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Abstract

Medical information retrieval (MIR) is vi-
tal for accessing knowledge from electronic
health records, scientific literature, and medical
databases, supporting applications such as med-
ical education, patient queries, and clinical di-
agnosis. However, effective zero-shot dense re-
trieval in the medical domain remains difficult
due to the scarcity of relevance-labeled data.
To address this challenge, we propose Self-
Learning Hypothetical Document Embeddings
(SL-HyDE), a framework that leverages large
language models (LLMs) to generate hypo-
thetical documents conditioned on a query.
These documents encapsulate essential med-
ical context, guiding dense retrievers toward
the most relevant results. SL-HyDE further
employs a self-learning mechanism that itera-
tively improves pseudo-document generation
and retrieval using unlabeled corpora, elimi-
nating the need for labeled data. In addition,
we introduce the Chinese Medical Informa-
tion Retrieval Benchmark (CMIRB), a compre-
hensive evaluation suite reflecting real-world
medical scenarios, comprising five tasks and
ten datasets. By benchmarking ten models on
CMIRB, we provide a rigorous standard for
evaluating MIR systems. Experimental results
demonstrate that SL-HyDE significantly out-
performs HyDE in retrieval accuracy, while
exhibiting strong generalization and scalability
across diverse LLM and retriever configura-
tions. Our code and data are publicly available
at: https://github.com/110ruc/AutoMIR.

1 Introduction

Medical information retrieval (MIR) (Luo et al.,
2008; Goeuriot et al., 2016) focuses on retriev-
ing relevant medical information from sources
like electronic health records, scientific papers,
and medical knowledge databases, based on spe-
cific medical queries. Its applications are wide-

*Xiao Zhou and Zheng Liu are corresponding authors.

ranging, supporting doctors in clinical decision-
making (Sivarajkumar et al., 2024), assisting pa-
tients in seeking health-related information (Mc-
Gowan et al., 2009), and aiding researchers in ac-
cessing pertinent studies (Zheng and Yu, 2015).
Dense retrievers (Karpukhin et al., 2020; Xu
et al., 2024) have shown strong performance when
trained on large labeled datasets in information re-
trieval (IR). Several studies (Xiong et al., 2020;
Li et al., 2023; Xiao et al., 2024) have success-
fully employed contrastive learning to develop
general-purpose text embedding models, achieving
promising results in zero-resource retrieval scenar-
ios. They leverage large-scale weakly supervised
data through web crawling as well as high-quality
text pairs derived from data mining or manual anno-
tation. However, the availability of such large-scale
datasets cannot always be guaranteed, particularly
in non-English languages or specialized domains.
Recently, large language models (LLMs) have
demonstrated exceptional performance in zero-
resource retrieval scenarios (Wang et al., 2023a;
Shen et al., 2023), primarily due to their extensive
knowledge and powerful text generation capabil-
ities. This makes them particularly effective in
situations where labeled data are scarce or unavail-
able. One such approach, HyDE (Gao et al., 2023),
employs zero-shot prompts to guide an instruction-
following language model to generate hypothetical
documents, effectively narrowing the semantic gap
between the query and the target document. Simi-
larly, Query2doc(Wang et al., 2023a) uses few-shot
prompting of LLMs to generate pseudo-documents,
which are then used to augment the original query.
However, applying these HyDE-style methods
to medical information retrieval presents three crit-
ical challenges: (1) LLMs lack the specialized
medical knowledge necessary to generate highly
relevant hypothetical documents. HyDE employs
general-purpose LLMs for pseudo-document gen-
eration, which are often insufficiently equipped
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with domain-specific knowledge, particularly in
fields like medicine. Community efforts such
as HuatuoGPT (Zhang et al., 2023) and PMC-
LLaMA (Wu et al., 2024) highlight the neces-
sity of fine-tuning on medical data to enhance
domain-specific capabilities. Although these med-
ical LLMs have richer medical knowledge, their
outputs are suboptimal in aligning with retrieval
optimization needs. (2) General text embedding
models are inadequate for representing medical
queries and documents effectively. These versa-
tile retrievers (Xiao et al., 2024; Wu et al., 2023)
are typically designed for multi-domain and multi-
task settings, but fail to capture the nuanced and
knowledge-intensive nature of the medical domain.
(3) The medical domain suffers from a scarcity
of high-quality, relevance-labeled datasets. Such
resources are particularly limited in non-English
languages, where annotation demands substantial
domain expertise and is further constrained by strict
privacy regulations. This shortage substantially
raises the cost of training and fine-tuning retrieval
models to achieve strong performance.

To address these issues, we propose Self-
Learning Hypothetical Document Embedding (SL-
HyDE), an effective fully zero-shot dense retrieval
system that requires no relevance-labeled data for
medical information retrieval. During the infer-
ence phase, SL-HyDE first employs an LLM as the
generator to produce a relevant hypothetical doc-
ument in response to a medical query. A retrieval
model is then used to identify the most relevant
target document from the candidates based on the
generated hypothetical document. In the training
phase, we design a self-learning mechanism that
enhances the retrieval performance of SL-HyDE
without the need for labeled data. Specifically, this
mechanism leverages the retrieval model’s ranking
capabilities to select high-relevance hypothetical
documents that align with the outputs of the gen-
erator (LLM), simultaneously injecting medical
knowledge into the LLM. In turn, the generator’s
ability to produce high-quality hypothetical docu-
ments provides pseudo-labeled data for the training
of the retrieval model, enabling it to efficiently
encode medical texts. This interactive and com-
plementary approach generates supervisory signals
that enhance both the generation and retrieval ca-
pabilities of the system. Notably, SL-HyDE be-
gins with unlabeled medical corpora and completes
the training process through a self-learning mech-
anism, thereby circumventing the heavy reliance

on labeled data typically required for training both
large language models and text embedding models.

To evaluate SL-HyDE’s performance in Chi-
nese medical information retrieval, we develop a
valuable Chinese Medical Information Retrieval
Benchmark (CMIRB). CMIRB is constructed from
real-world medical scenarios, including online con-
sultations, medical examinations, and literature re-
trieval. It comprises five tasks and ten datasets,
representing the first comprehensive and authentic
evaluation benchmark for Chinese medical infor-
mation retrieval. This benchmark is expected to
accelerate advancements toward building more ro-
bust and generalizable MIR systems in the future.

Through extensive experimentation on CMIRB,
we find that our proposed method significantly en-
hances retrieval performance. We validate SL-
HyDE across various configurations involving
three large language models as generators and
three embedding models as retrievers. Notably,
SL-HyDE surpasses the HyDE (Qwen?2 as genera-
tor + BGE as retriever) combination by an average
of 4.9% in NDCG@10 across ten datasets, and
achieves a 7.2% improvement compared to using
BGE alone for retrieval. These outcomes under-
score the effectiveness and versatility of SL-HyDE.
In summary, our contributions are as follows:

* We propose Self-Learning Hypothetical Doc-
ument Embeddings for zero-shot medical in-
formation retrieval, eliminating the need for
relevance-labeled data.

* We introduce the first comprehensive Chi-
nese Medical Information Retrieval Bench-
mark and evaluate the performance of various
text embedding models on it.

* SL-HyDE enhances retrieval accuracy across
five tasks and demonstrates strong generaliz-
ability and scalability with different combina-
tions of generators and retrievers.

2 Related Work

2.1 Dense Retrieval

Recent advancements in deep learning and nat-
ural language processing have significantly ad-
vanced information retrieval and recommendation
systems (Xiong et al., 2020; Xiao et al., 2024; Ma
et al., 2024; Li et al., 2024; Li and Zhou, 2025).
Contriever (Izacard et al., 2021) leverages unsu-
pervised contrastive learning for dense retrieval.
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PEG (Wu et al., 2023) and BGE (Xiao et al., 2024)
enhance Chinese general embeddings by training
on large-scale text pairs. These works illustrate the
impact of well-structured training strategies on ef-
fective retrieval across multiple domains. Beyond
embedding-based techniques, large language mod-
els have demonstrated exceptional performance in
zero-resource retrieval scenarios. GAR (Mao et al.,
2021) enriches query semantics with generated con-
tent. HyDE (Gao et al., 2023) generates hypotheti-
cal documents for the retriever, effectively narrow-
ing the semantic gap between the query and the
target document. Query2doc (Wang et al., 2023a)
utilizes few-shot prompts to expand queries, boost-
ing both sparse and dense retrieval.

However, retrieval using LLM-generated docu-
ments often yields suboptimal results when domain-
specific knowledge is limited. To address this limi-
tation, we propose a self-learning framework that
jointly optimizes the generator and retriever with-
out the need for relevance labels, thereby improv-
ing retrieval performance.

2.2 Information Retrieval Benchmark

To better guide the development of retrieval mod-
els, researchers have developed various datasets
and benchmarks. For instance, DuReader (He
et al., 2018), a large-scale Chinese reading com-
prehension dataset, has substantially advanced
text understanding and information retrieval re-
search. BEIR(Thakur et al., 2021), a zero-shot
retrieval evaluation benchmark, covers diverse re-
trieval tasks and offers a unified evaluation plat-
form. MTEB (Muennighoff et al., 2023) estab-
lishes a framework for evaluating multilingual text
embeddings. More recently, C-MTEB (Xiao et al.,
2024) specifically targets Chinese text embedding
evaluations. However, these benchmarks are de-
signed for general domains, limiting their applica-
bility to specialized fields such as medical retrieval.
Existing medical benchmarks like TREC Collec-
tions (Voorhees et al., 2021) and NFCorpus (Boteva
et al., 2016) are highly valuable for MIR evaluation,
but they are limited in scale and cover few medical
scenarios. To bridge this gap, we develop the first
comprehensive and realistic evaluation benchmark
based on real-world medical scenarios for Chinese
medical information retrieval tasks.

2.3 Large Language Models in Medicine

Large language models (Team, 2024; Guo et al.,
2025; Yong et al., 2025; Zhou et al., 2025)

have shown strong potential in general do-
mains. HuatuoGPT (Zhang et al., 2023) dis-
tills clinician-supervised consultation data, and
PMC-LLaMA (Wu et al., 2024) leverages large-
scale biomedical literature for instruction-tuning,
highlighting the necessity of medical data fine-
tuning to improve clinical reasoning and QA. Simi-
larly, biomedical retrievers like BMRetriever (Xu
et al., 2024) demonstrate that domain-adaptive fine-
tuning on biomedical corpora is crucial for accurate
evidence retrieval. However, the HyDE paradigm
requires a retrieval model that is robust to hypo-
thetical documents and a generator that produces
retrieval-preferred documents. In this work, we
jointly optimize the generator and retriever toward
a shared objective of enhancing retrieval under the
HyDE-style pipeline.

3 Methodology

3.1 Preliminary

Zero-shot document retrieval is a fundamental com-
ponent of search systems. Given a user query ¢ and
a document set D = {dy, ..., d,, }, where n repre-
sents the number of candidate documents, the goal
of a retrieval model (M,.) is to identify documents
that align with the user’s genuine search intent for
the given query ¢q. These models map an input
query ¢ and a document d into a pair of vectors
<vgq, Vq>, using their inner product as a similarity
function s(q, d):

S(Q7d) =< MT(Q)vMT(d) > (D

The retrieval model then selects the top-k docu-
ments, denoted as Dy, which achieve the highest
similarity scores when compared to the query q.

Large language models have achieved remark-
able success across various natural language pro-
cessing tasks, including question answering (Liu
et al., 2022) and text generation (Dathathri et al.,
2019). Recently, there has been a growing inter-
est in leveraging these models to generate query-
relevant documents, thereby improving retrieval
accuracy. Hypothetical Document Embeddings
(HyDE) (Gao et al., 2023) decompose dense re-
trieval into two components: a generative task per-
formed by an instruction-following language model
and a document-document similarity task executed
by a retrieval model.
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Figure 1: Training and inference pipeline of SL-HyDE.

3.2 Overview

Applying HyDE to the medical domain presents
two primary challenges: (1) LLMs often lack spe-
cialized medical domain knowledge, and (2) re-
trievers may struggle to accurately encode medical
texts due to inadequate training on medical corpora.
These challenges hinder the successful application
of HyDE in the medical field, making it difficult to
achieve substantial performance improvements in
retrieval tasks. A common strategy to enhance med-
ical domain knowledge involves fine-tuning with
labeled medical data (Zhang et al., 2023; Wang
et al., 2024b; Xu et al., 2024). However, these
approaches depend on high-quality, manually con-
structed data to adapt general models to the medical
domain. Unfortunately, obtaining such high-quality
labeled data in practice is particularly challenging,
rendering the training of a medical LLM both diffi-
cult and costly.

In this paper, we introduce a self-learning hypo-
thetical document embedding mechanism designed
to exploit the potential of unlabeled medical cor-
pora. The labels are entirely generated by the gener-
ator and retriever within SL-HyDE, eliminating the
need for external labeled data collection. Figure 1
presents the overall framework.

3.3 SL-HyDE Training

Self-Learning Generator. An unlabeled medical
corpus, such as Huatuo26M (Wang et al., 2025),
serves as the primary resource for domain-specific
content. To construct queries, we employ a robust
offline LLM, Qwen2.5-32B-Instruct (Team, 2024),
leveraging in-context learning (Brown, 2020). With
a well-designed prompt, the model effectively gen-
erates medically grounded, context-aware queries:

q = LLM(d, prompt). @)

To facilitate retrieval, the raw generator M, pro-
duces a hypothetical document that encapsulates

the relevant information from the true target docu-
ment. Concretely, we provide both the query and
the corresponding target document as input to the
generator, along with a carefully designed prompt
to guide the pseudo-document generation:

d' = My(q, d, prompt). 3)

Notably, we avoid using the true target document
as the output label, as the generator’s primary role
is to craft a hypothetical document that assists the
retriever in locating it. Expecting the generator to
replicate the exact target document itself would be
impractical and overly demanding.

Given that not all hypothetical documents gen-
erated by the generator are equally effective for
retrieval, we leverage the retriever M, to select
the most optimal one. Specifically, the generator
M creates L hypothetical documents for a given
query. Each hypothetical document d; is used to
retrieve documents from the corpus, and we record
the rank position r; of the true target document
d. The pseudo-document with the highest retrieval
quality (the lowest ;) is selected.

This process yields a collection of question-
answer pairs in the form of (¢,d*), where the
query ¢ functions as the question and the opti-
mal hypothetical document d* as the correspond-
ing answer. The generator is subsequently trained
via supervised fine-tuning on the resulting dataset
Dy, = {(gq,d*)|q € Q}. The standard supervised
fine-tuning (SFT) loss is computed as:

Eslg = _quQ thg Mg(d;’d;tv(n (4)

Importantly, the self-learning generator is trained
entirely without relying on supervision signals
from labeled medical data. Instead, it leverages un-
labeled corpora and combines the generator’s text
generation with the retriever’s ranking function to
construct high-quality, domain-tailored question-
answer pairs for hypothetical document generation.
Self-Learning Retriever. Given a passage d from
the corpus D and its corresponding query g, the
pair (g, d) naturally constitutes the labeled query-
document data required for retriever fine-tuning.
However, since SL-HyDE retrieves the target docu-
ment by encoding both the query and a generated
hypothetical document during inference, we adopt
a triplet (g, d’; d) as the labeled data for retriever
training. This approach effectively aligns the train-
ing data format with the inference stage, thereby
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enhancing consistency and bridging the gap be-
tween training and deployment.

To achieve this, we utilize the fine-tuned genera-
tor MZ from the previous stage to generate hypo-
thetical documents for all queries, constructing a
labeled fine-tuning dataset D, = {(¢,d’;d)|q €
Q}. Following previous research (Li et al., 2023;
Xiao et al., 2024), we further increase the com-
plexity of the training data through hard negative
mining. Specifically, a retriever is used to identify
challenging negative samples from the original cor-
pus D via an ANN-based sampling strategy (Xiong
et al., 2020), resulting in a hard negative dataset:

D™ = ANN(M,(q,d'), My(D)).  (5)

In addition to the negatives mined from the cor-
pus, we also incorporate in-batch negatives. Con-
trastive learning loss is then applied for the super-
vised fine-tuning of the retriever, with the objective
function formulated as:

os(ad)/
es(ad)/T ¢ > Bup- es(q,d=)/7’

(6)
where T is the temperature coefficient, and B rep-
resents the negative samples in a batch. The score
s(gq,d) incorporates the generated document, as
described in Equation 1.

At this stage, we can obtain a retriever en-
dowed with medical domain knowledge, coherently
adapted to the characteristics of retrieval queries by
leveraging hypothetical documents. In SL-HyDE,
the generator and retriever are trained separately in
a sequential manner, allowing each component to
be optimized with the most appropriate supervision
signals available at its respective training phase.

Lg1r = min. Z —log
(a,d)

3.4 SL-HyDE Inference

As illustrated in Figure 1, the inference stage of
SL-HyDE introduces a hypothesis generation step
prior to standard retrieval. Specifically, the input
query q is first rewritten by a fine-tuned generator
Mg to produce a pseudo-document d’, as defined
by the following equation:

d' = M (q, prompt). (7

The prompt is a carefully designed instruction
tailored to the requirements of each task. Detailed
formulations of the prompts used in our experi-
ments are provided in Appendix A.2.

To better integrate the hypothetical documents,
we sample N documents from the hypothetical
documents. Following (Gao et al., 2023), a fine-
tuned retriever M’ encodes these documents into
an embedding vector vy:

N
vy = D ML(d) + Mi(g)]. (8)

k=1

Subsequently, the inner product is computed be-
tween v, and all document vectors:

s(g,d) =< vy, ML(d) >,Vd € D. 9)

This aggregated vector representation identifies
a neighborhood in the corpus embedding space,
from which semantically similar real documents
are retrieved based on vector similarity.

3.5 SL-HyDE vs. HyDE

Our approach, SL-HyDE, builds upon HyDE (Gao
et al., 2023) with several key enhancements while
retaining some similarities. First, both approaches
follow the same inference pipeline: a large model
generates a hypothetical document based on the
query, which the retriever then uses to identify rel-
evant documents. Second, neither SL-HyDE nor
HyDE requires labeled data, enabling rapid deploy-
ment. This makes HyDE particularly useful in
real-world settings, where effective retrieval can
be achieved simply by choosing a generator and a
retriever. However, for domain-specific tasks such
as medical information retrieval, directly deploy-
ing HyDE often yields suboptimal results. One
option is to fine-tune the generator and retriever
separately with labeled medical data, but this ap-
proach faces the dual challenges of scarce labeled
data and the risk of suboptimal adaptation when
models are trained independently.

SL-HyDE addresses these limitations by intro-
ducing a self-learning mechanism that transforms
HyDE into a trainable end-to-end framework. This
mechanism enables the generator and retriever to
adapt jointly to the medical domain. Supervision
signals for the generator are derived from the re-
triever, and vice versa, enabling mutual reinforce-
ment. This integrated training strategy substantially
improves retrieval performance. In summary, SL-
HyDE provides an efficient and practical solution
for enhancing HyDE in medical domains, particu-
larly when working with unlabeled corpora.
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Figure 2: An overview of CMIRB.

4 CMIRB Benchmark

4.1 Overview

The CMIRB benchmark is a specialized, multi-task
dataset designed for Chinese medical information
retrieval. As shown in Figure 2, it comprises five
different tasks. Medical knowledge retrieval: Re-
trieve relevant medical knowledge snippets from
textbooks or encyclopedias based on a given medi-
cal query. Medical consultation retrieval: Extract
relevant doctor responses to online medical consul-
tation questions posed by patients. Medical news
retrieval: Focus on retrieving news articles that ad-
dress queries related to COVID-19. Medical post
retrieval: Retrieve the content of a forum post cor-
responding to its title. Medical literature retrieval:
Retrieve abstracts of cited references based on a
medical title or identify a similar paper based on
the given medical paper.

4.2 Data Construction

The CMIRB benchmark integrates 10 datasets, in-
cluding several existing resources: MedicalRe-
trieval (Long et al., 2022), CmedqaRetrieval (Qiu
etal., 2022), and CovidRetrieval (Qiu et al., 2022),
covering patient-doctor consultations and COVID-
19-related news retrieval.

In addition, we construct several datasets by
combining existing query resources with curated
medical corpora. MedExam pairs questions with
textbook passages from MedQA (Jin et al., 2021).
DuBaike uses queries from DuReader (He et al.,
2017) and documents collected from Baidu Baike
pages'. We also curate two datasets from the med-

"https://baike.baidu.com/

#Samples Avg. Word Lengths
Task Dataset #Query #]gocument Quiry Docunglent
Medical MedExam 697 27,871 96.9 493.7
Knowledge DuBaike 318 56,441 7.6 403.3
Retrieval DXYDisease 1,255 54,021 243 191.1
Medical MedicalRet. 1,000 100,999 17.9 122.0
Consultation | CmedqaRet. 3,999 100,001 48.4 307.7
Retrieval DXYConsult 943 12,577 | 170.4 370.1
News Ret. CovidRet. 949 100,001 259 3324
Post Ret. 1IYiPost 789 27,570 15.9 150.1
Literature CSLCite 573 36,703 21.9 269.6
Retrieval CSLRel 439 36,758 | 281.8 292.2

Table 1: Statistics of datasets in CMIRB.

ical website DingXiangYuan®?. DXYDisease fo-
cuses on structured disease-related Q&A, while
DXY Consult captures richer patient-doctor dia-
logues that include symptom descriptions, medi-
cation history, and diagnostic queries. II'YiPost is
curated by crawling posts from the ITYi forum?.

Finally, CSLCite and CSLRel are constructed
based on the CSL dataset (Li et al., 2022), target-
ing different literature retrieval scenarios. CSLCite
uses journal titles as queries and their cited refer-
ences from WanFangMedical* as documents, while
CSLRel pairs each paper with the most relevant
similar paper recommended by the platform.

To ensure dataset quality, we apply ChatGPT
to filter out non-medical content and low-quality
query-document pairs. Additional query-document
matching is performed for MedExam and DuBaike
to ensure content relevance. Full details are pro-
vided in the Appendix B.1. Table 1 summarizes
dataset statistics, revealing broad variability in
query and document length, ranging from short
titles to long passages, thereby ensuring the bench-
mark’s diversity and practical relevance.

S Experiments

5.1 Experimental Setup

Implementation Details. We sample 10,000 docu-
ments from the Huatuo26M_encyclopedia dataset
as the unlabeled corpus. In our training framework,
we utilize Qwen2-7B-Instruct (Yang et al., 2024)
as the generator and BGE-Large-zh-v1.5 (Xiao
et al., 2024) as the retriever. Unless otherwise
specified, all experiments are conducted under this
Qwen+BGE configuration. Model training and
evaluation are conducted on up to 5 NVIDIA A100
GPUgs, each equipped with 40GB of memory. For
fine-tuning the LLM, we employ the AdamW op-

Zhttps://dxy.com/
3https://bbs.iiyi.com/
*https://med.wanfangdata.com.cn/
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Task Knowledge Retrieval Consulation Retrieval News Post Literature Retrieval Average
Dataset MedExam DuBaike DXYDis. | Medical Cmedqa DXYCon. | Covid | IIYiPost | CSLCite = CSLRel
Text2Vec(large) 41.39 21.13 41.52 30.93 15.53 21.92 60.48 29.47 20.21 23.01 30.56
mContriever 51.50 22.25 44.34 38.50 22.71 20.04 56.01 28.11 34.59 33.95 35.20
BM25 31.95 17.89 40.12 29.33 6.83 17.78 78.90 66.95 33.74 29.97 35.35
OpenAI-Ada-002 53.48 43.12 58.72 37.92 22.36 27.69 57.21 48.60 32.97 43.40 42.55
M3E(large) 33.29 46.48 62.57 48.66 30.73 41.05 61.33 45.03 35.79 47.54 4525
mE5(large) 53.96 53.27 72.10 51.47 28.67 41.35 75.54 63.86 42.65 37.94 52.08
piccolo(large) 43.11 4591 70.69 59.04 41.99 47.35 85.04 65.89 4431 44.21 54.75
GTE(large) 41.22 42.66 70.59 62.88 43.15 46.30 88.41 63.02 46.40 49.32 55.40
BGE(large) 58.61 44.26 71.71 59.60 42.57 47.73 73.33 67.13 43.27 45.79 55.40
PEG(large) 52.78 51.68 77.38 60.96 44.42 49.30 82.56 70.38 44.74 40.38 57.46
BGE(large) 58.61 44.26 71.71 59.60 42.57 47.73 73.33 67.13 43.27 45.79 55.40
HyDE 64.39 52.73 73.98 57.27 38.52 47.11 74.32 73.07 46.16 38.68 56.62
SL-HyDE 71.49* 60.96* 75.34% 58.58* 39.07* 50.13% 76.95* 73.81* 46.78* 40.71* 59.38*
Improve. 111.03% 115.61% 1184% | 1229% 1143% 1641% | 13.54% | 11.01% | 11.34% 15.25% | 14.87%

Table 2: Performance of various Retrieval models on nDCG@ 10. The first part shows ten base retrieval models, and
the second shows retrieval models enhanced by hypothetical documents. * denotes the result outperforms baseline

model (HyDE) in t-test at p < 0.05 level.

timizer (Loshchilov, 2017) in conjunction with a
cosine learning-rate scheduler. Training is con-
ducted for 1 epoch with a learning rate of 1e-5 and
a batch size of 2. We set 200 warmup steps and
configure the LoRA rank to 8. Retriever fine-tuning
also uses the AdamW optimizer with a linear decay
schedule and an initial learning rate of le-5. The
batch size per GPU is set at 4, and the maximum
input sequence length is limited to 512. We apply a
temperature of 0.02 and mine 7 hard negatives for
each query to increase training difficulty.
Evaluation Settings. For simplicity, we employ
the LLM to generate a single hypothetical docu-
ment for each query. The retrieval model embeds
all queries, hypothetical documents, and corpus
documents, with similarity scores calculated us-
ing cosine similarity. Documents in the corpus are
ranked for each query based on these scores, and
nDCG@10 is adopted as the primary evaluation
metric to assess retrieval effectiveness. We set the
LLM temperature to 0.7 and repeat each experi-
ment five times with different random seeds.
Baseline Models. To comprehensively evalu-
ate CMIRB, we select several widely used re-
trieval models. These include lexical retriever
BM25 (Robertson et al., 2009); dense retrieval
models such as Text2Vec-Large-Chinese (Xu,
2023), PEG (Wu et al., 2023), BGE-Large-zh-
v1.5 (Xiao et al., 2024), GTE-Large-zh (Li et al.,
2023), and Piccolo-Large-zh (SenseTime, 2023);
multilingual retrievers like mContriever (mas-
marco) (Izacard et al., 2021), M3E-Large (Wang
et al., 2023b), mES (multilingual-e5-large) (Wang
et al., 2024a); and text-embedding-ada-002 (Ope-
nAl). For more details about baselines, please refer
to Appendix A.1.

5.2 Main Results

The experimental results of various retrieval mod-
els, including SL-HyDE, on the CMIRB bench-
mark are presented in Table 2. We highlight the
following key observations.

(1) BM25 remains highly competitive in spe-
cific medical tasks. As a lexical retriever, it ranks
documents based on TF-IDF matching scores be-
tween queries and documents. Although it un-
derperforms on the overall CMIRB benchmark, it
achieves strong results in tasks like medical news
retrieval (78.9 vs. 73.33 for BGE) and medical post
retrieval (66.95 vs. 67.13 for BGE). This advantage
can be attributed to the higher keyword overlap in
these datasets.

(2) No single retrieval model achieves optimal
performance across all ten tasks. PEG and GTE
each deliver the best performance on four datasets,
while BGE and mES5 lead on one dataset each.
Dense models with stronger performance typically
employ contrastive learning, leveraging large-scale
pretraining on unlabeled data followed by fine-
tuning on labeled datasets. Differences in train-
ing data distribution influence model effectiveness
across different datasets, underscoring the need for
specialized approaches.

(3) SL-HyDE consistently outperformed HyDE
across all ten datasets. While HyDE provides mod-
est overall improvements over BGE, it excels in
medical knowledge retrieval but lags in medical
consultation tasks. This gap may stem from LLMs
being more adept at handling encyclopedia-type
knowledge than the nuanced reasoning required for
patient-doctor dialogues. In contrast, SL-HyDE
achieves consistent improvements over HyDE due
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Task ‘ Know. ‘ Consu. ‘ News ‘ Post ‘ Literature ‘ Avg.(All) Task ‘ Know. ‘ Consu. ‘ News Post Literature ‘ Avg.(All)
ChatGLM3 as Generator + BGE as Retriever Qwen2 as Generator + mES5 as Retriever

HyDE 6243 46.43 73.89 70.88 44.46 56.02 HyDE 65.77 43.15 75.92 68.15 38.58 54.80

SL-HyDE 66.26 48.55 76.78 72.29 46.40 58.63 SL-HyDE | 68.60 44.83 71.59 66.81 42.33 56.94

Improve. | 16.14% | 14.57% | 13.91% | 11.99% | 14.36% | 14.65% Improve. | 14.31% | 13.90% | 1220% | | 1.97% | 19.72% | 1 3.90%

Llama2 as Generator + BGE as Retriever Qwen2 as Generator + PEG as Retriever

HyDE 55.74 40.62 72.90 7222 4530 | 52.48 HyDE 66.03 49.73 80.49 72.51 3887 [57.80

SL-HyDE |  63.66 45.44 771.17 71.99 4575 1 56.80 SL-HyDE | 69.96 50.97 80.89 75.93 45.03 | 60.97

Improve. | 114.21% | 111.87% | 15.86% | 1 0.32% | 10.99% | 18.23% Improve. | 15.96% | 12.50% | 10.50% | 14.72% | 115.86% | 15.48%

Table 3: Performance of different generators.

to its self-learning mechanism, which not only en-
hances medical knowledge integration within both
the generator and the retriever but also better aligns
the outputs of the two components.

5.3 Performance Analysis

Effect of Different Generators. In Table 3, we
present SL-HyDE’s performance when using alter-
native fine-tuned LLMs as the generator, including
ChatGLM3-6B (Team et al., 2024) and Llama2-7b-
Chat (Touvron et al., 2023).

Both models yield improvements under SL-
HyDE compared to HyDE. For instance, we ob-
serve a 4.65% improvement with ChatGLM3 and
an 8.23% improvement with Llama2. However, for
Llama2, HyDE performs slightly worse than BGE.
This issue likely stems from the pseudo-documents
generated by the English-based Llama2 contain-
ing English text, which the downstream Chinese
BGE retriever struggled to encode effectively. Af-
ter fine-tuning, SL-HyDE improves by approxi-
mately 8%, benefiting from both the reduction of
English content and the retriever’s enhanced abil-
ity to encode medical knowledge, demonstrating
SL-HyDE’s adaptability across different generator
architectures.

Effect of Different Retrievers. We further inves-
tigate SL-HyDE’s generalizability by fine-tuning
two additional retrievers: PEG, the strongest base-
line on CMIRB, and a multilingual retriever mES.

As shown in Table 4, HyDE provides moderate
gains compared to using the retriever alone. How-
ever, the application of SL-HyDE yields substan-
tially larger improvements across both models. For
instance, PEG, which achieves the best baseline
performance on CMIRB, improves from 57.46% to
60.97%, marking a notable increase in retrieval ef-
fectiveness. These results highlight SL-HyDE’s ro-
bustness in enhancing retrieval performance across
various retriever models.

Effect of Different Fusing Strategies. We also
evaluate multiple strategies for incorporating hy-
pothetical documents into retrieval. SL-HyDE en-

Table 4: Performance of different retrievers.

Task ‘ Know. ‘ Consu. ‘ News ‘ Post ‘ Literature ‘ Avg.(All)
SL-HyDE | 69.26 | 49.26 | 76.95 | 73.81 43.75 59.38
w/ D. 68.00 | 41.86 | 71.94 | 68.02 37.36 54.43
w/ con. 69.04 | 4551 | 73.38 | 69.53 44.81 57.62
w/K-D. | 69.30 | 50.17 | 77.38 | 74.55 45.42 60.12

Table 5: Performance of different fusing strategies.

codes the original query and the hypothetical docu-
ments separately, then aggregates them via mean
pooling to obtain the final query vector. SL-HyDE
w/ D uses only the hypothetical document as the
query. SL-HyDE w/ con concatenates the original
query and the hypothetical document into a single
string before encoding. SL-HyDE w/ K-D gen-
erates multiple (five) hypothetical documents for
each query before retrieval.

Table 5 demonstrates that combining the origi-
nal query and hypothetical documents is the most
effective approach. Relying solely on hypotheti-
cal documents significantly degrades performance,
particularly in medical consultation tasks where
the original query contains indispensable clinical
details. Concatenation introduces additional noise
at the string level, leading to performance drops,
whereas mean pooling mitigates this issue by in-
tegrating information at the representation level.
Generating multiple hypothetical documents fur-
ther improves coverage and boosts performance
across tasks, but incurs a proportional increase in
inference cost. Thus, an efficiency—accuracy trade-
off must be considered when selecting the number
of generated documents.

5.4 Ablation Study

To further analyze the gains brought by the internal
architecture of SL-HyDE, we conduct two sets of
ablation experiments: (1) SL-HyDE w/o BGE-FT,
which employs the fine-tuned LLM as the generator
while keeping the retriever unfine-tuned; (2) SL-
HyDE w/o Qwen-FT, which uses the raw LLM as
the generator alongside the fine-tuned retriever.
As shown in Table 6, fine-tuning both compo-
nents further improves performance across most
datasets, validating the efficacy of the self-learning
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Task Know. | Consu. | News | Post | Literature | Avg.(All)

HyDE 63.70 | 47.63 | 74.32 | 73.07 4242 56.62

SL-HyDE 69.26 | 49.26 | 76.95 | 73.81 43.75 59.38
w/o BGE-FT 64.32 4795 | 74.87 | 7291 43.24 57.11
w/o Qwen-FT | 68.75 | 48.85 | 76.63 | 74.52 43.11 58.77

Table 6: Performance of different variants.

Query: How to treat a hernia?

Target Doc: Inguinal Hernia Treatment Plan. For conventional
treatment, a 1-year-old infant can use a hernia belt for
compression. As the muscles gradually strengthen, there may be
a possibility of spontaneous recovery. For elderly and frail
individuals a hernia belt can be worn, but for other patients,
surgery is generally recommended...

HyDE: Hernia is a common disease caused by a weak area in
the abdominal wall, Treatment usually includes conservative
and surgical methods. For most patients, especially young and
healthy individuals, surgery is the preferred option... (Rank: 10)
SL-HyDE: Hernia is a common condition that typically occurs
For infants,... the use of a hernia belt to apply localized pressure
can help alleviate symptoms and promote the development of
the abdominal muscles,... For elderly or frail patients, or those
with severe underlying conditions,... wearing a hernia belt can
help manage symptoms and reduce the risk of the hernia
progressing further... (Rank: 2)

Table 7: The case study comparing with HyDE.

framework. Notably, retriever fine-tuning provides
larger gains, indicating that BGE particularly ben-
efits from domain-specific adaptation. Neverthe-
less, jointly fine-tuning both the retriever and the
generator leads to the most robust improvements,
demonstrating the synergistic effect of SL-HyDE’s
co-adaptation mechanism.

5.5 Case Study

To provide an intuitive illustration of SL-HyDE’s
impact, Table 7 compares hypothetical documents
generated by HyDE and SL-HyDE for the query
How to treat a hernia?. HyDE produces a gen-
eral document discussing conservative and surgi-
cal treatments, but it lacks specificity for different
patient groups. In contrast, SL-HyDE generates a
more tailored document mentioning hernia belts
for infants and elderly patients, aligning closely
with the target document’s content. This refine-
ment results in a significantly higher retrieval rank-
ing (2nd vs. 10th), clearly demonstrating how
more precise hypothetical documents can enhance
retrieval effectiveness.

5.6 Cross-Domain Generalization

In this subsection, we further evaluate SL-HyDE in
the legal domain to demonstrate its adaptability be-
yond medicine. In the legal field, labeled datasets
are also scarce due to the high cost of annotation

Dataset legal _ legalbench_ | legalbench_ | Average
‘ summar. | contracts_qa | lobbying ‘

BGE 59.99 73.52 91.51 75.01

HyDE 58.95 74.82 92.78 75.52

SL-HyDE | 63.50 75.10 93.15 77.25

Table 8: Performance of SL-HyDE in legal domain.

and the complexity of domain expertise. To show-
case the generality of our approach, we sample 10k
unlabeled law texts from pile-of-law (Henderson
et al., 2022) to construct a domain-specific corpus,
and build the SL-HyDE system using Llama-2-7b-
chat-hf as the generator and BGE-Large-en-V1.5
as the retriever. We then evaluate the system on
three information retrieval datasets from MTEB
in the law domain. As shown in Table 8, while
vanilla HyDE brings only a slight improvement
over BGE, the fine-tuned SL-HyDE (77.25%) sig-
nificantly outperforms HyDE (75.52%). These re-
sults highlight the strong cross-domain generaliza-
tion ability of SL-HyDE and its potential to serve
as a versatile solution for low-resource domains.

6 Conclusions

In this paper, we propose SL-HyDE, an automated
framework for zero-shot medical information re-
trieval that operates without reliance on labeled
relevance data. Leveraging an unlabeled medical
corpus, SL-HyDE employs a self-learning training
paradigm where the retriever guides the generator’s
training, and the generator in turn produces pseudo-
documents that enhance retriever training. This
process injects domain-specific medical knowledge
into both components, yielding hypothetical docu-
ments that are highly effective in guiding retrieval.
Furthermore, we introduce CMIRB, a comprehen-
sive benchmark for Chinese medical information
retrieval, encompassing five tasks and ten datasets.
Extensive experiments demonstrate that SL-HyDE
consistently outperforms HyDE across all datasets.
Additionally, SL-HyDE shows strong adaptabil-
ity and scalability, effectively enhancing retrieval
performance across various combinations of gen-
erators and retrievers. In future work, we plan to
extend SL-HyDE to other data-scarce domains to
further evaluate its generalizability across different
settings. In addition, we will explore reinforcement
learning techniques to further enhance retriever ca-
pabilities and improve reasoning in complex medi-
cal retrieval scenarios.

24036



Limitations

While our work effectively addresses the adapta-
tion challenges of HyDE in low-resource scenarios,
several limitations remain. First, our study pri-
marily focuses on the medical domain and only
provides an initial exploration of the legal domain
(see Appendix A.3), without extending the evalu-
ation to other vertical fields such as economics or
education. Second, although we experiment with
three open-source LLMs, Qwen2, LlaMA?2, and
ChatGLM3, as generators, we do not include more
recent or diverse model families such as Qwen3 or
Gemini, which may exhibit different generative be-
haviors and impact performance differently. Third,
our data construction pipeline relies on LL.Ms for
query-document matching and pseudo-relevant pair
filtering. The effectiveness of these components de-
pends on the model’s instruction-following ability
and sensitivity to domain-specific nuances, which
may introduce hallucinations or spurious correla-
tions and potentially affect reliability.

Ethical Considerations

We clarify that CMIRB is constructed from pub-
licly accessible medical platforms and sources. For
datasets such as MedExam, we utilize existing IR
community benchmarks released under open li-
censes (e.g., MIT, CC-BY license). Data from
Wanfang explicitly states that it may be used for
learning and scientific research. Data from I'Yi and
DXY, consistent with prior research (Yim et al.,
2024, Jia et al., 2025), can be used for research
and educational purposes. We adhere strictly to
data collection protocols to ensure compliance with
copyright and privacy requirements, including the
removal of all personal identifiers. Nevertheless,
we acknowledge that the dataset may contain med-
ically sensitive or potentially distressing content.
We emphasize that CMIRB is released solely for
academic research and evaluation purposes, and it
is not intended for clinical practice or real-world
medical decision-making under any circumstances.
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A Models

A.1 Baselines

To comprehensively evaluate the performance of
existing retrievers on CMIRB, we selected ten rep-
resentative models that have demonstrated strong
results on the MTEB leaderboard’. For details re-
garding the retrievers and large reasoning models
evaluated in this paper, please refer to Table 9.
BM25 (Robertson et al., 2009). BM25 is a widely
used baseline retriever that relies on bag-of-words
and TF-IDF to perform lexical retrieval. In this
paper, BM25 is implemented with Pyserini (Lin
et al., 2021) with default hyperparameters to index
snippets from all corpora.

Text2Vec (Xu, 2023). It is a cosine sentence
model based on a linguistically-motivated pre-
trained language model (LERT).

PEG (Wu et al., 2023).  Proposed by Wu et
al., (Wu et al., 2023), PEG is trained over 100 mil-
lion data points, spanning a broad range of domains
and covering multiple downstream tasks.

BGE (Xiao et al., 2024). BGE adopts a com-
pound training recipe that integrates pre-training,
contrastive learning with advanced negative sam-
pling, and instruction-based fine-tuning to build
general-purpose text embeddings.

GTE (Li et al., 2023). GTE introduces a multi-
stage contrastive learning framework for training
text embedding models that can be applied to vari-
ous retrieval and similarity tasks.

Piccolo (SenseTime, 2023). Piccolo is a general-
purpose Chinese embedding model trained via a
two-stage process that combines weakly supervised
learning with manually labeled text pairs.
Contriever (Izacard et al., 2021). It is a mul-
tilingual dense retriever with contrastive learn-
ing, which fine-tunes the pre-trained mContriever
model on MS MARCO dataset.

MB3E (Wang et al., 2023b). M3E (Moka Massive
Mixed Embedding) is a bilingual text embedding
model trained on over 22 million Chinese sentence
pairs, supporting tasks like cross-lingual text simi-
larity and retrieval.

mES (Wang et al., 2024a). mES is a multilingual
ES text embedding model trained with a multi-stage
pipeline, including contrastive pre-training on one
billion multilingual text pairs and fine-tuning on
labeled datasets.

OpenAlI-Ada-002 (OpenAl). A highly efficient

>https://huggingface.co/spaces/mteb/leaderboard

Q2P Prompt

Please generate a medical content paragraph to answer
this question.

Question: QUESTION

Paragraph:

T2P Prompt

Please generate a medical content paragraph based on
this title.

Title: TITLE

Paragraph:

P2P Prompt

Please generate a similar medical paragraph for the
following text.

Text: TEXT

Similar Paragraph:

Table 10: Evaluation prompts for generators.

text embedding model that converts natural lan-
guage into dense vectors for a wide range of appli-
cations, including semantic search, clustering, and
similarity tasks.

For the generator, we selected three highly pow-
erful large language models.
Qwen2 (Yang et al., 2024). Qwen2 is a compre-
hensive suite of foundational and instruction-tuned
language models, encompassing a parameter range
from 0.5 to 72 billion, featuring dense models and
a Mixture-of-Experts model.
ChatGLM3 (Team et al., 2024). ChatGLM3-
6B is a next-generation conversational pre-trained
model that demonstrates strong performance in se-
mantics, reasoning, and code execution.
Llama2 (Touvron et al., 2023). Llama2 is an
auto-regressive language model with an optimized
transformer architecture. The fine-tuned versions
leverage supervised fine-tuning (SFT) and rein-
forcement learning with human feedback (RLHF)
to better align with human preferences for helpful-
ness and safety.

A.2 Evaluation Settings

We use the C-MTEB® framework to evaluate
the performance of various retrieval models on
CMIRB. To ensure stability, we set the tempera-
ture of LLM to 0.7 and repeat each experiment five
times with different random seeds. For each dataset,
the prompts used to generate pseudo-documents
are shown in Figure 10. The II'YIPost and CSLCite
datasets utilize the Title-to-Paragraph (T2P) tem-
plate to prompt LLLMs to generate documents from
titles. The CSLRel dataset adopts the Paragraph-

SC-MTEB
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Model | Size | Model Link
Retrieval Models
BM25 (Robertson et al., 2009) | N/A https://github.com/castorini/pyserini
Text2Vec (Xu, 2023) 325M| https://huggingface.co/GanymedeNil/text2vec-large-chinese

PEG (Wu et al., 2023) 335M
BGE (Xiao et al., 2024) 335M
GTE (Li et al., 2023) 335M
Piccolo (SenseTime, 2023) 335M

Contriever (Izacard et al., 2021) | 109M

https://huggingface.co/TownsWu/PEG
https://huggingface.co/BAAI/bge-large-zh-v1.5
https://huggingface.co/thenlper/gte-large-zh
https://huggingface.co/sensenova/piccolo-large-zh
https://huggingface.co/facebook/mcontriever-msmarco

M3E (Wang et al., 2023b) 340M https://huggingface.co/moka-ai/m3e-large

mES (Wang et al., 2024a) 560M https://huggingface.co/intfloat/multilingual-e5-1large

OpenAl-Ada-002 (OpenAl) N/A |https://openai.com/index/new-and-improved-embedding-model/
Large Language Models

Qwen?2 (Yang et al., 2024) 7B https://huggingface.co/Qwen/Qwen2-7B-Instruct

Llama?2 (Touvron et al., 2023) 7B
ChatGLM3 (Team et al., 2024) | 7B

https://huggingface.co/meta-1lama/Llama-2-7b-chat-hf
https://huggingface.co/THUDM/chatglm3-6b

Table 9: Detailed information on all of the retrieval models and large language models in our paper.

Similar Example

Query: What causes seborrheic alopecia?

Target Doc: Seborrheic alopecia (androgenetic alopecia) is
linked to genetics, androgens, excess scalp oil...

HyDE: Seborrheic alopecia is a common hair loss type
linked to genetics, DHT, scalp oil, immune factors,
causing hair thinning and loss... (Rank: 6)

SL-HyDE: Seborrheic alopecia involves excess oil,
follicle blockage, genetics, hormones, lifestyle, affecting
hair growth... (Rank: 6)

Degraded Example

Query: What causes snoring?

Target Doc: Snoring occurs when airflow is blocked by
relaxed throat muscles, obesity, or nasal issues.

Factors include age, weight, alcohol, posture....

HyDE: Snoring is caused by airway structure issues,
obesity, alcohol, posture, genetics,

and may require CPAP or lifestyle changes... (Rank: 2)
SL-HyDE: Snoring can result from fatigue, stress, poor
sleep habits, with suggestions on healthy routines,
lacking key medical causes... (Rank: 8)

Table 11: More illustrative examples of hypothetical
documents.

to-Paragraph (P2P) template to generate semanti-
cally similar text. For the remaining datasets, the
Question-to-Paragraph (Q2P) template is employed
to generate answers to medical questions.

A.3 More Experiment Results

Table 12 presents the Recall@ 100 performance of
10 retrieval models on CMIRB. In Table 13, we
provide a detailed breakdown of performance for
various combinations of generators and retrievers
across the 10 datasets.

__________________________________________________

u[__“j

__________________________________________________

Answer

Figure 3: CMIRB benchmark construction pipeline.

Additionally, in Table 11, we present two illustra-
tive examples of generated hypothetical documents.
In one case, the HyDE-generated pseudo-document
retrieved the target document without change in
rank, while in the other, the retrieval performance
slightly degraded.

B CMIRB Datasets

B.1 Data Process

We curated a substantial dataset from multiple med-
ical resources, summarized in Table 14, which
details both source distribution and data volume.
Our data preprocessing pipeline, illustrated in
Figuer 3 and Algorithm 1, leverages prompt tem-
plates shown in Figure 4 and Figure 5.

Initially, ChatGPT’ is used to filter out non-

https://openai.com/chatgpt
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Task Knowledge Retrieval Consulation Retrieval News Post Literature Retrieval Average
Dataset MedExam DuBaike DXYDis. | Medical Cmedqa DXYCon. | Covid | II'YiPost | CSLCite  CSLRel

BM25 75.61 56.92 72.91 44.20 17.26 37.33 96.47 89.98 67.19 72.66 63.05
Text2Vec(large) 89.81 79.25 78.01 52.80 42.99 64.58 88.83 74.78 61.96 70.39 70.34
mContriever 93.40 86.48 84.06 61.50 53.40 62.67 84.93 70.72 72.25 84.97 75.44
mES5(large) 93.83 98.43 96.02 70.90 57.95 80.38 97.05 91.64 77.31 91.12 85.46
M3E(large) 86.08 98.43 93.55 74.00 70.61 86.96 93.26 | 88.97 76.09 96.58 86.45
GTE(large) 87.52 96.54 95.86 87.00 84.95 89.50 9947 | 9341 83.25 96.58 91.41
piccolo(large) 89.67 99.06 96.81 82.80 84.81 91.09 99.47 | 95.69 83.07 92.25 91.47
PEG(large) 95.41 98.74 98.01 83.70 84.64 89.50 98.74 | 96.83 81.15 92.25 91.90
BGE(large) 97.42 98.74 96.81 81.20 82.57 91.30 98.10 | 95.69 80.80 96.36 91.90

Table 12: Performance of various Retrieval models on CMIRB benchmark. All scores denote Recall@100. The best

score on a given dataset is marked in bold.

Task Knowledge Retrieval Consulation Retrieval News Post Literature Retrieval Average
Dataset MedExam DuBaike DXYDis. | Medical Cmedqa DXYCon. | Covid II'YiPost | CSLCite = CSLRel
ChatGLM3 as Generator + BGE as Retriever

HyDE 61.96 54.25 71.07 56.32 37.73 45.23 73.89 70.88 45.11 43.80 56.02

SL-HyDE 67.12 59.40 72.25 57.16 38.77 49.71 76.78 72.29 45.81 46.98 58.63

Improve. 1833% 1949% 11.66% | 1149% 12.76% 1990% | 1391% | 11.99% | 11.55% 17.26% | 14.65%
Llama?2 as Generator + BGE as Retriever

HyDE 53.10 45.78 68.34 53.51 31.29 37.07 72.90 72.22 44.19 46.41 52.48

SL-HyDE 64.88 56.30 69.81 54.68 36.93 44.72 77.17 71.99 44.62 46.88 56.80

Improve. | 122.18% 12298% 1215% | 12.19% 118.02% 120.64% | 1586% | 10.32% | 1097% 11.01% | 18.23%
Qwen?2 as Generator + mE5 as Retriever

HyDE 65.18 56.35 75.77 54.31 32.02 43.12 75.92 68.15 45.66 31.50 54.80

SL-HyDE 71.36 59.50 74.95 54.68 33.95 45.87 77.59 66.81 45.65 39.01 56.94

Improve. 1948% 1559% [ 1.08% | 10.68% 16.03% 1638% | 1220% | 11.97% | | 0.02% 123.84% | 13.90%
Qwen2 as Generator + PEG as Retriever

HyDE 64.87 55.04 78.18 58.47 41.47 49.25 80.49 72.51 43.56 34.17 57.80

SL-HyDE 72.04 60.26 77.59 59.81 40.43 52.68 80.89 75.93 47.53 42.53 60.97

Improve. | 111.05% 1948% 10.75% | 1229% |251% 1696% | 1050% | 14.72% | 19.11% 124.47% | 15.48%

Table 13: Performance of different combinations of generators and retrievers on CMIRB benchmark.

medical content (lines 3-8). Subsequently, Chat-
GPT assesses query-document relevance, removing
low-relevance pairs (lines 27-33). The relevance
evaluation considers both semantic alignment and
practical utility for the target tasks, as detailed in
Figure 5.

For the MedExam and DuBaike datasets, the di-
rect query-document signal isn’t initially provided.
Both queries and documents in the MedExam
dataset originate from Work (Jin et al., 2021),
where 100 randomly selected questions have cor-
pus documents containing evidence sufficient to
answer them, verified manually by the authors. For
DuBaike, queries from Baidu Search and Baidu
Zhidao generally align with the content of Baidu
Baike, enabling a query-matching algorithm to
identify relevant documents.

To pinpoint the most relevant documents, we
first retrieve the top 20 candidates for a given query
using BM25. ChatGPT then ranks these candi-
dates and selects the top 3 most relevant documents.
These documents are expected to be semantically
aligned with the query and provide adequate an-
swers or supporting evidence. ChatGPT further

extracts evidence segments from these documents
to form the basis for query answering.

To verify the sufficiency of this evidence, GPT
generates an answer to the query based on the
extracted evidence fragment. A self-verification
step follows: if the GPT-generated answer aligns
with the document, the document is deemed a posi-
tive match for the query. For MedExam, multiple-
choice questions are validated against ground-truth
answers. For DuBaike, the generated answers are
compared with encyclopedic references for consis-
tency in conveying the same medical knowledge.
This detailed process is outlined in lines 10-26.

By leveraging ChatGPT’s reasoning and domain
knowledge capabilities throughout this iterative
loop, we ensure the creation of high-quality, se-
mantically relevant query-document pairs suitable
for downstream retrieval tasks.

B.2 Data Example

The constructed datasets cover a wide range of
real-world medical scenarios. Representative ex-
amples from the ten constituent datasets are shown
in Table 15 and Table 16. Queries vary in type,
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Dataset Query URL #Samples Document URL #Samples

MedExam https://github.com/jind11/MedQA 3,426 https://github.com/jind1 1/MedQA 27,871
DuBaike https://github.com/baidu/DuReader 2,000 https://baike.baidu.com/ 56,441
DXYDisease https://dxy.com/diseases 61,840 https://dxy.com/diseases 61,840

MedicalRetrieval  https://huggingface.co/datasets/C-MTEB/MedicalRetrieval 1,000 https://huggingface.co/datasets/C-MTEB/MedicalRetrieval 100,999
CmedqaRetrieval  https://huggingface.co/datasets/C-MTEB/CmedqaRetrieval 3,999 https://huggingface.co/datasets/C-MTEB/CmedqaRetrieval 100,001

DXYConsult https://dxy.com/questions/ 13,057 https://dxy.com/questions/ 13,057
CovidRetrieval https://huggingface.co/datasets/C-MTEB/CovidRetrieval 949 https://huggingface.co/datasets/C-MTEB/CovidRetrieval 100,001
ITYiPost https://bbs.iiyi.com/ 37,065 https://bbs.iiyi.com/ 37,065
CSLCite https://github.com/ydli-ai/CSL 934 https://med.wanfangdata.com.cn/ 36,783
CSLRel https://github.com/ydli-ai/CSL 934 https://med.wanfangdata.com.cn/ 36,783

Table 14: Dataset collection sources and quantity statistics.

including medical paper titles, patient symptom  Algorithm 1 Data Preprocessing Pipeline

descriptions, and examination questions. The cor- 1: Input: Query set Q, Document set D, A large
responding documents consist of medical paper language model LLM (e.g., ChatGPT)
abstracts, doctor-patient diagnostic dialogues, and 2: Output: High-quality, highly relevant query-
reference materials for exam questions, illustrating document pair collection

the diversity and practical relevance of CMIRB. . // Step 1: Filter out medically irrelevant

3
4: for each query ¢ € Q,d € D do

5 medscore < LLM.med_score(g/d)
6: if medcore < threshold then

7 Remove ¢/d

8 end if

9: end for

10: // Step 2: Matching positive pairs

11: if query-document matching then

12: for each query ¢ € @ do

13: /I Retrieve top-k documents

14: Dy, + BM25(¢q, D)

15: Dy, < LLM.reranking(q; D)
16: /I Extract evidence snippets

17: Ej <+ LLM.extract_evidence(q,Dy)
18: // Generate answers

19: Ayp < LLM.answer(q, Fy,)

20: for each document d; do

21: if LLM.validate(a;, d;) then
22: Store (g, d;)

23: end if

24: end for

25: end for

26: end if

27: // Step 3: Filter out pseudo-relevant pairs
28: for each matched pair (¢, d) do

29: rélscore < LLM. filter_score(q, d)
30: if relscore < threshold then

31 Remove (¢, d)
32: end if
33: end for
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Medical Relevance Prompt

You will receive a question-answer pair from Baidu Search. Your task is to evaluate whether the Q&A is related to the medical
field and output the result in JSON format.

The JSON object must include the following keys:

- "reason": a string explaining the reason for your judgment.

- "label": an int, 0/1.

Please adhere to the following steps:

- If the content mentioned in the question and answer includes medical information and is related to the medical field, the label
should be 1.

- If most of the content in the question and answer is unrelated to the medical field, the label should be 0.

You need to make a judgment and provide a reason. Please output the result as required, and do not output any other content.
Here is the text:

Question: [QUESTION]

Answer: [ANSWER]

~
g

Passage Reranking Prompt

You will be given a medical question, a reference (standard) answer, and a model-generated answer. Your task is to evaluate the
content similarity between the reference answer and the model-generated answer to determine whether they are conveying the
same meaning. Your output is a JSON object, which must contain the following keys:

- "similarity_score": a number between 0 and 1 indicating the content similarity between the two answers.

- "explanation": a detailed explanation of the similarities or differences that justify your similarity score.

Please adhere to the following steps:

- 1. Carefully read the medical question.

- 2. Review the reference answer and the model-generated answer.

- 3. Compare the two answers, focusing on content similarity—whether they convey the same meaning, and lead to the same
conclusion.

- 4. Provide a similarity score between O and 1, where 1 indicates that the answers are identical in meaning, and O indicates
different.

- 5. Justify your score by explaining the similarities or differences between the two answers.

The "explanation” should be in Chinese. and your output must always be a JSON object, do not output anything else.

Now here are the question, standard answer, and generated answer.

Question: [QUESTION]

Reference Answer: [REFERENCE ANSWER]

Model-generated Answer: [MODEL-GENERATED ANSWER]

Ve
.

Evidence Extracting Prompt

You will be given a medical question, its answer and a related document. Your task is to extract evidence spans from the document
that directly or indirectly support the answer to the medical question. Your output is a JSON object, which must contain the
following keys:

- "evidence_spans": a list, a list of passages. Please adhere to the following steps:

- 1. Carefully read the medical question and its answer.

- 2. Review the content of the provided document.

- 3. Identify and extract the passage from the document that directly supports the correct answer to the question.

- 4. If no passage in the document can directly support the correct answer or answer the question, return an empty list.

The "explanation” should be in Chinese. and your output must always be a JSON object, do not output anything else.

Here is the medical question, its answer, and the related document

Question: [QUESTION]

Answer: [ANSWER]

Document: [DOCUMENT]

-~
|\

Figure 4: Prompt for data processing (I).
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Answer by Evidence Prompt

You will be given a medical exam question and one or more evidence spans that were extracted from related documents. Your task
is to provide a detailed and comprehensive answer to the question based solely on the provided evidence spans. Your output is a
JSON object, which must contain the following keys:

- "answer": a string, the answer you derive from the reference documents.

- "reason": a detailed explanation of your reasoning process leading to the answer.

Please adhere to the following steps:

- 1. Review the exam question.

- 2. Review the provided evidence spans.

- 3. Based solely on the information contained in the evidence spans, provide a detailed and comprehensive answer to the question.
- 4. If the evidence spans do not provide sufficient information to answer the question, state "The evidence passage can not answer
the question." in "answer" and explain why. If you don’t know the answer, don’t guess.

You must not use any common knowledge, personal knowledge, or external information beyond the provided evidence spans. The
"answer" and "reason" should be in Chinese. and your output must always be a JSON object, do not output anything else.

Now here are the exam question and reference documents.

Question: [QUESTION]

Evidence Spans: [EVIDENCE SPANS]

Ve
.

Validate Answer Prompt

You will be given a medical question, a reference (standard) answer, and a model-generated answer. Your task is to evaluate the
content similarity between the reference answer and the model-generated answer to determine whether they are conveying the
same meaning. Your output is a JSON object, which must contain the following keys:

- "similarity_score": a number between 0 and 1 indicating the content similarity between the two answers.

- "explanation": a detailed explanation of the similarities or differences that justify your similarity score.

Please adhere to the following steps:

- 1. Carefully read the medical question.

- 2. Review the reference answer and the model-generated answer.

- 3. Compare the two answers, focusing on content similarity—whether they convey the same meaning, and lead to the same
conclusion.

- 4. Provide a similarity score between O and 1, where 1 indicates that the answers are identical in meaning, and O indicates
different.

- 5. Justify your score by explaining the similarities or differences between the two answers.

The "explanation” should be in Chinese. and your output must always be a JSON object, do not output anything else.

Now here are the question, standard answer, and generated answer.

Question: [QUESTION]

Reference Answer: [REFERENCE ANSWER]

Model-generated Answer: [MODEL-GENERATED ANSWER]

-
N\

Query-Document Relevance Prompt

You will be given a medical search query and its associated passage. Your task is to evaluate the quality of query-passage pairs
intended for use in a medical encyclopedia knowledge retrieval evaluation dataset. Your output is a JSON object, which must
contain the following keys:

- "quality_score": an integer, a score from 1 to 5.

- "explanation": a string, providing a brief rationale for the given score.

Please adhere to the following steps:

- 1. Carefully read the query to understand the user’s information need.

- 2. Review the passage to assess its relevance and targeted content in relation to the query.

- 3. Assign a quality score from 1 to 5 and explain your reasoning.

The "explanation” should be in Chinese. and your output must always be a JSON object, do not output anything else.

Now here are the query and passage. Query: [QUERY]

Passage: [PASSAGE]

-
\

Figure 5: Prompt for data processing (II).
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MedExam

Query: M3l BIERE L ENEEEERE () - &0 AEREIE, B MEHE, CHEERE, DIREER, EVFhE
.

(EN) Question: The most common metastasis route for gastric cancer is (). Options: A: Direct spread, B: Hematogenous
metastasis, C: Seeding metastasis, D: Lymphatic metastasis, E: Along the intestinal tract.

Document: /MRl 3. HENT BISHE QMERYE. EHENTEEERRE, #REBTENIMKROCEEERS
KT0% A, 1R ERET E R R0 B B B RIT20% - EHR5IRE M ESE S 16, BREER Dlt—
Ho A TIA..

(EN) Surgery 3. Gastric cancer dissemination and metastasis (2) Lymphatic metastasis: It is the primary route of metastasis
for gastric cancer, with a lymphatic metastasis rate of about 70% in advanced gastric cancer and approximately 20% in early
gastric cancer invading the submucosa. Lymph nodes draining the stomach are usually classified into 16 groups, with some
groups further divided into several subgroups...

DuBaike

Query: FRIESEAIRIEAT 42

(EN) What are the manifestations of obsessive-compulsive disorder (OCD)?

Document: FRBJE IMREI £ & NFFEBIAES BEHRE - MER A - AREN . MBERSHEXR, TH5%
FHRMER SRR ER, i BRI - BN - EMERL - B, BEXEA RMERIER 5 B
(EN) Obsessive-Compulsive Disorder Clinical Manifestations Prevalent Population Anxiety disorders are related to genetic
factors, personality traits, adverse events, and stress factors, particularly closely linked to the patient’s personality traits.
For instance, excessive perfectionism, indecisiveness, meticulousness, and stubbornness are traits that increase the risk of
developing OCD...

DXYDisease

Query: 454 A B2 JEH T E ML RIS MY

(EN) What tests are needed to diagnose vitamin A deficiency?

Document: B ERFIELE MR ERE - MR EMEREER A BKF, S TRARE, WRE 1.05~3.15
wmol/L, IAFRAANGFALEER ARZ . WMRKTSHUE TR, BMEEERARZT - .

(EN) The most accurate test is a hematological examination. A blood test to check the serum vitamin A levels is conducted.
For adults, if the levels are between 1.05 and 3.15 mol/L, it indicates that there is no vitamin A deficiency. If the levels are
below the lower limit of the reference range, it indicates vitamin A deficiency....

MedicalRetrieval

Query: — B EEMIMLIFIRE L AME?

(EN) How long does it take for a baby’s belly button to heal?

Document: {R¥F, FEEMMF—BRI2HLALTFH, B EKIEE DA, NE X AR HRTE T -
(EN) Hello, a baby’s belly button generally heals in about 1 to 2 weeks, although it may take up to a month in some cases.
During this time, there might also be umbilical granuloma.

CmedqaRetrieval

Query: FIRBEFAREZ AT LLTIE?

(EN) How long after thyroid surgery can one return to work?

Document: ZIRAMES — R EM AL GRS ARMIROIFRED T, 2T K NRAR U AR AR ES /e
AK—T, ——"AERASERERN T, KL UTIET - TEPEEAEF R, WET E MBS -
(EN) The skin usually heals in about two weeks, and you should no longer have restrictions on neck movement. However,
the repair of subcutaneous soft tissue and muscle tissue may take longer. Generally, after about a month, there should be no
significant impact, and you can return to work. During work, be sure to avoid overexertion and manage your emotions well.

Table 15: Data example in CMIRB (I).
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DXYConsult

Query: TR KB BE, 8k, KERW—F. MEXAGEL: KtE, BTRMARE . FEEER
A BR, KREBELT

(EN) Symptoms and Duration of lllness: Cold, rhinitis, loss of smell for one week. Medical Consultation and Medication: No
medical consultation, self-medicated with Tylenol. Questions Needing Answers: What to do about rhinitis and loss of smell?
Document: {74f, ST HIEXFUEE A LHE, Bla SEHIIR DI AE T, @UE AR E 29 1080R 1
HOTE, MEE KRR, — KWK, BBHE REENTEERICR, WRSWSZHE, 7T AH AREFT IR
e, BR=IKEIR—HL.

(EN) Hello, if there has been a recent history of cold symptoms, this can lead to decreased olfactory function. It is recommended
to use saline nasal irrigation twice a day while taking cold medicine. You may also try nasal sprays like Budesonide or
Fluticasone to see if they help. If there is excessive secretion, you can take Eucalyptus and Menthol capsules, three times a day,
one capsule each time.

CovidRetrieval

Query: HAF7 R AT TAEIA T RS H i 4 A2 95 A\ 512

(EN) How should healthcare workers who contract COVID-19 while fulfilling their duties be treated?

Document: ...yt — B INGRE GBI B 255 N LB 87 TAE, PISEORBEEE S5 A BB O B BRA X ESRim Fnin
T — WEENES NG TIEEEFES AR TIE, BB ES A IR a2, .

(EN) ...To further enhance the protection of healthcare workers during the pandemic and ensure their physical and mental
well-being, the following requirements are hereby notified: Pay great attention to the protection of healthcare workers
Ensuring proper protection for healthcare workers is a key measure in preventing and reducing infections among them, ...

IIYiPost

Query: JHGIFiE: FEFEMAMERF2R, HIER. KD

(EN) Case Discussion: Two days of intravenous acyclovir, followed by lower back pain and reduced urine output
Document: 1.JA %I 5ELEE, F, 315 - FEIKE AR EIEF2R, HIER - ROBEED - M6 R AR -
BESKATAZHRE , MW . A (&EAEIR38.6°C) . FTHEIEK, BEibekiks TNS500ml+F & &
#800/7U, vd, 1IK/H,...

(EN) Case Data, Patient: Male, 31 years old. The patient was admitted after experiencing lower back pain and reduced urine
output, accompanied by nausea and vomiting for six days following two days of intravenous acyclovir administration. Eight
days prior, the patient had caught a cold due to exposure, presenting with a cough and fever (highest temperature of 38.6°C),
without significant sputum production. He received intravenous administration of ...

CSLCite

Query: BERTEHASN TR RN

(EN) Application of Microspheres in Tissue Engineering

Document: T 5: 5 2143 TR B A4 o A n] a8 A 4K PR 457 5 RSCA H 1/ FH 2 S S 308 B2 AR i ) S e TR 22 LA
PHEHORIERECSERIE W R SR (B B E R R iR . B 80 S50 & SR ME IR IR 5 & B BRE KA 2R
HERRHE R TR L.

(EN) Background: In bone tissue engineering, maintaining the sustained and efficient activity of growth factors is key to
influencing the speed and quality of bone formation. Currently, microspheres or scaffolds made from various materials are
commonly used as sustained-release carriers, but the release efficiency needs improvement. Objective: This experiment aims
to prepare chitosan microspheres and incorporate them into a nano-hydroxyapatite/polylactic-co-glycolic acid (nHA/PLGA)
scaffold, ...

CSLRel

Query: = MLEJFAIHHE M7 & MLHp AT V)8 2 L2 - IR S5, REmRE A S5 R EE N T &E
AR, 7 B AT B O M - B

(EN) Differentiation and Treatment of Hypertension and Its Prevention Hypertension can be categorized under the terms
"dizziness" and "headache" in traditional Chinese medicine (TCM). Its onset is insidious, often not receiving enough attention
[from patients, ...

Document: FFEHETE S L% 5 L5552 B E 2295 24 78 B VA I =ImTohE, PEIA AR ILES K X 5K B
A 5K e L 1 5 e AR AR HHE 5 T AR ZH A (WHO) BRI, Al A TE MREIRAS T 4 R R 52 3 T 1402 KR AT

(EN) TCM Syndrome Differentiation and Treatment of Hypertension Hypertension is a modern medical term, categorized
under dizziness in TCM. TCM holds that hypertension is related to wind, fire, phlegm, and deficiency ...

Table 16: Data example in CMIRB (II).
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