
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 2444–2463
November 4-9, 2025 ©2025 Association for Computational Linguistics

Evaluating Text Generation Quality Using Spectral Distances of Surprisal

Zhichen Liu1⋄, Yongyuan Li1⋄, Yang Xu1†, Yu Wang 1,2, Yingfang Yuan3, Zuhao Yang4

1Dept. of Computer Science and Engineering, Southern University of Science and Technology
2Digital Linguistic Lab, Bielefeld University

3School of Mathematical and Computer Sciences, Heriot-Watt University
4College of Computing and Data Science, Nanyang Technological University

⋄ Co-first authors (equal contribution), † Correspondence: xuyang@sustech.edu.cn

Abstract

We propose a novel automatic evaluation met-
ric for open-ended text generation, which is a
substantial improvement of the recently devel-
oped method, Fourier analysis of cross-entropy
(FACE), hence, FACE-2. FACE-2 is a psy-
cholinguistically inspired metric that extracts
the dynamic patterns (spectrum) of text sur-
prisal. Examined with open-ended text gener-
ation tasks, FACE-2 significantly outperforms
a broad set of baseline metrics in revealing the
model scaling effect, which scales up to mod-
els of 70B parameters, while many other exist-
ing metrics fail to capture this effect. We have
also confirmed the advantage of FACE-2 in pro-
ducing stronger agreement with human pref-
erences from a large human-annotated dataset.
We advocate for including metrics that mine
the dynamics of likelihood in evaluating open-
ended text generation, which covers broader
aspects of human language than only using
static likelihood-based or semantic-based met-
rics. Code repository: https://github.com/
CLCS-SUSTech/FACEScore.

1 Introduction

The surprisal (likelihood) of texts is an important
source of information for evaluating the outcome
of natural language generation tasks, especially for
open-ended generation. Ever since the early works
that directly use surprisal for evaluation, such as
GLTR (Gehrmann et al., 2019), Solaiman et al.
(2019), and Ippolito et al. (2020), more sophisti-
cated methods have been recently developed to fur-
ther harness the potentials of surprisal: some utilize
the curvature of surprisal (e.g., DetectGPT and Fast-
Detect) Mitchell et al. (2023); Bao et al. (2024), and
some rely on its variance (e.g., GPT-who) (Venka-
traman et al., 2024). These works have achieved
impressive effect in telling apart model-generated
texts from those “authentic” human-written ones.

A less-taken way is to use the dynamic property
of surprisal, that is, how surprisal changes over
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Figure 1: An example showing improvement of FACE-2
(this study) over FACE-1 in better distinguishing texts
generated by models of different sizes. “small”⇒1.5b,
“medium”⇒7b, “large”⇒72b, all from Qwen2 family.
Curves are spectra of surprisal fit with GAM.

time (or, the position in body of text), as the basis
for evaluation. This idea has roots in psycholin-
guistics theories about how the cognitive effort
for processing natural language is constrained tem-
porally, such as the uniform information density
(UID) (Florian Jaeger, 2010) and entropy rate con-
stancy (ERC) (Genzel and Charniak, 2002) theo-
ries. As far as we are aware of, Fourier analysis
of cross-entropy (FACE) (Yang et al., 2023) is the
first attempt in this direction, and FourierGPT (Xu
et al., 2024) adopts its method for the generated
text detection task.

However, while focusing on the task of evaluat-
ing open-ended text generation, we found that eval-
uation metrics have not kept pace with the devel-
opment of Large Language Models (LLMs). Met-
rics like FACE and MAUVE (Pillutla et al., 2021)
have been tested mainly on older, smaller models
(such as GPT-2 and OPT). In the current landscape,
with the emergence of larger and newer models
(like Llama3 (Touvron et al., 2023) and Qwen2
(qwe, 2024)), their conclusions may no longer hold.
Indeed our experimental results show that many
historically popular metrics fail to evaluate current
models correctly, while FACE still demonstrates a
degree of effectiveness.
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To better align with the evaluation of open-ended
text generation for modern LLMs, we introduce
FACE-2, an improved version of the original FACE
metric (referred as FACE-1 throughout the study).
Our major improvements are: (i) including opti-
mized processing steps of surprisal which is the
basis for NLG evaluation; (ii) implementing sev-
eral new distance functions on spectrum represen-
tations which are mathematically more sound. We
conclude our contribution as follows:

1. We rethink the limits of an existing open-ended
text generation metric FACE-1, and introduce
an upgraded metric, namely FACE-2.

2. We conducted experiments using some mod-
ern and more recent LLMs (e.g., Llama3 and
Qwen2) and scaled up the experiment size to
70B.

3. Our experiments on the evaluation of LLM ca-
pacity and alignment with human preference
show that most metrics from the past cannot cor-
rectly evaluate modern LLMs, while spectrum-
based metrics still maintain some effectiveness.

4. Our analysis shows that FACE-2 is much more
reliable than FACE-1, and the spectrum-based
metric still has the potential to grow.

2 Related Work

2.1 Surprisal Studies in Psycholinguistics and
the Related NLG Evaluation Metrics

Since our proposed metric FACE-2 is based on sur-
prisal, here we introduce the concept by reviewing
the related linguistic studies as well as the NLG
evaluation framework based on that.

Surprisal is a well studied concept in psycholin-
guistics, which has been known to reflect the cog-
nitive processes underlying human language usage,
with evidence a wealth of corpus-based and behav-
ioral studies (Jaeger and Levy, 2006; Smith and
Levy, 2013). The most relevant previous empiri-
cal findings for FACE-1 and this study are about
temporal property of surprisal, i.e., how surprisal
changes over time. The earlist work to the best of
our knowledge, dates back to Genzel and Charniak
(2002) and also discussed in Dethlefs et al. (2016),
who find that human users to dialogue systems are
sensitive to the peaks and troughs of entropy in
speech. Xu and Reitter (2016) take a closer look
at the sub-structure of spontaneous dialogues, and
find that the utterance surprisal from two speakers
converge towards each other within topical seg-

ments. Further, Xu and Reitter (2017) hypothesize
that the observed convergence of surprisal can be
attributed to the innate periodicity of language pro-
cessing capacity limited by human cognitive load
during communication, and back it up with evi-
dence that the spectral features of surprisal are
useful predictors for success in task-oriented di-
alogues. Similar investigations are carried out on
free conversations (Maës et al., 2022), task-oriented
dialogues in written and spoken modalities (Giu-
lianelli et al., 2021), and larger datasets (Giulianelli
and Fernández, 2021).

Based on the previous empirical studies on the
surprisal, word (token) level surprisal has been
widely used for evaluating the quality of generated
text. Gehrmann et al. (2019) used heatmap-like
method to directly visualize the difference in token
surprisal between GPT2-generated and human writ-
ten text, where high-surprisal tokens are visualized
with warmer colors, i.e., the red end on spectrum,
while low-surprisal tokens with colder colors.

Entering the era of large language models, the
surprisal view of language started to gain more
attention from researchers who are interested in
developing more effective and cognitive-inspired
evaluation tools for natural language generation.
An example is FACE-1 (Yang et al., 2023), which
adopts the spectral method in Xu and Reitter (2017)
to the evaluation of open-ended text generation.
Follow-up works started using the fluctuation of
surprisal as an indicator of whether the text was
generated by model or human writers, leading to
several successful psycholinguistics-inspired text
detection methods, such as GPT-who (Venkatra-
man et al., 2024) and FourierGPT (Xu et al., 2024).
Among these studies, FourierGPT’s method is most
related to our study.

While FACE-1 has previously obtained a suc-
cess in the evaluation of open-ended text genera-
tion, it still has some limitations:First, FACE-1 is
mathematically flawed and its choice for distance
functions lacks careful curation (see Section 3).
Secondly, it is developed and tested using GPT-2
(Radford et al., 2019) generated data, and thus the
original conclusions on modeling scaling effects
and sampling methods does not necessarily apply
to current LLMs.

2.2 Limitations of Existing NLG Evaluation
Metrics

Besides the NLG evaluation metrics based on sur-
prisal, a broad set of other metrics can also be used
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for evaluating open-ended text generation: Self-
BLEU, a lexical overlap-based metric proposed by
Zhu et al. (2018) and based on BLEU (Papineni
et al., 2002); Zipf score, proposed by Holtzman
et al. (2020) (see Section 2.1); MAUVE, a metric
based on the similarity between quantized seman-
tic representations of texts (Pillutla et al., 2021);
BERTScore, a semantic similarity-based metric us-
ing pretrained BERT models (Zhang et al., 2020);
BARTScore, a generation-based metric that uses
the log-likelihood of generation (from source to
target) to measure text quality (Yuan et al., 2021).

However, all of the above-listed metrics are de-
veloped in the pre-ChatGPT era, at which point
advanced techniques like data engineering, train-
ing engineering, and scaling laws had not yet fully
investigated. It means that many of the current con-
clusions about these metrics’ performances might
be out-of-date. Therefore, we need a new compre-
hensive study to update our understanding of their
effectiveness on more recent LLMs.

3 FACE-2 Workflow

The general workflow of FACE-2, as described in
Figure 2, can be summarized in the following steps:

Step 1 - Estimate surprisal Given D as text
set, we use an language model evaluator to
calculate the surprisal of each sentence in D.
For a sentence of N tokens t1, . . . , tN , its sur-
prisal sequence S = s1, . . . , sN−1 is defined as
si ≜ − log p(ti|t1, . . . , ti−1), i.e., the negative log-
probability for each token estimated by the lan-
guage model. There |D| pieces of such surprisal
sequences produced at this step.

Based on FourierGPT (Xu et al., 2024), we addi-
tionally apply a z-score normalization to the spec-
trum to improve the numerical stability of the spec-
trum value. The surprisal sequence becomes:

s̃(n) =
s(n)− µ

σ

where µ =
∑

s(n)/N,

σ =
∑

(s(n)− µ)2/(N − 1)

(1)

Step 2 - Fourier transform We treat S as a sig-
nal in time domain, and apply the discrete Fourier
transform (defined in Cooley and Tukey, 1965):

X(ωk) ≜
N−1∑

n=0

s̃(n)e−jωkn (2)

Figure 2: The basic workflow of the FACE-2 approach.

Note that here we change the index subscript
from i to n to avoid confusion with the imaginary
unit i, which is denoted by j instead (j2 = −1).
Thus s(n) is equivalent to si. The obtained series
of complex numbers F = {X(ωk)} is the spectral
representation of the original surprisal signal in
frequency domain, where ωk = 2πk

N is the k-th
frequency component, k = 0, . . . , N − 1.

Step 3 - Spectrum preprocessing The mathe-
matical definition of FACE-1 is flawed because
it takes only real(X(ωk)) as the spectrum, ignor-
ing the information carried by the imaginary com-
ponent. As a fix, in FACE-2 we use L2-norms
∥X(ωk)∥ =

√
real(X(ωk))2 + imag(X(ωk))2 as

the final spectrum representation.

Step 4 - Measure similarity of spectrum Given
text data from two sources, Dh (human written) and
Dm (model generated), and their spectra Fh and
Fm obtained from previous stages, respectively. By
our assumption, the quality of generated text can be
reflected in its distance from human text in spectral
space, that is, some distance/similarity measures
between Fm and Fh. FACE-1 uses four similarity
functions: Spectral overlap (SO), Pearson’s corre-
lation (CORR), cosine distance, and Spearman’s
correlation (SPEAR), where CORR and cosine dis-
tance are mathematically equivalent, and SPEAR
performs poorly.

Therefore, in this study we remove the dupli-
cate and poor-performed metric proved in FACE-
1 study, and then propose to use three new dis-
tance functions: Earth Mover’s Distance (EMD)
(Rubner et al., 1998), Kullback-Leibler divergence
(KL)(Kullback and Leibler, 1951), and Jenson-
Shannon divergence (JS, also named total diver-
gence to the average by Dagan et al., 1997). These
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functions are chosen because they are widely used
for measuring the distance between probability dis-
tributions, and all come with good interpretability.

In particular, EMD is a long-standing distance
function suitable for image retrieval with spectral
features (Rubner et al., 2000; Deborah et al., 2015),
which motivates us to migrate it to a similar sce-
nario, that is, text similarity comparison based on
spectral features (both image data and language
data are treated as time series). KL is an asymmet-
ric for measuring the difference between two distri-
butions, which is suitable here because a normal-
ized spectrum can be considered as a distribution.
JS is a symmetrized and smoothed version of KL,
and it is adopted to mitigate the asymmetricality
issue in KL.

In sum, five metrics are adopted in FACE-2, SO,
CORR, EMD, KL and JS, defined as:

SO = AUC(Fh ∩ Fm)/AUC(Fh ∪ Fm) (3)

CORR = cov(Fh,Fm)/σ(Fh)σ(Fm) (4)

EMD =

∫ ∞

−∞
|Fh −Fm| (5)

KL =
∑

x∈[0,π/2]
Fh(x) log(

Fh(x)

Fm(x)
) (6)

JS =
1

2
KL(Fh,Fh+m) +

1

2
KL(Fm,Fh+m) (7)

In these formulas, Fh and Fm are the text spec-
tra from human and models, respectively, and
Fh+m = 1

2(Fh + Fm). The AUC in Equation (3)
refers to the area under the curve. According to
EMD’s definition in Equation (5), it reflects the
amount of “work” must be done to transform one
distribution Fm into another Fh. In KL and JS,
the spectrum is first normalized into a probability
distribution.

4 Experiments

In order to bring the evaluation of open-ended text
generation in line with the current development
of LLM, we evaluate FACE-2, our main objec-
tive of experiments, a simple baseline metric, sur-
prisal, which directly uses the log-likelihood of
the evaluator model, and all other metrics men-
tioned in section 2.2 in our extensive large-scale
experiments. Our experiment would include some
widely used LLMs range from 0.5B to 70B, and
test these metrics’ agreement with model size and
human preference. We evaluate the performance of
FACE-2 compared other metrics, with respect to
the following two desiderata:
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Figure 3: Illustration of how the scaling effect of gener-
ator models is analyzed. The tables represent generator
model × task combinations. The “s”, “m”, “l” indicate
small, medium, and large model size, respectively.

1. Model scaling effect: How well do the metric
scores align with the scaling effect of model
size, that is, larger models are better than smaller
ones.1 (Section 4.2)

2. Agreement with human preferences: How
well do the metric scores align with human pref-
erence for text quality. (Section 4.3)
The open-ended text generation can be described

as: given a sequence as the prompt, the goal is to
generate the full text (or response, for instructed
model) based on the prompt.Hyperparameters such
as sampling strategies, maximum and minimum
generation lengths, and GPU hour costs are re-
ported in Appendix A.4.

4.1 Datasets and models

Datasets The prompts for generation are from
eight datasets in two languages (English and
Chinese). The majority of data are in written
modality: Wiki, News, and Story, which are com-
mon choices in previous studies (Pillutla et al.,
2021; Mitchell et al., 2023; Bao et al., 2024).
For English, we include two extra datasets in di-
alogue modality for an extended investigation.
The three Chinese datasets are Wikipedia dump
(Wikimedia-Foundation), MNBVC-News (MN-
BVC Team, 2023), and WebNovel (Jun, 2023).
The five English datasets are Wikipedia dump
(Wikimedia-Foundation), BBC-News (RealTime-
Data), and WritingPrompts (Fan et al., 2018), Pub-
medQA (Jin et al., 2019), a domain-specific dataset,
and LIMA (Zhou et al., 2023) a general QA dataset.

1We would make a brief explanation of the scaling effects.
It is a conclusion derived from Arena leaderboard (Chiang
et al., 2024), where all LLMs are compared and rated by
human preference with ELO ranking. Amount the same model
family, a larger model always ranks higher.
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The generation tasks in written modality are as-
signed to base models, and the dialogue modality is
for instruction-tuned models. Detailed statistics and
data cleaning steps are reported in Appendix A.2
and Table 3.

Models The models used for text generation are:
LLaMA-3 (8b, 70b) (Touvron et al., 2023) and
Gemma-2 (2b, 9b, 27b) (Team, 2024) for English
generation only, and Qwen-2 (1.5b, 7b, 72b) (Yang
et al., 2024) and Yi-1.5 (6b, 34b) (Young et al.,
2024) for both English and Chinese generation.
The metrics will be evaluated on these generated
texts. FACE-2 requires an evaluator to calculate the
surprisal as described in Section 3, we use Pythia
(410m, 1.4b) (Biderman et al., 2023) and LLaMA3
(8b, 70b) as evaluator for English, and Qwen-2
(0.5b, 1.5b, 7b, 72b) as evaluator for both English
and Chinese. We did not use English model for Chi-
nese experiments, since they are not well trained on
Chinese datasets, which makes them tend to behave
in English pattern.

We compare performances of different model
families in various sizes, with details reported in
Table 4 in Appendix A.3.

4.2 Result: Model scaling effect

We test the degree to which “scaling law” holds
to the metric scores of generated texts, by count-
ing the number of cases that strictly satisfy the
condition large ≻ medium ≻ small, in terms of
generator size, where the ≻ operator means that
its left operand scores better than its right operand,
which is defined differently across metrics.

We consider all model family × task combi-
nations as shown in Figure 3: the English table
consists of 4 (column: generator models) × 5
(row: tasks) = 20 combinations; the Chinese ta-
ble consists of 2 × 3 = 6 combinations, accord-
ingly. A cell of the table contains the evaluation
scores for the texts generated from three versions
of the same model: small, medium, and large (ex-
cept Llama3, which only has two versions). For
each cell, if the scores strictly satisfy the inequality
large ≻ medium ≻ small, we put a valid mark.
Otherwise, we mark that cell invalid. Finally, we
use the ratio of valid cells to indicate the degree to
which a specific metric follows the scaling law.

This analysis is based on the belief that larger
models should demonstrate better overall genera-
tion performance, including the open-ended text
generation task, which is a reasonable inference
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Figure 4: Comparing the valid cell ratios of two metrics:
surprisal and FACE-2. Larger variance can be found in
surprisal (left column).

from the scaling laws of LLMs (Raffel et al., 2020;
Kaplan et al., 2020; Brown, 2020). Under this
belief, a good metric that claims to characterize
the model’s capability of generating “high-quality”
texts should be able to produce scores that rank
larger models higher than smaller ones. That means
we can judge the soundness of a metric by calculat-
ing the valid cell ratio as the basis for comparison.
For example, if metric mA results in 7 out of 20
valid cells for English, which out-performs the 5
out of 20 from another metric mB , then we can
conclude that both are better than a random guess
(1/P 3

3 = 1/6 ≈ 0.167), but mA is preferred over
mB as the former shows stronger scaling effect.

We first compare FACE-2 with its predecessor
FACE-1 and the naive surprisal method. As shown
in Table 1, FACE-2 has higher ratios than FACE-
1 and surprisal, and all metrics surpass the random
guess baseline. The numbers in Table 1 are means
and SDs from the 4 evaluators for each language,
and thus the advantage of FACE-2 is stable and
significant. The best performing distance function
is EMD for English, and JS for Chinese.

Then in Table 2 we compare the best perfor-
mance (among all evaluators) of FACE-2 with those
metrics that do not depend on multiple evaluator
models. FACE-2 using EMD as the distance func-
tion has the highest ratio in English data, and FACE-
2 using CORR wins in Chinese. In sum, from the
two tables, we can conclude that FACE-2 can better
reflect the scaling effect of model size than its pre-
decessor and most existing metrics, in open-ended
text generation tasks. For a more intuitive presenta-
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Lang. Metric Valid Cell Ratio

English

FACE-1SO 0.356 (0.053)
FACE-2EMD (L2) 0.388 (0.088)†
FACE-2EMD (z + L2) 0.400 (0.173)

FACE-2Ensemble-3 (L2) 0.331 (0.070)
FACE-2Ensemble-3 (z + L2) 0.194 (0.042)
FACE-2Ensemble-5 (L2) 0.281 (0.065)
FACE-2Ensemble-5 (z + L2) 0.175 (0.046)

surprisal 0.363 (0.143)

Chinese

FACE-1SO 0.417 (0.083)
FACE-2SO (L2) 0.417 (0.319)
FACE-2JS (z + L2) 0.583 (0.083)

FACE-2Ensemble-3 (L2) 0.292 (0.083)
FACE-2Ensemble-3 (z + L2) 0.542 (0.160)†
FACE-2Ensemble-5 (L2) 0.292 (0.083)
FACE-2Ensemble-5 (z + L2) 0.500 (0.136)

surprisal 0.375 (0.415)

random guess 1/6 ≈ 0.167

Table 1: FACE-2 compared to FACE-1 and surprisal in
the valid cell ratio that satisfies the assumption of “large
≻ medium ≻ small” in terms of generator size. Num-
bers in parentheses are standard deviations. Subscript of
FACE indicates the distance function used, or an ensem-
ble method. z stands for applying z-score normalization
on the surprisal. L2 stands for extracting L2-norm from
the spectrum. Best scores for each language group are
in bold, and † indicates the second best.

tion, we illustrate GAM-smoothed spectrum curves
from multiple generator model sizes, examining
whether larger models are closer to human (see
Figure 5), in which FACE-2 curves indeed better
resemble human spectrum.

Besides the main conclusion, we also conduct
ablation studies on the z-score normalization, the
L2-norm on spectrum, and the selection of distance
functions, which are discussed as follows.

Ablation on z-score z-score normalization on
surprisal before applying Fourier transform has
mostly positive effect on the outcomes: the highest
ratios in Table 1 come from z-scored rows; z-score
operation is particularly helpful to the ensemble
cases in Chinese (the meaning of ensemble will be
explained later); the English ensemble cases are
odd. This result sheds new light to our understand-
ing of surprisal in language: the “relative” values
are more important than absolute ones in describ-
ing the dynamic patterns of how surprisal changes
in text. In other words, the spectral features of sur-
prisal are evaluator-independent ones, possibly re-
flecting some robust cognitive-load-related features
of the generated (or human-written) texts.

Lang. Metric Valid Cell Ratio

English

FACE-2EMD 0.600
FACE-2Ensemble-3 0.450†
FACE-2Ensemble-5 0.400

MAUVE 0.200
Zipf 0.350
Self-BLEU 0.150
BERTScore 0.450†
BARTScore 0.000

Chinese

FACE-2CORR 0.833
FACE-2EMD 0.667†
FACE-2Ensemble-3 0.667†
FACE-2Ensemble-5 0.667†
MAUVE 0.333
Zipf 0.333
Self-BLEU 0.000
BERTScore 0.667†
BARTScore 0.167

random guess 1/6 ≈ 0.167

Table 2: The valid cell ratios resulted from FACE-2 (best
among all evaluators) and other metrics. Best scores are
in bold, and † indicates the second best.

Ablation on L2-norm The effect of L2-norm on
spectrum is not as salient. While the highest ratio
in Table 1 is achieved in the L2-normed FACE-
2, the overall ratios across all distance functions,
however, is almost equally good in FACE-1 (see
Table 8 in Appendix B.3). This is counter-intuitive
as L2-norm harnesses more spectral information
than only using the real part, and it also contra-
dicts the findings in FourierGPT (Xu et al., 2024).
We think this might be due to the noisy frequency
leakage problem in raw Fourier analysis, which
could be mitigated by adding smoothing windows
to surprisal. We leave it to future work.

Selection of distance functions In general, the
new distance functions in FACE-2 lead to higher
valid cell ratios. For instance in Table 1, EMD >
SO for English and JS > SO for Chinese. For
practical use, we investigate whether an ensemble
method that aggregates multiple distance functions
can still produce satisfying results. When compar-
ing text A and B, the ensemble method is to cast
majority vote among the judgements from multi-
ple distance functions. For example, if 3 out of
5 agree A is better than B, then it will be the en-
semble result. We experiment with Ensemble-3,
which votes among EMD, KL and JS (the three
new ones), and Ensemble-5, which includes all
five distance functions. We find that Ensemble-3
produces slightly better results. It is a complex task
to determine which distance function to use, and
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given the current results, EMD and Ensemble-3 are
the best options for most cases.
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Figure 5: Exemplars of GAM smoothed spectrum plots.
The spectra from FACE-2 are on the right column,
FACE-1 on the left. FACE-2 can reveal the expected
order: larger models produce spectrum (blue and pur-
ple) that resembles human (red) more.

Problem of surprisal as a metric We notice that
using pure surprisal as a metric also reaches decent
ratios: 0.363 for English and 0.375 for Chinese,
which are close to those of FACE-1. However, these
ratios have much larger standard deviations, which
are due to the usage of different evaluators: we com-
pute the surprisal with evaluator models of different
sizes, and the corresponding valid cell ratios are
illustrated in Figure 4, from which we can observe
much larger variance in the ratios resulted from
surprisal: For Chinese data, when using surprisal
estimated by Qwen2-0.5b and -1.5b evaluators (rel-
atively small models) as the metric, the valid ratios
are as low as zero; but the ratio reaches 1.0 (100%)
when the largest evaluator model Qwen2-72b is
used; similar results are found in English data. It in-
dicates an apparent problem of using raw surprisal
to evaluate text generation: surprisal scores are low
(preferred) when the evaluator matches in model
size with the generator; otherwise, surprisal scores
are high (unwanted). Therefore, using pure sur-
prisal as a metric is extremely biased towards
the evaluator used, and consequently, cannot pro-
duce consistent evaluation scores that meets the
common intuition that “larger model is better”. The
only solution is to always use the largest evaluator,

like Qwen2-72b or Llama3-70b here, which always
produce low surprisal scores to texts from models
of similar sizes (≈70b). This, however, becomes a
significant computational burden when the amount
of text grows, or when even larger generator models
(100b+) are to be evaluated.

Comparison with other metrics Amount all the
other metrics, BERTScore is the only metric that
obtains the second-best performance. To our sur-
prise, the MAUVE ratios are pretty low: 0.200 for
English and 0.333 for Chinese. It seems that the
texts generated by models of various sizes (at least
within the investigation scope of this study) cannot
be effectively distinguished using semantic repre-
sentations, such as the clustering-based method by
MAUVE. Zipf achieves comparable ratios as sur-
prisal, but its computational cost is expensive. The
lowest ratios are Self-BLEU and BARTScore, both
of which did not even perform better than random
guess.

Comparison with sampling methods We com-
pare the FACE-2 score between different sampling
methods in Appendix B.1, the results show that
with more advanced sampling method (e.g., top-p
with p = 0.95 and top-k with k = 40) have a better
FACE-2 scores.

4.3 Result: Agreement with human
preferences

Preference Dataset in MT-Bench FACE-1 and
MAUVE experiments used a human preference
dataset to evaluate their metric’s agreement with
human preference (Pillutla et al., 2021)2, gener-
ated by GPT-2. To keep the evaluation up-to-date,
we use the human annotation dataset in MT-Bench
(Zheng et al., 2023)3 instead. It is a larger and
more recent dataset, containing texts generated
by six models: GPT-4, GPT-3.5-turbo, Claude-v1,
LlaMA-13B, Alpaca-13B, Vicuna-13B, and also
pairwise comparison results of these texts given by
human judges.

Preference Ranking The way of MT-Bench cal-
culating its ranking is that: Given texts that are
presented in pairs to crowd-sourced human judges,
⟨TA, TB⟩, where TA is generated by model A and
TB by model B, the judges are requested to an-

2Available here: https://github.com/krishnap25/
mauve-experiments.

3https://huggingface.co/datasets/lmsys/mt_
bench_human_judgments
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r = .82, p = .09 r = .78, p = .12 r = -.71, p = .18

r = .66, p = .22 r = .07, p = .91 r = .22, p = .73

r = .01, p = .99 r = .21, p = .73 r = -.48, p = .41

r = .49, p = .40 r = .66, p = .23

Figure 6: Bradley-Terry scores that reflect human preferences and evaluation metrics over model generated texts. A
higher bar indicates the corresponding source of text is more preferred by human (dark color) or metrics (lighter
colors). FACE score generally have higher correlations with human preferences.

swer whether A or B wins, or if it is a tie (See Ap-
pendix C in Zheng et al. (2023)). Then the Bradley-
Terry algorithm (Bradley and Terry, 1952) is used
to convert the winning records of all models to a
ranked list of scores (called BT scores); therefore,
we obtain a ranked list based on human preference:
SA > SB > · · · > SF . It represents the mod-
els’ relative performances according to the human
judges’: model A better than model B and so on.

Similarly, we replace human judges with scoring
results for each pair of texts given by a metric, so
that we obtain a ranked list based on the given
metric: S′

B > S′
F > · · · > S′

A. The alignment
between these two rank lists can be measured by
Pearson’s correlation; it tells how well the metric
agrees with human preferences.

GPT-4 as the Approximation of Human The
"sloppiness" in MT-Bench is that it does not con-
tain human-written texts as groundtruth, which is
required by pairwise comparison-based metrics,
such as FACE-2. To deal with this, we use GPT-4’s
responses (the model that closest to human) as the
approximated human ground-truth, thereby exclud-
ing GPT-4 in our final ranking list. Therefore, the
workflow of FACE-2 within this experiment is that:
first compute the FACE-2 scores using the approxi-
mated human groundtruth, then conduct pairwise
comparison between each texts, and finally get the
ranking list by computing BT-Score.

Agreement with Human Preferences The BT-
scores from FACE-2, FACE-1, and the other five
metrics are plotted in Figure 6 in comparison with
those from human preferences. From the corre-
lation scores, we can see that both FACE-1 and

FACE-2 have stronger agreement with human
preferences than other metrics. This indicates
that spectrum-based methods are robust in differ-
ent datasets. Among the 3 new metrics, EMD per-
forms as well as SO and CORR, while KL and JS
not. We argue that it is because the text length of
MT-Bench dataset is relatively short, which makes
the spectral distances more able to be disrupted
by noise. Except for BARTScore, all other metrics
perform poorly in agreement with human prefer-
ence. It indicates that most of their conclusions on
human agreements have failed today. The results
consolidate the thought behind FACE: the human
perception of text is better characterized by tempo-
ral changes of surprisal, other than raw surprisal or
semantic features.

In our further case analysis, we found that
the biggest disagreement between human prefer-
ences and metrics was caused by Claude-v1, which
causes low correlation scores in all cases. Ap-
pendix B.5 may shed some light on it.

5 Discussion and Conclusion

In this study, we address the issue that most of
the metrics designed for open-ended text gener-
ation are published in the era where LLMs are
not fully developed, therefore it is necessary to
rethink their effectiveness in evaluating current
LLMs. Spectrum-based methods exhibit high po-
tential; therefore, we proposed an improved version
of Fourier Analysis of Cross-Entropy, FACE-2, a
metric set to evaluate open-ended text generation
in the current LLM era.We also carried out large-
scale experiments within up to 70B LLMs to update
the effectiveness conclusions of many old evalua-
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tion metrics in the current LLM era. Our results
show that most of the old conclusions have failed,
whereas spectrum-based methods maintain its ef-
fectiveness to a certain degree. We observed the out-
performance of FACE-2 in experiments of model
scaling effects, and the effectiveness and robustness
of both spectrum-based methods in experiments of
agreement with human preferences.

When compared with its predecessor and other
metrics, FACE-2 demonstrates the following advan-
tages: Firstly, it can more effectively distinguish
texts generated by models of various sizes, i.e., bet-
ter reflecting the scaling effect. This is observed
across various model families and languages,
which, more impressively, is achieved without de-
pending on large evaluating models. Secondly,
with the newly introduced metrics (EMD, KL, and
JS) and the new z-score normalization step, it out-
performs FACE-1 and a broad set of baseline met-
rics. Thirdly, the advantage of FACE in agreement
with human preferences are confirmed in a larger
dataset generated by more recent models.

In sum, the new evaluation method for open-
ended text generation, FACE-2, is effective, robust,
and computationally efficient. It reaches state-of-
the-art performance. However, no metric can fully
capture the complex nature of human languages.
As LLMs keep evolving, the gap between gener-
ated and real content will keep shrink. We believe
that seeking metrics to magnify this gap is a mean-
ingful response to the eternal question of where the
boundary between AI and human is.

6 Limitations

There are still limits in the current study. Firstly,
larger models 100b+ parameters and commercial
models, such as GPT-4, are not included, whose
experiments are needed for further validation of
FACE-2’s capability. Secondly, the majority of the
generator models examined are base-models but
not chat-models, although we believe that the foun-
dational generation capabilities are determined at
pre-training stage and is sufficient for current exper-
iments, ideally, more experiments with chat-models
for needed comprehensive evaluations, because
chat-models are the most common use cases of
LLMs. However, it is currently challenging to find
public dialogue data with human ground-truth that
can be directly used for generation tasks, especially
for Chinese data and other languages. Thirdly, how
to select the optimal distance function for FACE-2
is yet to be determined. Our current results indicate
EMD, JS, and CORR are most promising, and a
simple ensemble method (Table 2) seems working,
it still requires a systematic investigation. Lastly, it
is not clear why the spectrum of surprisal provides
information can reflect the sources of generator
models. We need further evidence that map the
spectral features in “frequency domain” to the ob-
servable linguistic patterns in “time domain”, for
example, sentence structure, lexical or syntactical
choices and so on. We will try to address these
limitations in the future work, and further improve
FACE to a more interpretable method.
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A Appendix: Reproduction

A.1 Other metrics
We compare FACE-2 with FACE-1, and other four
metrics:

Surprisal It is straight-forward: the lower sur-
prisal a text produces according to an evaluator, the
better score it receives. The exponentiated average
surprisal of a sequence of words is exactly how
perplexity is defined.

MAUVE It returns a number in the scope of [0, 1].
A larger value indicates a more similar semantic
distribution to human written texts, which indicates
higher text quality. The score is computed using the
public implementation provided by Pillutla et al.
(2021).

Zipf It is the slope of the best-fit line on log-
log plot of a rank versus unigram frequency plot.
A smaller value indicates it is closer to human
distributions, i.e., higher text quality. We use the
open-sourced implementation from Holtzman et al.
(2020).

Self-BLEU This score is computed by following
the same protocol of Holtzman et al. (2020): com-
puting the BLEU score of each generations against
all other generations as references. A lower final
score suggests higher diversity of the generated
text, which is an important indicator of text quality.

A.2 Data and cleaning steps
The mapping between domains and specific
datasets are listed in Table 3.

Language Domain Dataset

Chinese
Wiki Wikipedia-Chinese

News MNBVC-News

Story WebNovel

English

Wiki Wikipedia-English

News BBC-News

Story WritingPrompts

Domain QA PubmedQA

General QA LIMA

Table 3: Both Chinese datasets and English datasets
contain continuous writing tasks of three domains: News
article, Wikipedia document, and Story. Additionally,
we provide two open-ended text generation datasets for
instructed models.
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Model Cat. Family Size Lang.

Generator

Qwen-2 1.5b, 7b, 72b
Chinese

Yi-1.5 6b, 34b

Llama-3 8b, 70b
English

Gemma-2 2b, 9b, 27b

Evaluator
Qwen-2 0.5b, 1.5b, 7b, 72b Chinese

Pythia 410m, 1.4b
English

Llama-3 8b, 70b

Table 4: Models used in the experiment. For English
datasets, both Chinese models and English models are
used for generation and evaluation experiments. For
Chinese datasets, we uses Chinese generators only, and
Qwen-2 for Chinese evaluation.

We clean the datasets to ensure quality: repe-
titions of sentence or meaningless strings are re-
moved; next we sample a subset from each dataset,
ensuring the texts in the subsets as controlled
variable have comparatively equal length. For all
datasets from the three main categories (except for
WritingPrompts), we split each into two parts, with
the first half as the prompt for generation, and the
second half as human ground-truth. The prompt
length is set to 64 tokens, and during generation,
we limit the model maximum generation length to
1024. For two QA datasets plus WritingPrompts,
we directly use the prompt provide by themselves.
The size of each subset we used are 5000, except
for Wikipedia-Chinese and MNBVC-News, where
we removes some texts containing too much En-
glish. The size of Wikipedia-Chinese’s subset is
2160, and MNBVC-News’ is 4206. LIMA origi-
nally contains 1030 groups of dialogue, we remove
those excessively long dialogue, the size of remain-
ing subset is 900.

To further ensure consistency in generation, we
use the same tokenizer across all generator models.
For Chinese, we use the default tokenizer from
Qwen2, and for English it is the Llama3 tokenizer.

A.3 Model details

Detailed sizes of the generator and evaluator mod-
els are listed in Table 4.

A.4 GPU usage and hyper-parameters

We used 4 A6000ada 48G GPU for the experiments
in this studies. We used vllm to speed up genera-
tion and inference. We notice that vllm does not
guarantee stable log probability, but this instability
only affects the vocabularies’ log probabilities in

decimal places (≤1e-3), which can be ignored.
The arguments for the sampling method in text

generation are as follows:
• temperature: 1
• top k: 50
• top p: 0.95
The estimated times for running generator and

evaluator models is listed in Table 6. To deal with
an out-of-memory bug in vllm, we clear the cuda
cache after each step of output. This slows down the
speed about 20%∼30%. Taking all model family ×
task combinations together, the total running time
of our experiments is about (20 + 6)× 3h ≈ 140h.

B Appendix: Results

B.1 Sampling methods

We further make some comparison on the use of
different sampling methods in Table 5. The results
in the table generally suggest that a better sampling
method (p=0.95 and k=40) have better FACE-2
scores - the same conclusion as FACE-1.

B.2 Spectrum plots

The full spectrum plots of all model family × task
combinations are shown in Figure 6.

B.3 Full valid cell ratios

The full results of valid cell ratios are shown in
Table 8.

B.4 MT-Bench comparison

The detailed MT-Bench comparison results are
reported in Table 9. We exclude GPT-4 and re-
compute the results of original MT-Bench human
preference BT-score. We also report the BT-score
of FACE-2 metrics EMD and SO, and FACE-1
SO. We see that the old metric SO performs only
slightly difference in scores, while the new metric
EMD is much closer to human BT-score than SO.
Since MAUVE is not capable for pair-wise compar-
ison, we report the raw MAUVE score over these
five models directly.

B.5 Case analysis for the mismatch in
Claude-v1 output

The mismatch between human preference and met-
ric scores in Claude-v1 outputs might be due to
the fact that Claude-v1 is more likely to perform
as a chat model and outputs explanations while
others directly write what is requested. For exam-
ple, we notice that, when the prompt is "Compose
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Sampling Method SO ↑ EMD(×100)↓ KL(×10) ↓ JS(×10) ↓
Greedy 0.55 6.43 2.64 2.40
Pure Sampling 0.57 1.77 1.92 2.12
Top-k (k=40) 0.57 1.72 1.90 2.11
Top-k (k=640) 0.57 1.76 1.92 2.12
Nucleus (p=0.95) 0.58 1.72 1.91 2.11

Table 5: FACE-2 score. Tested on Gen: Gemma2-2b-base, Inf: Llama3-70b-base, Data: BBC. (×n) means the metric
value multiplied by n.

Task Model Size Running Time

Generation

1.5b 10min∼20min
7b 20min∼30min

30b (4×GPUs) 1h∼2h
70b (4×GPUs) 1h∼2h

Evaluation

0.5b 5min
1.5b 5min
7b 10min

70b (4×GPUs) 40min∼2h

Table 6: Runtime of generation tasks and evaluation
tasks for different model sizes. The runtime we reported
is a rough value, which may vary according to the envi-
ronment.

an engaging travel blog post about a recent trip
to Hawaii, highlighting cultural experiences and
must-see attractions.", Claude-v1 first generates
a sentence like "Here is a draft travel blog post
about a recent trip to Hawaii:", and then gives the
main body of post. In contrast, other models tend
to generate the post directly. Evaluation metrics are
sensitive to this kind of semantic changes, while hu-
man participants of MT-Bench that are uninformed
of model-generated texts’ features focus more on
the content quality. Hence FACE considers that
Claude-v1’s text is far from natural, while humans
rank its content to the top.

B.6 Case study of how FACE works better
than BERTScore

We use an example from LIMA to demonstrate
the situation that FACE-2 works better than
BERTScore. The three models are Qwen 1.5b, 7b,
and 72b. Comparing their outputs, we found that
the larger model gives the better answer that close
to LIMA’s groundtruth. The 1.5b model outputs a
large amount of useless codes and texts. The 7b
model gives suggestions by showing codes, which
might solve the problem, but clearly not a general

solution we hoping to see. The 72b model suc-
cessfully gives a general solution, which includes
a key information ScaleType also mentioned by
the groundtruth answer. FACE-2 scores can suc-
cessfully evaluate these models, but BERTScore
considers 7b model outperforms 72b (see Table 7).

Model BERTScore↑ FACE-2SO↑ FACE-2EMD↓ FACE-2JS↓
Qwen 1.5b 85.30 57.53 2.41 20.83
Qwen 7b 88.29 60.78 1.27 20.14
Qwen 72b 87.85 65.57 0.82 18.81

Table 7: BERTScore ranks the generator models into the
counter-intuitive order in terms of model size, while all
FACE-2 metrics result in more intuitively sound orders.
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Metric Lang. z-score Dist. func. Evaluator Mean (SD)
en1 en2 en3 en4 zh1 zh2 zh3 zh4

FACE-1
(real part)

en

no

SO 0.30 0.25 0.40 0.40 0.40 0.35 0.40 0.35 0.36(0.05)
CORR 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30(0.00)
EMD 0.40 0.30 0.45 0.40 0.45 0.40 0.30 0.40 0.39(0.05)
KL 0.35 0.50 0.35 0.40 0.35 0.30 0.35 0.55 0.39(0.08)
JS 0.35 0.50 0.40 0.40 0.35 0.30 0.35 0.45 0.39(0.06)

yes

SO 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.36(0.03)
CORR 0.25 0.50 0.20 0.20 0.10 0.05 0.15 0.55 0.25(0.17)
EMD 0.25 0.10 0.55 0.50 0.60 0.55 0.30 0.35 0.40(0.17)
KL 0.20 0.35 0.20 0.20 0.25 0.20 0.15 0.30 0.23(0.06)
JS 0.25 0.35 0.20 0.20 0.20 0.15 0.25 0.30 0.24(0.06)

zh

no

SO - - - - 0.50 0.50 0.33 0.33 0.42(0.08)
CORR - - - - 0.33 0.33 0.33 0.33 0.33(0.00)
EMD - - - - 0.67 0.50 0.50 0.67 0.58(0.08)
KL - - - - 0.50 0.50 0.50 0.50 0.50(0.00)
JS - - - - 0.33 0.50 0.50 0.67 0.50(0.12)

yes

SO - - - - 0.50 0.50 0.67 0.67 0.58(0.08)
CORR - - - - 0.17 0.00 0.33 0.83 0.33(0.31)
EMD - - - - 0.50 0.67 0.50 0.50 0.54(0.07)
KL - - - - 0.67 0.33 0.50 0.50 0.50(0.12)
JS - - - - 0.50 0.33 0.50 0.50 0.46(0.07)

FACE-2
(L2-norm)

en

no

SO 0.40 0.45 0.35 0.25 0.40 0.40 0.30 0.40 0.37(0.06)
CORR 0.15 0.15 0.20 0.40 0.05 0.00 0.00 0.45 0.18(0.16)
EMD 0.40 0.45 0.35 0.25 0.40 0.55 0.35 0.35 0.39(0.08)
KL 0.35 0.35 0.25 0.35 0.30 0.35 0.45 0.45 0.36(0.06)
JS 0.15 0.25 0.30 0.35 0.30 0.25 0.35 0.50 0.31(0.09)

yes

SO 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35(0.00)
CORR 0.10 0.15 0.25 0.50 0.05 0.05 0.10 0.50 0.21(0.18)
EMD 0.50 0.50 0.30 0.10 0.60 0.60 0.40 0.20 0.40(0.17)
KL 0.25 0.20 0.10 0.20 0.15 0.15 0.10 0.10 0.16(0.05)
JS 0.20 0.25 0.20 0.30 0.20 0.20 0.15 0.25 0.22(0.04)

zh

no

SO - - - - 0.67 0.67 0.33 0.00 0.42(0.28)
CORR - - - - 0.00 0.00 0.17 0.50 0.17(0.20)
EMD - - - - 0.33 0.17 0.17 0.50 0.29(0.14)
KL - - - - 0.33 0.33 0.33 0.33 0.33(0.00)
JS - - - - 0.33 0.50 0.17 0.33 0.33(0.12)

yes

SO - - - - 0.50 0.50 0.50 0.50 0.50(0.00)
CORR - - - - 0.17 0.00 0.17 0.83 0.29(0.32)
EMD - - - - 0.67 0.67 0.50 0.17 0.50(0.20)
KL - - - - 0.67 0.50 0.33 0.33 0.46(0.14)
JS - - - - 0.67 0.67 0.50 0.50 0.58(0.08)

Table 8: The full valid cell ratios from all experiments. Best results from each trial are highlighted. The English
evaluator models (en1-en4) are pythia-410m, pythia-1.4b, llama3-8b, and llama3-70b. The Chinese evaluator models
(zh1-zh4) are qwen2-0.5b, qwen2-1.5b, qwen2-7b, and qwen2-72b, respectively.

Human-BT MAUVE FACE2-SO-BT FACE2-EMD-BT FACE1-SO-BT

Model Score Model Score Model Score Model Score Model Score

Claude-v1 0.476 Vicuna-13b 0.708 GPT3.5-turbo 0.333 GPT3.5-turbo 0.303 GPT3.5-turbo 0.344
GPT3.5-turbo 0.342 GPT3.5-turbo 0.644 Vicuna-13b 0.242 Claude-v1 0.273 Vicuna-13b 0.281
Vicuna-13b 0.130 Alpaca-13b 0.325 Claude-v1 0.182 Vicuda-13b 0.212 Claude-v1 0.188
Alpaca-13b 0.039 Claude-v1 0.287 Alpaca-13b 0.152 Alpaca-13b 0.121 Alpaca-13b 0.125
Llama-13b 0.012 Llama-13b 0.149 Llama-13b 0.091 Llama-13b 0.091 Llama-13b 0.063

Table 9: Detailed MT-Bench comparison between human preference, FACE, and MAUVE.
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Figure 7: Other spectrum plots demonstrating FACE-2 generally reflect model scaling effect better than FACE-1.

Input

In Android, I defined an “‘ImageView“‘’s “‘layout_width“‘ to be “‘fill_parent“‘ (which takes up
the full width of the phone).
If the image I put to “‘ImageView“‘ is bigger than the “‘layout_width“‘, Android will scale it,
right? But what about the height? When Android scales the image, will it keep the aspect ratio?
What I find out is that there is some white space at the top and bottom of the “‘ImageView“‘ when
Android scales an image which is bigger than the “‘ImageView“‘. Is that true? If yes, how can I
eliminate that white space?
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Groundtruth

* Yes, by default Android will scale your image down to fit the ImageView, maintaining
the aspect ratio. However, make sure you’re setting the image to the ImageView using “‘an-
droid:src=&quot;...&quot;“‘ rather than “‘android:background=&quot;...&quot;“‘. “‘src=“‘ makes
it scale the image maintaining aspect ratio, but “‘background=“‘ makes it scale and distort the
image to make it fit exactly to the size of the ImageView. (You can use a background and a source
at the same time though, which can be useful for things like displaying a frame around the main
image, using just one ImageView.)
* You should also see “‘android:adjustViewBounds“‘ to make the ImageView resize itself to fit the
rescaled image. For example, if you have a rectangular image in what would normally be a square
ImageView, adjustViewBounds=true will make it resize the ImageView to be rectangular as well.
This then affects how other Views are laid out around the ImageView.
Then as Samuh wrote, you can change the way it default scales images using the “‘an-
droid:scaleType“‘ parameter.
By the way, the easiest way to discover how this works would simply have been to experiment a
bit yourself! Just remember to look at the layouts in the emulator itself (or an actual phone) as the
preview in Eclipse is usually wrong.
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Qwen2-1.5b Output

I need to make the whole image stay in the “‘ImageView“‘ and not take the whole screen, but not
scale it at the same time.

< R e l a t i v e L a y o u t xmlns : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk /
r e s / a n d r o i d "

xmlns : t o o l s =" h t t p : / / schemas . a n d r o i d . com / t o o l s "
a n d r o i d : i d ="@+ i d / l a y o u t _ r o o t "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : o r i e n t a t i o n =" v e r t i c a l "
t o o l s : c o n t e x t = " . M a i n A c t i v i t y ">
<ImageView

a n d r o i d : i d ="@+ i d / imageView1 "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : s r c =" @drawable / background " / >

</ R e l a t i v e L a y o u t >

The problem is that the image is scaled so it covers up the space in the layout.

< R e l a t i v e L a y o u t xmlns : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk /
r e s / a n d r o i d "

xmlns : t o o l s =" h t t p : / / schemas . a n d r o i d . com / t o o l s "
a n d r o i d : i d ="@+ i d / l a y o u t _ r o o t "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : o r i e n t a t i o n =" v e r t i c a l "
t o o l s : c o n t e x t = " . M a i n A c t i v i t y ">
<ImageView

a n d r o i d : i d ="@+ i d / imageView1 "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : s r c =" @drawable / background " / >

<ImageView
a n d r o i d : i d ="@+ i d / imageView2 "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : s r c =" @drawable / background " / >

</ R e l a t i v e L a y o u t >

... a lot of unnecessary text and code ...
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Qwen2-7b Output

And more interestingly, in iOS, when I put an image that is bigger than the layout width, there will
be no white space at all. Is that true?
If I understand the question correctly:
When you do ‘ImageView‘’s ‘LayoutParams.width = LayoutParams.MATCH_PARENT;‘ and the
image width is larger than your ‘Layout‘ size (screen size), Android will resize it (stretch it) to fit
the ‘Layout‘.
But if you try to set ‘LayoutParams.height = LayoutParams.MATCH_PARENT;‘, it will set
‘LayoutParams.height‘ to ‘ImageView‘ to 0, because ‘LayoutParams.height‘ is a ‘int‘ instead of a
‘layout_constraintDimension‘ like ‘LayoutParams.width‘. So in this case, Android won’t scale the
image to keep the ratio or not. You have to control ‘LayoutParams.height‘ by layout constraints.
By setting ‘android:adjustViewBounds="true"‘ in ‘ImageView‘’s attribute, Android will stretch
images to fill the area, respecting its original aspect ratio. It won’t add extra white space. Here is
an example:

<ImageView
a n d r o i d : i d ="@+ i d / imageView "
a n d r o i d : l a y o u t _ w i d t h =" m a t c h _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" m a t c h _ p a r e n t "
a n d r o i d : s r c =" @drawable / some_image "
a n d r o i d : ad jus tViewBounds =" t r u e " / >

Regarding iOS, yes, it has the same behavior. When iOS scales the image and its width exceeds the
view’s width, it will stretch it to the width of the view, while maintaining the original aspect ratio.
It won’t add any white space above or below the image. And there is no need to set the layout size
to MATCH_PARENT, as by default it will take all available space. However, it is possible that you
still see white space if you are manually setting any other constraints or attributes that affect the
image’s dimensions. In iOS, you can also use the Auto Layout feature to set constraints for your
‘UIImageView‘ to avoid any white spaces. The key points are:
- Set ‘UIImageView’s contentMode‘ to ‘.scaleAspectFit‘. It adjusts the view to the given layout
bounds while keeping the aspect ratio. - Set ‘ImageView’s constraints‘ to fill the parent view in
both width and height. - Set the necessary auto layout constraints to position the ‘UIImageView‘.
In both environments, you don’t have to worry about white spaces if you properly set up the
constraints and attributes related to the image scaling and positioning. Hope this helps! If you need
more details or examples, let me know. I’m happy to provide further assistance.
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Qwen2-72b Output

You could set android:scaleType="centerCrop" on your ImageView. This will ensure that your
image will be shown in the largest size possible in your space and maintain aspect ratio.
Your options are:
“‘ ImageView.ScaleType.CENTER: Scale the image to fit inside the ImageView’s bounds, centering
it. Aspect ratio is maintained.
ImageView.ScaleType.CENTER_CROP: Scale the image to fit inside the ImageView’s bounds,
centering it and cropping to fit. Useful for images that are not the same aspect ratio as the
ImageView.
ImageView.ScaleType.CENTER_INSIDE: Scale the image so that it fits entirely inside the Im-
ageView. Aspect ratio is maintained, and the image will not be scaled down if its smaller than the
ImageView.
ImageView.ScaleType.FIT_CENTER: Scale the image to fit inside the ImageView, centering and
using the image’s top and left as a center point. This scale type is like CENTER but ensures that
the entire image will be visible.
ImageView.ScaleType.FIT_END: Scale the image to fit inside the ImageView, aligning the image’s
right and bottom to the right and bottom of the ImageView. This scale type is like FIT_START but
the alignment is at the end of the ImageView.
ImageView.ScaleType.FIT_START: Scale the image to fit inside the ImageView, aligning the
image’s top and left to the top and left of the ImageView.
ImageView.ScaleType.FIT_XY: Scale the image to fit the ImageView’s bounds. The image may be
stretched to fit in this space.
ImageView.ScaleType.MATRIX: Uses a supplied Matrix object to scale and position the image.
The image will be clipped by the ImageView if it extends outside the ImageView bounds.
“‘
See [the documentation](http://developer.android.com/reference/android/widget/ImageView.
ScaleType.html) for a description of each one.
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