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Abstract

Machine translation quality has steadily im-
proved over the years, achieving near-perfect
translations in recent benchmarks. These high-
quality outputs make it difficult to distinguish
between state-of-the-art models and to identify
areas for future improvement. In this context,
automatically identifying texts where machine
translation systems struggle holds promise for
developing more discriminative evaluations and
guiding future research.

In this work, we address this gap by formal-
izing the task of translation difficulty estima-
tion, defining a text’s difficulty based on the
expected quality of its translations. We intro-
duce a new metric to evaluate difficulty es-
timators and use it to assess both baselines
and novel approaches. Finally, we demon-
strate the practical utility of difficulty estima-
tors by using them to construct more challeng-
ing benchmarks for machine translation. Our
results show that dedicated models outperform
both heuristic-based methods and LLM-as-
a-judge approaches, with sentinel-src achiev-
ing the best performance. Thus, we release
two improved models for difficulty estimation,
sentinel-src-24 and sentinel-src-25, which can
be used to scan large collections of texts and
select those most likely to challenge contempo-
rary machine translation systems.

1 Introduction

Not all data samples are equal: Machine learning
models may struggle with some samples more than
others. The ability to automatically assess sam-
ple difficulty is indispensable at various stages of
model development. For example, during train-
ing, organizing samples from the easiest to the
hardest, known as Curriculum Learning, improves
both performance and training efficiency (Bengio
et al., 2009; Wang et al., 2022; Soviany et al., 2022).

*Equal contribution.

Even during inference, computational costs can be
reduced by early-exiting on easy examples (Teer-
apittayanon et al., 2016; Schwartz et al., 2020).

Evaluating models also benefits from estimates
of sample difficulty, as too easy or too difficult
benchmarks fail to effectively differentiate between
models (Lalor et al., 2018; Rodriguez et al., 2021).
This issue is particularly relevant in Machine Trans-
lation (MT), with recent state-of-the-art models ob-
taining near-perfect scores and performing close
to the human level (Kocmi et al., 2024a; Proietti
et al., 2025). With easy test sets, practitioners might
struggle to differentiate between top-performing
models and assess whether there is headroom for
further model improvement. Additionally, while
the MT Test Suites subtask of WMT (Kocmi et al.,
2024a) targets specific complex translation phe-
nomena, no systematic investigation of the broader
concept of general translation difficulty has been
carried out.

To address this gap, we explore the notion of
sample difficulty in machine translation. First, we
propose a definition of translation difficulty and
formally introduce translation difficulty estimation
as a novel task, where the source text’s difficulty is
automatically predicted. We then present difficulty
estimation correlation (DEC), a measure designed
to evaluate the performance of difficulty estima-
tion methods. Finally, we test baselines and newly
proposed approaches to difficulty estimation and
validate their practical utility in the downstream
task of creating a challenging benchmark, which
involves automatically selecting subsets of chal-
lenging samples from a large corpus.

We find that approaches such as word rarity, syn-
tactic complexity, or even LLM-as-a-Judge under-
perform dedicated solutions in capturing translation
difficulty. Specifically, we show that sentinel-src
– a model trained to predict the expected transla-
tion quality of a given text based solely on the
source text itself (Perrella et al., 2024) – outper-
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forms other methods at estimating translation diffi-
culty. Therefore, we train two improved versions,
called sentinel-src-24 and sentinel-src-25, and re-
lease them publicly.1

2 Related Work

Previous works can be divided into two categories
depending on whether their focus is human or ma-
chine translation difficulty.

Human translation difficulty. The earliest
works (Fang, 1959; Hale and Campbell, 2002) at-
tempted to connect general text complexity to trans-
lation difficulty for humans. A more modern in-
vestigation by Mishra et al. (2013) framed human
translation difficulty as the time needed to translate
a sentence, and estimated it using data on transla-
tors’ eye movements. They used text length, word
polysemy degree, and syntactic complexity as pre-
dictors of translation difficulty. Vanroy et al. (2019)
examined the correlation between error count, word
translation entropy, and syntactic equivalence with
translation duration, gaze, and other proxies for hu-
man translation difficulty. More recently, Lim et al.
(2023, 2024) used word alignment distributions and
decoder perplexity to predict human translation dif-
ficulty.

Machine translation difficulty. To implement
a Curriculum Learning training schedule, Kocmi
and Bojar (2017) estimated sample difficulty based
on sentence length, word rarity, and the number
of coordinating conjunctions in the text. Simi-
larly, Platanios et al. (2019) used sentence length
and rarity as proxies for difficulty. Beyond these
linguistically-motivated criteria, Zhang et al. (2018)
and Liu et al. (2020) predicted translation difficulty
using the confidence and other intrinsics of the
translation model in generating the text. Almeida
(2017) treated difficulty estimation as a binary clas-
sification task, although they also used features
from the target text, making it closer to quality esti-
mation. Zhan et al. (2021b) used an artificial crowd-
based approach that leverages automatic metrics
and discovered that long segments, low-frequency
words, and proper nouns are the most challenging
to machine translate. Finally, Zhan et al. (2021a)
estimated a text’s difficulty using the embedding
similarity between its tokens and those of its trans-
lations.

1Models: hf.co/collections/Prosho/translation-difficulty-
estimators-6816665c008e1d22426eb6c4.
Code: github.com/zouharvi/translation-difficulty-estimation.

Closer to our work, Don-Yehiya et al. (2022)
defined the PreQuEL task as predicting the quality
of a given text’s translation before the translation
is generated. However, they adopted the evaluation
of the WMT 2020 Quality Estimation Shared Task
(Specia et al., 2020), which was designed for qual-
ity estimation rather than for assessing difficulty
estimators. Furthermore, their test set included
only two language directions, with all translations
produced by the same MT model. Additionally,
they did not explore the broader space of difficulty
estimators or investigate their use in constructing
challenging benchmarks.

In contrast, we define translation difficulty esti-
mation as a distinct task with a dedicated evaluation
metric. Moreover, we benchmark a wide range of
difficulty estimation approaches using test sets that
span 11 language directions, with 11 to 19 transla-
tions per segment across language pairs, produced
by both MT models and human translators. As
a result, our work constitutes the first extensive
evaluation of translation difficulty estimators, es-
tablishing a new state of the art for the task.

3 The Difficulty Estimation Task

The difficulty of translating a given text can depend
on multiple factors. A text may be challenging,
for example, due to its length, syntactic complex-
ity, idiomatic language, or the presence of rare
or specialized vocabulary. Some aspects that af-
fect translation difficulty may even depend on the
translation direction, meaning that the same source
text might be more difficult to translate into one
language than into another. Moreover, translation
difficulty might not be uniform across translators,
as it can vary with the translator’s cultural back-
ground and linguistic familiarity – in the case of
human translators – or based on factors such as
the number of parameters, training data, and model
architecture – in the case of machine translation
models.

Given these considerations, we avoid defining
translation difficulty in absolute terms, as such a
definition may not generalize well. Instead, we de-
fine difficulty relative to a given target language and
to the accuracy of a particular translator, whether
human or automatic. More specifically, given a text
x, a model2 m, and a target language l, we assign
to x a difficulty score dm,l(x) equal to the quality

2For brevity, we use “model” to refer both to human trans-
lators and automatic models.
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score assigned to a translation of x into language
l produced by m. Lower scores indicate a lower
translation quality and, therefore, greater difficulty
associated with the source text.

As an example, suppose we have two texts, x1
and x2, and their respective translations t1 and t2
into language l, both produced by model m. A
human rater evaluates these translations on a scale
from 1 to 100, assigning a score of 60 to the first
and 90 to the second. Then, dm,l(x1) = 60 and
dm,l(x2) = 90. Since dm,l(x1) < dm,l(x2), then
x1 is more difficult to translate into l than x2, for
model m. Importantly, the lower the score d, the
higher the difficulty and vice versa.

Task Definition. Given a source text x, a model
m, and a target language l, Difficulty Estimation is
the task of automatically predicting dm,l(x). Differ-
ent from Quality Estimation, difficulty estimation
models do not have access to the translations whose
quality is being estimated. Indeed, difficulty esti-
mation can be seen as the task of estimating the
expected quality of a given text’s translation.

Evaluation. We evaluate difficulty estimation
methods according to their ability to rank texts
based on difficulty. Consider a collection of
texts X = x1, x2, . . . , xN , a collection of tar-
get languages L = l1, l2, . . . , lL, and a col-
lection of models translating into language l:
Ml = m1,m2, . . . ,mMl

. Let us also define
the vector of ground-truth difficulty scores for
model m and language l as Dm,l = dm,l(x1),
dm,l(x2), . . . , dm,l(xN ) and the corresponding pre-
dictions of a difficulty estimation method as
D̂m,l = d̂m,l(x1), d̂m,l(x2), . . . , d̂m,l(xn). We
measure the translation Difficulty Estimation Cor-
relation (DEC) by averaging the Kendall’s rank
correlation coefficients τb across models and lan-
guages:

DEC =
1

|L|
∑

l∈L

1

|Ml|
∑

m∈Ml

τb
(
D̂m,l, Dm,l

)
.

(1)
We refer the reader to Appendix A for further de-
tails on how the Kendall correlation coefficient τb
is computed.

Contrasting DEC with standard MT meta-
evaluation strategies. The evaluation approach
used in Formula 1, termed “Group-by-System” by
Deutsch et al. (2023), makes DEC fundamentally
different from other meta-evaluation strategies used

in MT evaluation and Quality Estimation, which
typically rely on the Group-by-Item method instead
(Deutsch et al., 2023). Group-by-Item calculates
the correlation between assessments assigned to
different translations of the same source text (i.e.,
the same evaluation item), and then averages these
correlations across all source texts. The primary
benefit of this method is that it mitigates spuri-
ous correlations between source text features (e.g.,
length) and translation quality judgments (Perrella
et al., 2024).

However, we argue that these features are pre-
cisely what define a text’s translation difficulty.
Since our goal is to measure translation difficulty,
we define DEC using Group-by-System. This
method computes the correlation between human
and metric assessments for translations of different
source texts that were produced by the same MT
system, and then averages the correlations across
MT systems. By holding the MT system constant,
this evaluation directly measures a metric’s ability
to identify which source texts were more challeng-
ing for that system to translate.

This distinction is crucial. Indeed, using Group-
by-System to meta-evaluate standard MT or qual-
ity estimation metrics would favor those that pre-
dict source difficulty rather than purely translation
quality. Conversely, using Group-by-Item to eval-
uate difficulty estimators would be inappropriate,
as these estimators assign the same score to all
translations of a given source.

4 Methods for Difficulty Estimation

In this section, we describe several difficulty es-
timation methods. We include both common and
novel approaches. Specifically, we categorize diffi-
culty estimators into four groups: heuristic-based,
learned, LLM-as-a-Judge, and artificial crowd-
based. We refer the reader to Appendix C for im-
plementation details regarding all the considered
models.

4.1 Heuristic-based estimators
We refer to estimators as heuristic-based if they
rely on simple text features. This category includes
estimators previously shown to correlate with other
measures of difficulty (Mishra et al., 2013; Kocmi
and Bojar, 2017; Araghi and Palangkaraya, 2024).

• Text length is the number of tokens in a text.

• Word rarity is the negative average of the fre-
quencies (estimated from a reference corpus)
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of the words in a text.

• Syntactic complexity is approximated as the
height of the dependency tree associated with
a text.

4.2 Learned estimators
Learned machine translation metrics are often
trained to predict the quality of a translation given
its source text and, optionally, a reference trans-
lation (Rei et al., 2020; Guerreiro et al., 2024b;
Juraska et al., 2023, 2024). Similarly, neural mod-
els can be trained to predict the difficulty of a
text. Previous research has explored training simi-
lar models for related purposes:

• PreCOMET is a suite of source-based regres-
sors based on XLM-RoBERTa (Conneau et al.,
2020) that predict the usefulness of a sample
for evaluation (Zouhar et al., 2025b). Specif-
ically, PreCOMETdiversity prioritizes samples
likely to elicit diverse machine translation out-
puts, while PreCOMETdifficulty estimates diffi-
culty as defined by item response theory (San-
tor and Ramsay, 1998).

• sentinel-src metric is a regression model
based on XLM-RoBERTa. Perrella et al.
(2024) trained sentinel-src to estimate transla-
tion quality from the source alone – i.e., with-
out accessing the candidate translation – with
the goal of learning spurious correlations be-
tween features of the source texts and transla-
tion quality scores.

4.3 LLM-as-a-Judge
LLM-as-a-Judge approaches have seen wide adop-
tion across a range of applications (Zheng et al.,
2023; Bavaresco et al., 2024). In this work, we in-
vestigate the effectiveness of the LLM-as-a-Judge
paradigm for the task of difficulty estimation, using
GPT-4o (OpenAI, 2024) and CommandA (Cohere
Team, 2025). We prompt these models to deter-
mine the proficiency level required to translate a
given text, optionally providing information about
the target language, and return a scalar score be-
tween 0 and 120 indicating the difficulty level of
the given text. See the prompts in Example 2.

4.4 Crowd-based Estimators
The methods discussed so far estimate translation
difficulty based solely on the source text, and op-
tionally, the target language. However, having de-
fined translation difficulty as the expected quality

of a model’s translations (Section 3), we now intro-
duce difficulty estimators that more closely mimic
this definition.

Artificial Crowd. Artificial crowd-based meth-
ods first translate a source text and then use
reference-less MT metrics to estimate the qual-
ity of the resulting translations.3 Specifically, we
translate the source texts from the test set using
a diverse set of models to ensure variety in ar-
chitecture and size: three instruction-tuned LLMs
(Gemma-3-27B-IT, Qwen2.5-72B-IT, CommandA)
and one standard encoder-decoder machine transla-
tion model (NLLB-moe-54B). For the evaluation
step, we employ two state-of-the-art, reference-less
MT metrics: XCOMET-QE-XXL (Guerreiro et al.,
2024a) and MetricX-24-Hybrid-QE-XXL (Juraska
et al., 2024), hereafter referred to as XCOMET and
MetricX, respectively. The final difficulty score
for each source text is the average quality score
assigned to its translations by one of these metrics.
This approach is inspired by the artificial crowd
methods for efficient subset selection proposed by
Zouhar et al. (2025b).

True Crowd. To establish a performance upper
bound for Artificial Crowd estimators, we also
define True Crowd estimators. Unlike Artificial
Crowd, True Crowd estimators use XCOMET and
MetricX to score the translations produced by the
actual systems whose difficulty we aim to measure –
namely, the translations that constitute the WMT24
test set used in our experiments.

Since they rely on the “ground-truth” transla-
tions, True Crowd estimators are effectively equiva-
lent to quality estimators. Thus, they are not proper
difficulty estimators; we employ them solely to
report an upper bound on the performance of Arti-
ficial Crowd estimators.

5 Experiments

We benchmark the estimators using the difficulty
estimation correlation measure (DEC, Formula 1).

5.1 Experimental Setup
We measure DEC on the test sets released at the
WMT 2024 General MT and Metrics shared tasks
(Kocmi et al., 2024a; Freitag et al., 2024). These
test sets include a selection of source texts trans-
lated into multiple languages by automatic models

3Reference-less MT metrics estimate the quality of a trans-
lation by comparing it only to its source text, without requiring
reference translations.
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and human translators. Each translation is paired
with quality annotations produced by human an-
notators following either the Error Span Annota-
tion (ESA, Kocmi et al., 2024b) or the Multidi-
mensional Quality Metrics (MQM, Lommel et al.,
2014; Freitag et al., 2021) annotation protocols.
Here we report results with the ESA annotation
protocol. See Appendix Table 6 for results with the
MQM protocol, and Appendix Tables 4 and 5 for
data statistics.

We test all methods listed in Section 4. Addi-
tionally, we improve the top-performing learned
estimator, sentinel-src, by expanding the train-
ing data used by Perrella et al. (2024) and train-
ing two new models, dubbed sentinel-src-24 and
sentinel-src-25. The former is trained with data
from previous WMT editions up to WMT 2023,
while the latter also includes the WMT 24 test set.4

See Appendix B for further details regarding the
training pipeline and parameters of sentinel-src-24
and sentinel-src-25.

5.2 Results
We present the results in Table 1, with methods
organized by category as described in Section 4.
We also mark each method with the information
it uses (i.e., true translations or target language),
as detailed in the caption of Table 1, and include
three distinct oracles to provide the reader with
upper-bound performance values. The definition of
oracles can be found in Appendix E.

Heuristic-based and Learned methods. These
estimators base their predictions only on the input
text. Consequently, the difficulty scores they assign
to each text are the same across all target languages
and models.5 Within this group, all learned esti-
mators outperform the heuristic-based ones. Fur-
thermore, sentinel-src-24 achieves the highest dif-
ficulty estimation correlation overall, also higher
than sentinel-src from Perrella et al. (2024), high-
lighting the effectiveness of our re-training.

LLM-as-a-Judge. LLM judges are optionally
provided with the target language. For both models,
the target language information improves perfor-
mance. This is especially true for CommandA,
where the target language information leads to a
0.032 points increase in correlation. However, the
overall LLM judges’ performance is poor, with

4For this reason, sentinel-src-25 is not included in the re-
sults in Table 1.

5I.e., ∀m1,m2∈M, l1, l2∈L : d̂m1,l1(x) = d̂m2,l2(x).

Method Trans. Lang. DEC

O
ra

cl
e Oracle 1.000

Oracle 0.301

Oracle 0.224

H
eu

ri
st

ic Text Length 0.121

Syntactic Complexity 0.080

Word Rarity −0.040

L
ea

rn
ed

sentinel-src-24 0.182

sentinel-src 0.175

PreCOMET Difficulty 0.153

PreCOMET Diversity 0.142

L
L

M
Ju

dg
e

Command A 0.072

Command A 0.104

GPT-4o 0.077

GPT-4o 0.080

C
ro

w
d

B
as

ed

True (XCOMET) 0.221

True (MetricX) 0.207

Artificial (XCOMET) 0.177

Artificial (MetricX) 0.166

Random 0.003

Table 1: Difficulty Estimation Correlation (DEC)
achieved by each method. We categorize the methods
based on the type of information they have access to.
Text-only estimators, such as the heuristic and learned
ones, rely solely on the source text whose difficulty is
being estimated. Instead, some methods also incorpo-
rate information of the target language (Lang.) or of the
true translation included in the test set (Trans.).

scores even lower than the much simpler Text
Length heuristics.

Crowd-based estimators. As expected, the True
Crowd methods, which utilize ground-truth trans-
lations and thus serve as an upper bound, yield
the highest correlation. Since their performance
depends solely on the reference-less metrics em-
ployed, this result also demonstrates that XCOMET
outperforms MetricX on this task by a noticeable
margin.

Instead, Artificial Crowd methods’ performance
is comparable to that of sentinel-src-24. However,
Artificial Crowd approaches are considerably more
resource-intensive than learned methods, as they
require both the translation of source texts and a
subsequent quality estimation step.

5.3 Discussion
Through our evaluation, we find that:

• Heuristic-based estimators, commonly used
in previous works, are outperformed by most
other methods.
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IOL GPT-4 Claude3.5 Tower70B

Human 0.137 0.137 0.127 0.109

Tower70B 0.176 0.158 0.151

Claude3.5 0.178 0.221

GPT-4 0.202

Table 2: Average (across language directions) Kendall
τb correlation matrix for human and four MT models.

• LLM-as-a-Judge approaches are also sur-
passed by most methods, including the much
simpler Text Length heuristic.

• The performance of learned methods – i.e.,
models explicitly trained to predict text diffi-
culty – is matched only by Artificial Crowd
estimators, which are, however, considerably
more expensive to operate.

• sentinel-src-24 sets a state-of-the-art in dif-
ficulty estimation, outperforming all other
evaluated estimators.6

Based on these results, Section 6 examines the
ability of the top estimators from each category –
excluding True Crowd estimators, for the reasons
discussed in Section 4.4 – on the downstream task
of constructing difficult benchmarks.

Furthermore, even if Artificial Crowd estimators
are included, using them for benchmark creation
implicitly assumes that the generated test data will
be used to evaluate models other than those in-
volved in the difficulty estimation. In fact, because
Artificial Crowd relies on an intermediate transla-
tion step, it would bias the resulting test set against
the models used in its construction.

Full results with significance testing – including
those restricted to the MQM-annotated portion of
WMT24 – are provided in Appendix D.

5.4 Comparing Human and Machine
Translation Difficulty

We now examine whether the texts that models
find difficult to translate are also challenging for
humans. To do this, we use the difficulty scores
dm,l assigned to each source text in the WMT 24
test sets, varying m across human translators and
MT models. We measure the Kendall’s τb between
the scores of all pairs of translators, averaging

6We intentionally exclude True Crowd estimators, which,
as discussed in Section 4.4, are not genuine difficulty esti-
mators and instead serve only as upper bounds for Artificial
Crowd.

All Top model Top translation

Fr
eq

. Czech Spanish

Fr
eq

. Hindi Icelandic

Fr
eq

. Japanese Russian

0 50 100
ESA Score

Fr
eq

. Ukrainian

0 50 100
ESA Score

Chinese

Figure 1: Distribution of human scores assigned to the
translations of the texts included in the WMT 2024 test
set (Kocmi et al., 2024a). We report the scores of all
models (ALL), the scores of the top-performing model
for each language (Top model), and the scores of the
best translation for each input text (Top translation). The
chosen bin width is 15 ESA points.

them across all language directions. For consis-
tency, we restrict the analysis to the models and
human translators for which we have annotated
translations for all language directions, namely,
one human translator and the following four mod-
els: Unbabel-Tower70B (Alves et al., 2024), IOL-
Research (Zhang, 2024), Claude-3.5, and GPT-4
(OpenAI, 2024).

The results in Table 2 show that the correla-
tions with the human translator are consistently
lower (ranging 0.109 to 0.137) than those be-
tween machine translation models (ranging 0.151
to 0.221). This suggests that human translators
may perceive translation difficulty differently from
automatic models. Notably, the highest agree-
ment is observed between GPT-4 and Claude-3.5,
which might be due to both models being general-
purpose LLMs, unlike Unbabel-Tower70B and
IOL-Research, which were explicitly trained for
machine translation.

6 Creating Difficult Benchmarks

In this section, we use the top-performing difficulty
estimators to create difficult machine translation
benchmarks. First, we show that the test set em-
ployed at the WMT 2024 General MT shared task
(Kocmi et al., 2023) is too easy for current MT
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Random LLM-as-a-Judge Length Artificial Crowd Sentinel Oracle-src Oracle-tgt
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Figure 2: Average score and proportion of “perfect” source texts when creating a difficult test set. Lower values
are better. Averaged across all language pairs from WMT24 on which the subset selection is simulated. Random
selection shows 99% confidence t-test interval from 10 runs.

models. Then, we define the task of selecting a dif-
ficult subset of samples from a given dataset, and
evaluate our estimators.

WMT24 is easy. In Figure 1, we report the dis-
tribution of scores assigned by human annotators
to the translations of the WMT 2024 General MT
shared task (Kocmi et al., 2024a). Notably, the best
model for each language almost always attains 90
to 100 ESA points, and so does at least one system
for each input text. This is particularly concern-
ing for the English-to-Spanish translation direction,
where top systems made barely any errors. These
findings highlight the need to create more difficult
benchmarks. To do this, we use difficulty estima-
tors to sample difficult texts from among a larger
collection.

6.1 Setup

Given a large set of source texts X , we aim to
extract a subset X ′ ⊆ X of maximum difficulty
of size |X ′| = B. In practice, we select B texts
with the highest difficulty as determined by the top-
performing difficulty estimators. As discussed in
Section 5.2, we exclude True Crowd estimators.

We again rely on the WMT 24 test set, which
we use as X (see Section 5 for further de-
tails). Specifically, we focus on its English source
texts, which were translated into Chinese, Czech,
Hindi, Icelandic, Japanese, Russian, Spanish, and
Ukrainian, as well as its Czech sources translated
into Ukrainian. Accordingly, since we select B
source texts from X , any subset X ′ ⊆ X necessar-
ily contains only English and Czech source texts,

while target languages are considered solely for
evaluation purposes.

Task definition. We assign a single difficulty
score d̂(x) to each sample x ∈ X . For source
text-only difficulty estimators, such as heuristics
and learned methods, this is straightforward, as
they rely only on the given source text. Instead,
for Artificial Crowd methods, we assign to each
text x the average quality score of its translations,
estimated using XCOMET, averaging across both
the MT models employed and the target languages.
Finally, we construct X ′ by selecting the B most
difficult source texts.

Evaluation. One goal of constructing a difficult
benchmark is to identify samples where contempo-
rary models still struggle, in order to expose their
shortcomings and guide improvements in future
iterations. Therefore, we evaluate the usefulness of
difficulty estimators based on the drop in the aver-
age human score obtained by the models’ transla-
tions on the test set. As additional information, we
also report the proportion of “perfect” outputs (i.e.,
those that received a full score of 100/100 ESA
points from human annotators) that remain in the
subsampled test set. The exact formulas for these
measures are provided in Appendix C.

6.2 Results
We extract several X ′ ⊂ X by varying the size of
the subsample, and report the curves of the Average
Score and %Perfect measures in Figure 2. First,
we wish to highlight that the oracles serve as a per-
formance upper bound only in terms of Average

2426224267



Source Diversity Unique
length errors embd chrF outputs

Random 0.00 0.00 0.00 0.00 0.00

LLM-as-a-Judge −0.61 0.26 0.19 0.23 −0.60

Length −1.00 0.25 0.31 0.24 −0.52

Artificial Crowd −0.63 0.04 −0.11 −0.17 −0.46

Sentinel −0.66 0.12 −0.01 −0.09 −0.36

Oracle-src −0.22 −0.16 −0.47 −0.49 −0.28

Oracle-tgt −0.22 −0.16 −0.47 −0.49 −0.28

Table 3: Pearson correlations between difficulty esti-
mators and variables of interest (source length, number
of errors per source word, output diversity, and propor-
tion of unique outputs). All estimators assign lower
values to more difficult source texts. Therefore, nega-
tive correlation indicates a positive correlation between
difficulty and the variable of interest. See Appendix
Figure 7 for detailed visualization and Appendix C for
implementation details.

Score, and not in terms of %Perfect, because they
are designed to select the sources with the lowest
average score, rather than the lowest %Perfect. In
this respect, oracle-src selects the sources with the
lowest average difficulty score across models and
target languages; instead, oracle-tgt selects a differ-
ent source text for each target language, averaging
difficulty scores only across MT models. As we
can see from Figure 2, text length heuristics and
LLM-as-a-Judge-based methods show very close
performance to random subset selection, especially
in terms of Average Score. Instead, sentinel-src-24
and Artificial Crowd perform closer to the oracles,
even surpassing oracle-src in terms of %Perfect.
In Appendix F, we report detailed quantitative re-
sults for the scenario where we subsample 25%
of the test set, including per-domain performance
breakdowns.

Additionally, returning to the original complaint
of existing test sets being too easy (Figure 1), in Ap-
pendix Figure 6 we show how the score distribution
changes when selecting difficult texts.

6.3 Potential Pitfalls of Selecting by Difficulty
Selecting samples by anything other than random
sampling may harbor unexpected dangers. For ex-
ample, the texts selected by a difficulty estimator
might be grammatically incorrect or poorly formed.
Here, we investigate potential pitfalls one might
encounter when using difficulty as a subsampling
criterion. Specifically, we focus on:

• Source length: Longer texts are more difficult
to translate compared to shorter ones. We are
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Figure 3: Average Kendall τb between difficulty esti-
mators and the human judgments assigned to the MT
models in the WMT24 test set. For each MT model and
difficulty estimator, circles mark the average correlation
across en→X language pairs and bars report ±1 stan-
dard deviation.

interested in quantifying the extent to which
difficulty estimators rely on text length.

• Source errors: Translating incomprehensible
source texts is naturally difficult. Neverthe-
less, it might be undesirable to create test sets
containing many garbled sources.

• Output diversity: When creating a bench-
mark, source texts that lead to more diverse
outputs are more desirable, as they help distin-
guish between models. See Appendix C for
implementation details.

We present the correlation between difficulty es-
timators’ predictions and these variables of interest
in Table 3 and Appendix Figure 7. We wish to
remind the reader that we defined difficulty using
translation quality, meaning that lower estimators’
scores indicate higher difficulty. Therefore, a neg-
ative correlation with difficulty scores should be
interpreted as a strong correlation with the concept
of difficulty, as estimated by our models.

As expected, all estimators show a strong nega-
tive correlation with source length, indicating that
they are all biased toward selecting longer outputs.
In contrast, this does not seem to be the case for
source errors, suggesting that our difficulty estima-
tors do not prioritize texts containing many errors.
Finally, our results suggest that sentinel-src-24 and
Artificial Crowd select source texts that lead to
more diverse outputs.
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Bias toward MT models. A practical concern
when creating a test set using difficulty as a selec-
tion criterion is the potential bias toward certain
MT models. An estimator’s difficulty scores may
select the texts that some MT models find more
challenging than others, thereby biasing the result-
ing benchmark. To investigate this, we measure the
alignment between our two best-performing diffi-
culty estimators – i.e., sentinel-src-24 and Artificial
Crowd (XCOMET) – and the concept of transla-
tion difficulty, as it was defined in Section 3, for
each MT model in isolation. Specifically, for each
model and each en→X translation direction, we
measure the Kendall’s τb correlation between the
difficulty scores from the estimators and the human
quality judgments assigned to that model’s transla-
tions. Then, we average these correlations across
language pairs, reporting the mean and standard
deviation in order to capture the variability across
translation directions. To ensure that the averages
are robust, this analysis only includes MT models
that translated the WMT24 source texts into at least
five target languages. The results are presented in
Figure 3.

Overall, the mean Kendall τb correlations fall
within a narrow range and have comparable stan-
dard deviations. This suggests that the notion of
difficulty captured by both estimators aligns rela-
tively uniformly with MT models’ perceived diffi-
culty. However, we note two exceptions: ONLINE-
B exhibits a higher than average correlation with
sentinel-src-24, whereas Gemini-1.5-Pro shows a
lower average correlation with both estimators.
While this is a preliminary investigation, this find-
ing suggests that a benchmark created using these
estimators could be disproportionately difficult for
ONLINE-B and easier for Gemini-1.5-Pro. We
leave for future work a deeper investigation into
whether this discrepancy stems from a bias in the
difficulty estimations or simply from variance, es-
pecially given that the correlations were averaged
over a limited number of translation directions.

6.4 Qualitative Analysis
We manually inspected 200 source texts, half of
which were deemed easy and half difficult by
sentinel-src-25, and we separated them into 10
length-based buckets. In general, difficulty levels
assigned by sentinel-src-25 align well with human
perception of difficulty. Indeed, we find that diffi-
cult segments often contain complex constructions
(Example 1.1), consist of incomplete sentences,

1 (difficult): City get a nice easy draw at home.

2 (difficult): Alex Bregman Predicted To Betray Astros,
Sign With Shocking Blue Jays

3 (difficult): Some folks really do deserve a badge of hon-
our for their pedantry (C8). Veronica Coyne of Springfield
claims that "when bemoaning the loss of the express lane
at Woolies "12 items or less," a friend told me she’d never
used it on principle as it should have been "12 items or
fewer.""

4 (easy): Washington

5 (easy): Developing the next generation of hybrid vehi-
cles in Europe

6 (easy): We cannot allow this to happen. This legislation
is enormously unpopular. It is exactly what the American
people do not want. It must not be passed by Congress.

Example 1: The most difficult and easiest English
source texts from the WMT24 dataset, as selected by
sentinel-src.

such as headlines (Example 1.2), or include in-
direct speech (Example 1.3). On the other hand,
the segments classified as easy by sentinel-src-25
are typically single words, have simple sentence
structures, or are concatenations of short, simple
sentences (Example 1.4 to Example 1.6).

7 Conclusion

In this work, we formally define the task of trans-
lation difficulty estimation and introduce the Dif-
ficulty Estimation Correlation (DEC), a dedicated
measure for evaluating the performance of diffi-
culty estimators. We conduct a comprehensive
evaluation of existing and newly proposed estima-
tors, finding that models explicitly trained for the
task significantly outperform traditional, heuristic-
based methods and LLM-as-a-judge approaches.

Our analysis identifies sentinel-src-24 as the cur-
rent state-of-the-art in translation difficulty esti-
mation. We further validate the performance of
difficulty estimators in the downstream task of cre-
ating difficult benchmarks, demonstrating that they
successfully identify samples where modern MT
models underperform. In this downstream task
too, sentinel-src-24 remains the top-performing
method. Building on these findings, we develop
sentinel-src-25 by incorporating additional data
into the training pipeline of sentinel-src-24, and
release both models publicly. Finally, we conduct a
qualitative analysis of sentinel-src-25’s predictions,
offering intuitive insights into the types of texts it
deems difficult.
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Limitations

The concept of translation difficulty. This work
is based on the assumption that we can proxy the
difficulty of a given text using the quality of the
translations it produces. While we acknowledge
that translation difficulty should ideally be an in-
trinsic property of the source – independently of
any specific translation model – this working as-
sumption serves our purposes, particularly for the
downstream task of creating challenging machine
translation benchmarks. Indeed, our research ob-
jective is to identify texts that are difficult for con-
temporary MT models to translate, rather than to
explore the abstract, model-independent notion of
translation difficulty.

Impact of the target language on translation
difficulty. As discussed in Section 3, the diffi-
culty of translating a given text may depend on the
target language, as corroborated theoretically by
Bugliarello et al. (2020). We acknowledge that this
aspect is only mentioned briefly herein and that
we do not provide an investigation into this phe-
nomenon. Nonetheless, our experiments support
this hypothesis: the performance of the LLM-as-
a-Judge improves when the model is given infor-
mation about the target language. We therefore
encourage future research to explore the influence
of the target language on translation difficulty more
thoroughly and to investigate how this information
might be incorporated into other difficulty estima-
tion methods effectively.

Using the WMT 2024 test set to analyze diffi-
culty estimators. In Section 6.3, we investigated
potential concerns of subsampling large data sets
using our difficulty estimators. However, to do this,
we used the WMT 2024 test set, which has a limi-
tation. The sources contained in this test set were
vetted by humans, making the distribution of the
phenomena we investigate artificial. To mitigate
this issue, we conduct the same analysis using a
larger batch of data and report results in Appendix
Figure 5.
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EN→DE EN→ES JA→ZH

#Source texts 486 622 559
#Translators 19 15 15

Table 4: Statistics of the test set released at the
WMT 2024 Metrics Shared Task (Freitag et al., 2024).
“#Source texts” indicates the number of source texts in
the test set, and “#Translators” indicates the number of
available translations for each source text.

A Kendall τb
Kendall’s τ variant b is defined as:

τb =
C −D√

(C +D + Tg)(C +D + Th)
. (2)

Here C and D are the numbers of concordant and
discordant pairs when comparing gold scores ri
with hypothesis scores r̂i: a pair (i, j) is concordant
if (ri − rj)(r̂i − r̂j) > 0 and discordant if (ri −
rj)(r̂i − r̂j) < 0. Th counts pairs tied only in the
hypothesis (r̂i = r̂j and ri ̸= rj), and Tg counts
pairs tied only in the gold (ri = rj and r̂i ̸= r̂j);
pairs tied in both rankings are ignored.

We use Kendall’s τb rather than Pearson correla-
tion because τb evaluates relative order (ranks) and
is therefore more robust to scale differences and
outliers. This is important in our setting: as visible
in Figure 1, most WMT24 segment-level scores lie
in a narrow band (e.g., [90, 100]), which magnifies
the effect of outliers on Pearson, whereas τb de-
pends only on pairwise rankings. This behavior is
also discussed by Mathur et al. (2020).

B Training sentinel-src-24 and
sentinel-src-25

Our new learned difficulty estimation models,
sentinel-src-24 and sentinel-src-25, follow the
same architecture and training pipeline used for
the sentinel-src model introduced by Perrella et al.
(2024). Both models are based on XLM-RoBERTa
large as the backbone encoder, followed by a multi-
layer feedforward network on top of the [CLS]
token. They are trained to minimize the Mean
Squared Error (MSE) between predicted and hu-
man scalar scores.

We adopt the same two-stage training approach
as the sentinel-src model. In the first stage, the
model is trained on Direct Assessment (DA, Gra-
ham et al., 2013) data. In the second stage, it is
fine-tuned on MQM annotations. The key differ-
ences between our models and sentinel-src lie in
the training data used at each stage.

• Stage 1: DA training. For sentinel-src-24,
we extend the DA training data used by Per-
rella et al. (2024) by including annotations
from WMT 21 (Wenzek et al., 2021), as
well as DA+SQM annotations from WMT 22
(Kocmi et al., 2022) and WMT 23 (Kocmi
et al., 2023). sentinel-src-25 further includes
the ESA annotations from WMT 24. For both
model versions, we also incorporate MLQE-
PE data (Fomicheva et al., 2022) in the train-
ing set for this stage.

• Stage 2: MQM fine-tuning. In this phase,
we expand the MQM training set by adding
MQM annotations from WMT 23 (Freitag
et al., 2023). Unlike the sentinel-src train-
ing pipeline, we do not average multiple
scores per translation. Instead, we include
all available annotations as individual train-
ing instances, preserving variability across
raters. This applies to WMT 20 and WMT 22
MQM datasets, which include three human
scores per translation (Freitag et al., 2021; Ri-
ley et al., 2024). Similarly to the first training
stage on DA, in the case of the sentinel-src-25
model, we also include MQM annotations
from WMT 24.

Following the approach of Perrella et al. (2024), we
treat each pair consisting of a source text segment
and its associated human score as an independent
training instance. Since human scores are assigned
to individual translations, multiple annotations may
exist for the same source text. We do not combine
these scores in any way but include them all in
the training data for both DA and MQM stages.
Training hyperparameters match those used by Per-
rella et al. (2024) for sentinel-src. All models are
trained using a single NVIDIA GeForce RTX 4090
GPU. The estimated training time is approximately
three GPU hours for the first (DA) stage and one
GPU hour for the second (MQM) fine-tuning stage.
These estimates apply to both sentinel-src-24 and
sentinel-src-25.

C Implementation Details

• For the word rarity heuristic, we com-
pute word frequencies using the wordfreq
Python library (Speer, 2022).

• For the syntactic complexity heuristic and
text length, we obtain dependency trees and
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EN→ES EN→HI EN→IS EN→JA EN→RU EN→UK EN→ZH EN→CS CS→UK

#Source texts 634 634 634 634 634 634 634 634 1954
#Translators 14 11 11 13 14 11 13 16 12

Table 5: Statistics of the test set released at the WMT 2024 General Machine Translation Shared Task (Kocmi et al.,
2024a). “#Source texts” indicates the number of source texts in the test set, and “#Translators” indicates the number
of available translations for each source text.

corresponding tokens using spaCy. Specif-
ically, we use language-specific pipelines:
i) en_core_web_sm for English, ii)
ja_core_news_sm for Japanese, and iii)
spacy_udpipe for Czech.

• For the output diversity assessment (Sec-
tion 6.3), we compute multilingual sen-
tence embeddings from the source texts
using sentence-transformers/paraphrase-
multilingual-MiniLM-L12-v2 (Reimers and
Gurevych, 2019). Specifically, for each
pair of translations, we measure the inner
product between their multilingual sentence
embeddings and their chrF score computed
one against the other.

For the artificial crowd, we use the following:

• NLLB-moe-54B: sparsely-gated mixture-of-
experts encoder-decoder translation model
(NLLB et al., 2022).

• Gemma-3-27B-IT: multimodal instruction-
tuned LLM from the Gemma family (Gemma
et al., 2025).

• Qwen2.5-72B-IT: largest instruction-tuned
LLM from the Qwen2.5 family (Qwen et al.,
2025).

• CommandA: 111B-parameter LLM for real-
world enterprise use cases (Cohere Team,
2025).

For evaluation of Section 6 we use average model
score and %Perfect. For average model score,
given X ′ ⊆ X and a set of models Ml, we report
for each subset X ′ ⊆ X with |X ′| = B:

AvgScore =
1

B·|Ml|
∑

x∈X ′
m∈Ml

dm,l(x) , (3)

which is the average human score on the subset.
For proportion of perfect translations, we use:

%Perfect=
1

B·|Ml|
∑

x∈X ′
m∈Ml

1[dm,l(x)=100%] (4)

D Complete Results

Table 6 presents the difficulty estimation correla-
tion scores of all considered methods when the
ground truth is based on MQM annotations, rather
than ESA.

Instead, Tables 7 and 8 present the per-language
breakdown of all methods’ difficulty estimation cor-
relation scores on the ESA-annotated and MQM-
annotated WMT24 test data, respectively. These ta-
bles also include ranks derived from statistical sig-
nificance analysis. Specifically, we used the PERM-
BOTH hypothesis test, introduced by Deutsch et al.
(2021).

E Oracles

Oracle methods adopt the true human judgments
used to derive difficulty scores, as detailed in Sec-
tion 3. We consider three oracles that differ in the
type of information they have access to:

• Oracle (source text + target language + tar-
get translation) assigns to each source text x
the true dm,l(x), for each m and l.

• Oracle (source text + target language) es-
timates the difficulty of x by averaging the
true dm,l(x) across all models (∀m ∈ Ml),
meaning that its estimates do not vary across
models, but only across target languages.

• Oracle (source text only) averages the true
dm,l(x) across both models and target lan-
guages, assigning the same score to each
source text regardless of target language or
translator.

F Creating Difficult Benchmarks –
Quantitative Results

To quantitatively evaluate the effectiveness of our
difficulty estimators for constructing challenging
benchmarks, we simulate a 25% budget scenario.
That is, for each method, we select the 25% most
difficult source texts from the WMT 24 test sets and
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Method System Lang DEC

O
ra

cl
e Oracle 1.000

Oracle (source text + target lang) 0.430
Oracle (source text only) 0.404

H
eu

ri
st

ic Text Length 0.222
Syntactic Complexity 0.170
Word Rarity −0.052

L
ea

rn
ed

sentinel-src-24 0.246
sentinel-src 0.235
PreCOMET Difficulty 0.169
PreCOMET Diversity 0.167

L
L

M
Ju

dg
e

Command A (source text only) 0.114
Command A (source text + target lang) 0.120
GPT-4o (source text only) 0.090
GPT-4o (source text + target lang) 0.090

C
ro

w
d

B
as

ed

True (XCOMET-QE-XXL) 0.278
True (MetricX-24-Hybrid-QE-XXL) 0.248
Artificial (XCOMET-QE-XXL) 0.207
Artificial (MetricX-24-Hybrid-QE-XXL) 0.185

Random 0.002

Table 6: Difficulty Estimation Correlation (DEC) achieved by each method on the MQM-annotated WMT24. We
categorize the methods based on the type of information they have access to. Text-only estimators, such as the
heuristic and learned ones, rely solely on the source text whose difficulty is being estimated. Instead, some methods
also incorporate information on the target language of translation, while others further leverage knowledge of the
specific translator who produced the translations in the test set.

assess the resulting subset using human annotations
of translation quality.

Table 9 and Table 10 report the results of this
evaluation for the ESA and MQM human annota-
tion protocols, respectively, averaged across all lan-
guage directions in the corresponding test sets. We
consider two quantitative indicators: (1) AvgScore,
the average human score assigned to the selected
subset (lower indicates higher difficulty), and (2)
%Perfect, the proportion of model outputs in the
selected subset that receive a perfect human score
(lower is also better).

Results confirm the strong performance
of our dedicated difficulty estimation model,
sentinel-src-24, which achieves substantially
lower AvgScore and %Perfect values than random
selection. It also achieves the best results among
all automatic methods that rely solely on the source
text. In particular, in Table 9, it is outperformed in
AvgScore only by Artificial Crowd (XCOMET),
a more computationally intensive approach that
requires translating each source text with multiple
large models and evaluating those translations
using an XXL MT metric. Furthermore, Artificial
Crowd methods can produce difficulty scores
conditioned on the target language, unlike
sentinel-src-24, which relies exclusively on the

source text. On the other hand, sentinel-src-24
obtains the best %Perfect score in Table 9. In
Table 10, sentinel-src-24 outperforms all automatic
methods in both AvgScore and %Perfect, including
Artificial Crowd.

As for the other automatic methods, the Text
Length heuristic consistently outperforms LLM-
as-a-Judge (based on Command A), despite the
latter requiring significantly more computational
resources. Notably, in both Table 9 and Table 10,
Command A only marginally improves over ran-
dom selection, reinforcing the limitations of LLM-
as-a-Judge methods already observed in Table 1.

Tables 11 and 12 provide a fine-grained break-
down of results across the WMT 24 domains
(News, Social, Literary, and Speech) for the ESA
and MQM test sets, respectively. These results
show that the overall patterns hold consistently
across domains. While absolute performance
varies, sentinel-src-24 and Artificial Crowd achieve
the strongest results in nearly all domain-specific
evaluations.

This analysis supports the practical utility of dif-
ficulty estimation for controlled test set construc-
tion and confirms that learned estimators such as
sentinel-src-24 offer effective and reliable means
for identifying source segments where MT systems
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are more likely to struggle.

G Related work for Benchmark Creation

We extend the related work in Section 2 by discus-
sion on previous attempts to automatically create
challenging subsets.

Maia Polo et al. (2024, tinyBenchmarks) and
Rodriguez et al. (2021) make heavy use of Item Re-
sponse Theory (Santor and Ramsay, 1998), which
is a set of statistical models for educational testing
of human subjects. However, this is not applicable
to machine translation, where the quality of the
output is represented as a continuous score. Other
works (Ni et al., 2024b,a; Ruan et al., 2024; Zouhar
et al., 2025b) attempt to be more broadly applica-
ble to natural language generation tasks, though
their optimization goals are usually efficient testing
(i.e. obtaining the same model ranking with fewer
evaluated examples) rather than creating difficult
testsets.

For machine translation specifically, Zhan et al.
(2021a) use proxy of machine translation difficulty
to inform better evaluation. Again, Zouhar et al.
(2025a) automatically remove examples that are
too easy from the evaluation set, corresponding to
our True Crowd with quality estimation.
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Figure 4: Average similarity between two closest (left) and any two (right) source texts in X based on embeddings
and cosine similarity. The left curves go up because the vector space saturates and nearest neighbours become closer.
Random selection shows 99% confidence t-test interval from 10 runs.
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Figure 5: In contrast to Figure 4, we have collected contemporary news articles (40k segments through crawling,
Bañón et al., 2020) to evaluate how our difficulty sampling would perform in a real world. Average similarity
between two closest (left) and any two (right) source texts based on embeddings and cosine similarity in X on
raw 40k English segments (not WMT24). The left curves go up because the vector space saturates and nearest
neighbours become closer. Random selection shows 99% confidence t-test interval from 10 runs. LLM-as-a-Judge
and Artificial crowd were not included due to compute costs. Oracle is not present due to the absence of model
outputs and human scores.
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Figure 6: Distribution of human scores for machine translation models in WMT 2024 (Kocmi et al., 2024a) of all
models, top model in each language, and top model for each input segment. Subset selection methods select top
25% most difficult segments. Extends Figure 1.
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Average EN→DE EN→ES JA→ZH
Rank DEC DEC DEC DEC

Oracle 1 1.000 1.000 1.000 1.000
Oracle (source text + target lang) 2 0.430 0.505 0.280 0.503
Oracle (source text only) 3 0.404 0.488 0.221 0.503
True Crowd (XCOMET-QE-XXL) 4 0.278 0.309 0.208 0.315
True Crowd (MetricX-24-Hybrid-QE-XXL) 5 0.248 0.268 0.192 0.284
sentinel-src-24 5 0.246 0.278 0.168 0.291
sentinel-src 6 0.235 0.273 0.165 0.268
Text Length 7 0.222 0.262 0.147 0.256
Artificial Crowd (XCOMET-QE-XXL) 8 0.207 0.243 0.159 0.220
Artificial Crowd (MetricX-24-Hybrid-QE-XXL) 9 0.185 0.209 0.145 0.201
Syntactic Complexity 10 0.170 0.158 0.073 0.278
PreCOMET Difficulty 10 0.169 0.219 0.129 0.159
PreCOMET Diversity 10 0.167 0.241 0.143 0.117
LLM-as-a-Judge (Command A, tgt-based) 11 0.120 0.122 0.088 0.150
LLM-as-a-Judge (Command A, src-based) 11 0.114 0.117 0.060 0.165
LLM-as-a-Judge (GPT-4o, tgt-based) 12 0.090 0.096 0.064 0.110
LLM-as-a-Judge (GPT-4o, src-based) 12 0.090 0.111 0.049 0.109
Random 13 0.002 0.003 0.004 0.000
Word Rarity 14 -0.052 -0.114 -0.043 0.001

Table 8: Difficulty Estimation Correlation (DEC) achieved by each method, per language, on the MQM-annotated
WMT24. Ranks represent clusters of statistical significance and are computed following Freitag et al. (2024), which
leverage the PERM-BOTH hypothesis test introduced by Deutsch et al. (2021).

Method AvgScore %Perfect

Random 84.4 21.0%
Oracle (source text only) 74.9 13.3%
Oracle (source text + target lang) 71.6 11.4%
Text Length 82.7 14.1%
sentinel-src-24 79.1 12.1%
Artificial Crowd (XCOMET-QE-XXL) 78.3 13.3%
Command A (source text + target lang) 83.0 16.1%

Table 9: Comparison of methods for selecting the most difficult 25% of samples from the ESA test set, evaluated
using (1) the average human score on the selected subset and (2) the proportion of model outputs in the selected
subset that achieve a perfect human score. Results are calculated per language pair and then averaged. The entire
test set has an average score (AvgScore) of 84.4 and a percentage of perfect outputs (%Perfect) of 20.7%.

Method AvgScore %Perfect

Random -2.5 58.8%
Oracle (source text only) -6.6 32.7%
Oracle (source text + target lang) -6.8 30.5%
Text Length -4.5 43.6%
sentinel-src-24 -5.1 39.6%
Artificial Crowd (XCOMET-QE-XXL) -4.4 43.8%
Command A (source text + target lang) -3.1 51.1%

Table 10: Comparison of methods for selecting the most difficult 25% of samples from the MQM test set, evaluated
using (1) the average human score on the selected subset and (2) the proportion of model outputs in the selected
subset that achieve a perfect human score. Results are calculated per language pair and then averaged. The entire
test set has an average score (AvgScore) of -2.5 and a percentage of perfect outputs (%Perfect) of 57.7%.
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AvgScore %Perfect

Method News Social Literary Speech News Social Literary Speech

Random 86.5 84.7 84.7 80.3 19.3% 22.6% 19.7% 12.3%
Oracle (source text only) 82.5 75.8 76.0 71.1 14.1% 16.9% 11.0% 7.0%
Oracle (source text + target lang) 79.6 71.3 72.9 68.3 11.8% 13.7% 8.0% 4.7%
Text Length 84.6 83.1 78.4 82.0 15.0% 15.5% 9.7% 11.8%
sentinel-src-24 84.1 80.2 78.7 77.5 14.4% 15.1% 10.0% 8.6%
Artificial Crowd (XCOMET-QE-XXL) 84.6 79.6 77.6 75.6 15.3% 16.6% 11.9% 8.1%
Command A (source text + target lang) 84.9 82.1 79.7 78.8 15.5% 17.4% 10.6% 10.2%

Table 11: Fine-grained evaluation of the most difficult 25% of test set samples from the ESA test set, selected
independently for each domain (News, Social, Literary, Speech) and averaged across the language pairs. Results are
shown for AvgScore (average human score) and %Perfect (proportion of model outputs with a perfect human score).

AvgScore %Perfect

Method News Social Literary Speech News Social Literary Speech

Random −1.4 −1.4 −3.5 −5.5 64.6% 68.9% 56.5% 37.5%
Oracle (source text only) −4.5 −3.1 −5.9 −10.5 37.0% 45.6% 40.9% 24.6%
Oracle (source text + target lang) −4.7 −3.4 −5.9 −11.0 33.6% 41.8% 40.7% 22.2%
Text Length −3.3 −2.0 −5.2 −6.0 47.4% 58.5% 46.4% 37.2%
sentinel-src-24 −2.7 −2.2 −4.9 −7.1 48.7% 56.5% 48.5% 30.2%
Artificial Crowd (XCOMET-QE-XXL) −2.5 −2.0 −3.5 −7.6 51.0% 57.8% 50.4% 30.4%
Command A (source text + target lang) −2.3 −1.6 −4.1 −4.4 50.0% 64.2% 51.2% 40.5%

Table 12: Fine-grained evaluation of the most difficult 25% of test set samples from the MQM test set, selected
independently for each domain (News, Social, Literary, Speech) and averaged across the language pairs. Results are
shown for AvgScore (average human score) and %Perfect (proportion of model outputs with a perfect human score).
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Figure 7: Relationship between selectors and variables of interest (source length, source number of errors per
word, output diversity measured by pairwise embeddings inner product and chrF, and proportion of unique outputs).
For all methods, lower values indicate more difficult source texts, so negative correlation implies stronger positive
connection between difficulty and the target variable. See Table 3 for an aggregated perspective.
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Prompt for LLM-as-a-judge (source text only):

You are given a source text. Your goal is to determine the approximate proficiency level required to translate this text, based
on a detailed analysis of its complexity. The final result should be reported as a single numeric score on a scale of 0 to
120, where higher numbers correspond to a higher difficulty (i.e., more advanced language proficiency requirements). You
should also relate this numeric score to commonly recognized proficiency levels (e.g., A1, A2, B1, B2, C1, C2). Here is the
expected mapping: 0-20 for A1 (Beginner); 21-40 for A2 (Elementary); 41-60 for B1 (Intermediate); 61-80 for B2 (Upper
Intermediate); 81-100 for C1 (Advanced); 101-120 for C2 (Mastery).

Instructions: First, examine the text to identify features that affect reading difficulty, including complexity of vocabulary,
grammar, semantic density, and any specialized knowledge required. Then, provide a brief explanation of your reasoning for
each major factor. Consider whether the text includes domain-specific terminology, cultural references, idiomatic expressions,
or advanced grammatical constructions. Finally, assign a numeric score from 0 to 120 and map that score to one of the
CEFR levels. Conclude with a final statement that clearly states your numeric score and the corresponding proficiency level
surrounded by triple square brackets, for example [[[86, C1 (Advanced)]]]

Analyze following text:
{src}

Prompt for LLM-as-a-judge (source text + target language):

You are given a source text. Your goal is to determine the approximate proficiency level required to translate this text into
{target_language}, based on a detailed analysis of its complexity. The final result should be reported as a single numeric score
on a scale of 0 to 120, where higher numbers correspond to a higher difficulty (i.e., more advanced language proficiency
requirements). You should also relate this numeric score to commonly recognized proficiency levels (e.g., A1, A2, B1, B2,
C1, C2). Here is the expected mapping: 0-20 for A1 (Beginner); 21-40 for A2 (Elementary); 41-60 for B1 (Intermediate);
61-80 for B2 (Upper Intermediate); 81-100 for C1 (Advanced); 101-120 for C2 (Mastery).

Instructions: First, examine the text to identify features affecting the translation into {target_language}, which affect reading
difficulty, including complexity of vocabulary, grammar, semantic density, and any specialized knowledge required. Then,
provide a brief explanation of your reasoning for each major factor. Consider whether the text includes domain-specific
terminology, cultural references, idiomatic expressions, or advanced grammatical constructions. Finally, assign a numeric
score from 0 to 120 and map that score to one of the CEFR levels. Conclude with a final statement that clearly states
your numeric score and the corresponding proficiency level surrounded by triple square brackets, for example [[[86, C1
(Advanced)]]].

Analyze following text:
{src}

Example 2: Prompts used to estimate the difficulty of a given text using LLM-as-a-judge (Section 4.3).
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