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Abstract

Large Language Models (LLMs) have revolu-
tionized natural language processing, but their
varying capabilities and costs pose challenges
in practical applications. LLM routing ad-
dresses this by dynamically selecting the most
suitable LLM for each query/task. Previous
approaches treat this as a supervised learn-
ing problem, assuming complete knowledge
of optimal query-LLM pairings. However, real-
world scenarios lack such comprehensive map-
pings and face evolving user queries. We thus
propose to study LLM routing as a contextual
bandit problem, enabling adaptive decision-
making using bandit feedback without requir-
ing exhaustive inference across all LLMs for
all queries (in contrast to supervised routing).
To address this problem, we develop a shared
embedding space for queries and LLMs, where
query and LLM embeddings are aligned to re-
flect their affinity. This space is initially learned
from offline human preference data and refined
through online bandit feedback. We instantiate
this idea through Preference-prior Informed
LinUCB fOr Adaptive RouTing (PILOT), a
novel extension of LinUCB. To handle diverse
user budgets for model routing, we introduce
an online cost policy modeled as a multi-choice
knapsack problem, ensuring resource-efficient
routing.

1 Introduction

Deploying Large Language Models (LLMs) in real-
world systems faces a critical challenge: balanc-
ing performance with cost-effectiveness (Li et al.,
2024). While larger models offer superior perfor-
mance, their high costs makes their universal de-
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ployment impractical. This challenge is particu-
larly acute given the varying pricing structures of
proprietary models and the resource requirements
of deploying the open-source alternatives.

To understand the need for varying resource re-
quirements, consider a customer service chatbot
handling diverse queries. For simple queries like
“What are your business hours?", a smaller, cost-
effective model might suffice. However, for com-
plex inquiries, such as “I’m torn between two of
your smartphone models: the X200 and the Z300.
I need a phone with excellent battery life, a high-
quality camera, and robust performance for mul-
titasking. Can you provide a detailed comparison,
including any potential drawbacks of each model?",
a more powerful (and costly) model may be nec-
essary to ensure better planning and reasoning ca-
pabilities, which a smaller model might lack. This
scenario illustrated the need for dynamic query
routing — The ability to dynamically route queries
to the most appropriate model based on complex-
ity and cost considerations, known as the model-
routing problem (Ding et al., 2024).

Existing approaches model the routing problem as
a supervised learning task, requiring large-scale
labeled datasets mapping queries to their optimal
LLM pairings (Ding et al., 2024; Hu et al., 2024).
This problem formulation faces two limitations: (1)
Gathering such labeled datasets is very expensive,
as it requires responses from each model in the
model pool for every query to discover the optimal
query-LLM pairing. (2) Lack of adaptability to
change in query distribution.

Thus, to find a more practical problem setting, we
draw parallels with news recommendation systems,
where models can only learn from user feedback,
such as clicks on a single article (Li et al., 2010;
Bouneffouf and Rish, 2019). These systems must
predict the best article for a user without showing
all possible articles , receiving feedback solely on
the selected article. Similarly, LLM routing in-
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volves choosing the best model for a query, where
obtaining user feedback on all models is labor-
intensive and costly.

Building on this insight, we reformulate LLM rout-
ing as a contextual bandit learning problem - a
formulation commonly used in news and ad recom-
mendation scenarios (Bouneffouf and Rish, 2019).
Thus, instead of requiring outputs from every LLM
to identify the best match, our problem setting re-
lies only on a binary bandit feedback, i.e., whether
the chosen LLM’s response is good or not. This
approach is practical, as simple feedback mecha-
nisms, like thumbs up/down ratings (i.e. like/dis-
like feedback), are now common in chat inter-
faces (Appcues, 2024; Delighted, 2024), allowing
effective learning from user interactions without
need for extensive annotation across LLMs.

To address this newly formulated problem of LLM
routing with bandit feedback, we propose to de-
velop an evolving shared embedding space for
queries and LLMs, where distances represent rout-
ing affinity. Initially pretrained on human prefer-
ence data (Chiang et al., 2024), it is refined through
online user feedback. Furthermore, to enforce cost
constraints in an online setting, we introduce a
novel policy modeled as an online multi-choice
knapsack problem (Chakrabarty et al., 2008), dy-
namically allocating resources to balance budget
adherence and performance. While authors in
(Nguyen et al., 2024) have approached the rout-
ing problem from a bandit perspective, their work
was focused on the limited setting of classification
tasks and did not incorporate explicit online cost
constraints.

Our key contributions are as follows,

(i) We formulate LLM routing as a budget con-
strained contextual bandit problem for adaptive
decision-making with limited supervision

(i) We propose a Preference-Prior Informed Lin-
UCB algorithm (PILOT) that combines offline hu-
man preference data with online bandit feedback
to route queries (Sec 2.2.2). We also show our
preference prior helps achieve a lower regret bound
than standard algorithm. This algorithm is further
coupled with an online cost policy to dynamically
allocate cost budget to queries (Sec 2.2.3).

(iii) In Sec 4 we show that our method outperforms
existing bandit baselines across datasets, achiev-
ing lowest regrets and highest performance across
different cost budgets.

2 Methodology

2.1 Problem Formulation

As discussed earlier, this work tackles the prob-
lem of routing queries to Large Language Models
(LLMs) in an online setting, learning solely from
evaluative (bandit) feedback from users. Leverag-
ing these user interactions, our goal is to maximize
overall performance under budget constraints, ef-
fectively personalizing LLM selection over time.
We now present the formal problem statement.
Let L = {ly,lo,...,l} be a set of k LLMs, Q
be the space of all natural language queries, and
Y be the space of all natural language responses.
A query ¢; € Q at time t is represented by its
embedding z; € R% in a d.-dimensional space,
generated by a pre-trained embedding model ¢ :
Q — R% . We assume black-box access to each
LLM [; € L, where the response of LLM [; to
query g is denoted as yi’ € Y. The quality of
a response is quantified by a scoring function s :
Q x Y — [0, 1], derived from human feedback or
heuristic-based metrics.

Ateachtime stept = 1,...,Q, for a given query
qt € Q, an LLM router M : Q@ — L selects an
LLM [ € L. After receiving the response from
the selected LLM [, the router observes a reward
re = s(q,yt) € [0,1] representing the quality of
the response. Each LLM [; € L also incurs a
token cost Cf’i > 0 for processing query ¢;. The
objective of the LLM router is to maximize the
total reward, defined as Zthl r¢, while satisfying

the budget constraint % | cM (@) < B, i.eforQ
consecutive queries, it ensures that the total token
cost across these queries is less than B.

2.2 Proposed Method

We will now describe our solution approach to
LLM routing that hinges on learning an effective
mapping from queries to the LLMs. For this, we
will learn (i) an embedding of a given query and (ii)
an embedding for each LLM in a shared embedding
space such that the cosine distance between a query
and an LLM represents their mutual affinity. The
query-LLM shared embedding space is not static;
rather, it evolves through online training.

While the online bandit feedback may be sufficient
to train such an embedding space, it may still take
a considerable amount of time to train in a com-
pletely online fashion. Further, a vast amount of
public data is available in the form of human pref-
erences where given a query and responses from
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two LLMs, humans provide their preferred LLM
response. We hypothesize that independent of the
end task (model routing in our case), this human
preference data can be leveraged to pretrain the
shared embedding space. The online bandit feed-
back can then be used at run time to continuously
improve the pretrained embedding space, thus en-
hancing the accuracy of our routing decisions over
time. Hence, we leverage two primary sources of
information, (i) offline human preference data (Sec-
tion 2.2.1) to pretrain the shared embedding space
and (ii) online bandit feedback (Section 2.2.2) to
continuously tune the embedding space at runtime.
Finally, to address the critical aspect of user-level
budget constraints, we implement an online cost
policy (Section 2.2.3). However, its worth noting
that in the online bandit learning phase (Section
2.2.2), there is no budget constraint. - we elaborate
on this in Section 3. This multi-faceted approach al-
lows us to balance performance optimization with
budget adherence in a dynamic, user-centric man-
ner. We now describe these steps in detail. For a
birds eye view of the method, see Algorithm 1 & 2.

Initially, queries with same preferred LLM
have high distance
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Figure 1: Pretraining with Human Preference Data

We leverage human preference dataset to learn
query embeddings which are aligned w.r.t. human pref-
erences on query-LLM mapping. Then, in @ we learn
LLM embeddings aligned with projected queries

2.2.1 Pretraining with Human Preferences

Human preference data provides rich insights into
query-LLM fit. We use it to establish a meaningful
shared embedding space before incorporating on-
line bandit feedback on the target task. Pretraining
occurs in two phases for stability, mitigating the
moving target problem that can arise from jointly
optimizing query projections and LLM embeddings
via cosine similarity. In phase one, we learn a pro-
jection from (initial) query embeddings onto our

shared embedding space. In phase two, using same
human preferences, we learn an embedding for
each LLM that lies in the shared embedding space.
Phase one: Learning the Query Projections
Given an existing query embedding model ¢ :
Q — R%, we project these embeddings to our
d-dimensional shared space via a learned linear
transformation ¢ (q) = W¢(q) + b. The param-
eters W € R9m>de and b € R% are learned
using a cosine distance-based triplet loss on hu-
man preference data Dprr (Figure 1 @). For
each anchor query (qa, i, 1, lwin) € Dprer (Where
lwin 1s the preferred LLM), we construct posi-
tive and negative query pools. The positive pool
P = {(q,l;,1j,w) € Dpref| lw = lwin} contains
queries where l,,;,, was also preferred. The nega-
tive pool N = {(q, i, lj, w) € Dpref| lw # lwin N
size(ly) < size(lyin)} consists of queries where
lwin Was not preferred against a smaller LLM (hard
negatives, based on token cost - size(()).

Phase two: Learning LLM Embeddings In
phase two, we focus on learning the LLM em-
beddings 6; for each LLM [; € L. For this, we
first freeze the query projection parameters (W
and b) learned in phase one and then learn the
LLM embeddings with the goal that given a query
(¢,0i,1j,lw) € Dprer, the embedding of the pre-
ferred LLM (l,,) is close to 9(q). We start by
defining a probability distribution of /; winning
exp(cos(0s,%(q)))

2 ke i,y exp(cos(0x,1(q)))
train the LLM embeddings by treating preference

learning as a binary classification task using binary
cross-entropy loss. The final learned embeddings
after this phase for an LLM [; is denoted as Hfref
(See @ in Figure 1).

This two-phase learning process establishes an ini-
tial shared embedding space that captures the re-
lationship between queries and LLMs based on
human preferences, providing a strong foundation
for subsequent online learning.

overl; asp; = . Then, we

2.2.2 Evolving with Online Bandit Feedback

Having learned query and LLM embeddings, we
will now discuss how to incorporate the online ban-
dit feedback for the end task of routing queries to
appropriate LLMs. For this, we model routing as a
contextual multi-armed bandit (CMAB) problem:
projected query embeddings 1(q;) serve as con-
texts, and LLMs are arms. Reward r; = s(gz,y}) €
[0, 1] is the response quality from the selected LLM
[. Objective is to maximize cumulative reward
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Figure 2: Bandit Router Framework: Our router takes
three inputs: (i) User query (ii) cost constraints and, (iii)
a model pool. It learns and adapts automatically based
on user feedback, optimizing LLM selection over time.

max, {Zthl rt} via policy 7 : R%» — A.

The bandit’s feedback is used to further align query
and LLM embeddings with the goal of routing the
query to appropriate LLM. For this, we choose to
update arm/LLM embeddings at each round (fol-
lowing existing literature).

Let 6}; denote embedding of arm (LLM) «a at time
step t where the initial arm embedding at time ¢ =
0 is initialized with LLM embeddings learned in
pretraining phase from preferences, i.e., §0 = R,
As discussed in Section 2.2.1, we model the mutual
affinity between user queries and LLMs as the co-
sine distance between their representations in the
shared embedding space. In line with this idea, we
model the expected reward at time ¢ in the CMAB
problem as follows:

Elri|a, ¢i] = cos(¥(q), 0a) = ¥(q) -0 (1)

whf:re @b(qt)' = % and 0, = ”;ﬁ. Thps,
owing to this linear reward formulation (cosine
distance between unit normalized vectors), we pro-
pose a preference-prior informed linear upper con-
fidence algorithm (PILOT) which builds upon the
standard LinUCB (Li et al., 2010) algorithm while
incorporating the knowledge gained from our pref-
erence learning phase.
PILOT, similar to LinUCB, performs online ridge
regression. From a Bayesian perspective, this corre-
sponds to maintaining a posterior distribution over
the arm parameters. At each time step ¢, for each
arm a, the point estimate of embedding of the arm
(representing LLM a) is given by:

= ()"0, @)
where, A, = Al7' + U(q)(q) ", and, b =
bt + rap(q). Att = 0, we initialize the
parameters A’ and b as, A2 = N\, I, b0 =

a

)\GHZref, where GZref is the embedding for LLM
corresponding to arm a learned from preference

data (see Section 2.2.1), and A, > 0 is a regu-
larization parameter. This initialization can be in-
terpreted as imposing a human preference prior
69 ~ N(65™ (\aI)~1) on the (initial) arm param-
eters. A\, controls prior strength: larger )\, implies
less exploration (lower variance), while smaller A\,
allows faster adaptation. To balance exploration,
particularly if online queries differ from pretraining
data, we set A\, as the inverse of arm a’s accuracy
during the pretraining phase.
With this formulation, the posterior distribution
of arm (LLM) embeddings at time ¢ becomes:
p(0L|D;) = N(6,(AL)"1) , where D; repre-
sents the observed online data up to time ¢t. The
preference-prior informed LinUCB thus allows us
to start with an informed estimate of LLM perfor-
mance based on offline preference data, while still
adapting to task dependent bandit feedback and
query characteristics through online learning.

The algorithm balances exploration and exploita-
tion by selecting the arm that maximizes the upper
confidence bound, i.e. a; is defined as:

arg mgx ( COS(i/A}(Qt), éfb)

+ o/ Pla) T (401 a) )

where « is the exploration parameter.
To validate PILOT, we theoretically show that a
preference-prior informed bandit algorithm can
achieve a smaller regret bound than the standard
algorithm. Here, we focus on Optimism in the
face of uncertainty linear bandit algorithm (OFUL)
(Abbasi-Yadkori et al., 2011a) since both OFUL &
LinUCB are based on the same principle, i.e., prin-
ciple of optimism in the face of uncertainty (Latti-
more and Szepesvari, 2020, Chp 7.1) & OFUL is
theoretically well-studied.

Proposition 2.1 (Validity of a preference-prior in-
formed bandit (informal)). Ler 0P € RY and
0* € RY be a pretrained vector and an unknown
reward vector respectively. Let PI-OFUL be the
OFUL (Abbasi-Yadkori et al., 2011a) with the
Preference-prior-Informed initialization with P,
Then, if ||0P*f — 6*|| < ||6*||, PI-OFUL achieves
a smaller cumulative regret bound than OFUL.

See Sec C.1 for a more formal statement & proof.

2.2.3 Enforcing Budget Constraint with
Online Cost Policy

To manage user-specified cost budgets (B over Q

queries), we introduce an online cost policy. This

policy aims to optimally allocate the budget across
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unseen queries to maximize expected reward. We
frame this as an online multi-choice knapsack prob-
lem (ON-MCKP) (Chakrabarty et al., 2008).

This ON-MCKP formulation allows leveraging the
ZCL algorithm (Zhou et al., 2008) to enforce bud-
get constraints while maximizing expected reward
(Equation 1). In ON-MCKP, a knapsack of ca-
pacity B receives item sets [V; over time; at most
one item (with value v; and weight w;) is selected
from each V; to maximize total value within B. In
our context, at timestep t, available LLMs L form
the item set; their reward estimates (cos(1)(q;), éf)
Vil € L) are values, and estimated token costs are
weights. We assume known upper/lower bounds
(UB, LB) on the reward-to-cost ratio and query
costs small relative to B, standard for online prob-
lems (Zhou et al., 2008). The policy maintains
budget utilization z; € [0,1]. Following (Zhou
et al., 2008), eligible LLMs F; C L must satisfy

Cl < (T2, We select the LLM with the
highest eLx}Taectede reward from E; and update z;.
Since the ZCL policy assumes an infinite horizon,
potentially leading to underutilized budget over )
queries, we implement a binning strategy. The Q)
queries are partitioned into N bins of size .S, where
N = (%] bin budget = %. The cost policy is
applied per bin, with unused budget spilling over
to the next, allowing flexible allocation within over-
all constraints. Algorithm 3 (Appendix) details
this policy, and Algorithm 2 provides an overview.
Zhou et al. (2008, Theorem 5.1) establishes a per-
formance guarantee, showing our online policy’s
performance is provably close to an optimal offline
policy with full query knowledge.

3 Experimental Setup

3.1 Evaluation Details

To the best of our knowledge, we are the first to
study LLM routing in an online bandit learning
setting. Given the absence of an established ex-
perimental framework, we design the evaluation
process by taking inspiration from (Li et al., 2010).
Our objective is to simulate an online learning set-
ting using an existing LLM routing dataset (Router-
bench (Hu et al., 2024)). We first split the routing
dataset into tuning data (for hyperparameter se-
lection) and evaluation data. The objective of
evaluation data is to simulate online user query
traffic. Similar to news recommendation (Li et al.,
2010), when deploying the bandit routers to users,
one reasonable way is to split all traffic into two

Algorithm 1 PILOT (Preference-prior Informed
LinUCB fOr Adaptive RouTing)

Input: Human preference data Dper, LLMs L
Preference-Based Pretraining

1: Learn query projection ¢ by minimizing triplet
loss using (qq, Ui, 1, lwin) tuples from Dy and
constructing negative and positive samples as
mentioned in Section 2.2.

2: Fix ¢ and learn LLM embeddings Oﬂif; using
binary cross-entropy loss.

Online Bandit Learning

3: Initialize bandit learning parameters A, = A,/

and b, = \,07" foralla € L.

4: fort=1,...,Tdo
5: Define a; as arm/LLM with largest UCB.
6: Observe feedback r; w.r.t. response of se-

lected LLM a; & update parameters A, & b,.
7: end for

Algorithm 2 Online Cost Policy

Input: budget B, query set length ), LLMs L
I: fort=1,...,Q do
2: Estimate token cost C} V [ € L for ¢;.

3: Compute the cost eligibility threshold for

n gt
eachLLM [: thl = %, where z; €

LB e
[0, 1] is the current budget utilization.

4: yield I =
argmax(ecy, g ci<unt) cos(V(q), ;)
5: end for

buckets - (i) “learning bucket”: a fraction of traf-
fic on which various bandit algorithms are run to
learn. (ii) The other, called “deployment bucket”, is
where we greedily serve users using bandit router
obtained from learning bucket.

3.1.1 Dataset

We evaluate our proposed method using Router-
bench (Hu et al., 2024), a comprehensive LLM rout-
ing dataset spanning a wide range of tasks includ-
ing commonsense reasoning, knowledge-based lan-
guage understanding, conversation, math, and cod-
ing. Routerbench is constructed by leveraging ex-
isting datasets (MMLU, Hellaswag, GSM8k, Wino-
grande, ARC Challenge, MTBench, MBPP) com-
monly used to evaluate leading LLMs. The dataset
comprises 36,497 samples covering 64 tasks, with
responses from 11 different LLMs, including both
open-source (Llama-70B-chat, Mixtral-8x7B-chat,
Yi-34Bchat , Code Llama-34B, Mistral-7B-chat,
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WizardLM13B) and proprietary models (GPT-
4, GPT-3.5-turbo, Claude-instant-v1, Claude-vl,
Claude-v2). The dataset also includes the incurred
cost and evaluation score (GPT-4 evaluation or ex-
act match score, based on the task) of each LLM on
each query. We request reader to see the original pa-
per for details (Hu et al., 2024). We use ChatArena
(Chiang et al., 2024) for preference data, sampling
a subset of queries where both associated LLMs
belonged to RouterBench’s set of 11 LLMs.

3.1.2 Dataset Partitions

We partition the dataset as follows: we use 1000
samples as tuning data for hyperparameter selec-
tion, with the remaining data split into “learning"
and “deployment" buckets with a 10:1 ratio. This
setup allows us to observe the router’s performance
improvement as more data becomes available in
the learning bucket over time.

3.1.3 Baselines

We want to primarily understand two questions, 1)
how well our approach performs against existing
routers, and 2) in context of using a bandit setting,
how well the use of PILOT justifies against other
choices of bandit algorithms.

For the first, we compare with all-to-one routers
(all queries to a single LLM). Appendix D.1 also
includes a reference comparison with HybridLLM
(Ding et al., 2024), a supervised binary router, not-
ing its different supervision requirement (optimal
LLM index vs. our evaluative feedback). For the
second, we use several contextual bandit baselines:
LinUCB (Li et al., 2010) (UCB with a linear re-
ward model), Epoch-Greedy (Langford and Zhang,
2007) (alternating exploration/exploitation), Ex-
plore Only (continuous exploration), and a Random
Policy (random LLM selection). Crucially, for fair
comparison of allocated budget against deployment
performance (Figures 3, 5), our proposed cost pol-
icy is uniformly applied across all baselines. The
policy’s effectiveness is further assessed in Fig 4.

3.2 Implementation Details

Embedding Model. We wuse OpenAl’s
text-embedding-3-small to embed queries
for all results shown in Figure 3. To analyze the
sensitivity of our router, we conduct an experiment
using Instructor-XL (Su et al.) in Section 5.4.

Hyperparameter selection. We use the tuning
data to fine-tune hyperparameters of our method
and baselines. To optimize the exploration
parameter « (for PILOT and LinUCB), we search

over {1,1.5,2,5,10}, selecting the value that
maximizes reward. For Epoch Greedy, we do a
grid search over window sizes {10, 50, 100, 500}
to find the optimal window size.

Online Cost Policy. During the deployment phase,
our cost policy requires estimating the total cost of
each query, including both input and output token
costs. Input tokens are determined from the query
itself, while output tokens are estimated using the
mean output token count from responses in the tun-
ing data for each LLM. This mean is then applied
to all queries in the deployment set to calculate
total query costs. Furthermore, It is worth noting
that the proposed online cost policy operates inde-
pendently of the PILOT algorithm. Its objective
is to select the most suitable LLM for each query
based on a query-wise LLM ranking, aiming to
maximize the cumulative reward across () queries
while adhering to the total budget B.

4 Results and Analysis

We evaluate PILOT’s performance across various
facets of LLM routing, considering diverse, multi-
task applications and specific use cases. Our exper-
iments utilize two data types:

(1) Single-task data source: The MMLU benchmark
from Routerbench, focusing on multi-choice ques-
tion answering. (ii) Multi-task data source: Full
Routerbench dataset, encompassing tasks like code
generation, math problems, & multi-turn conversa-
tions, simulating a broad range of user queries.
Using these datasets, we investigate several aspects
of our bandit-based LLM routing algorithm, de-
tailed under Main Experiments in Table 3. Below,
we summarize PILOT’s performance for both sin-
gle and multi-task scenarios, covering multi-LLM
and binary-LLM routing settings. For binary-LLM
routing, Figure 3 presents results for two LLM
pairs, with more comparisons in Appendix D.4.
Multi-Task Data Source Setting Results in Fig-
ure 3 column b, indicate our method’s superior-
ity: We achieve a performance equal to 93% of
GPT-4’s at just 25% of its cost in multi-LLM set-
ting while maintaining higher performance than
any other baselines. Also, our method consistently
shows the highest deployment set performance &
lower regret across various learning conditions.
Single-Task Data Source Setting As shown in
column a of Figure 3, our method (PILOT) consis-
tently outperforms all baseline bandit algorithms.
In particular, in the multi-LLM routing case, we at-
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Figure 3: Bandit Feedback based LLLM Routing Evaluation: In column (a) we report results for single task data
source setting (MMLU), and in column (b) we report results for multi-task data source setting (Routerbench). The
sub-column (%) in each column represents performance vs cost curves on the held-out deployment set; sub-column
(i) represents performance across different learning bucket sizes; sub-column (7i7) represents cumulative regret.

Our method is shown in

tain a performance of 86% of GPT-4 at only 27% of
its cost and surpass all other all-to-one LLM base-
lines. PILOT also exhibits highest performance
on deployment set across various learning bucket
sizes, showing its efficacy with limited data.

5 Discussion and Ablations

This section provides qualitative and quantitative
analyses of PILOT’s routing behavior, computa-
tional efficiency, cost policy, and sensitivity, offer-
ing a holistic view. These analyses, summarized
under ‘Analysis’ in Table 3, delve deeper into PI-
LOT’s operational characteristics.

5.1 Qualitative Analysis of PILOT’s Routing

Qualitative examination of PILOT’s routing reveals
intelligent decision-making. For demanding tasks
like MMLU and ARC Challenge, PILOT routes
90% and 89.4% of queries to GPT-4, respectively,
leveraging GPT-4’s strength in complex reasoning.
For coding tasks (MBPP), while GPT-4 is utilized,
Claude models handle a significant 28% of queries,
indicating PILOT’s recognition of Claude’s cod-
ing abilities. In GSMS8K, Claude (v1) is the pre-
dominant choice (94% of queries). This isn’t ar-
bitrary; Claude-v1’s strong performance on math
tasks, coupled with its lower cost, makes it an ef-
fective option, echoing findings in Zhang et al.

5.2 Analysis of the Online Cost Policy

Comparison with other Online Cost Policies:
Here we compare it to simple online baselines:
(i) allocating g budget per query, and (ii) allo-
cating g per query with spillovers from previous
queries. We use these query-wise budgets to select
the highest-ranked arm/LLM within the budget. We
evaluate using mean reciprocal rank of the chosen
arm (where rank 1 is the best arm w.r.t. learned
bandit router) and performance on Routerbench’s
deployment set (multi-LLM case).
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Figure 4: Cost Policy Comparison: (Left) Mean Re-
ciprocal Rank of the chosen arms for various budgets
(Right) Performance of cost policies with diff budget

Deployment Set Performance
.

Mean Reciprocal Rank (MRR)
.

Comparison with Offline Cost Policy: Here, we
try to maximize P — AC' (following Chen et al.,
2022), where P is estimated performance, C' is
cost, & hyperparameter A is tuned retrospectively
for each budget constraint by optimizing its value
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Cost($) P —)XC PILOT (Ours) Difference
0.25 0.6079 0.6557 +0.0478
0.50 0.6602 0.6840 +0.0238
1.00 0.7265 0.7240 -0.0025
1.50 0.7740 0.7814 +0.0073

Table 1: Comparison of performance between P — AC
offline policy and PILOT’s online cost policy

over entire deployment set to achieve best possible
outcome for that budget-a significant informational
advantage. As shown in Table 1, our adaptive on-
line policy generally outperforms this offline policy
across multiple cost thresholds. This shows value
of our online approach which performs comparably
/ better than even a policy with perfect hindsight.

5.3 Computational Overhead of Routing

Embedding Model Routing Time GPT-4 Infer-
ence Time

Instructor-XL 0.065 s 2.5s

OpenAl text- 0.239s 25s

embedding-3-small

Table 2: Analysis of Routing Time: Routing Time
refers to average time taken by PILOT to select a LLM
from the pool and GPT-4 Inference Time is average time
taken by GPT-4 to answer a query on MMLU dataset

To assess PILOT’s efficiency, we compare its aver-
age LLM selection time against GPT-4’s average
inference time on MMLU (Table 2). PILOT’s rout-
ing time is 10x and 38x faster than GPT-4 inference
when using Instructor-XL & OpenAl embeddings,
respectively. This shows that PILOTadds negligible
overhead to the response generation pipeline.

5.4 Embedding Model Sensitivity

Here, we assess PILOT’s sensitivity to the embed-
der by evaluating its performance using another
model - Instructor-XL (Su et al., 2023). As
shown in Figure 5, PILOT continues to maintain
superior performance over baselines.

Multi-LLM Routing

Multi-LLM Routing

— LinUCB
PILOT (Ours)

0.8 0.77 .
& 079, 4000

Cumulative Regret
N ow
s 8
3 3
3 3

1000

Deployment Set Performance

o
=

00 1.00 ~ 150 0 5k 10k
)

050 |
Budget Alloted($ Rounds

Figure 5: Embedding Sensitivity Analysis Figure com-
pares PILOT’s performance with bandit baselines using
Instructor-XL embedding.

6 Related Works

Research on efficient LLM deployment spans static
model optimizations, hybrid strategies, and dy-
namic routing. (1) Static efficiency methods, such
as pruning (LeCun et al., 1989), quantization (Ja-
cob et al., 2018), LoRA (Hu et al., 2021), and
distillation (Hinton et al., 2015), compress mod-
els for fixed cost constraints, but cannot adapt to
varying task demands. (2) Hybrid approaches like
LLM-Blender (Lu et al., 2024) synthesize outputs
from multiple LLMs to improve quality, while oth-
ers such as TensorOpera Router (Stripelis et al.,
2024b) and FORC (gakota et al., 2024) train of-
fline meta-models to predict the best model. These
require full supervision and may not generalize
to new query distributions. (3) Routing strategies
select a single model per query. Non-predictive
methods like Frugal GPT (Chen et al., 2023) use se-
quential evaluation, while predictive ones like Hy-
bridLLM (Ding et al., 2024), GraphRouter (Feng
et al., 2024), and Confidence Tokens (Chuang et al.,
2025) train supervised routers with full feedback or
LLM modifications. While MetaLLM (Nguyen
et al., 2024) models LLM routing as a contex-
tual bandit problem with a fixed cost-performance
trade-off, it doesn’t offer strict budget guarantees.
OptLLM (Liu et al., 2024b) treats routing as a multi
objective optimization problem with the goal to op-
timize cost and performance, but it relies on full su-
pervision i.e. a training set generated by answering
every query using all LLMs, which is infeasible in
practical settings due to the cost of generation. The
same drawback is also applicable to TensorOpera
Router (Stripelis et al., 2024a) which proposes a
multi-phase pipeline for data generation, training
and deployment of routers.

In contrast, our work formulates routing as a con-
textual bandit problem with budget constraints. We
learn an embedding-based router that adapts online
using bandit feedback—observing reward only for
the selected model—without requiring exhaustive
supervision or query-specific full inference. This
enables efficient and adaptive LLM deployment in
dynamic, cost-sensitive environments.

7 Conclusion

We address LLM routing with budget constraints
using bandit feedback in this work. We propose
PILOT, a human-preference prior based contex-
tual bandit algorithm, coupled with a novel online
cost policy that optimizes budget allocation across
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queries. Our approach achieves 93% of GPT-4’s
performance at 25% of its cost on Routerbench.

Limitations

During the online bandit learning (Algorithm 1)
we do not consider budget constraint, rather only
during deployment we consider budget constraint.
Underlying rational for decoupling the bandit al-
gorithm and the cost policy was to ensure deploy-
ment stability and provide direct, user-controllable
budget management. This separation facilitates de-
ploying a robust bandit model while dynamically
adjusting cost policy in real-time based on budget.
However, one maybe be interested in learning un-
der budget constraints, which we leave for future
work.

In this work we focused on single-turn conversa-
tions as input for routing, however real-world sce-
narios could multi-turn interaction based routing.
We leave this for future work.
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A Appendix

In this section, we provide additional results and
details that we could not include in the main pa-
per due to space constraints. In particular, this
appendix contains the following:

Extended Related Works
— Efficient LLM Inference
— Hybrid LLM Approaches
— Routing Strategies for LLMs

Theoretical Analysis and Algorithms
— Theoretical Analysis of a Preference-Prior-
Informed Bandit Algorithm
— Algorithm for the Online Cost Policy

Additional Results and Analysis

— Comparison with Supervised Binary Router
* Performance vs Cost Analysis
* Adaptability to Shift in Query Distribution

— Query Complexity Analysis

— Analysis of Human Preference Learning

— Additional Binary LLM Routing Results

— Ablation and Sensitivity Analysis

B Extended Related Works

In Section 6 of the main paper we briefly described
works in the areas of routing strategies for language
models and neighbouring research topics such as ef-
ficient LLM inference and hybrid LLM approaches.
Here we elaborate on it.

B.1 Efficient LLM Inference

Traditional approaches to efficient ML inference
can be categorized into: model pruning (LeCun
et al., 1989), quantization (Jacob et al., 2018), lin-
ear attention (Arora et al., 2024), low-rank adap-
tation (Hu et al., 2021) and knowledge distillation
(Hinton et al., 2015). These methods typically pro-
duce static optimizations, which may not suffice
for LLMs serving a range of tasks with varying
accuracy/cost constraints. Our work, in contrast,
focuses on dynamic optimizations to meet diverse
user demands.

B.2 Hybrid LLM Approaches

Hybrid inference methods attempt to balance cost
and quality by combining outputs or using meta-
models. These include:

(1) Multi-LLM Synthesis: LLM-Blender (Lu et al.,
2024) and related methods (Jiang et al., 2023)
invoke several models and fuse their responses.
While improving output quality, these approaches

are cost-intensive and unsuitable for latency-
sensitive applications.

(i1) Meta-routing via reward estimation: Tensor-
Opera Router (Stripelis et al., 2024b) builds a sepa-
rate reward model to guide routing decisions over
multiple LLMs. However, it relies on offline data
and full supervision to train the reward predictor.
Unlike these works, we focus on selecting a single
model per query and improve performance through
online learning from partial feedback.

B.3 Routing Strategies for LLMs

Existing routing strategies can be categorized as:
(i) Non-predictive routing: Frugal GPT (Chen et al.,
2023) executes models sequentially until a qual-
ity threshold is met. While simple, this leads to
multiple model calls and doesn’t generalize across
queries.

(i1) Predictive routing (supervised): These meth-
ods train a router to choose among LLMs based
on full supervision. HybridLLM (Ding et al.,
2024) trains a classifier to select between a small
and large model. FORC (Sakota et al., 2024)
uses a meta-model to balance accuracy and cost.
GraphRouter (Feng et al., 2024) encodes queries
and models into a bipartite graph to guide routing.
Chuang et al. (Chuang et al., 2025) introduce confi-
dence tokens emitted by LLMs to help with model
selection, requiring LLM modification.

While these methods show strong performance,
they rely on full model evaluation during train-
ing, limiting scalability and adaptability. Our work
differs by treating routing as a contextual bandit
problem: we learn only from the selected model’s
feedback, adapting online to shifting distributions
without exhaustive supervision.

Below we summarize our unique aspects to contex-
tualize our work within LLM routing literature:

* Online Adaptation: We train the router on-
line, enabling it to adjust to evolving query
types and workloads.

* Bandit Feedback: We operate under par-
tial supervision, learning from the reward of
only the selected model, unlike prior work re-
quiring all-model inference for each training
query.

* Budget-Aware Routing: Our formulation in-
cludes a cost policy via a multi-choice knap-
sack, explicitly managing user budgets.

This makes our method suitable for practical LLM
deployment settings that demand efficiency, adapt-
ability, and minimal supervision.

23944



Experiment

Details

Reference

MAIN EXPERIMENTS

Performance vs Budget Curves

Performance with Varying
Learning Data Sizes

Cumulative Regret Curves

deployment.

Evaluates performance-cost trade-offs across budget constraints.
Measures performance with different learning data quantities in

Tracks learning efficiency over time compared to baselines.

Fig. 3 (a), (b)(i)
Fig. 3 (a), (b)(ii)

Fig. 3 (a), (b)(ii)

ANALYSIS

Qualitative Analysis of Routing
MBPP, GSM8K).

Compute Overhead of Routing
time.

Online Cost Policy Analysis
policies.

Embedding Model Sensitivity

Comparison with Static Binary
Supervised LLM Router

Human Preference Learning

distribution shifts.

Section 2.2.1.

Ablation & Sensitivity Analysis
factors.

Examines routing decisions across diverse tasks (MMLU,
Measures routing latency overhead against GPT-4 inference
Compares adaptive online policy with fixed-budget and offline

Tests robustness across different query embedding models.
Contrasts with static supervised routers, especially under

Evaluates the human preference learning stage detailed in

Analyzes impact of individual components and robustness

Section 5.1
Section 5.3
Section 5.2

Section 5.4
Appendix D.1

Appendix D.3

Appendix D.6

Table 3: Overview of Experiments: Summary of empirical evaluations conducted to assess PILOT’s performance.

C Theoretical Analysis and Algorithms

C.1 Theoretical Analysis of a
Preference-Prior-Informed Bandit
Algorithm

To show the validity of PILOT, we theoretically
show that a preference-prior-informed bandit algo-
rithm can achieve a smaller regret bound than the
standard algorithm. Here, we focus on preference-
prior informed OFUL (Abbasi-Yadkori et al.,
2011b) since OFUL is a theoretically well-studied
method, and both the algorithms (LinUCB and
OFUL) share the same principle, i.e., the princi-
ple of optimism in the face of uncertainty (Latti-
more and Szepesvari, 2020, Chp 7.1) and (Li et al.,
2010) have not provided a theoretical analysis of
LinUCB. We briefly introduce a problem setting
for theoretical analysis. Fort = 1,...,T, a query
q¢ and selected LLM [;, we assume the following
reward model:

el qr) = 0" - w(ly, q1) + &,
where z(l,q) € R? is a context vector and
0* € RY is an unknown reward vector. We de-

fine cumulative regret
T

RT) = Y (maeridta) = il a))

For A > 0, We define an estimation 6; of
0 as Ay Zs 1TsT (saQs) where Ay, = M\ +
22211 -T(lsaQS) (157QS) For § € (()7 1) and

S > 0, we define a confidence set C;(6, 0;; S) by
Ct((s, ét; S) = {9 € Rd/ : (9 - ét)TAt(H - ét) S

VS + R\/2 log(1/8) + d'log (1 + ATd,> }

Then for each round ¢, OFUL selects I} €
L such that MAXge e, (56,:9) 0 - x(ly,q) =
MaX p yec, (5,0:5)xL 0 (L, qt)-

Then, if ||6*|| < S, OFUL has the following
regret bound with probability at least 1 — 6,

R(T) < Ur(5)

where

Up(S) = 4/Td'log(A+T/d') - | VAS

+R\/2 log(1/6) + d'log (1 + i;,)

If we know the optimal choice of S (i.e., S =
|6* ), then regret bound Uz (OFUL) of OFUL is
given as

Ur(OFUL) := Uz (||6*])).

Proposition C.1. Let 07f ¢ R be a pre-
trained vector. We define an estimation 6, of 0*
with an initialization 0Pt as 0, = (A) "Ly,
where A; = )\I + 3 13:( 6:qs)x(ls, qs) T, by =
APt 1 S (I, gs). We define PI-OFUL as
OFUL with the confidence set Cy(8,0y;S") with
a parameter S’ > 0, that is, PI-OFUL selects
ly € L such that maXyce, (54,5 0-x(ly,qt) =
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MaX g ), 5,505 O 2 ). I [|0% = 0P| <
S’, then regret bound of PI-OFUL is given as
Ur(S"). In particular, if we know the optimal
choice of S' (i.e., S = ||0* — OP™'|), then then
regret bound Up(PI-OFUL) of PI-OFUL is given
as

Ur(PI-OFUL) := Up(]|6* — 6P™t)).
Thus, if ||0* — 6P| < ||6*||, we have
Ur(PI-OFUL) < Up(OFUL).

Proof. For 1 < t < T, let X €
R(E=1*d" pe the matrix whose rows are given as
z(a1, q)',...,x(a;_1,q:—1)". By definition of
0; and the proof 0~f (Abbasi-Yadkori et al., 2011b,
Theorem 8) and, 6, is given as

0= (XX +A)"'XTe+6"—

MXTX 4+ A)(6F — gPrehy,

where ¢ € R lis definedase’ = (e1,...,61).
Thus, by the proof of (Abbasi-Yadkori et al., 2011b,
Theorem 8), we have the following with probability
1-6
0, -2 — 0 x| <

det(A;)1/2 det(\)~1/2
ol (R\/zlog( LR

) |

Using this confidence bound, by the standard ar-
gument (the same proof as (Abbasi-Yadkori et al.,
2011b, Theorem 13)), we have our assertion. [

VR o —

C.2 Algorithm for the Online Cost Policy

In Section 2.2.3 of the main paper, we introduced
our online cost policy, enabling users to set a cost
budget B and distribute it across a defined num-
ber of queries (). Building on that discussion, we
present the corresponding algorithm in Algorithm
2 and provide a concise summary of its key steps
below. The algorithm operates by dividing the to-
tal query budget () into N bins of size S, where
N = [%1 Each bin is allocated a portion of the to-
tal budget B, denoted as By, = %. At the start of
each bin, the algorithm adds By, to the remain-
ing budget B (budget leftover from previous
bins/timesteps). For each query within a bin, the
algorithm selects eligible large language models
(LLMs), E, from the set L whose costs C' (I € L)
are below a threshold. This threshold is sensitive to
both the LLM [ and the current budget utilization

%. If no LLMs fit the
allotted budget thresLljlgolds,ethe algorithm adjusts
the budget per query to gizﬁ (Qeft is the number
of queries remaining in the bin) and re-evaluates
eligible LLMs. If still no LLMs are available, the
algorithm terminates with an “Insufficient budget"
message. Otherwise, it selects the LLM with the
highest expected reward (defined in Equation 1) in
the set of eligible LLMs E, updates the remaining
budget, and yields the selected LLM for the current
query. This process repeats for each query in the
bin, ensuring the budget is optimally utilized across

the entire query set.

z, and is given by

Algorithm 3 Online Cost Policy

Require: Budget B, # queries (), Bin size .S, LLM
set L
Ensure: LLM selections for each query

N + [%W % Number of bins
Bypin + % 9% Budget per bin
Bleft 0
for each biniin 1 to NV do
z+0 % Initialize budget utilization

Bieft <= Bieft + Bbin
for each query ¢, in bin ¢ do
Q1eft < number of remaining queries in

9% Budget Left

bin -
E « {l cL: Cl < Cos(w(‘h)ﬁé) }

(59 ()

if ' is empty then

B+ % % Adjusted budget

E+{leL:C'< B}
if £/ is empty then
return “Insufficient budget"
end if
end if
I* <« argmax;cp cos(zﬂ(qt),élt) %
pick best LLM
Byt < Bieft — ot % Update budget
z4— 2+ % % Update budget use
yield [* 9% Return selected LLM
end for
end for

D Additional Experimental Results and
Analysis

D.1 Comparison with Supervised Binary
LLM Router

As stated in Section 3.1.3, here (in Figure 6) we
compare our bandit router PILOT with the state-of-
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the-art supervised router HybridLLM, while keep-
ing in mind that HybridLLM (Ding et al., 2024)
relies on full supervision, whereas our approach
operates with only bandit feedback arriving on-
line. Furthermore, we quantitatively evaluate PI-
LOT and HybridLLM, w.r.t. adaptability to shift

in user queries to understand whether PILOT we

1mn Binary LLM Routing
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Figure 6: Performance vs Cost comparison with Su-
pervised HybridLLM (Ding et al. 2024) The left
figure shows binary LLM routing comparisons for GPT-
4 and Mistral-7b in the LLM pool. The right figure
presents similar comparisons, this time for GPT-4 and
Mixtral-8x7b. This study uses the Routerbench dataset
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Figure 7: Adaptability to Shift in Query Distribution
The left figure shows average reward comparison across
different time instants - “Before", “During" and “After"
shift in query distribution from MMLU to GSM8k. The
right figure shows that during the drift the exploration
increases as new distribution is encountered and then
the exploration settles down.

D.1.1 Performance vs Cost Analysis

We compare PILOT with the deterministic variant
of HybridLLM (Ding et al., 2024), which assumes
that LLMs are deterministic functions mapping in-
put features to a single point in the output space.
We do not experiment with the probabilistic vari-
ants due to the high cost involved—they require 20
times more LLM calls to train the router, making
them expensive to implement. These probabilis-
tic variants utilize soft labels for training rather
than hard labels, which necessitates sampling 10
responses from each LLM (thus 20 calls for two
LLM:s) per query and calculating a sample average.

We use the Routerbench dataset for this compar-
ison and pick two LLM combinations (GPT4 &
Mistral-7b, and, GPT4 & Mixtral-7x8b) for binary
routing task. We pick these LLM combinations to
compare routers in the presence of large (GPT-4),
medium (Mixtral-8x7b) and small (Mistral-7b) size
language models. Furthermore, as per the protocol
in Section 3.1 of the main paper, we use 1000 sam-
ples for hyperparamter tuning and the remaining
samples is split into “learning" and “deployment”
buckets with 10 : 1 ratio.

As can be seen from Figure 6, PILOT performs on
par with, and occasionally surpasses, HybridLLM.
This underscores the effectiveness of bandit routers,
achieving strong results without requiring full su-
pervision.

D.1.2 Adaptability to Shift in Query
Distribution

Here in Figure 7, we simulate a task shift (from
MMLU to GSMSK) to create a streaming dataset,
tracking average reward & exploration (standard
deviation of chosen arm’s estimate). We then com-
pare rewards before (“Before"), at (“During") and
5000 steps after the transition (“After"). As can be
seen in Figure 7 (left), PILOT adapts significantly
post-drift, unlike the static supervised baseline. We
also observe in Figure 7 (right) that the exploration
of PILOT increases during drift and subdues after
it, as expected.

D.2 Query Complexity Analysis

In the context of binary LLM routing, an effective
routing algorithm should allocate more complex
queries to the more capable model (GPT-4) while
routing simpler queries to the less expensive model
(Mistral-7B/Mixtral-8x7B) (Ding et al., 2024), to
optimize performance within the given budget con-
straints. We thus investigate how our algorithm
routes queries of varying complexity when faced
with such a binary choice. For this analysis, we
fix the overall budget for routing to $4 and ex-
amine the average complexity of queries directed
to each LLM. To quantify query complexity, we
use Evol Complexity (Liu et al., 2024a) measure,
which is useful for selecting hard samples for LLM
alignment in comparison to scores such as LLM
response perplexity and Direct Scoring (Chen et al.,
2024).

The average query complexity of GPT-4 routed
queries (QC) in Table 4 indicates that on average
PILOT routes more complex queries to GPT-4, than
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LLM Pool LinUCB PILOT

QC p-value QC p-value
GPT4 - Mistral7B 2.61 0.06 2.64  0.004
GPT4 - Mixtral8x7B  2.62 0.05 275  5e-37

Table 4: Query Complexity Analysis for Routed
Queries: QC refers to average complexity of GPT-4
routed queries, &, p-value is from a Mann-Whitney U
Test on average query complexity scores obtained from
LLMs in the pool.

LinUCB. Furthermore, the difference between the
average query complexity of GPT-4 routed queries
and Mistral-7B/Mixtral-8x7B routed queries is sta-
tistically significant for PILOT (Mann-Whitney U
test’s p-value < 0.05), unlike LinUCB. This in-
dicates that PILOT not only considers the budget
constraints but also assesses query complexity to
make informed routing decisions.

D.3 Analysis of Human Preference Learning

Next, we analyze our offline human preference
learning algorithm’s (Section 2.2.1) accuracy of
predicting the human preferred LLM for a given
query. For this analysis, we use a subset of 500
samples from the ChatArena (Chiang et al., 2024)
dataset (related to the 11 LLMs in Routerbench)
that was not seen during training. We compare our
accuracy with RouteLLM (Ong et al., 2024) which
also uses human preference data for learning how
to route. We find our algorithm achieves a higher
accuracy of 65.0, in comparison to RouteLLM’s
(uses Matrix factorization) accuracy of 63.6.

D.4 Binary LLM Routing Results

In Figure 3 of the main paper, we reported results
for binary routing with two LLM combinations -
GPT4 & Mistral-7b, and GPT4 & Mixtral-7x8b.
Here, in Figure 8, we report results with two more
LLM combinations (GPT4 & Llama2-70b, Claude
vl & Mixtral — 7x8B) to further evaluate our meth-
ods performance.

Similar to our observation in the main paper, we
find that across metrics, PILOT performs better
than baselines.

D.5 Sensitivity to Noise

We assess robustness of PILOT to noisy bandit
feedback by conducting a synthetic noise experi-
ment on MMLU, where the deployment set budget
is fixed at $1. Since the reward in MMLU is bi-
nary, we employ the following noise model: with
some fixed probability € € [0, 1], the true binary
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Figure 8: Bandit Feedback based Binary LLM Rout-
ing Evaluation: Figure reports results for multi task
data source setting (Routerbench). In the top row we
have Claude-v1 and Mixtral-7x8b LLMs in the LLM
pool, and in the botton row we have GPT-4 and Llama2-
70b LLMs in the LLM pool. Column (%) represents
performance vs cost curves on the held-out deployment
set; Column (4¢) represents performance across different
learning bucket sizes; Column (i4¢) represents cumu-
lative regret. Our method PILOT , shown in s
performs the best across the metrics.

Deployment Bucket

0 10k 20k 30k
Rounds

La

reward (0 or 1) is replaced by a uniformly random
binary value, that is, either 0 or 1 with equal proba-
bility. The results in Table 5 show that for PILOT,
even at 5% noise, the reward drops by less than 4%,
demonstrating strong resilience.

Noise Percentage (%) Avg. Deployment Set Reward

0 0.761
1 0.750
3 0.740
5 0.730

Table 5: Effect of Noise: Average deployment set re-
ward on MMLU datsaset across different noise levels.

D.6 Ablation and Sensitivity Analysis

In Figure 3 of the main paper, we analyzed the
PILOT’s performance of across cost budgets, and
reward & regret across rounds of online learning.
Here we study the goodness of our pre-trained
router (preference data based router) on the Router-
bench deployment set. Please note, the preference
data, Chatarena (Chiang et al., 2024), is different
from the Routerbench dataset (Hu et al., 2024).
Next, we also study the effect of exploration pa-
rameter (used in UCB computation in PILOT and
LinUCB) on reward on the tuning dataset.

D.6.1 Ablation Analysis

Here, in Table 6 the initial pre-trained router shows
strong foundational performance, and incorporat-

23948



Pre-trained Pre-trained +

Bud, Router 10% Online PILOT LinUCB
$1 0.34 0.61 0.63 0.60

$1.5 0.34 0.61 0.66 0.63
$2 0.35 0.63 0.69 0.64
$3 0.38 0.65 0.73 0.68

Table 6: Ablation Study: Performance vs. Cost Com-
parison for pretrained router and effect of online training

o PILOT LinUCB
10 0.600 0.601
5 0.610 0.623
2 0.645 0.649
1 0.641 0.640

Table 7: Sensitivity Analysis of o

ing just 10% online data enables it to adapt quickly
and approach the performance of LinUCB, espe-
cially under constrained budgets. Notably, PI-
LOTeconsistently outperforms the other approaches,
even in low-cost scenarios.

D.6.2 Sensitivity Analysis

Table 7 presents the effect of the exploration param-
eter o on average reward, evaluated on the tuning
dataset described in Section 3.1. Consistent with
findings by (Li et al., 2010), the results exhibit an in-
verted U-shape. Small values of « result in insuffi-
cient exploration, limiting the algorithm’s ability to
discover optimal LLM-query matches. In contrast,
excessively high « values lead to over-exploration,
missing opportunities to maximize reward.
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