataset includes
training and test sets. We performed our evalua-
tion on the test set of MimicSQL_natural, which
contains 999 examples.
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Perturb Type # Samples
DB_DBcontent_equivalence 382
DB_schema_abbreviation 2853
DB_schema_synonym 2619
NLQ_column_attribute 119
NLQ_column_carrier 579
NLQ_column_synonym 563
NLQ_column_value 304
NLQ_keyword_carrier 399
NLQ_keyword_synonym 953
NLQ_multitype 1351
NLQ_others 2819
NLQ_value_synonym 506
SQL_comparison 178
SQL_DB_number 410
SQL_DB_text 911
SQL_NonDB_number 131
SQL_sort_order 192

Table 16: Perturbation Types and Sample Counts

A.10 Limitations of Rule-Based SQL
Transpilers

Static analysis and syntax-based SQL transpiler
(Rule-based transpiler) is an interesting direction
for dialect SQL generation tasks. However, our
observations highlight several limitations that make
this approach less desirable compared to methods
leveraging execution feedback.

Observation 1: Rule-Based Transpilers Still
Require Execution Feedback

While tools like SQLGlot provide syntax-level SQL
transpilation, they cannot guarantee semantic cor-
rectness or executable validity in the target dialect.
As shown in Table 17, in many cases, SQLGlot gen-
erates syntactically valid but semantically incorrect
queries, making execution feedback still necessary
for validation and refinement.

Observation 2: Rule-Based Methods Can
Hardly Do Multi-Round Refinement

Our method supports iterative refinement by inject-
ing failing case inputs to the next round’s prompt
(similar to self-correction). However, rule-based
transpilers like SQLGlot require manual updates
from programming experts to improve over itera-
tions, making them less adaptable in practice.

Aspect Content

SQLGIlot  SELECT T1.rating_score,

Output T2.director_name FROM
ratings AS T1 JOIN movies
AS T2 ON Tl.movie_id
= T2.movie_id WHERE
T2.movie_title = ’When
Will I Be Loved’

Execution Error 1140 (42000): In aggre-

Error gated query without GROUP BY,
expression #2 of SELECT Ilist
contains nonaggregated column
’movie_platform.T2.director_name’;
this is incompatible with
sql_mode=only_full_group_by

Original =~ SELECT T1.rating_score,

SQLite T2.director_name FROM

Query ratings AS T1 JOIN movies
AS T2 ON Tl.movie_id
= T2.movie_id WHERE
T2.movie_title = ’When
Will I Be Loved’

Correct SELECT

MySQL avg(T1.rating_score)

Query AS average_rating,

T2.director_name FROM
ratings AS T1 JOIN movies
AS T2 ON T1.movie_id

= T2.movie_id WHERE
T2.movie_title = "When
Will I Be Loved’ GROUP BY

T2.director_name

Table 17: SQLGIlot misses the required GROUP BY clause,
which causes execution failure in MySQL under strict
SQL modes.

Observation 3: Rule-Based Performance Is
Worse

We compared the performance of SQLGlot against
a single-round LLM-based translation.

Table 18 shows a clear gap in accuracy, further
highlighting the limitations of relying solely on
static transpilation.

Observation 4: Combine Usage of Rule-Based
Transpiler and LLM Can Reduce LLM Call
Cost

We also analyzed whether pre-filtering with SQL-
Glot can reduce the total number of LLM calls. As-
suming SQLGlot correctly solves 35% of queries,
and the LLM solves 56% of the remaining ones in
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Method
LLM (API, 1 round)
SQLGlot

Accuracy (%)
56.32
35.18

Table 18: Accuracy Comparison: Rule-Based vs. LLM-
Based Translation

each round (up to 3 rounds), the estimated number
of API calls is shown in Table 19. Pre-filtering with
SQLGlot results in roughly 35% savings in LLM
calls, consistent with the success rate of SQLGlot.
However, while this combination can reduce costs,
it still necessitates the use of an LLM and does not
overcome the fundamental limitations in seman-
tic correctness and iterative refinement of purely
rule-based approaches.

Setting LLM Calls
1k 10k 100k
LLM-only 1,634 16,336 163,360

SQLGlot+ LLM 1,062 10,618 106,184

Table 19: Estimated LLM API Calls with and without
SQLGlot Pre-filtering for 3 rounds

A.11 Execution feedback efficiency

To better understand the potential efficiency bottle-
necks, we analyze execution time across databases
of varying complexity using the MySQL engine.
Specifically, we compare execution performance on
the Spider dataset (with relatively small and simple
databases) and the BIRD dataset (Li et al., 2023a)
(which contains significantly larger and more com-
plex schemas). The complexity of database can be
shown in Table 20 through the “Avg. Rows per DB”
metric.

We acknowledge that execution-based validation
introduces overhead, but we argue that the cost re-
mains acceptable, especially given the significant
gains in data quality and model generalization. Fur-
thermore, since execution feedback is only used
during data generation (not inference), this cost is
one-time and offline. Future improvements could
involve caching, schema-aware pruning, or batched
execution to further enhance scalability.

A.12 Answer Extraction

Since LLM-based text-to-SQL generation often in-
troduces variance, such as generating unrelated in-
formation or placing answers in undesired formats,
we incorporate a regex-based answer extraction

tool for robust evaluation. Common formatting is-
sues include repeated questions, answers enclosed
in code blocks (e.g., “. . .”), and additional expla-
nations.

A.13 Detailed Translation-based
Bootstrapping Process

The original Spider dataset is based on SQLite
SQL. We used GPT-40 API to generate MySQL
and PostgreSQL SQL queries based on the given
SQLite SQL, natural language questions, and ta-
ble information (including table names and col-
umn names). The generation process followed a
structured approach to ensure high accuracy and
compatibility across SQL dialects. In 24, 25, we
describe the prompt used for GPT-40, which high-
lights key differences between SQLite SQL and
PostgreSQL/Mysql SQL. The prompt also provides
several input-output examples that illustrate how
SQLite SQL should be transformed into the target
SQL dialects. These examples help GPT-40 un-
derstand the conversion rules and adapt the syntax
accordingly.

sqlite to Postgres itereation process

Correct 90

Correct 5
Correct 4.5
Turn-0

modify the run_postgres code

Turn-1 Turn-2

Correct 0.5
modify the prompt
manual correction

Wrong 10 Wrong 5.5 Wrong 0.5

Figure 5: SQLite to PostgreSQL process.

PostgreSQL Generation Process Figure 5 il-
lustrates the process of generating PostgreSQL
SQL. In the first iteration of PostgreSQL gener-
ation, we found that around 680 queries failed with
compilation errors. To address this, we enhanced
the prompt by including additional PostgreSQL-
specific features and updated the input-output ex-
amples with corrected versions of some failed
queries from the first iteration (e.g., Ensure all
‘JOIN* operations explicitly specify the ‘ON‘ con-
dition; When using GROUP BY, all selected non-
aggregated columns must be explicitly listed in the
GROUP BY clause). After applying the modified
prompt, the number of incorrect queries decreased
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Avg. Rows per DB Avg. Import Time Avg. Execution Time Time for processing 8,000 Samples

Dataset
Spider (small-scale) 5,910.3 0.233 s
BIRD (large-scale scenarios) 256,231 21.647 s

Training (7B model) - -

0.00618 s 87.2s
0.06149 s 1,944 s
11,100s

Table 20: Execution Time Analysis (MySQL)

to about 400. Upon reviewing the errors, we dis-
covered that most issues were caused by tables
containing cells with improper formats (e.g., empty
cells or invalid values like ""). To resolve this,
we adjusted the code responsible for running Post-
greSQL queries by skipping rows with problematic
data during the conversion process. After imple-
menting the data-cleaning step, only 30 queries
remained incorrect. These were corrected manu-
ally to achieve a fully accurate PostgreSQL SQL
dataset.

sqlite to mysql itereation process

Correct 87.1

Turn-0 Correct 3.5

Correct 8.7

U Turn-2

modify the prompt
manual correction

Correct 0.5

Wrong 12.9 W¥iong 9.2

Wrong 0.5

Figure 6: SQLite to MySQL process.

Mysql Generation Process As shown in Figure
6, the MySQL generation process followed a simi-
lar iterative approach. In the first iteration, GPT-40
generated MySQL SQL for all queries. After eval-
uation, we found that approximately 890 queries
were incorrect due to compilation errors. Since the
number of errors is still very high, we repeat the
same iteration based on the incorrect samples. Af-
ter the second iteration, there are still 630 examples
that remain incorrect. To improve accuracy, we re-
fined the prompt, adding more MySQL-specific fea-
tures and incorporating corrected versions of some
failed queries from the first two iterations. We
asked GPT-40 to use backquotes for table names or
column names when necessary. With the improved
prompt, the number of incorrect queries dropped
to around 20. Finally, we manually corrected these
remaining 20 queries to achieve a fully accurate
MySQL SQL dataset.

A.14 Handling Complex SQL Features

Unlike static analysis or rule-based transpilers, our
method leverages both SQL and question semantics.
This allows it to better preserve and adapt complex
functional behavior during translation. Below, Ta-
ble 21 and Table 22 present examples demonstrat-
ing the capability of our method to correctly handle
PostgreSQL-specific features, addressing the lim-
itations often encountered by simpler translation
approaches.

A.15 Example of Execution-based Rejection

Sampling

Table 23 presents an example of the proposed
execution-based rejection sampling, where the
question originates from the WikiSQL training set.
We reformat the question to match the format used
for our training and applied best-of-8 sampling
with a cold-started model. In the upper section, we
illustrate an example of generating new training
data by sampling the correct Postgres SQL query.
Among the eight generated queries, only one cor-
rectly queries the database using “date=January
167, aligning with the question’s description. Al-
though the other queries are semantically similar
and syntactically correct, they fail to retrieve the
correct answer.

The lower section provides an example of sam-
pling for DPO training data. The question asks
about “scored 24 points”, whereas the rejected an-
swer retrieves values where the score is greater than
24, which is clearly incorrect.
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Example SQLite Query Translated PostgreSQL
Example 1
(No OVER  SELECT T2.director_name FROM SELECT director_name, movie_title
hlS()Lﬁe) ratings AS T1 INNER JOIN FROM (SELECT m.director_name,
movies AS T2 ON T1.movie_id = m.movie_title, m.movie_id, RANK()
T2.movie_id OVER (PARTITION BY m.
WHERE T2.release_year BETWEEN director_id ORDER BY
1960 AND 1985 GROUP BY T2. COUNT(r.rating_id) FILTER (WHERE
director_name HAVING COUNT(T2. r.rating_score::FLOAT > 5)
movie_id) > 10 DESC) as rank
ORDER BY T2.director_name LIMIT 2 FROM movies AS m JOIN ratings r
ON m.movie_id = r.movie_id
WHERE
m.release_year BETWEEN 1960 AND
1985 GROUP BY m.director_id,
m.movie_id, m.director_name, m.
movie_title) subquery WHERE
rank:: INTEGER = 1
AND director_name IN (SELECT
director_name FROM movies
WHERE
release_year:: INTEGER BETWEEN
1960 AND 1985 GROUP BY
director_name
HAVING COUNT(movie_id) >= 10)
ORDER BY director_name LIMIT 2
Example 2
(Window SELECT T3.years, T3.episode_id SELECT T3.years, T3.episode_id
used) FROM (SELECT DISTINCT T2.years FROM (SELECT DISTINCT T2.years

AS years, T2.episode_id,
row_number () OVER (PARTITION
BY
(Window T2.episode_id ORDER BY T2
.year) AS rn FROM person AS T1
INNER JOIN Award AS T2 ON T1.
person_id = T2.person_id WHERE
T2.award =
used) 'Television'
award_category =

AND T2.
'Silver_Gavel

_Award' AND T1.name = '
Constantine_Makris' AND T2.
result = 'Winner' AND

T2.organization = 'American_Bar.
Association_Silver_Gavel_
Awards_for_Media_and_the_Arts'
) AS T3 GROUP BY T3.episode_id

HAVING

COUNT(T3.years - T3.rn) >= 2

AS

years, T2.episode_id, row_number
() OVER (PARTITION BY T2.
episode_id ORDER BY

T2.year) AS rn FROM person AS T1
JOIN Award AS T2 ON T1.
person_id =

T2.person_id WHERE T2.award = '
Television' AND T2.
award_category = 'Silver

Gavel_Award' AND T1.name = '
Constantine_Makris' AND T2.
result = 'Winner' AND

T2.organization = 'American_Bar.
Association_Silver_Gavel_
Awards_for_Media_and

the_Arts') AS T3 GROUP BY T3.
episode_id, T3.years HAVING
COUNT(T3.years -

T3.rn::FLOAT) >= 2

Table 21: Translation Examples: PostgreSQL OVER (Window Function)
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Example SQLite Query Translated PostgreSQL

Example 3
(LIKE on SELECT T3.keyword_name FROM movie SELECT T3.keyword_name FROM movie
date) AS T1 INNER JOIN AS T1 JOIN movie_keyword AS
movie_keyword AS T2 ON T1. T2 ON T1.movie_id = T2.
movie_id = T2.movie_id INNER movie_id JOIN keyword
JOIN keyword AS T3 ON T2.keyword_id = T3.
AS T3 ON T2.keyword_id = T3. keyword_id WHERE T1.
keyword_id WHERE T1. release_date BETWEEN '
release_date BETWEEN ' 2006-01-01"' AND '2006-12-31"
2006-01-01"' AND '2006-12-31" GROUP BY T3.keyword_name
GROUP BY T3.keyword_name ORDER BY COUNT(T3.keyword_name)
ORDER BY COUNT(T3.keyword_name) DESC LIMIT 1
DESC LIMIT 1
Example 4
(Regex-like SELECT keyword_name FROM keyword SELECT keyword_name FROM keyword
keyword WHERE keyword_name LIKE '% WHERE keyword_name ILIKE
christmas%' christmas%'
match)

Table 22: Translation Examples: PostgreSQL ILIKE (RegEx Like)

Data Instance

Best of N

[Input]:

You need to generate a Postgres SQL based on the following question and table information. Question:
Who is the Opponent on January 16? Table and columns information: table_2_16946097_6: Date,
H_A_N, Opponent, Score, Record.

[Outputs]:

SELECT Opponent FROM table_2_16946097_6 WHERE Date = ’January 16’
SELECT Opponent FROM table_2_16946097_6 WHERE Date = *Jan 16’
SELECT Opponent FROM table_2_16946097_6 WHERE Date = ’Jan 16’
SELECT Opponent FROM table_2_16946097_6 WHERE Date = *Jan 16’
SELECT Opponent FROM table_2_16946097_6 WHERE Date = ’Jan 16
SELECT Opponent FROM table_2_16946097_6 WHERE Date ="1/16’
SELECT Opponent FROM table_2_16946097_6 WHERE Date = ’Jan 16’
SELECT Opponent FROM table_2_16946097_6 WHERE Date = ’1/16’

[Correct Answer]:
SELECT Opponent FROM table_2_16946097_6 WHERE Date = ’January 16’

Preference Pair

[Input]:
You need to generate a Postgres SQL based on the following question and table information. Question:
What was the record after the game in which the Hurricanes scored 24 points? Table and columns
information: table_1_20928682_1: Game, Date, Opponent, Result, Hurricanes_points, Opponents,
Record.

[Chosen Answer]:
SELECT table_1_20928682_1.Record FROM table_1_20928682_1
WHERE table_1_20928682_1.Hurricanes_points::FLOAT = 24

[Rejected Answer]:
SELECT table_1_20928682_1.Record FROM table_1_20928682_1
WHERE table_1_20928682_1.Hurricanes_points::FLOAT > 24

Table 23: Data instance of our iteration.
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Prompt Format for SQLite to PostgreSQL Conversion

Prompt Description:
You are an expert in SQL conversion. Convert SQLite SQL statements to PostgreSQL SQL while strictly following
PostgreSQL’s syntax.
Important Instructions:
1. Input Format: Each line in the input file follows this format:

SQLite SQL \t db_id

Example: SELECT count(*) FROM head WHERE age > 56 department_management

- "SELECT count(*) FROM head WHERE age > 56" is the SQLite SQL.
- "department_management” is the db_id.

2. Output Format (STRICTLY ENFORCED):

You must return the converted PostgreSQL SQL followed by the same db_id as input:

Example: SELECT count(*) FROM head WHERE head.age::INTEGER > 56 department_management
Rules to Follow:
- Do not add explanations, comments, or any extra text.
- Output must be one line per input, separated by a single ‘\t‘.
- For column names, add the table name before each column in PostgreSQL SQL.
- Ensure db_id remains exactly as in the input.
- Ensure explicit column references (e.g., table.column).
- When using GROUP BY, all selected non-aggregated columns must be explicitly listed in the GROUP BY clause
to avoid errors in PostgreSQL.
- Ensure all ‘JOIN‘ operations explicitly specify the ‘ON‘ condition. Avoid using implicit joins or missing ‘ON*
conditions, as PostgreSQL requires explicitly defined relationships between tables.
- If a table has an alias in the ‘FROM* or ‘JOIN‘ clause, always use the alias instead of the original table name in
‘SELECT*, “‘WHERE®, and other clauses.
- for SELECT DISTINCT, ORDER BY expressions must appear in select list
- Ensure that tables are referenced in ‘JOIN‘ statements in the correct order: a table must be defined before being
used in an ‘ON‘ condition.

Example 1:
Input:

SELECT DISTINCT T1.player_name, T1.birthday FROM Player AS T1 JOIN Player_Attributes AS
T2 ON T1.player_api_id = T2.player_api_id ORDER BY potential DESC LIMIT 5 soccer_1
Output:

SELECT DISTINCT T1.player_name, T1.birthday, T2.potential::FLOAT FROM Player AS T1 JOIN
Player_Attributes AS T2 ON T1.player_api_id = T2.player_api_id ORDER BY T2.potential::FLOAT
DESC LIMIT 5 soccer_1

Example 2:
Input:
SELECT count(*) FROM head WHERE age > 56 department_management
Output:
SELECT count(*) FROM head WHERE head.age::INTEGER > 56 department_management

Example 3:
Input:
SELECT avg(lat), avg(long) FROM station WHERE city = "San Jose" bike_1
Output:
SELECT AVG(lat::FLOAT), AVG(long::FLOAT) FROM station WHERE station.city = "San Jose" bike_1

Example 4:
Input:

SELECT T1.age FROM Person AS T1 JOIN PersonFriend AS T2 ON T1.name = T2.friend WHERE T2.name =
’Zach’ AND T2.year = (SELECT max(YEAR) FROM PersonFriend WHERE name = "Zach’) network_2
Output:

SELECT T1.age FROM Person AS T1 JOIN PersonFriend AS T2 ON T1.name = T2.friend WHERE T2.name =
Zach’ AND T2.year::FLOAT = (SELECT MAX(YEAR::FLOAT) FROM PersonFriend WHERE name = ’Zach’)
network_2

Now, convert the following SQLite SQL to PostgreSQL SQL. Output strictly in format: SQL \t db_id.

Table 24: Prompt example for converting SQLite SQL to PostgreSQL SQL.
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Prompt Format for SQLite to MySQL Conversion

Prompt Description:
You are an expert in SQL conversion. Convert SQLite SQL statements to MySQL SQL while strictly following
MySQL’s syntax.
Important Instructions:
1. Input Format: Each line in the input file follows this format:
Index \t SQLite SQL \t db_id

Example: 1 SELECT  T3.course_name count(*) FROM students AS TI1 JOIN
student_course_registrations AS T2 ON T1.student_id = T2.student_id JOIN courses AS T3 ON
T2.course_id = T3.course_id GROUP BY T2.course_id student_assessment
2. Output Format (STRICTLY ENFORCED):

Just output the converted MySQL SQL query (do not include index or db_id).

Example: SELECT T3.course_name , count (%) FROM Students AS T1 JOIN
Student_Course_Registrations AS T2 ON Tl.student_id = T2.student_id JOIN Courses AS
T3 ON T2.course_id = T3.course_id GROUP BY T2.course_id, T3.course_name
Rules to Follow:

- Do not add explanations, comments, or any extra text.

- Output must be one line per input, separated by a single ‘\t‘.

- When using GROUP BY, all selected non-aggregated columns or tables must be explicitly listed in the GROUP BY
clause to avoid errors in MySQL.

- When writing table names in MySQL, case matters. Refer to the provided table information to ensure correct
casing.

- Use backquotes for table name or column name when necessary.

- This version of MySQL doesn’t yet support "LIMIT & IN/ALL/ANY/SOME subquery’

Example 1:
Input:

2 SELECT T1.campus , sum(T2.degrees) FROM campuses AS T1 JOIN degrees AS T2 ON T1.id
T2.campus WHERE T2.year >= 1998 AND T2.year <= 2002 GROUP BY T1.campus csu_1
Output:

SELECT T1.campus, SUM(T2.degrees) FROM Campuses AS T1 JOIN degrees AS T2 ON T1.id
T2.campus WHERE T2.year >= 1998 AND T2.year <= 2002 GROUP BY T1.campus

Example 2:
Input:

3 SELECT T1.faculty, avg(T2.salary) FROM faculties AS T1 JOIN salaries AS T2 ON T1.faculty_id
= T2.faculty_id GROUP BY T1.faculty university_pay
Output:

SELECT T1.faculty, AVG(T2.salary) FROM Faculties AS T1 JOIN Salaries AS T2 ON T1.faculty_id
= T2.faculty_id GROUP BY T1.faculty

Now, convert the following SQLite SQL to MySQL SQL. Output strictly in the format described above.

Table 25: Prompt example for converting SQLite SQL to MySQL SQL.
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