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Abstract

Scaling test-time computation, generating and
analyzing multiple or sequential outputs for
a single input, has become a promising strat-
egy for improving the reliability and quality of
large language models (LLMs), as evidenced
by advances in uncertainty quantification and
multi-step reasoning. A key shared component
is semantic clustering, which groups outputs
that differ in form but convey the same mean-
ing. Semantic clustering enables estimation of
the distribution over the semantics of outputs
and helps avoid redundant exploration of rea-
soning paths. However, existing approaches
typically rely on external models, which intro-
duce substantial computational overhead and
often fail to capture context-aware semantics.
We propose Latent Semantic Clustering (LSC),
a lightweight and context-sensitive method that
leverages the generator LLM’s internal hidden
states for clustering, eliminating the need for
external models. Our extensive experiments
across various LLMs and datasets shows that
LSC significantly improves the computational
efficiency of test-time scaling while maintain-
ing or exceeding the performance of existing
methods.

1 Introduction

Scaling test-time computation has emerged as a
promising strategy to improve the reliability and
quality of responses from large language models
(LLMs) by generating multiple responses for a
single input (Kuhn et al., 2023; Lin et al., 2024;
Nikitin et al., 2024; Yao et al., 2023; Hao et al.,
2023; Snell et al., 2025). For reliability, uncer-
tainty quantification methods assess the semantic
diversity among the multiple outputs to estimate
model confidence (Kuhn et al., 2023; Lin et al.,
2024; Nikitin et al., 2024). For quality, reasoning
methods explore and aggregate multiple reasoning
paths (Yao et al., 2023; Hao et al., 2023).
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Figure 1: Comparison of LSC and NLI/embedding mod-
els in terms of latency (sec), clustering performance (F1
score), and memory usage (GB). F1 score is plotted
against log-scaled latency; circle size denotes square-
root memory usage. Circles with the same hatch pat-
tern denote the same model type (i.e., LLM, sentence-
embedding, or NLI) and numbers inside circles indicate
memory usage. LSC achieves the best performance with
minimal latency and memory usage. Detailed experi-
mental results are described in Table 3.

A key component in such test-time scaling meth-
ods is semantic clustering, which groups responses
with the same meaning (despite their diverse forms).
Indeed, effective clustering can improve uncer-
tainty quantification (Kuhn et al., 2023) by com-
puting the distribution over distinct meanings of
responses, and accelerate multi-step reasoning by
avoiding unnecessary explorations of (semanti-
cally) duplicated reasoning paths (Lee et al., 2025).
However, semantic clustering is challenging in
open-ended tasks, where the output space is large,
ambiguous, and diverse. Reasoning tasks, in partic-
ular, are inherently open-ended.

For semantic clustering, existing test-time scal-
ing methods (Kuhn et al., 2023; Qiu and Miikku-
lainen, 2024) typically employ external models
such as natural language inference (NLI) (Nikitin
etal., 2024; Lin et al., 2024) or sentence embedding
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Figure 2: Comparison of semantic clustering frame-
works with test-time computation scaling scenario
with LLMs. (a) Previous methods rely on external
NLI/embedding models to cluster generated sequences.
(b) Our latent semantic clustering offers a more efficient
and effective alternative by directly leveraging internal
hidden representations of LLMs. same colors (i.e., blue
and purple) denote semantically equivalent meanings.
A concrete example with generated sequences by LLMs
is shown in Figure 5.

models (Abdaljalil et al., 2025). Such approaches
with external models incur significant computa-
tional overhead due to additional inference. In ad-
dition, they often fail to capture context-dependent
semantics, as they operate separately from the gen-
erator of responses. As a result, they are both in-
efficient and less applicable to test-time scaling
methods.

To address these limitations, we propose a
lightweight yet effective method for semantic clus-
tering, called Latent Semantic Clustering (LSC).
The key idea is to directly leverage the internal la-
tent representations of the generator, eliminating
the need for external models (Figure 2). LSC offers
two main advantages for test-time scaling as shown
in Figure 1. First, it is highly efficient—requiring
only minimal memory to store hidden vectors and
incurring virtually no additional computation. Sec-
ond, it naturally captures context-aware semantics
embedded in the generator’s representations, lead-
ing to more accurate clustering and effective im-
provement of test-time scaling methods. Our exper-
iment across various LLMs and datasets validates
the efficiency and effectiveness of LSC in uncer-
tainty quantification and multi-step reasoning.

2 Background: Semantic Clustering

This section begins with a formal description of
semantic clustering (Section 2.1). We then de-
scribe how semantic clustering can be applied to en-

hance uncertainty quantification (Section 2.2) and
to facilitate efficient exploration in LLM reasoning
(Section 2.3), both of which commonly leverage
test-time computation scaling. The related work is
discussed in detail in Appendix A.

2.1 Semantic Clustering with LLMs

To identify semantically consistent or distinct se-
quences generated by LLMs under test-time scal-
ing strategies, semantic clustering groups outputs
based on their semantics rather than lexical form.
Specifically, we generate a set of sequences S =
{s1,...,sn} by sampling from the generator LLM
M given a context x. Here, the context  may in-
clude task instructions, in-context examples, the in-
put problem or question, and, when applicable, in-
termediate reasoning trajectories from earlier steps.
To identify the semantic relationships among the
generated sequences, the most widely used ap-
proach (Kuhn et al., 2023) employs bi-directional
classification using an NLI model. It evaluates
both Ocye(si,s;) and Oeqi(s;,s;), where Ocpy de-
notes an external model that determines whether
one sequence semantically entails the other. If both
classification results are entailment, the two se-
quences are grouped into a semantic cluster ¢ € C,
which is called bi-directional entailment clustering
(BDEC) proposed for LLM uncertainty quantifica-
tion. Recently, subsequent works (Abdaljalil et al.,
2025) have replaced 0.,; with embedding models
such as BERT (Devlin et al., 2019) and Sentence-
BERT (Reimers and Gurevych, 2019), applying
clustering algorithms to the embeddings.

2.2 Semantic Uncertainty

In open-ended natural language tasks, semantic
clustering can be utilized to measure the uncer-
tainty in the IV texts generated by an LLM for a
given context x. Let C be the set of semantic clus-
ters over the generated sequences si, ..., Sy. The
cluster probability p(c | z,S) is defined by sum-
ming the probabilities of sequences assigned to
cluster ¢ € C as follows:

p(c]|z,S) = Zl[s ec-p(s|z), (1)

seS

where p(s | x) is either computed from token-level
generation probabilities as [], p(s’ | s<%, z) or ap-
proximated as 1/N.

Based on this distribution, the semantic en-
tropy (Kuhn et al., 2023) on generated sequences
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Figure 3: Overview of Latent Semantic Clustering
(LSC). LSC consists of three main steps: (1) Extract
hidden states during generations, (2) compute pairwise
similarities to form an adjacency matrix, and (3) ap-
ply spectral clustering while determining the number of
clusters k.

S is defined as:
SE(Si,C)==) plc | x,8)logp(c | ,S). 2)

ceC

When generator LLMs produce diverse meanings
from a single prompt, semantic entropy is high;
when meanings converge, entropy is low, serving
as a measure of LLM uncertainty. Here, the reli-
ability of semantic uncertainty estimation hinges
on the quality of the clusters C, which are typically
derived using external models.

2.3 Semantic Exploration

Beyond linear reasoning methods (Wei et al., 2022;
Wang et al., 2022), tree search-based methods
expand and explore intermediate reasoning tra-
jectories to enhance the reasoning capabilities of
LLMs (Hao et al., 2023; Yao et al., 2023) as test-
time scaling strategies. However, these methods
often incur significant computational overhead due
to redundant exploration of semantically equivalent
paths. To alleviate this, recent studies have lever-
aged semantic clustering to reduce the number of
expansions from all d candidate nodes generated by
the LLM at each step to only d’ < d semantically
distinct nodes, thereby enabling more efficient ex-
ploration on reasoning trees (Lee et al., 2025; Wang
et al., 2025a).

Nonetheless, these methods still rely on external
models while demanding additional computational
resources and often struggle to effectively incorpo-
rate contextual information during reasoning. No-
tably, Lee et al. (2025) constructed the input of NLI
model using only the generated sequences without
context, while Wang et al. (2025a) performed addi-
tional training on external embedding model due to

Algorithm 1 Latent Semantic Clustering

Require: Input z, LLM M, threshold 7
Ensure: Set of clusters C
1: During generation of N sequences & with
M (z), obtain hidden states h,, for each s € S
2: Construct adjacency matrix A using cosine
similarity between hidden states via (6)
3: Determine the number of clusters & by thresh-
olding the eigenvalues of (7) at 7
4: Obtain the cluster set C of size k by applying
spectral clustering on A

its limited capacity to effectively handle contextual
information as described in Figure 5 and Table 3.
In contrast, we perform clustering without external
resources by directly utilizing the internal semantic
representations of the generator LLMs.

3 Method

For efficient semantic clustering, we propose
Latent Semantic Clustering (LSC) that captures
context-aware semantics by leveraging the hidden
states produced by the generator LLMs. Our ap-
proach involves three key steps: (1) we extract
the hidden states from the generator LLM during
inference; (2) we construct an adjacency matrix
that maps pairwise semantic similarity between the
generated sequences; (3) we perform spectral clus-
tering while determining the optimal number of
clusters. The overall procedure is summarized in
Figure 3 and Algorithm 1.

Extracting hidden states The first step of LSC
extracts latent representations that capture the se-
mantic content of each generated sequence. To do
so, we leverage the hidden states from an interme-
diate Transformer layer during the auto-regressive
generation process for ¢-th token, defined as:

R0 = et + pt 3)
hi* = TransformerBlock(® (h*‘~1)  (4)
where €’ is the token embedding, p’ is the positional
encoding, and h*¢ denotes the hidden state at the

{-th Transformer layer. Then, the generator LLM
M can be defined as:

M(s7Th | 550 = softmax(WhL) |, (5)

where h¥! is the last layer’s hidden state at position
1, and W is the parameter of the LLM head.
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We extract the hidden state h** from a prede-
fined [-th Transformer layer at the last generated
token for each generated sequence, and denote it as
h,, for the n-th generated sequence for simplicity.
In other words, we store only a single hidden state
per sequence, regardless of the number of tokens
within the sequence. This hidden state h,, serves as
a representation of s,,, and we repeat this process
across N samplings of the generator LLM M as
part of test-time computation scaling.

Constructing adjacency matrix Given a set of
hidden states {h1, ha, ..., hy} for each generated
sequence s,, we compute the pairwise cosine sim-
ilarity between each pair of hidden states to mea-
sure semantic similarity for subsequent clustering.
Specifically, the similarity between the m-th and
n-th hidden states is defined as:

o Py
T Al )

and a,,, construct the adjacency matrix A €
RV*N  We observe that the cosine similarity a,,
between hidden states can effectively replace NLI-
based semantic similarity used in existing soft clus-
tering methods (Lin et al., 2024; Nikitin et al.,
2024), as shown in Section 5.

(6)

Spectral clustering Given the resulting adja-
cency matrix A € RV*N  we apply spectral clus-
tering to identify semantic clusters among the gen-
erated sequences. First, we compute the symmetric
normalized Laplacian as follows:

L=1I1-D124p~1/2 (7)

where D is the diagonal degree matrix with entries
Dy = Zﬁle am,n. We then calculate the eigen-
values A\; < A9 < --- < Ay and corresponding
eigenvectors vy, v2, ..., vyx of L. The number of
clusters k is determined by counting the number
of eigenvalues below a predefined threshold 7, i.e.,
k== [{\i | \i < 7}|, based on the following
theoretical result:

Theorem 1. (Von Luxburg, 2007) The multiplicity
of the eigenvalue 0 of L is equal to the number of
connected components in the graph defined by the
adjacency matrix A.

In other words, when the adjacency matrix A is
binary, the number of connected components—and
thus the number of clusters—exactly equals the
multiplicity of the zero eigenvalue. For continuous-
valued A, the graph typically forms a single con-
nected component; however, the distribution of

small eigenvalues of L can still be used to esti-
mate the number of semantically distinct meanings
among the generated sequences.

Lastly, we perform hard semantic clustering over
generated sequences, facilitating their direct inte-
gration into existing methods for uncertainty quan-
tification (Kuhn et al., 2023) and multi-step reason-
ing (Lee et al., 2025). Specifically, we construct
a spectral embedding using the first k£ eigenvec-
tors vy, ..., v, and apply k-means clustering in
this reduced space to assign each sequence s,, to
a semantic cluster c. In contrast, soft clustering
methods leverage elements in spectral clustering
such as the eigenvalue distribution to quantify LLM
uncertainty (Lin et al., 2024).

4 Experiments

In this section, we empirically evaluate whether
the proposed LSC effectively leverages the outputs
generated with scaled inference-time computation
to improve performance and efficiency across vari-
ous downstream LLM tasks. To assess the robust-
ness of LSC, we conduct experiments with multiple
LLM:s, including Llama3-8B-Instruct (Grattafiori
et al., 2024) and Mistral-7B-Instruct-v0.1 (Jiang
et al., 2023). Additional results are presented in
Appendix C. In what follows, we present results on
uncertainty quantification tasks (Section 4.1) and
multi-step reasoning tasks (Section 4.2). In both
tasks, we use the hidden state from an intermedi-
ate LLM layer, extracted at the last token of each
generated sequence in LSC.

4.1 Uncertainty Quantification

We evaluate the effectiveness of LSC in uncertainty
quantification tasks that estimate LLM confidence
by analyzing multiple outputs generated from a
single input.

Baselines We compare our method to a variety
of existing approaches for uncertainty quantifica-
tion. P(True) (Kadavath et al., 2022) estimates the
probability of correctness by prompting additional
query to the LLM, while PE (Malinin and Gales,
2020) computes predictive entropy via Monte Carlo
dropout without considering inter-sequence seman-
tics. Recent methods can be categorized into soft
and hard semantic clustering approaches. Soft clus-
tering methods such as KLE (Nikitin et al., 2024),
Deg, EigV, and ECC (Lin et al., 2024) perform spec-
tral clustering using semantic similarity graphs con-
structed with external NLI models. Specifically,
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External BioASQ SQUAD TriviaQA

Method Model .ot  AUROC T AUARCT AUROCT AUARCT AUROCT AUARC f
P(True) (Kadavath et al., 2022)  LLM 07565 06663 06744 03559 07781  0.7926
PE (Malinin and Gales, 2020) ) 08102 07006 07413 03954 07839  0.7912
KLE (Nikitin et al., 2024) NLI 08361 06960 07199 03891 07771  0.7755
Deg (Lin et al., 2024) NLI 07740 06411 06780 03466 06343  0.7083
EigV (Lin et al., 2024) NLI 05646 05198 05877 02943  0.6210  0.7010
ECC (Lin et al., 2024) NLI 08238 07060 06783 03694 07150  0.7677
NumSets (Kuhn et al., 2023) NLI 08318 06794 07311 03751 07717  0.7700
SE (Kuhn et al., 2023) NLI 08232 06873 07148 03876 07554  0.7666
DSE (Kuhn et al., 2023) NLI 0.8338 06883 07288 0385 07783 07752
SE-LSC (Ours) - 0.8602 07222 07401 03941 07745  0.7867
DSE-LSC (Ours) - 0.8654 07152 07616 03981  0.7843  0.7855

Table 1: Comparison of the effectiveness of uncertainty quantification methods in terms of AUROC and AUARC on
three datasets using Llama3-8B-Instruct. Bold and underlined values indicate the best and second-best performance

in each setting, respectively.

KLE applies kernel-based entropy on semantic sim-
ilarity graphs, Deg and EigV use spectral cluster-
ing based on graph degrees or eigenvalues, ECC
leverages semantic similarity graphs and applies
spectral methods based on graph Laplacian embed-
dings, estimating uncertainty by measuring average
distance from the embedding center. In contrast,
hard clustering methods such as NumSets, SE, and
DSE (Kuhn et al., 2023) group semantically equiva-
lent sequences by identifying pairwise entailment
relations through external NLI models. NumSets
uses the number of clusters constructed as an un-
certainty measure, SE measures predictive entropy
over semantic equivalence classes built from NLI-
based bidirectional entailment clustering, and DSE
is a discrete variant of SE that does not rely on out-
put probabilities. However, our methods, SE-LSC
and DSE-LSC, replace the external NLI models in
SE and DSE with latent hidden states from the LLM,
enabling more efficient and effective uncertainty
estimation. We further extend this substitution to
soft clustering methods in Section 5.

Datasets We evaluate our method on three ques-
tion answering (QA) datasets, each representing a
distinct domain. TriviaQA (Joshi et al., 2017) re-
flects the open-domain setting with diverse and
noisy trivia questions collected from the web.
SQuAD (Rajpurkar et al., 2016) represents the
general-domain setting, featuring clean and well-
structured question—context pairs from Wikipedia.
BioASQ (Krithara et al., 2023) corresponds to the
biomedical domain, consisting of factoid questions
that require expert-level understanding. We follow
the experimental setup used in Nikitin et al. (2024).

Results Table 1 compares various uncertainty
quantification methods using the Area Under the
Receiver Operating Characteristic (AUROC) and
the Area Under the Accuracy-Rejection Curve
(AUARC). AUROC evaluates how accurately a
method ranks predictions by computed uncertainty,
assigning higher uncertainty to incorrect answers.
In contrast, AUARC reflects calibration by tracking
how accuracy improves as high-uncertainty predic-
tions are progressively removed based on a thresh-
old. While existing NLI-based baselines demon-
strate moderate performance, our proposed meth-
ods, SE-LSC and DSE-LSC, consistently achieve the
highest AUROC scores across all settings and yield
the best or comparable AUARC values. Notably,
our methods outperform or match existing base-
lines without requiring additional computational
costs such as NLI models. These results suggest
our method provides more reliable uncertainty es-
timation in uncertainty quantification tasks. Ad-
ditional results with more LLMs are reported in
Appendix C.

4.2 LLM Reasoning

To evaluate the effectiveness and efficiency of LSC
in enhancing reasoning capabilities, we investigate
multi-step reasoning tasks that use tree search as a
test-time computation scaling strategy, where LSC
is applied to merge semantically redundant reason-
ing paths. Specifically, tree search-based reasoning
approaches explore multiple intermediate reason-
ing paths using algorithms such as beam search and
Monte Carlo tree search (MCTYS).

Baselines We consider three baseline meth-
ods for tree search-based reasoning. Tree-of-
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Llama3-8B-Instruct

Mistral-7B-Instruct

External
Benchmark Method Model #of LLM  #of NLI #of LLM  #o0f NLI
Ocat Accuracy T inferences | inferences | Accuracy T inferences | inferences |

ToT (Yao et al., 2023) - 0.79 104.80 - 0.61 122.16 -

GSMSK RAP (Hao et al., 2023) - 0.83 128.40 - 0.67 161.86 -
SExp (Lee et al., 2025) NLI 0.85 82.63 62.836 0.68 98.79 78.26

SExp-LSC (Ours) - 0.86 81.40 - 0.67 84.38 -

ToT - 0.80 149.59 - 0.62 221.36 -

ARC RAP - 0.81 196.96 - 0.71 313.20 -
SExp NLI 0.83 96.32 70.42 0.71 155.13 121.67

SExp-LSC (Ours) - 0.83 82.97 - 0.71 120.87 -

Table 2: Comparison of accuracy and inference efficiency for reasoning methods on both GSM8K and ARC datasets
using Llama3-8B-Instruct and Mistral-7B-Instruct. Bold values denote the best results, and underlined values

indicate the second-best.

Clustering Model Type Model Name Context Memory (GB) | Latency (sec) | F1 Score T Precision? Recall T
X 0.1298 0.4365 09558  0.3865

BDEC NLI DeBERTa-MNLI-Large 1.5212 o 1447 06504 06 094dr
- X 0.0225 0.7058 07414  0.8070

all-MiniLM-L6-v2 v 0.0926 0.0217 0.6888 0.6603  0.8816

) - X 0.0372 0.7198 07043 0.8703

Sentence BERT ~ all-mpnet-base-v2 v 04618 0.0361 07078 06653 09101

X 0.1358 0.7333 07407  0.8468

Spectral gr-t5-xxl v 18.1341 0.3287 0.7150 0.6497 09353
Clustering X 0.0497 0.7098 07234  0.8246
Llama3.2-1B v 46127 0.0820 0.8160 0.8369  0.8805

Decoder-only LLM . X 4.4361 0.6998 06812 08774

Mistral-78 v 199969 49110 0.8415 0.8816  0.8844

LSC v ~0 0.0069 0.8789 0.8825  0.9367

Table 3: Comparison of clustering performance for NLI, sentence-embedding, and LLM-based models in multi-step
reasoning. We present F1 score, precision, recall, latency (sec), and memory usage (GB) to evaluate both clustering
quality and computational efficiency. Bold values denote the best results, and underlined values indicate the

second-best.

Thoughts (ToT) (Yao et al., 2023) and Reasoning-
via-Planning (RAP) (Hao et al., 2023) are well-
known approaches that leverage beam search
and MCTS, respectively. Semantic Explo-
ration (SExp) (Lee et al., 2025) is a more recent
work that improves tree search efficiency by adopt-
ing semantic clustering to avoid semantically re-
dundant exploration on reasoning trees. We note
that SExp utilizes the BDEC algorithm (Kuhn et al.,
2023) with an external NLI model, DeBERTa-
MNLI-Large (He et al., 2020), for semantic clus-
tering.

Datasets To evaluate the reasoning capabilities of
LLMs, we use two benchmarks: GSM8K (Cobbe
etal., 2021), a dataset consisting of 8.5k math word
problems that require multi-step mathematical rea-
soning, and the AI2 Reasoning Challenge (ARC),
which contains 7.8k science questions derived from
grade-school science exames. Following the evalu-

ation setup of SExp (Lee et al., 2025), we randomly
sample 400 examples from the test sets of GSM8K
and ARC for evaluation.

Results In Table 2, we evaluate the effect of LSC
on multi-step reasoning tasks. ToT and RAP require
a large number of LLM inferences, as they expand
and explore semantically duplicate reasoning paths.
SExp reduces this computational cost by merging
semantically redundant paths using an external NLI
model, but still relies on external supervision. In
contrast, our SExp-LSC achieves comparable accu-
racy without any external model by leveraging in-
ternal LLM representations. Notably, on the ARC
dataset, SExp-LSC reduces the number of LLM in-
ferences by 22.58% while maintaining accuracy,
demonstrating the efficiency and effectiveness of
our approach. This reduction in LLM inferences
stems from LSC’s strong clustering performance,
enabled by its use of context-aware semantic repre-
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Figure 4: Layer-wise clustering performance using
Llama3-8B-Instruct hidden states. Intermediate and
later layers demonstrate higher F1 scores and accuracy
than earlier layers.

sentations to merge semantically identical reason-
ing paths.

5 Further Analyses

Effect of LSC on clustering To evaluate the
effectiveness and efficiency of leveraging hidden
states from the generator LLLM for semantic clus-
tering, we compare LSC with existing NLI- and
embedding-based approaches. Specifically, we
evaluate clustering performance on the first-level
sequences of reasoning trees generated by Llama3-
8B-Instruct on GSM8K. To construct clustering
labels, we use Llama3-70B-Instruct to generate
pairwise semantic equivalence labels by using a
prompt, as illustrated in Figure AS. Clustering
performance is measured by computing precision,
recall, and F1 score for the generated sequences
of each example and averaging across all cases.
We also assess computational efficiency by measur-
ing memory usage and latency. To evaluate how
well each model handles contextual information,
we conduct experiments both with and without in-
cluding the context as part of the input.

NLI-based models show a trade-off between pre-
cision and recall depending on whether context
is included, while BERT-based embeddings strug-
gle to capture context-dependent semantics, result-
ing in suboptimal clustering as demonstrated in
Figure 1 and Table 3. For external models, we
measured the memory consumption of both the
models and their extracted embeddings. In con-
trast, LLM-based embeddings benefit significantly
from context: both precision and recall increase
when contextual information is included. Our LSC
method, which leverages internal LLM represen-
tations, achieves the highest F1 score with negli-
gible memory and latency overhead, maintaining
semantic fidelity while offering superior efficiency.
Note that LSC requires only = 0.000061 GB of
memory to store LLM hidden states, sized as the

Layer selection AUROC AUARC

16th only 0.8654  0.7152
16th & 8th 0.8680  0.7157
16th & 24th 0.8649  0.7139
16th & 32nd 0.8639  0.7136

Table 4: Comparison of layer selection strategies for
LSC on the BioASQ dataset using Llama3-8B-Instruct.
Results are reported in terms of AUROC and AUARC.
Bold values denote the best results, and underlined val-
ues indicate the second-best

number of generated sentences multiplied by the
hidden state dimension.

Layer selection To better understand the layer-
wise effectiveness of LLMs, we find that interme-
diate and later layers yield robust and effective
semantic representations (Figure 4), in line with
prior findings (Skean et al., 2025). In addition, we
observe performance gains when expanding the em-
bedding dimensions for clustering. Table 4 reports
the results of DSE-LSC implemented by concatenat-
ing the hidden states from two layers for the last
token of each generated sequence. Specifically, we
compare using only the 16th (intermediate) layer of
the 32 Transformer layers in Llama3-8B-Instruct
against combining it with other layers in uncer-
tainty quantification on the BioASQ dataset. The
results show that incorporating the hidden state
from the 8th (first-quarter) layer alongside the in-
termediate layer yields slight improvements over
using the intermediate layer alone. We expect that
leveraging not only multiple layers or token-level
embeddings, but also attention weights, could be
a promising direction, which we leave for future
work.

Context-aware semantic clustering To qualita-
tively assess whether LSC captures context-aware
semantics, Figure 5 presents an example from
GSMSK using Llama3-8B-Instruct. The figure il-
lustrates the first level of reasoning trees generated
by SE and SE-LSC. When the shared context x is
excluded from the input, the NLI-based clustering
model in SE lacks context awareness and instead re-
lies solely on surface-level sentence semantics, re-
sulting in all sequences being grouped into separate
clusters. Indeed, in the absence of shared context,
sequences A, C, and D appear to convey distinct
meanings, despite being semantically equivalent
when the context is considered. However, even
when the context is included, the model still fails to
accurately identify and cluster semantically equiva-
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Context x: Shannon makes her own madeleine cookies and eats 2 a night as a treat. She wants to make |
enough cookies to last her for 30 days by storing them in the freezer. Her recipe makes 1 dozen madeleine :
cookies. How many dozens of cookies will she need to make so she has enough for 30 days? :

Generator LLM

i C. How many cookies does
i she eat each night?

i A. How many cookies does
: Shannon eat in one day?

Figure 5: Example of semantic clustering from GSM8K using Llama3-8B-Instruct comparing SExp and SExp-LSC.
The NLI-based model fails to group context-dependent semantically identical sequences (e.g., A, C and D), while
LSC, using context-conditioned hidden representations, correctly clusters semantically equivalent sequences under a
given context. This highlights a key limitation of NLI-based methods: without context, they miss context-dependent
meaning, and with context, they often fail to properly process it along with the generated sequences. The full

constructed reasoning trees are shown in Figure Al.

Calculating similarity in A

FZ1 Probability of NLI
0.9 9 == Cosine similarity of hidden

o 0.81
Q
5
= 0.7
0.6
0.5 t t t t
Deg EigV ECC KLE

Figure 6: Comparison of different adjacency matrix con-
struction methods for soft clustering-based uncertainty
quantification approaches leveraging semantic similari-
ties between generated sequences.

lent sentences, as it does not effectively incorporate
contextual information. In contrast, LSC success-
fully performs context-aware semantic clustering
by leveraging the hidden representations from the
generator LLM, which are inherently conditioned
on the input context.

Semantic similarity as soft edge Subsequent
works of Kuhn et al. (2023) consider semantic simi-
larity, rather than strict equivalence, for uncertainty
quantification. KLE (Nikitin et al., 2024), Deg, EigV,
and ECC (Lin et al., 2024) leverage spectral clus-
tering based on an adjacency matrix constructed
using an NLI model, enabling uncertainty estima-
tion without hard semantic clustering. Therefore,
their adjacency matrix can be substituted with our
adjacency matrix in Equation (6), which is based
on cosine similarity between hidden states. We

Llama3.2-1B Llama3-70B
0.87 0.85
0.83-
Q
8 085 T 0.81 o
2 0.794
0.831 0.77 1
Q Qéo G %@ Q Q
<o < < &
S Q(o =) Q%

Figure 7: Effect of LLM size on the effectiveness
of LSC. Comparison of AUROC scores for SE, DSE,
SE-LSC, and DSE-LSC on the BioASQ dataset using
Llama3.2-1B-Instruct and Llama3-70B-Instruct.

evaluate these methods to compare adjacency ma-
trix construction based on NLI with our approach
on the BioASQ dataset using Llama3-8B-Instruct.
As shown in Figure 6, our method described in
Equation (6) achieves superior performance in both
AUROC and AUARC, suggesting the potential of
computing semantic similarity from hidden states
of the generator LLMs.

Smaller and larger LLMs To examine the
robustness of LSC with respect to LLM
size, we conduct experiments using Llama3.2-
1B-Instruct (MetaAl, 2024) and Llama3-70B-
Instruct (Grattafiori et al., 2024) on the BioASQ
dataset, performing uncertainty quantification. For
the smaller LLM (i.e., Llama3.2-1B-Instruct), SE-
LSC and DSE-LSC shows comparable performance
in AUROC and AUARC to the SE and DSE as
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Clustering method Precision T Recall T F1 Score T

k-means 0.8865 0.7232 0.7387
AHC 0.9308 0.8837 0.8664
DBSCAN 0.8383 0.9660 0.8676
LSC (Ours) 0.8825 0.9367 0.8789

Table 5: Comparison of clustering methods, k-means,
AHC, DBSCAN, and LSC, using Llama3-8B-Instruct
hidden states for semantic clustering on the GSM8K
dataset. We report precision, recall, and F1 score. Bold
values denote the best results, and underlined values
indicate the second-best.

shown in Figure 7. In contrast, for the larger LLM
(i.e., Llama3-70B-Instruct), SE-LSC and DSE-LSC
shows greater improvements over the baselines, SE
and DSE. These results suggest that LSC may be
more effective with larger LLMs.

Different clustering algorithms We compare
LSC with standard clustering algorithms, includ-
ing k-means, Agglomerative Hierarchical Cluster-
ing (AHC), and DBSCAN, using the same hidden
states from Llama3-8B-Instruct. For all baselines,
we report the best F1 score obtained by hyper-
parameter search, except for k-means, where the
number of clusters is determined using the elbow
method. As shown in Table 5, LSC achieves the
highest F1 score of 0.8789, outperforming other
clustering methods and indicating its practical ef-
fectiveness for semantic clustering in downstream
tasks.

6 Conclusion

In this work, we propose Latent Semantic Clus-
tering (LSC), a lightweight and context-aware ap-
proach for identifying semantically equivalent out-
puts generated by LLMs for test-time computation
scaling. Rather than relying on external models
as in prior works, LSC leverages the generator
LLM’s internal hidden states to perform context-
aware semantic clustering with minimal overhead.
Our experiments show that LSC achieves strong
performance on key tasks like uncertainty quantifi-
cation and multi-step reasoning, while substantially
reducing computational cost. LSC consistently out-
performs prior semantic clustering methods in both
clustering quality and computational efficiency. We
believe LSC offers a practical and scalable solution,
applicable to any white-box LLMs, for enhanc-
ing the reliability and quality of LLM responses,
thereby improving test-time computation scaling
strategies.

Limitations

While our approach demonstrates strong perfor-
mance and efficiency, there are limitations that sug-
gest directions for future improvement. First, our
method relies on the hidden state from a single in-
termediate layer and the last token, which provides
an efficient and effective representation in practice.
However, incorporating multiple layers, aggregat-
ing token-level information, or utilizing attention
patterns may further enhance representation quality
and is a promising direction for future work. Sec-
ond, LSC requires access to the generator model’s
hidden states, and thus is currently applicable only
to white-box LLMs. While this design enables im-
provements in efficiency and effectiveness, it may
limit applicability in scenarios involving black-box
models. Exploring alternatives that approximate
internal representations without direct access could
help broaden the scope of LSC.
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Appendix
A Related Work

Scaling LLM test-time computation Lever-
aging increased computation at inference time-
through parallel or sequential sampling-allows
LLMs to enhance the quality and reliability of their
outputs on various NLP tasks (Wei et al., 2022;
Yao et al., 2023; Snell et al., 2025). A simple
yet powerful approach generates multiple outputs
for a given prompt and identifies the most consis-
tent one among the outputs (Wang et al., 2022;
Xiong et al., 2024). Recently, several studies have
proposed incorporating semantic relationship to
identify significant outputs in open-ended natural
language generation tasks by considering seman-
tics. For example, Kuhn et al. (2023) generates
multiple sequences and clusters them to estimate
LLM uncertainty. Similarly, studies on LLM rea-
soning identify semantically equivalent sequences
among multiple samples to avoid redundant reason-
ing paths and encourage exploration of more sig-
nificant ones (Lee et al., 2025; Wang et al., 2025a).

Semantic clustering in LLMs. Existing meth-
ods for semantic clustering typically have relied on
external models to evaluate semantic relationship
between textual sequences. For example, Kuhn
et al. (2023) employ a natural language inference
(NLI) model to identify these relationships and
performs clustering based on the model’s outputs.
Subsequent works also leverage the NLI models
and adopt spectral clustering to quantify uncer-
tainty (Lin et al., 2024; Nikitin et al., 2024; Qiu and
Miikkulainen, 2024). Alternatively, Abdaljalil et al.
(2025) utilize Sentence-BERT-based embedding
model and perform clustering based on cosine sim-
ilarity between the embeddings. However, these
approaches rely on external models and incur ad-
ditional computational overhead, which can hinder
scalability and efficiency. In addition, the external
models such as NLI and embedding models often
struggle to effectively handle model inputs consist-
ing of context and generated sequences. Notably,
prior studies focus solely on uncertainty quantifi-
cation, overlooking the extension to different LLM
tasks.

Leveraging hidden states in LLMs Recent stud-
ies have explored the utility of LLM hidden states
across various downstream tasks. In text clus-
tering, embeddings derived from LLMs exhibit

rich semantic information, outperforming conven-
tional sentence embeddings in capturing contex-
tual similarity (Petukhova et al., 2025). However,
this work focuses on clustering a given set of in-
put texts, rather than analyzing internal represen-
tations across generated outputs. Other lines of
work use hidden states to estimate uncertainty for
hallucination detection (Kossen et al., 2024; Han
et al., 2024), but often rely on training additional
lightweight multi-layer perceptrons on top of the
hidden states, which introduces computational over-
head. More recently, several studies have shown
that LLMs can reason and self-evaluate directly
in the latent space, without producing explicit out-
puts (Hao et al., 2024; Wang et al., 2025b). How-
ever, we instead leverage latent hidden states for
clustering generated outputs, enabling applications
to test-time scaling tasks without additional train-
ing or supervision.

B Experimental Settings

The hyper-parameters used in our experiments are
listed in Table A1l for the uncertainty quantifica-
tion tasks. The clustering threshold 7 for LSC is
selected based on performance on a validation set
of 100 examples per task. Table A2 lists the hyper-
parameters used for multi-step reasoning tasks.

C Extended Experimental Results

Table A3 presents extended experimental results
for the uncertainty quantification task, evaluated
using three datasets across two models: Llama3-
8B-Instruct and Mistral-7B-Instruct.

D Prompt

Figure A2 illustrates the 5-shot in-context prompt
used for uncertainty quantification. Figures A3
and A4 show the 1-shot in-context prompts used
for semantic exploration. These are identical to
the prompts used in SExp (Lee et al., 2025) experi-
ments.
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Value

Setting Hyperparameter
LLM-related temperature 1.0
settin top-k 50
& top-p 1.0
General settin batch size !
£ the number of examples (prompts) 1

Deg, EigV, ECC

threshold for eigenvalues

Ours (LSC)

threshold for clustering

Table Al: The default hyperparameters used in our experiments are categorized into LLM-related, general, and
method-specific settings. * indicates that the hyperparameter is selected based on the best threshold determined

from the validation set.

Setting Parameter Value
temperature 0.8
LLM-related setting top-k 50
top-p 0.95
General settin batch size 1
& the number of examples (prompts) 1
depth limit )
the number of iterations 10
. the number of actions 4
MCTS setting reward alpha 0.5
the number of confidences 8
a default value of reward confidence 0.8
. beam size 3
ToT setting depth limit 5

Table A2: Default hyper-parameters for SEXp, RAP, ToT. Parameters are grouped into LLM-related, general, and
method-specific settings, following the settings used in SExp (Lee et al., 2025)
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Figure A1: Reasoning trees constructed from GSMS8K using Llama3-8B-Instruct, comparing SExp and SExp-LSC.
SExp-LSC constructs shallower trees by leveraging context-dependent semantics, avoiding semantically redundant

paths. A concrete example of generated sequences is shown in Figure 5.
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BioASQ SQuAD TriviaQA

Method Module
AUROC1T AUARC1T AUROCT AUARCT AUROCT AUARC?T
Llama3-8B-Instruct
P(True) (Kadavath et al., 2022) LLM 0.7565 0.6663 0.6744 0.3559 0.7781 0.7926
PE (Malinin and Gales, 2020) - 0.8102 0.7006 0.7413 0.3954 0.7839 0.7912
KLE (Nikitin et al., 2024) NLI 0.8361 0.6960 0.7199 0.3891 0.7771 0.7755
Deg (Lin et al., 2024) NLI 0.7740 0.6411 0.6780 0.3466 0.6343 0.7083
EigV (Lin et al., 2024) NLI 0.5646 0.5198 0.5877 0.2943 0.6210 0.7010
ECC (Lin et al., 2024) NLI 0.8238 0.7060 0.6783 0.3694 0.7150 0.7677
NumSets (Kuhn et al., 2023) NLI 0.8318 0.6794 0.7311 0.3751 0.7717 0.7700
SE (Kuhn et al., 2023) NLI 0.8232 0.6873 0.7148 0.3876 0.7554 0.7666
DSE (Kuhn et al., 2023) NLI 0.8338 0.6883 0.7288 0.3835 0.7783 0.7752
SE-LSC (Ours) - 0.8602 0.7222 0.7401 0.3941 0.7745 0.7867
DSE-LSC (Ours) - 0.8654 0.7152 0.7616 0.3981 0.7843 0.7855
Mistral-7B-Instruct

P(True) LLM 0.7217 0.5113 0.6718 0.3006 0.7905 0.6800
PE - 0.5233 0.3831 0.7094 0.3149 0.7653 0.6555
KLE NLI 0.8575 0.5745 0.7536 0.3317 0.8310 0.7025
Deg NLI 0.7927 0.5402 0.6296 0.2675 0.6434 0.5818
EigV NLI 0.5313 0.3704 0.4838 0.1972 0.5388 0.5096
ECC NLI 0.7508 0.5268 0.5911 0.2628 0.6491 0.6047
NumSets NLI 0.8553 0.5503 0.7519 0.3090 0.8164 0.6778
SE NLI 0.8571 0.5759 0.7516 0.3313 0.8338 0.7081
DSE NLI 0.8569 0.5587 0.7517 0.3188 0.8245 0.6927
SE-LSC (Ours) - 0.8605 0.5866 0.7538 0.3284 0.8234 0.6964
DSE-LSC (Ours) - 0.8696 0.5565 0.7584 0.3267 0.8161 0.6870

Table A3: Comparison of uncertainty quantification methods based on AUROC across three datasets using two
LLMs: Llama3-8B and Mistral-7B. Bold and underlined values indicate the best and second-best performance in
each setting, respectively.
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An answer generation prompt for BioASQ

Input data is Answer the following question as briefly as possible.

Question: Is there a sequence bias in MNase digestion patterns?

Answer: yes

Question: Is the transcriptional regulator BACHI an activator or a repressor?
Answer: Repressor

Question: Which fusion protein is involved in the development of Ewing sarcoma?
Answer: EWS/FLII

Question: Is PLK?2 involved in alpha-synuclein phosphorylation in the nervous system?
Answer: yes

Question: What gene is mutated in Familial Mediterranean Fever?

Answer: MEFV gene

Question: What are ’vildagliptin’, ’sitagliptin’, ’saxagliptin’, alogliptin’, ’linagliptin’, and *dutogliptin’?
Answer:

An answer generation prompt for SQuAD

| r

Input data is Answer the following question as briefly as possible.

Question: Which side of the road do vehicles on Cyprus drive on?

Answer: left-hand

Question: What did John Rawls publish?

Answer: A Theory of Justice

Question: What is the attempt to understand other societies on their own terms?
Answer: cultural relativism

Question: Which park does 27th Street pass through between Ninth and Tenth Avenues?
Answer: Chelsea

Question: What caused the constant linear velocity?

Answer: Noel Pemberton Billing’s patented add-on governor device

Question: Following the end of the second World War, what was a still a popular theme among films makers in Burma ?
Answer:

A reward generation prompt for TriviaQA

| r

Input data is Answer the following question as briefly as possible.

Question: Who founded the Jaguar motor company?

Answer: william lyons

Question: The name of which Russian spacecraft means ’travelling companion’ or ’satellite’?
Answer: sputnik

Question: Which record label recorded The Supremes and The Jackson 5?

Answer: motown

Question: What was the Russian City of Nizhny Novgorod called between 1932 and 1990?
Answer: gorky

Question: "Who wrote the music for the musical ""A Chorus Line
Answer: marvin hamlisch

Question: What was the name of the female that politician John Profumo had an affair with which ended his political career
in 1963?

Answer:

\. J

Figure A2: Example prompts for BioASQ, SQuAD, and TriviaQA. /talic texts denote 5-shot example.

"o
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An answer generation prompt for GSMSK

Given a question, please decompose it into sub-questions. For each sub-question, please answer it in a complete sentence,
ending with "The answer is". When the original question is answerable, please start the subquestion with "Now we can
answer the question: ".

Question 1: Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A large
pizza has 16 slices and a small pizza has 8 slices. If he eats it all, how many pieces does he eat that day?

Question 1.1: How many slices are in one large pizza?

Answer 1.1: One large pizza has 16 slices. The answer is 16.

Question 1.2: How many slices are there in total from the large pizzas?

Answer 1.2: He buys 2 large pizzas, so 2 * 16 = 32 slices. The answer is 32.

Question 1.3: How many slices are in one small pizza?

Answer 1.3: One small pizza has 8 slices. The answer is 8.

Question 1.4: How many slices are there in total from the small pizzas?

Answer 1.4: He buys 2 small pizzas, so 2 * 8 = 16 slices. The answer is 16.

Question 1.5: Now we can answer the question: How many pieces does he eat that day?

Answer 1.5: There are 32 slices from the large pizzas and 16 slices from the small pizzas, so he eats 32 + 16 = 48 pieces that
day. The answer is 48.

Question 2: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much profit did he make?

Question 2.1: How much did Josh spend on the house and repairs in total?

Answer 2.1:

| '

An action generation prompt for GSM8K

Given a question, please decompose it into sub-questions. For each sub-question, please answer it in a complete sentence,
ending with "The answer is". When the original question is answerable, please start the subquestion with "Now we can
answer the question: ".

Question 1: Albert is wondering how much pizza he can eat in one day. He buys 2

large pizzas and 2 small pizzas. A large pizza has 16 slices and a small pizza has 8 slices. If he eats it all, how

many pieces does he eat that day?

Question 1.1: How many slices are in one large pizza?

Answer 1.1: One large pizza has 16 slices. The answer is 16.

Question 1.2: How many slices are there in total from the large pizzas?

Answer 1.2: He buys 2 large pizzas, so 2 * 16 = 32 slices. The answer is 32.

Question 1.3: How many slices are in one small pizza?

Answer 1.3: One small pizza has 8 slices. The answer is 8.

Question 1.4: How many slices are there in total from the small pizzas?

Answer 1.4: He buys 2 small pizzas, so 2 *8 = 16 slices. The answer is 16.

Question 1.5: Now we can answer the question: How many pieces does he eat that day?

Answer 1.5: There are 32 slices from the large pizzas and 16 slices from the small pizzas, so he eats 32 + 16 = 48 pieces that
day. The answer is 48.

Question 2: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much profit did he make?

Question 2.1:

A reward generation prompt for GSM8K

| r
\

Given a question and some sub-questions, determine whether the last sub-question is useful to answer the question. Output
*Yes’ or ’No’, and a reason.

Question 1: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice as 30 years old, how old
is Kody?

Question 1.1: How old is Mohamed?

Question 1.2: How old was Mohamed four years ago?

New question 1.3: How old was Kody four years ago?

Is the new question useful? Yes. We need the answer to calculate how old is Kody now.

Question 2: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much profit did he make?

New question 2.1: How much did Josh spend on the house?

Is the new question useful?

Figure A3: Example prompts for GSMS8K. /falic texts denote 1-shot example. The prompts are identical to those
used in Lee et al. (2025).

24142



An answer generation prompt for ARC

Given a question, please decompose it into sub-questions. For each sub-question, please answer it in a complete sentence,
ending with "The answer is". When the original question is answerable, please start the subquestion with "Now we can
answer the question with an option from A to D: ".

Question 1: Juan and LaKeisha roll a few objects down a ramp. They want to see which object rolls the farthest. What should
they do so they can repeat their investigation? Options: A) Put the objects in groups, B) Change the height of the ramp, C)
Choose different objects to roll, D) Record the details of the investigation.

Question 1.1: What is necessary to ensure that experimental results can be repeated?

Answer 1.1: To ensure repeatability, experimental details must be accurately recorded. The answer is to record details.
Question 1.2: What kind of information should Juan and LaKeisha record for repeatability?

Answer 1.2: They should record details like the objects used, ramp height, and surface conditions. The answer is experimental
conditions.

Question 1.3: How would recording experimental details help in the investigation?

Answer 1.3: Recording details allows them to recreate the exact same conditions for reliable comparison. The answer is that
it enables consistent replication.

Question 1.4: Now we can answer the question with an option from A to D: What should they do to repeat their investigation?
Answer 1.4: Record the details of the investigation. The answer is D.

Question 2: Which method is the safest way to watch an eclipse of the Sun? Options: A) Turn away after two or three
minutes. B) Look at the Sun through a long telescope. C) Cast an image through a pinhole onto a screen. D) Blink often until
your eyes get used to the light..

Question 2.1: Why should you not look directly at the Sun during an eclipse?

Answer 2.1:

An action generation prompt for ARC

Given a question, please decompose it into sub-questions. For each sub-question, please answer it in a complete sentence,
ending with "The answer is". When the original question is answerable, please start the subquestion with "Now we can
answer the question with an option from A to D: ".

Question 1: Juan and LaKeisha roll a few objects down a ramp. They want to see which object rolls the farthest. What should
they do so they can repeat their investigation? Options: A) Put the objects in groups, B) Change the height of the ramp, C)
Choose different objects to roll, D) Record the details of the investigation.

Question 1.1: What is necessary to ensure that experimental results can be repeated?

Answer 1.1: To ensure repeatability, experimental details must be accurately recorded. The answer is to record details.
Question 1.2: What kind of information should Juan and LaKeisha record for repeatability?

Answer 1.2: They should record details like the objects used, ramp height, and surface conditions. The answer is experimental
conditions.

Question 1.3: How would recording experimental details help in the investigation?

Answer 1.3: Recording details allows them to recreate the exact same conditions for reliable comparison. The answer is that
it enables consistent replication.

Question 1.4: Now we can answer the question with an option from A to D: What should they do to repeat their investigation?
Answer 1.4: Record the details of the investigation. The answer is D.

Question 2: Which method is the safest way to watch an eclipse of the Sun? Options: A) Turn away after two or three
minutes. B) Look at the Sun through a long telescope. C) Cast an image through a pinhole onto a screen. D) Blink often until
your eyes get used to the light..

Question 2.1:

A reward generation prompt for ARC

Given a question and some sub-questions, determine whether the last sub-question is useful to answer the question. Output
>Yes’ or ’No’, and a reason.

Question 1: How are particles in a block of iron affected when the block is melted? Options: A) The particles gain mass, B)
The particles contain less energy, C) The particles move more rapidly, D) The particles increase in volume.

Question 1.1: What happens to particle energy when a solid melts?

Question 1.2: How does the movement of particles change during melting?

New question 1.3: Why does increased movement signify a phase change to liquid?

Is the new question useful? Yes, because understanding why increased movement signifies a phase change helps clarify the
behavior of particles during melting.

Question 2: Which method is the safest way to watch an eclipse of the Sun? Options: A) Turn away after two or three
minutes. B) Look at the Sun through a long telescope. C) Cast an image through a pinhole onto a screen. D) Blink often until
your eyes get used to the light..

New question 2.1: Why should you not look directly at the Sun during an eclipse?

Is the new question useful?

Figure A4: Example prompts for ARC. /talic texts denote 1-shot example. The prompts are identical to those used
in Lee et al. (2025).
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A pairwise clustering label generation prompt

Given the context and a question pair, determine whether the two questions have the same meaning. Output *Yes’ or ’No’,
and a reason.

Context: Is a Boeing 737 cost covered by Wonder Woman (2017 film) box office receipts?

Question pair: "What is the cost of a Boeing 737?" and "How much does a Boeing 737 cost?"

Answer: Yes, because both questions ask for the cost of the same airplane.

Context: Cynthia eats one serving of ice cream every night. She buys cartons of ice cream with 15 servings of ice cream per
carton at a cost of $4.00 per carton. After 60 days, how much will she spend on ice cream?

Question pair: "How many servings of ice cream does Cynthia eat in 60 days?" and "What is the total number of ice cream
servings Cynthia eats?"

Answer: Yes, because both ask for the total servings of ice cream over 60 days.

Context: In a jewelers store, the price of a gold Jewell is 4/5 times as much as the price of a diamond Jewell. The cost of a
silver Jewell is $400 less than the price of gold. If a diamond Jewell is $2000, find the total price for all three jewels.
Question pair: "How much is the price of a silver Jewell?" and "What is the price of the gold Jewell?"

Answer: No, because they refer to different types of Jewell.

Context: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice as many pages
as yesterday. If she wants to read half of the remaining pages tomorrow, how many pages should she read?

Question pair: "How many pages did Julie read yesterday?" and "What is the number of pages Julie finished reading today?"
Answer:

\.

Figure AS5: An example prompt for generating pairwise clustering labels. /falic texts denote 3-shot example.
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