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Abstract

Mathematical reasoning poses significant chal-
lenges for Large Language Models (LLMs)
due to its demand for multi-step reasoning
and abstract conceptual integration. While
recent test-time scaling techniques rely heav-
ily on high-quality, challenging problems, the
scarcity of Olympiad-level math problems re-
mains a bottleneck. We introduce CogAtom,
a novel cognitive atom-based framework for
synthesizing mathematically rigorous and cog-
nitively diverse problems. Unlike prior ap-
proaches, CogAtom models problem construc-
tion as a process of selecting and recombining
fundamental reasoning units, cognitive atoms,
extracted from human-authored solutions. A
diversity-promoting random walk algorithm en-
ables exploration of the cognitive atom space,
while a constraint-based recombination mecha-
nism ensures logical soundness and structural
validity. The combinatorial nature of the graph
structure provides a near-infinite space of rea-
soning paths, and the walk algorithm systemat-
ically explores this space to achieve large-scale
synthesis of high-quality problems; meanwhile,
by controlling the number of cognitive atoms,
we can precisely adjust problem difficulty, en-
suring diversity, scalability, and controllability
of the generated problems. Experimental re-
sults demonstrate that CogAtom outperforms
existing methods in accuracy, reasoning depth,
and diversity, generating problems that closely
match the difficulty of AIME while exceeding
it in structural variation. Our work offers a
cognitively grounded pathway toward scalable,
high-quality math problem generation.1

1 Introduction

Reasoning abilities are core cognitive mechanisms
underlying human problem-solving (Hersh, 2015).
Among them, mathematical reasoning stands out

1Our code is publicly available at https://github.com/
Icarus-1111/CogAtom.

for its unique cognitive complexity, requiring ab-
stract concept comprehension, logical inference
across domains, and multi-step solution strategies
(Hendrycks et al., 2021; Wang et al., 2024b; Yue
et al., 2024a; Wei et al., 2024). As a result, mathe-
matical reasoning has become a key benchmark for
evaluating the progress of Large Language Mod-
els (LLMs) toward Artificial General Intelligence
(AGI) (Zhong et al., 2024).

With the paradigm of LLMs shifting from
training-time compute scaling toward test-time
compute scaling (Snell et al., 2024; DeepSeek-AI
et al., 2025; Yang et al., 2025a), it heavily de-
pends on the high-quality, multi-step mathemat-
ical problems as these high-quality problems are
essential for effectively exposing model deficien-
cies in multi-step reasoning and validating the
performance boundaries of test-time optimization
strategies (Lu et al., 2024; Xu et al., 2025). This
shift has generated a substantial demand for data
that is simultaneously: (1) large-scale and scal-
able, to support compute-intensive optimization
strategies; (2) highly challenging, to drive models
beyond their current capabilities; and (3) cogni-
tively diverse, to mitigate overfitting to familiar
solution patterns. However, the existing collection
of human-authored, Olympiad-level problems is
static, limited in size, and does not fulfill these re-
quirements. This pronounced scarcity of suitable
data has become a primary obstacle to the rigorous
development and evaluation of advanced reasoning
systems (Hendrycks et al., 2021; Yue et al., 2024a;
NuminaMath, 2024).

The most straightforward solution to this data
scarcity problem is to synthesize challenging prob-
lems automatically. Existing synthesis methods
can be categorized as prompt engineering-based
methods (Toshniwal et al., 2025; Yu et al., 2024;
Liu et al., 2025), corpus mining methods (Zhao
et al., 2024b; Yue et al., 2024b), evolutionary and
transfer-based methods (Yu et al., 2024; Luo et al.,
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2025) and knowledge-driven synthesis methods
(Tang et al., 2024; Huang et al., 2025; Zhao et al.,
2025). However, these methods fail to model fun-
damental units of thought—cognitive atoms—and
their combinatorial principles from a cognitive sci-
ence perspective. In contrast, when mathematics
experts design Olympiad problems, they carefully
craft cognitive associations between concepts and
construct rigorous logical frameworks that demand
multi-level reasoning. Current methods are un-
able to effectively emulate this process, leading to
substantial gaps between generated problems and
human-authored Olympiad questions in terms of
accuracy, logical coherence, and cognitive diver-
sity.

To overcome these structural limitations, we in-
troduce CogAtom, a framework that implements
a paradigm shift from linear generation to struc-
tured synthesis, centered on the Cognitive Associ-
ation Graph. This framework operates through a
systematic, three-stage generation process. First,
reasoning atoms are extracted from a curated seed
set and assembled into the global graph; its vast
combinatorial nature provides a near-infinite space
of potential reasoning paths, directly enabling scal-
able generation. Next, a diversity-promoting ran-
dom walk algorithm explores this structured space
to sample long and intricate reasoning paths, the
topological complexity of which forms the basis
for problems of high difficulty. Finally, these paths
are transformed by a constraint-based recombina-
tion mechanism, driven by three Cognitive Transfer
Operators, which ensures the final combination is
logically coherent while exhibiting high concep-
tual diversity.Our contributions are summarized as
follows:

(1) We innovatively incorporate the established
concept of reasoning atoms into a graph-based
mathematical problem synthesis framework, en-
abling systematic extraction and representation of
cognitive connections between fundamental mathe-
matical concepts.

(2) We introduce three cognitive transition
operators—Path Extension, Bridge Replacement,
and Counterfactual Perturbation—that collectively
ensure reasoning depth, logical coherence, and con-
ceptual diversity in synthesized problems.

(3) Through extensive experimentation, we
demonstrate that our CogAtom framework gener-
ates high-quality training data that significantly en-
hances foundation models’ mathematical reasoning
capabilities, with particularly pronounced improve-

ments on advanced multi-step reasoning tasks.

2 Related Work

2.1 Math Reasoning with LLMs

While LLMs have demonstrated remarkable ca-
pabilities, their mathematical reasoning remains
fragile, vulnerable to common failure modes such
as distraction by irrelevant context (Yang et al.,
2025b) and an inability to identify ill-defined prob-
lems with missing or contradictory conditions (Tian
et al., 2024). To address these limitations, re-
searchers have explored several approaches. Some
work focuses on curating specialized datasets for
math reasoning, aiming to offer more effective
benchmarks and training resources for evaluating
and enhancing model capabilities (Hendrycks et al.,
2021; Wang et al., 2024b; Yue et al., 2024a). An-
other work leverages prompting strategies, such
as chain-of-thought, to elicit more structured and
accurate reasoning (Wei et al., 2022; Zhang et al.,
2025; Fu et al., 2023; Chen et al., 2023; Kim et al.,
2025). Beyond prompting, fine-tuning (Wang et al.,
2023; Wen et al., 2024; Ye et al., 2025), in-context
learning (Zhao et al., 2024b), reinforcement learn-
ing (Yu et al., 2023; Wang et al., 2024a; Trung et al.,
2024), test-time scaling (DeepSeek-AI et al., 2025;
Guan et al., 2025) and other strategies are also uti-
lized to improve mathematical generalization and
symbolic reasoning (Zhao et al., 2024c; Ma et al.,
2025; Chen et al., 2025; Fu et al., 2025).

2.2 Data Synthesis For Math Reasoning

Early efforts in mathematical reasoning research
often relied on manually constructed datasets
(Hendrycks et al., 2021; Cobbe et al., 2021; Numi-
naMath, 2024). However, their limited scale and
diversity have constrained the potential of LLMs
in math reasoning tasks. Recent work has explored
the use of LLMs themselves to generate synthetic
data. Some work leverages LLMs to generate
diverse problems through self-instruct, chain-of-
thought prompting (Luo et al., 2025; Toshniwal
et al., 2025; Yu et al., 2024; Liu et al., 2025). Sub-
sequent work introduces rejection sampling to alle-
viate the problem of low-quality data from direct
prompting (Neal, 2003; Li et al., 2025b). To move
beyond simple prompting, recent work has focused
on knowledge-driven synthesis pipelines. These ap-
proaches often extract structured elements, such as
logically consistent templates (Huang et al., 2023)
or key knowledge points (Tang et al., 2024; Huang
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et al., 2025), from seed data to guide generation.
Although recent methods, especially knowledge-

driven synthesis pipelines, have improved mathe-
matical problem synthesis, they still suffer from
shallow conceptual hierarchies and limited diver-
sity. Furthermore, these approaches often apply a
uniform generation budget, potentially overlook-
ing the varied learning utility of problems at dif-
ferent difficulty levels (Xiong et al., 2025). Our
CogAtom framework addresses these challenges
by introducing cognitive atoms and unique walk
and recombination mechanism.

3 Methodology

As shown in Figure 1, our approach presents a com-
prehensive framework for mathematical problem
synthesis, encompassing three crucial stages: (1)
the extraction of reasoning atoms, (2) the construc-
tion of a cognitive association graph, and (3) the
synthesis of challenging mathematical problems.

3.1 Reasoning Atom Extraction

The foundation of our framework is a rich and di-
verse set of reasoning atoms. The quality of these
atoms is fundamentally constrained by the seed
problems from which they are extracted. Guided
by the principle that high-quality outputs necessi-
tate high-quality inputs, we begin not with random
data, but with a meticulously curated set of seed
problems. To this end, mirroring efforts in compu-
tational education to automatically assess and filter
high-quality simulated agents (Li et al., 2025a),
we introduce a systematic and reproducible pro-
cedure: the Automated Quality and Complexity
Assessment Protocol.

This protocol leverages GPT-4o as an expert
judge to evaluate candidate problems. First, we
established a 5-point rubric to score problems
based on the depth and complexity of reasoning
required, inspired by established pedagogical prin-
ciples and the design of large-scale educational
datasets (Penedo et al., 2024). The full rubric is
detailed in Appendix H. We then prompted GPT-
4o to score each problem according to this rubric.
To ensure robustness and mitigate potential biases,
each problem was scored three times, and the av-
erage score was used. Finally, we applied a strin-
gent filter, retaining only problems with an aver-
age score of 3.0 or higher. The rationale for this
rigorous curation is twofold. First, by selecting
problems that demand at least moderate multi-step

or conceptual reasoning, we ensure that our ini-
tial pool of cognitive atoms is sufficiently rich and
sophisticated to support the generation of novel,
non-trivial problems. Second, this "quality-over-
quantity" approach is supported by findings that an
LLM’s reasoning is more effectively unlocked by
smaller, high-quality datasets (Ye et al., 2025), and
that problems near the boundary of a model’s com-
petence offer the most learning utility (Xiong et al.,
2025). Our protocol thus serves as a principled
method for curating a high-quality set of problem-
solving demonstrations.From this curated seed set
of 9,403 problems, we then extract their constituent
reasoning atoms. Inspired by AoT (Teng et al.,
2025), we prompt GPT-4o to solve each problem
while reversely extracting the required atoms. To
consolidate semantically redundant elements, we
generate vector embeddings for the extracted atoms
and cluster them based on cosine similarity, yield-
ing a final, refined set of |A| = 44,117 unique
reasoning atoms, where A denotes the set of all
reasoning atoms.

3.2 Graph-Based Reasoning Chain
Generation

Our methodology transforms the curated set of
reasoning atoms into novel and coherent problem
structures through a sequential pipeline: (1) con-
struction and refinement of a global knowledge
graph to map conceptual associations, and (2) a
sample-and-refine procedure on this graph to gen-
erate logical reasoning chains.

1. Global Graph Construction and Refinement.
We begin by constructing a global, undirected Cog-
nitive Association Graph G = (V, E , ω), built
on the principle of co-occurrence. This principle
serves as a strong, data-driven proxy for the un-
derlying cognitive associations in expert problem-
solving. Each node v ∈ V is a unique reasoning
atom. To mitigate the bias from high-frequency
pairs, a common challenge in corpus-based net-
work analysis, edges are weighted using a logarith-
mic transformation of their co-occurrence count:
ωij = log(1 + nij). To enhance the graph’s
utility for generating non-trivial problems, we
then prune "supernodes"—nodes corresponding to
overly generic concepts (e.g., "equation substitu-
tion"). These are identified statistically as nodes
whose degree exceeds a threshold of µ+2σ, where
µ and σ are the mean and standard deviation of
node degrees in G. This process yields a pruned
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Randy has 60 mango trees on his farm. He also has 5 
less than half as many coconut trees as mango trees. 
How many trees does Randy have in all on his farm?

Let's break down the problem step by step: 
1. Number of mango trees: Randy has 60 mango trees. 
2. Number of coconut trees: He has 5 less than half as 
many coconut trees as mango trees.
......
3. Total number of trees: Add the mango trees and 
coconut trees: 60 + 25 = 85. 
Final Answer: 85. Randy has 85 trees in all on his 
farm.

Raw problem

Co-occurrence Analysis

Dependency Mapping

Rejection Sampling

�(��|��) ∝
��,�

log (1 + 푑��(��))� + � Logic Bridge Insertion

Noise Injection

Cognitive Atom Combination

LogDP-Walk in Reasoning Graph

Problem Synthesis Module

Reasoning Atoms in Solution

Base Conversion

Number Theory Fundamentals

Algebraic Equation Solving

......

Integer Constraints
Case Analysis

Solution Verification

Seed Problem Reasoning Atom Collection

Collect 

Cluster

Infer Module

Find the smallest positive integer N with exactly 13 positive divisors. 
Determine the minimal possible sum of a set of positive integers 
greater than 1 that multiply to N. ......                    

CoT Synthesis Module

Problem Quality Filter

Reasoning Generation

Reasoning Quality Evaluator

Solution:<think>Step 1: Find the 
smallest N with exactly 13 positive 
divisors,,......</think><answer>Final 
Answers:The smallest positive 
integer N is 4096.The minimal sum 
is 24.The number of distinct 
unordered sets is 7.</answer>

Solution

Reasoning Graph 
Construction

Figure 1: The overall pipeline of CogAtom, which consists of three main stages. (1) Knowledge Base Construction:
Reasoning atoms are extracted from a curated seed set to build a global Cognitive Association Graph based on
co-occurrence. (2) Reasoning Chain Generation: A sample-and-refine process generates the final reasoning
combination: diverse paths are first sampled from the global graph, then logically refined using local dependency
information and Cognitive Transfer Operators. (3) Problem Synthesis: The refined combination serves as a logical
blueprint to prompt a powerful LLM for the final synthesis of a new problem and its solution.

graph, G′, which serves as the foundational struc-
ture for exploration.

2. Reasoning Chain Generation. The genera-
tion of the final reasoning atom combinations is
a two-stage process that moves from broad explo-
ration to fine-grained logical refinement.

First, to generate diverse conceptual skeletons,
we perform a biased random walk on the pruned
graph G′, termed Diversity-Promoting Degree-
Regularized Path Expansion (DPDRPE). At each
step, the algorithm probabilistically selects the next
node vnext from the neighbors of the current node
vcurr. The selection is governed by an association
score that penalizes high-degree nodes, thus fa-
voring less common and potentially more novel
conceptual connections, defined as:

score(vnext) =
ωvcurr,vnext

(deg(vnext) + ϵ)α
(1)

where ω is the co-occurrence weight, deg(·) is the
node degree, and α is a hyperparameter controlling
the penalty strength. This yields a set of "reasoning
paths" that are diverse but may lack strict logical
coherence.

Second, to instill logical rigor, each sampled
path undergoes an iterative refinement process for-
malized in Algorithm 1. The target combination
size, K, is set to 10. This choice is informed by an

analysis of human-authored Olympiad-level prob-
lems, which our analysis shows typically involve
the synthesis of 8–12 core concepts. Our selec-
tion of K = 10 thus aims to emulate a comparable
level of cognitive complexity. For each path, we dy-
namically construct a local, directed Dependency
Graph GD,path = (Vpath, ED), where Vpath con-
tains the atoms in the sampled path P . Here, sij
represents the logical dependency strength between
atoms vi and vj on a 5-point scale (detailed in Ap-
pendix B). We retain only edges with sij ≥ 3 (on
a 5-point scale). This threshold acts as a crucial
denoising step, filtering out weak or irrelevant con-
nections while preserving meaningful, non-obvious
relationships (scores 3 and above indicate moder-
ate to strong logical dependencies) that are vital
for creative synthesis. On this local graph, the con-
ditional probability of a dependency is defined as
P (vj |vi) = sij/

∑
vk∈succ(vi) sik, where succ(vi)

is the set of successor nodes of vi in GD,path.

The refinement is driven by three Cognitive
Transfer Operators, which are applied iteratively as
outlined in Algorithm 1. Each operator is designed
to optimize a specific property of the reasoning
combination:

Bridge Replacement enhances logical coherence
by inserting an intermediary node vk to connect
a weakly linked pair (vi, vj). The optimal bridge

24111



Algorithm 1: Reasoning Combination Re-
finement
Data: A sampled reasoning path P , Target

size K
Result: A refined reasoning combination C
C ← BackboneConstruction(P ) ;
// Select key nodes from P

Construct local dependency graph GD,path

for nodes in C;
while |C| < K do

C ← BridgeReplacement(C,GD,path);
C ←

CounterfactualPerturbation(C,P,GD,path);

C ← PathExtension(C,GD,path);
end
return C

node is selected by maximizing the compound de-
pendency strength, formalized as:

v∗k = arg max
vk∈V \C

P (vk|vi) · P (vj |vk) (2)

Counterfactual Perturbation promotes cognitive
diversity by introducing an atom v∗ from the orig-
inal path P that is minimally associated with the
current combination C. This encourages the ex-
ploration of novel conceptual links and is guided
by:

v∗ = arg min
v∈P\C

max
vj∈C

P (vj |v) (3)

Path Extension ensures the completeness and log-
ical flow of the reasoning chain by appending a
strongly dependent successor node vnext to a node
vi ∈ C, governed by the condition:

P (vnext|vi) ≥ θ (4)

where θ is a predefined dependency threshold.
Through this iterative process, diverse concep-
tual skeletons are transformed into combinations
that are both logically sound and cognitively
novel.Ultimately, we posit that the quality of a syn-
thesized problem is directly determined by the log-
ical coherence and conceptual novelty of its under-
lying reasoning chain—properties our sample-and-
refine process is explicitly designed to optimize.

3.3 Synthesis of Challenging Mathematical
Problems

Given a combination of reasoning atoms, we de-
sign an efficient pipeline for problem generation

and quality control. Tailored prompts are crafted
to guide large language models in synthesizing
mathematical problems that are both challenging
and diverse.To ensure the quality of the generated
problems, we employ a rigorous multi-dimensional
evaluation process that filters out questions lacking
logical consistency, sufficient solvability, appropri-
ate difficulty, or adequate concept coverage. For
problems that pass this screening, we further uti-
lize a strong teacher model to generate detailed
step-by-step reasoning solutions. Each reasoning
chain is then subjected to comprehensive quality as-
sessment, focusing on conceptual integration, rea-
soning depth and rigor, key insight demonstration,
error path exploration, and training applicability.
Only those problems and reasoning chains that
meet all quality criteria are retained in the final
dataset.Through this dual-stage quality assurance
process, we construct a dataset D = {(qi, si, ai)},
where qi denotes the problem statement, si is the
step-by-step solution, and ai is the final answer.
This dataset provides a solid foundation for training
and evaluating advanced mathematical reasoning
models.

4 Experiments

4.1 Datasets
Seed Dataset Construction. To establish a high-
quality foundation for our synthetic data gen-
eration process, we constructed a comprehen-
sive seed dataset comprising 9,403 mathemat-
ical problems carefully selected from multiple
established datasets. These source datasets in-
clude: GSM8K (Cobbe et al., 2021) (MIT Li-
cense), MATH (Hendrycks et al., 2021) (MIT li-
cense), TAL-SCQ5K-EN (Math-Eval, 2023) (MIT
License), JEEE and AIEEE2, ranging from elemen-
tary and middle school difficulty to Olympic-level
difficulty. To ensure quality and appropriate dif-
ficulty distribution, we employed GPT-4o (Zhao
et al., 2024a) to filter and categorize the problems
based on their complexity and reasoning require-
ments, resulting in a diverse and balanced seed
collection suitable for our synthetic data genera-
tion pipeline. The detailed composition of the seed
dataset is summarized in Table 1.

4.2 Baseline Methods
Our evaluation employs both short-CoT (concise
intermediate reasoning steps) and long-CoT (ex-

2https://jeemath.in/
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Source Dataset Number of Samples

GSM8K (train) 1351
TAL-SCQ5K-EN (train) 526
MATH (train) 3994
AIEEE/JEEE 3472

Total 9343

Table 1: Composition of the seed dataset used for syn-
thetic data generation.

tended reasoning with self-reflection and alterna-
tive paths) approaches. We compare against five
state-of-the-art mathematical problem generation
methods:

For comprehensive assessment, we compare our
method against several prominent approaches in
mathematical problem generation: Evol-Instruct
(Luo et al., 2025) implements an iterative refine-
ment mechanism using LLMs to progressively
enhance instructional data complexity; KPDDS
(Huang et al., 2025) extracts key points from au-
thentic sources to generate mathematically coher-
ent question-answer pairs; OpenMath (Toshniwal
et al., 2025) synthesizes solutions for established
benchmarks through open-source language mod-
els; NuminaMath (NuminaMath, 2024) provides
competition-level mathematical problems with de-
tailed reasoning traces; and MathScale (Tang et al.,
2024) constructs concept graphs from seed ques-
tions to guide diverse problem generation.

For methods without publicly released problem
sets (specifically Evol-Instruct and KPDDS), we
followed their documented methodologies using
Qwen2.5-Math-72B-Instruct (Yang et al., 2024)
to generate comparable problem collections. For
NuminaMath, OpenMathInstruct, and MathScale,
we utilized their published problem sets directly.

4.3 Implementation Details

We employ GPT-4o to generate step-by-step so-
lutions, from which atomic reasoning steps were
extracted. Each reasoning atom is encoded as
a dense vector using the BGE-M3 model (Chen
et al., 2024), followed by L2 normalization. We
apply MiniBatch KMeans clustering to these em-
beddings and further merged highly similar clus-
ters using cosine similarity filtering. We then con-
struct a cognitive association graph comprising
44,177 reasoning atom nodes and 149,576 edges.
To generate diverse reasoning paths, we perform it-
erative degree-penalized random walks of order
n = 5 starting from each node in the concept

graph, thereby constructing cognitive reasoning
paths. Along each path, we apply three types
of cognitive leap operations to obtain combina-
tions of reasoning atoms, with each combination
containing 10 nodes. For problem synthesis, we
use Qwen2.5-72B-Instruct to generate CogAtom-
short problems and DeepSeek-R1-Distill-Qwen-
32B (DeepSeek-AI et al., 2025) for CogAtom-
long problems. For quality control, we employ
Qwen2.5-72B-Instruct as an LLM-based judge. We
further fine-tune Qwen2.5-Math-7B (Yang et al.,
2024) and Qwen2.5-14B-Origin using the Adam
optimizer with initial learning rates of 2 × 10−5

and 1 × 10−5, respectively. To further investi-
gate the reasoning ability of long-CoT, we fine-
tuned DeepSeek-R1-Distill-Qwen-7B and evaluate
on three high-difficulty datasets (MATH, AIME
2024 and AIME 2025). All training was conducted
with BF16 mixed precision and Flash Attention for
two epochs, and greedy decoding is used during
evaluation. All experiments were conducted on a
cluster of 8 machines, each equipped with NVIDIA
A100 GPUs.

4.4 Main Result
Tables 2 and 3 present comprehensive evaluation
results comparing our CogAtom framework against
state-of-the-art mathematical problem generation
methods across five benchmarks of increasing diffi-
culty. Our analysis reveals several significant find-
ings:

(1) When used for fine-tuning identical base
models, CogAtom-generated data consistently
yields superior performance across all benchmarks.
For Qwen2.5-Math-7B, fine-tuning with CogAtom-
long data achieves 91.2% accuracy on GSM8K and
83.0% on MATH500, outperforming the next best
data sources (KPDDS at 89.5% and Evol-Instruct
at 73.8%, respectively). Similar advantages are
observed with Qwen2.5-14B-Origin, demonstrat-
ing the cross-architectural transferability of our ap-
proach.

(2) The performance advantage from CogAtom-
generated training data becomes increasingly pro-
nounced as problem difficulty increases. With
Qwen2.5-Math-7B, the improvement margin grows
from 1.7 percentage points on GSM8K to 9.2 per-
centage points on MATH500 (compared to the
strongest baselines). For Olympic-level problems,
Qwen2.5-Math-7B fine-tuned on CogAtom-long
data correctly solves 5/30 AIME2024 problems,
compared to 4/30 for the best baseline method.
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Methods gsm8k math500 AMC AIME2024 AIME2025

Models based on Qwen2.5-Math-7B

KPDDS 89.5% 73.6% 50.0% 4/30 2/30
Evol-Instruct 87.9% 73.8% 45.0% 2/30 1/30
NuminaMath 84.4% 70.6% 47.5% 2/30 1/30
MathScale 80.8% 71.2% 45.0% 1/30 2/30
OpenMath 87.2% 69.0% 47.5% 1/30 2/30
CogAtom-short 90.4% 75.0% 52.5% 3/30 2/30
CogAtom-long 91.2% 83.0% 47.5% 5/30 3/30

Models based on Qwen2.5-14B-Origin

KPDDS 88.8% 58.8% 29.1% 3/30 1/30
Evol-Instruct 87.8% 63.0% 32.5% 2/30 1/30
NuminaMath 79.0% 59.0% 37.5% 1/30 1/30
MathScale 80.6% 59.4% 22.5% 1/30 0/30
OpenMath 87.8% 64.2% 40.0% 2/30 1/30
CogAtom-short 89.2% 68.8% 45.0% 3/30 2/30
CogAtom-long 91.7% 76.4% 32.5% 3/30 2/30

Table 2: Evaluation results on five mathematical benchmarks for model Qwen2.5-Math-7B and Qwen2.5-14B-
Origin, both fine-tuning with 100K synthetic problems. Within each section, the best results are highlighted in bold
font, and the second best results are underlined. The number of correct answers (out of 30) is reported for both
AIME2024 and AIME2025.

This pattern highlights our framework’s effective-
ness in generating training data that encodes com-
plex reasoning patterns required for advanced math-
ematical problem-solving.

(3) Training with CogAtom-short data yields
models that excel on structured problems with
clear solution paths (e.g., 52.5% on AMC using
Qwen2.5-Math-7B), while CogAtom-long data pro-
duces models that perform better on problems re-
quiring multi-step reasoning (e.g., 83.0% vs. 75.0%
on MATH500). This differentiation reflects how
our cognitive leap operators create training exam-
ples that develop distinct reasoning capabilities
based on the complexity of target tasks.

(4) As shown in Table 3, when fine-tuning
DeepSeek-R1-Distill-Qwen-7B, CogAtom-long
data enables achieving 90.8% accuracy on
MATH500, surpassing the next best method (Evol-
Instruct at 79.6%) by 11.2 percentage points. Most
remarkably, it facilitates solving 10/30 AIME2024
problems and 9/30 AIME2025 problems. These
substantial improvements demonstrate that training
examples generated by CogAtom capture complex
conceptual dependencies and multi-step reasoning
paths, thereby unlocking the full potential of ad-
vanced reasoning models.

4.5 Analysis of Data Scale

To evaluate the scalability of our data synthe-
sis engine, we fine-tuned Qwen2.5-7B-Math on
CogAtom-generated datasets of increasing sizes,

Methods math500 AIME2024 AIME2025

KPDDS 76.6% 6/30 1/30
Evol-Instruct 79.6% 6/30 2/30
NuminaMath 72.2% 4/30 2/30
MathScale 75.3% 1/30 0/30
OpenMath 68.0% 2/30 2/30
CogAtom-long 90.8% 10/30 9/30

Table 3: Evaluation results on three mathematical
benchmarks with high-difficulty for model Qwen2.5-
7B-DeepSeek-R1-Distill-Qwen-7B.

from 300k up to 1.6 million problems. The results,
presented in Figure 2 and detailed in Table 4, reveal
a strong, positive correlation between data scale
and performance on core mathematical reasoning
benchmarks.

The scaling trend is particularly pronounced
on the most challenging benchmarks. On the
competition-level AIME dataset, for instance, ac-
curacy exhibits a clear monotonic ascent with data
volume: it rises from 27.0% at 300k samples, to
29.0% (+500k), 31.0% (+1M), and culminates at
33.0% with the full 1.6M dataset. This scaling be-
havior, characterized by diminishing returns, is con-
sistent with established logarithmic scaling laws
in large language models. Furthermore, the data
reveals a differentiated impact: the absolute per-
formance gain on the complex reasoning required
for AIME (+6.0% from 300k to 1.6M) is substan-
tially larger than on the more algorithmic GSM8K
benchmark (+1.5% over the same interval). While
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Figure 2: Performance on mathematics benchmarks
with increasing scale of synthesized data from
CogAtom-long. We report accuracy for GSM8K,
MATH, AIME, and AMC.

Data Scale GSM8K MATH AIME AMC

+300k 90.1% 87.2% 27.0% 59.4%
+500k 90.3% 89.4% 29.0% 65.5%
+1M 91.1% 90.2% 31.0% 70.1%
+1.6M 91.6% 90.6% 33.0% 64.2%

Table 4: Detailed performance on mathematics bench-
marks with increasing scale of synthesized data from
CogAtom-long.

performance on AMC shows a different trajectory,
peaking at 1M samples, the overall results strongly
validate that the CogAtom engine is a scalable and
effective method for enhancing advanced mathe-
matical reasoning.

4.6 Cross-Domain Generalization to Physics

To assess the domain-agnostic nature of the
CogAtom paradigm, we applied it to physics—a
domain that, like mathematics, is characterized by
complex principles and multi-step reasoning.We
synthesized two large-scale datasets of 300k and
600k physics problems, respectively, and used them
to fine-tune the Qwen2.5-7B base model.The em-
pirical results, presented in Table 5, provide strong
support for this hypothesis. Fine-tuning on the gen-
erated data yields consistent and substantial per-
formance gains across a suite of standard physics
benchmarks in both Chinese (C-MMLU) and En-
glish (MMLU). The performance improvements
scale positively with data volume; for instance,
on C-MMLU High School Physics, the accuracy
gain grows from +1.3% with 300k samples to a
remarkable +9.3% with 600k samples. This mono-
tonic trend underscores the effectiveness of our
synthesized data in imparting robust physical rea-

soning skills. A qualitative case study of a gener-
ated physics problem, which integrates concepts
from thermodynamics and black-body radiation, is
detailed in Appendix C.

4.7 Ablation Study on Synthesis Components

Table 6 reports the results of our ablation study
on the key components of the framework. The
degree-penalty mechanism is crucial for promot-
ing conceptual diversity by mitigating the selection
bias toward high-degree nodes; its removal causes a
dramatic drop in CogAtom-long’s performance on
AIME2024 from 4/30 to 1/30, especially for com-
plex problems. Cognitive leap operators are par-
ticularly beneficial for long-form reasoning: their
ablation leads to a 2.6 percentage point decrease
in MATH500 accuracy and halves the AIME2024
score for CogAtom-long. In contrast, these oper-
ators have minimal effect on CogAtom-short, in-
dicating their primary role in enhancing complex
reasoning chains. Quality-based rejection sampling
also plays a significant role in challenging bench-
marks; without it, CogAtom-short’s AIME2024
result declines from 3/30 to 1/30. Collectively,
these findings confirm that each component makes
a meaningful contribution, with their importance
varying according to the complexity of mathemati-
cal reasoning tasks.

4.8 Analysis of Problem Difficulty

We assess problem difficulty using two comple-
mentary metrics: answer consistency and inference
tokens. A problem is marked as consistent if both
models generate identical answers. We also record
the total number of tokens consumed during their
reasoning to assess difficulty. We additionally ex-
tend our analysis to the challenging Olympiad-level
AIME2024 dataset. The results are presented in
Table 7. Compared with other baseline synthetic
methods, our CogAtom framework achieving the
lowest answer consistency (67.47%) and most to-
kens (3022), indicating synthesis of the most chal-
lenging problem. Although AIME2024 benchmark
still yields an even lower consistency of 50.00%
and more tokens of 5260, CogAtom narrows this
gap more than any other methods, demonstrating its
effectiveness at generating higher-difficulty, more
realistic mathematical challenges.

4.9 Analysis of Problem Diversity

We further analyze the diversity of synthesized
problems. We introduce the Problem Type Diver-
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Table 5: Performance on physics benchmarks as the scale of synthetic data increases. We report accuracy scores.
The best results are in bold.

Synthetic Data Scale C-MMLU C-MMLU MMLU MMLU MMLU
Concept. Physics High School Physics Concept. Physics High School Physics Univ. Physics

Baseline (0 samples) 0.7687 0.6818 0.7050 0.5762 0.5000
+300k (Our Method) 0.7823 0.6909 0.7450 0.5960 0.5882
+600k (Our Method) 0.7959 0.7455 0.7200 0.6093 0.5294

Methods Ablation gsm8k math500 AIME2024 AIME2025

CogAtom-short

Full model 88.5% 70.6% 3/30 2/30
w/o degree-penalty 87.1% 69.6% 2/30 1/30
w/o cognitive 87.6% 70.2% 3/30 2/30
w/o reject-sampling 86.9% 70.6% 1/30 2/30

CogAtom-long

Full model 91.0% 70.6% 4/30 3/30
w/o degree-penalty 90.3% 69.2% 1/30 2/30
w/o cognitive 90.6% 68.0% 2/30 2/30
w/o reject-sampling 89.5% 69.0% 3/30 2/30

Table 6: Ablation study results of different synthesis components for model Qwen2.5-Math-7B finetuning with 10K
synthetic problems.

Methods Answer Consistency Tokens

KPDDS 75.7% 2328
Evol-Instruct 70.0% 2282
NuminaMath 86.3% 1954
MathScale 68.6% 2103
OpenMath 80.5% 2532
AIME2024 50.0% 5260
CogAtom 67.5% 3022

Table 7: Analysis of problem difficulty with model
Qwen2.5-72B and DeepSeek-R1-distill-Qwen-32B.

Methods PTD

KPDDS 1.7903
Evol-Instruct 1.7931
NuminaMath 1.7936
MathScale 1.7836
OpenMath 1.7190
AIME2024 1.7896
CogAtom 1.7961

Table 8: Analysis of problem diversity

sity (PTD) metric to rigorously quantify semantic
diversity in mathematical problem datasets. PTD
jointly captures the breadth of problem type cover-
age and the uniformity of their distribution:

PTD =
Nc√
N

(
1− σc

µc

√
Nc

)
(5)

Here, Nc is the semantic cluster count, N is the to-
tal sample size, µc is the mean cluster size, and σc
is the cluster size standard deviation. Empirically,
CogAtom-Long achieves the highest PTD score
(1.7961), reflecting comprehensive and balanced

problem coverage. In contrast, baseline datasets
like KPDDS (1.7190) show lower PTD, indicating
more homogeneous content. These results high-
light our approach’s advantage in fostering seman-
tic diversity, critical for enhancing model general-
ization to novel mathematical reasoning tasks.

5 Conclusion

In this paper, we introduced CogAtom, a novel
framework for mathematical problem synthesis that
integrates reasoning atoms and cognitive associa-
tion graphs to generate high-quality training data.
Our extensive experiments demonstrated that mod-
els fine-tuned on CogAtom-generated problems
achieve substantial improvements in mathemati-
cal reasoning capabilities, particularly on advanced
multi-step reasoning tasks, outperforming exist-
ing methods by significant margins on challenging
benchmarks including MATH500 and AIME. The
effectiveness of our approach highlights the impor-
tance of cognitive science principles in designing
synthetic training data for enhancing reasoning abil-
ities in foundation models.

Limitations

Despite the promising results of our work, a pri-
mary limitation is that the CogAtom framework
currently operates exclusively in the textual modal-
ity. This constraint limits its applicability to math-
ematical domains that are inherently visual, such
as geometry and graph theory, where diagrams and
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figures are often integral to the problem statement.
A significant direction for future research is to ex-
tend CogAtom into a multimodal framework. This
would involve developing methods to represent vi-
sual components as a new type of cognitive atom
and learning the cross-modal associations between
textual and visual elements. Such an extension
would enable the synthesis of a far richer and more
comprehensive class of problems, better reflecting
the multimodal nature of human mathematical rea-
soning.
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A Seed Problem Curation Strategy

To ensure our seed problem set possesses sufficient
complexity and quality to foster advanced reason-
ing, we developed and implemented a systematic
curation strategy. Our approach is grounded in the
principle that the quality of synthesized data is fun-
damentally dependent on the quality of the initial
seeds. This strategy automates the curation process
in a principled and reproducible manner.

The core of this strategy is an LLM-as-an-expert-
judge assessment. For each candidate problem, we
prompted GPT-4o to score it three independent
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times to ensure robustness and mitigate potential
scoring anomalies. The final score was the average
of these three ratings. Subsequently, we applied
a stringent quality filter, retaining only problems
with an average score of 3.0 or higher. The evalua-
tion rubric used in this process, which provides a
structured hierarchy for assessment from founda-
tional recall to abstract reasoning, is presented in
Figure 3.

B Prompt for Cognitive Atom Extraction

Figure 4 instructs the language model to analyze
mathematical problems through a step-by-step rea-
soning process, then identify and extract the funda-
mental cognitive atoms—atomic knowledge enti-
ties at appropriate granularity—required to master
the problem, enabling systematic representation
of the core mathematical concepts and principles
underlying complex reasoning tasks.

Figure 5 presents the prompt used to quan-
tify logical dependencies between cognitive atoms.
This prompt guides the language model to evalu-
ate the strength of prerequisite relationships on a
5-point scale, enabling the construction of depen-
dency graphs for reasoning chain refinement.

Figure 6 shows the prompt generating prob-
lems after we obtain the combinations of cognitive
atoms. We apply strict filtering for both synthetic
problems and generated answers, as shown in Fig-
ure 7 and 8.

C Case Study in Physics Generalization

Figure 9 presents a representative problem synthe-
sized by CogAtom in the physics domain. This
problem exemplifies a high-quality synthesis, as
its solution requires the integration of four distinct
cognitive atoms: Energy Absorption, Black-Body
Emission, Thermodynamic Equilibrium, and Heat
Capacity. The core reasoning challenge lies in
reconciling the different geometric dependencies
of energy absorption (proportional to the Earth’s
cross-sectional area) and thermal emission (pro-
portional to the total surface area). A solver must
correctly navigate this interplay and then deduce
how a systemic property, such as heat capacity, in-
fluences the final equilibrium state. This demand
for synthesizing a coherent model from competing
principles is a hallmark of the cognitively complex
problems our framework is designed to generate,
built to stress-test and cultivate advanced reasoning
capabilities.

D Case Study: Mathematical Problem
Synthesis

To provide a transparent, step-by-step illustration
of our core Reasoning Chain Generation stage, this
appendix presents a detailed case study. The pro-
cess, visualized in Figure 10, deconstructs how our
Cognitive Transfer Operators systematically trans-
form a simple conceptual path into a sophisticated,
multi-domain mathematical problem, showcasing
the framework’s capacity for controlled and cre-
ative synthesis.
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Figure 3: The 5-level, level-based rubric used in our seed problem curation strategy. Each level defines a specific
set of cumulative criteria for assessing the reasoning depth of a mathematical problem, from Foundational Recall
(Score 1) to Abstract or Creative Reasoning (Score 5).

Problem: {problem}
1.Think step-by-step through the process of solving this problem.
2.What knowledge points need to be mastered to correctly solve this problem? The granularity of the knowledge points should be 
individual knowledge entities, equivalent to atoms in a knowledge graph. Provide the name and explanation of each knowledge point.

Respond to the knowledge points in JSON standard format, ensuring that the output can be loaded using json.loads. Do not include any 
unrelated information or content that is not in JSON format: Keys represent the serial number of the knowledge point, and values are 
the concatenation of each knowledge point and its corresponding explanation, separated by ' - ‘:
{"1": "Knowledge Point - Explanation", "2": "Knowledge Point - Explanation", "3": "Knowledge Point - Explanation", ...}
output:

Prompt for Cognitive Atom Extraction

Figure 4: Prompt for extracting cognitive atom from problems
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You are a senior mathematics education expert specializing in curriculum design and knowledge structure analysis.

Given the following ordered list of knowledge points, please analyze all possible knowledge point pairs (A, B), where A appears before B.
Only output the pairs where A is a prerequisite (i.e., has a dependency relationship) for B, with a dependency strength score of 3 
(moderate), 4 (strong), or 5 (essential). The scoring criteria are as follows:
• 3 (Moderate): A is helpful for learning B; mastering A makes B easier to understand, though B can still be learned in other ways.
• 4 (Strong): A is very important for B; lack of understanding of A significantly hinders learning B.
• 5 (Essential): A is a strict prerequisite for B; without A, it is not possible to properly understand or learn B.
For each such dependency pair, provide the score (3, 4, or 5) and a concise academic justification.

Input knowledge point list: {kp_list_str}
Output strictly in the following JSON format (only output JSON, minimize line breaks):
[{"from": "A", "to": "B", "score": 3, "reason": "Concise academic justification"}, {"from": "A", "to": "C", "score": 4, "reason": "Concise 
academic justification"}]

Do not include pairs with scores of 1 or 2. Output only the JSON array in a single line without unnecessary line breaks.

Prompt for Dependency Extraction

Figure 5: Prompt for extracting dependency

Figure 6: Prompt for problem generation
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Figure 7: Prompt for quality filtering

Figure 8: Prompt for CoT answer quality filtering
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Figure 9: A case study illustrating the cross-domain generalization of CogAtom. The synthesized physics problem
requires integrating distinct cognitive atoms from thermodynamics, black-body radiation, and mechanics.
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Case Study: Generating a Multi-domain Problem

This case study illustrates the step-by-step process of generating a problem that integrates Number Theory, 
Combinatorics, and Optimization.

Step 1: Initial Path Sampling
The process begins by sampling an initial "seed path" of related cognitive atoms, representing a standard 
optimization problem:
Initial Path:["Budget Constraint", "Unit Cost Calculation", "Total Quantity Calculation", "Linear Consumption 
Model", "Maximization"]

Step 2: Path Enhancement via Cognitive Transfer Operators
The framework then applies three cognitive operators to inject complexity and novelty into the initial path.
A. Path Extension (Deepening a Concept) The system replaces the simple "Unit Cost Calculation" with a 
more complex prerequisite, "Combinatorial Counting," forcing the unit value to be derived from a counting 
sub-problem.
B. Bridge Replacement (Connecting Disparate Ideas)To enrich the counting task, the system introduces 
"Prime Factorization" as a bridge, elegantly connecting the domains of Combinatorics and Number Theory.
C. Counterfactual Perturbation (Introducing a Novel Constraint)To make the final optimization non-trivial, 
the system perturbs the "Maximization" goal with a distant concept, "Modular Arithmetic," transforming a 
standard optimization into a constrained one.
This iterative refinement results in a final, more sophisticated combination of cognitive atoms:

Final Combination:["Prime Factorization", "Combinatorial Counting", "Budget Constraint", "Total Quantity 
Calculation", "Linear Consumption Model", "Modular Arithmetic", "Solving Linear Congruence", 
"Maximization"]

Step 3: Problem Synthesis
Finally, the enriched atom combination is provided to GPT-4o to synthesize a coherent problem narrative.

Generated Problem

Problem Statement:
Patty has $45 to spend on cookie packages. Each package costs $5 and contains C cookies, where C is the 
number of ordered triples of integers (l, w, h) such that l ≤ w ≤ h and l × w × h = 360. Her siblings do 10 
chores per week, and she pays them 4 cookies per chore. After buying the cookies, she finds that her total 
number of cookies must be 2 more than a multiple of 7 to unlock a bonus. What is the maximum number of 
full weeks she can pay for the chores under this modular constraint?

Problem Analysis
This generated problem successfully integrates three mathematical domains:
1. Number Theory: Prime factorization (360 = 2³ × 3² × 5) and modular arithmetic constraints
2. Combinatorics: Counting ordered triples with constraints
3. Optimization: Maximizing the number of weeks under constraints
The problem requires solvers to first perform combinatorial counting, then apply modular arithmetic 
constraints for optimization, demonstrating the cognitive atom framework's ability to generate complex, 
multi-domain mathematical problems.

Figure 10: A visualization of the Reasoning Chain Generation process for a multi-domain math problem. (1) Path
Sampling: An initial, simple "seed path" focused on optimization is sampled from the global graph. (2) Iterative
Refinement: The three Cognitive Transfer Operators—Path Extension, Bridge Replacement, and Counterfactual
Perturbation—iteratively refine the path, injecting complexity by linking disparate domains like Number Theory
and Combinatorics.
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