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Abstract
Large language model (LLM) unlearning has
demonstrated effectiveness in removing the in-
fluence of undesirable data (also known as for-
get data). Existing approaches typically as-
sume full access to the forget dataset, over-
looking two key challenges: (1) Forget data
is often privacy-sensitive, rare, or legally reg-
ulated, making it expensive or impractical to
obtain (2) The distribution of available forget
data may not align with how that information
is represented within the model. To address
these limitations, we propose a “Reveal-and-
Release” method to unlearn with self-generated
data, where we prompt the model to reveal
what it knows using optimized instructions.
To fully utilize the self-generated forget data,
we propose an iterative unlearning framework,
where we make incremental adjustments to the
model’s weight space with parameter-efficient
modules trained on the forget data. Experi-
mental results demonstrate that our method bal-
ances the tradeoff between forget quality and
utility preservation.1

1 Introduction

Large language models (LLMs) function as vast
knowledge repositories, drawing on information
embedded in their parameters in response to user
inputs (Brown et al., 2020). However, the scope
of their knowledge is fixed at the time of train-
ing, lacking effective means to verify and may pro-
duce responses that are outdated, incorrect, or even
harmful (Liang et al., 2023). Additionally, once
information is learned by the model, it becomes
deeply internalized and challenging to erase.

Machine unlearning has become a promising
area of research aimed at addressing these lim-
itations. A straightforward approach—known
as exact unlearning—involves removing undesir-
able data from the training corpus and retraining

1Warning: This paper includes model-generated outputs
that may be offensive or harmful in nature.

Figure 1: External forget data may include informa-
tion irrelevant to the true unlearning target, or miss the
model’s knowledge related to the target. Our approach
enables effective unlearning with minimal utility loss.

the model from scratch, which is prohibitively
resource-intensive for modern LLMs. Researchers
have explored approximate unlearning, which
seeks to remove relevant knowledge without full
retraining. The goal is to efficiently and selec-
tively erase the influence of targeted information
while maintaining the model’s performance on non-
targeted tasks (Liu et al., 2024a). Current methods
include gradient ascent that effectively guide mod-
els to forget by optimizing in the opposite direction
of original learning (Ullah et al., 2021); knowledge
editing methods that locate and directly modify net-
work parameters to perform targeted information
removal (Meng et al., 2023); and influence function
approaches that identify and neutralize the impact
of specific training examples (Li et al., 2024b).

In a typical machine-unlearning process, one
crucial factor is the data, specifically, the infor-
mation to be forgotten and the information to be
retained (Xu, 2024), which we refer to as forget
data and retain data. Most unlearning methods
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require well-annotated forget data. However, in
practice—particularly for LLMs—obtaining well-
annotated forget data presents a significant obstacle.
While retain data can typically be curated from pub-
lic or general-purpose corpora, the availability of
forget data is frequently hindered by privacy re-
strictions, proprietary limitations, or confinement
to specific domains. Additionally, as model knowl-
edge progresses, forget data may rapidly become
obsolete, resulting in a misalignment with the data
actually stored within the model. Moreover, exist-
ing unlearning benchmarks often assume access to
the model’s original training data or an exact for-
get subset (Maini et al., 2024), which is unrealistic
for massive and private corpora. In other cases,
forget data consists of publicly sourced approxi-
mations (Gehman et al., 2020), herein termed as
external data; however, such data may not faith-
fully represent how the information is genuinely
encoded within the model. On one hand, some
related knowledge of LLMs may not be included
in the external data, and on the other hand, exter-
nal data may contain extra knowledge that impacts
models’ performance unexpectedly.

To address this challenge, we introduce a
“Reveal-and-Release” approach for unlearning that
leverages self-generated data. Given a specific un-
learning target, our goal is to extract and reveal as
much of the model’s internal knowledge about that
target as possible. This requires the generated data
to not only relate to the target closely but also cover
a diverse spectrum of how the model encodes the
target. Instead of relying on well-labeled external
forget data, we use a NeuralUCB-based instruction
optimization method (Zhou et al., 2020; Lin et al.,
2024) to generate prompts to reveal internal knowl-
edge, focusing on the relevance and diversity of the
generation (Section 3.1). We refer to the resulting
self-generated data as internal data.

For the “release” part, we further introduce an
iterative unlearning method to effectively utilize
the internal forget data. Inspired by Parameter-
Efficient Module (PEM) composition (Zhang et al.,
2023), our approach incrementally edits the base
model by merging two types of PEM LoRAs (Hu
et al., 2022): a forget PEM trained on internal
forget data and a retain PEM trained on retain data.
We control the forgetting and preservation dynam-
ics by adjusting the merge weights of each PEM
at every iteration. Intuitively, the LoRAs act like
gradient ascents/descents, and multiple iterations
of unlearning correspond to applying small steps of

gradient optimizations. This enables significantly
improved target forgetting while preserving utility
by finding a better optimized trade-off point.

We conduct experiments on three unlearning
tasks: toxicity, name entity recognition (NER),
and coding ability. Our results demonstrate that
unlearning with self-generated data achieves sim-
ilar or better results than external data. Also, our
approach achieves a better trade-off between forget
quality and model utility. Our contributions are:

1. We study LLM unlearning with self-generated
forget data, generated through optimized
instruction search and multi-turn prompting,
eliminating the need for well-annotated,
externally sourced forget datasets.

2. We propose an Iterative Unlearning method
that incrementally edits the base model
by alternating between retain and forget
Parameter-Efficient Modules (PEMs), en-
abling control over the trade-off between
forget quality and utility preservation.

3. Experiments and ablation studies across mul-
tiple tasks demonstrate that our framework
effectively supports targeted forgetting with
minimal degradation to retained capabilities.

2 Related Work

Data Synthesis for Unlearning Well-annotated
data is expensive to obtain. In non-LLM domains,
Shen et al. (Shen et al., 2024) introduce Label-
Agnostic Forgetting (LAF), a supervision-free un-
learning framework that manipulates representa-
tion distributions to remove forgotten data without
relying on labels. Peng et al. (Peng et al., 2025)
propose MixUnlearn, which uses adversarially gen-
erated mixup samples to mitigate catastrophic un-
learning, ensuring effective data deletion even in
label-agnostic scenarios.

In the domain of LLMs, prior work has explored
using synthesized data for unlearning. CMD in-
troduces a detoxification framework for LLMs that
leverages synthesized data to enable unlearning of
toxic behaviors (Tang et al., 2024). It detoxifies
context segments and uses the cleaned context
to guide generation, ensuring the model unlearns
toxicity without sacrificing context fidelity or gen-
eration quality. RWKU (Jin et al., 2024) constructs
a synthetic forget corpus by prompting LLM
with manually crafted templates in a single-pass
manner. While this provides a straightforward
way to obtain forget data, the reliance on fixed
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prompt templates and single-pass generation risks
capturing only a narrow view of the model’s
internal knowledge, potentially missing out on
diverse or harder-to-reach information.

Parameter-Efficient-Module for Unlearning
Parameter-efficient fine-tuning (PEFT) methods
such as LoRA (Hu et al., 2022) have become
popular for adapting LLMs due to their efficiency
and modularity. Recent research explores how
these parameter-efficient modules (PEMs) can be
composed through arithmetic operations to enable
unlearning(Zhang et al., 2023). Building on this,
Liu et al. (Liu et al., 2024b) proposed SKU, which
trains multiple modules from different perspectives
and merges them before a single subtraction,
aiming to better capture harmful knowledge from
multiple angles. Ding et al. (Ding et al., 2025)
proposed a unified framework for PEM-based
unlearning by applying influence functions to
directly update existing PEMs.

Extending this line of work, Hu et al. (Hu et al.,
2024) introduced Ext-Sub, a method to isolate and
subtract only the “deficiency capability” from an
anti-expert PEM. Instead of direct subtraction, Ext-
Sub first defines general capability as the sum of
expert and anti-expert PEMs, then subtracts this
from the anti-expert PEM to isolate what they call
the deficiency capability. While this decomposition
is intuitive, we find it unstable across all our tasks,
likely due to the oversimplified assumption that
general knowledge can be captured through linear
addition of opposing PEMs. Notably, all existing
methods rely on a single subtraction step, which
can be limiting when balancing forget quality and
utility preservation. In contrast, our approach per-
forms unlearning iteratively, enabling more control-
lable model updates.

3 Method

Our method consists of two stages: we first obtain
self-generated forget data by optimizing instruc-
tions for the LLM, and then utilize the obtained
data in an iterative unlearning framework.

3.1 Forget Data Generation

To generate high-quality internal forget data,
we aim to elicit as much relevant and diverse
knowledge as possible from the model with a set
of optimized instructions. We formulate this as an
instruction optimization problem and use a query-
efficient search framework based on a NeuralUCB

algorithm following prior work (Garnett, 2023; Lin
et al., 2024). This approach allows us to perform
black-box instruction optimization efficiently in
high-dimensional spaces.

The instruction search is guided by a task-
specific scoring function designed to reflect two
core objectives:

• Relevance: The generated internal data
should strongly reflect the unlearning target
(e.g., high toxicity if we aim to forget toxic
behavior).

• Diversity: The generated internal data should
span a wide range of content and thoroughly
reflect the model’s internal knowledge of the
unlearning target.

We assume a metric or oracle is available to quan-
tify the relevance of the generated data to the task
(for example, a model to calculate the toxicity score
for toxicity unlearning). We argue this is a mild
assumption, as we always need such a metric for
evaluation in practical applications. Even in cases
of unlearning with external data, such a metric is
still required for assessment. The specific relevance
metric used for each task is detailed in Section 4.

To capture diversity, we use the Vendi
score (Friedman and Dieng, 2023), which is de-
fined as the exponential of the Shannon entropy of
the eigenvalues of a similarity matrix. Concretely,
we embed all decoded responses, compute pair-
wise similarities to form a similarity matrix, and
then apply the Vendi formula. The Vendi score re-
wards sets of outputs that are semantically dissimi-
lar, ensuring that the generated forget data covers
a diverse space. We combine two scores using a
weighted harmonic mean, where the weights con-
trol their importance in the final composition.

NeuralUCB Instruction Optimization To gen-
erate internal data that matches the two objectives,
we apply a NeuralUCB-based approach: we initial-
ize a set of soft prompts (the bandits) and search for
the top soft prompts that generate outputs with high
scores (relevance and diversity). A small-sized neu-
ral network learns the association between the soft
prompts and the scores to guide the search. The
details are shown in Alg. 1.

As diversity is a metric defined relative to a set
of items, we iteratively identify soft prompts that
can generate diverse data relative to the previously
selected ones. Our algorithm consists of an outer
loop and an inner loop. At the beginning of each
outer-loop iteration, we initialize the neural net-
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Figure 2: Overview of our two-stage unlearning framework. In Stage 1, we generate forget data by prompting the
model with optimized instructions over multiple iterations. The objective for this stage is to generate diverse data
that is most relevant to the unlearning targets. In Stage 2, we iteratively apply parameter-efficient updates to unlearn
the target information while preserving utility.

work for NeuralUCB with k high-scoring prompts
from previous outer iterations (we use k = 10).
This provides a strong starting point for prompt
searching. Assuming Dself-gen contains the inter-
nal data collected so far, we then launch the inner
loop to identify the best instruction that prompts
the model to generate outputs that are both relevant
to the unlearning target and diverse relative to the
existing samples in Dself-gen guided by NeuralUCB.
Once identified, this instruction is used to generate
new responses conditioned on the given prompts
(generation context C), and the resulting outputs
are added to Dself-gen.

3.2 Iterative Unlearning with PEM

Iterative PEM Composition for Unlearning In-
spired by prior work (Zhang et al., 2023), we pro-
pose an iterative unlearning framework that in-
crementally edits the base model by composing
parameter-efficient modules (PEMs) trained on dif-
ferent objectives. At each iteration, we alternate
between a forget PEM trained on internal forget
data and a retain PEM trained on retain data. These
modules are merged into the base model through
weighted addition and subtraction.

We initiate unlearning by subtracting a forget
PEM from the base model. In each subsequent

iteration, we perform two steps:
1. Train a retain PEM on retain data using the

negated model as the base; merge it via addition.
2. Train a forget PEM on the forget data using the

updated model; merge it via subtraction.
This process is repeated for several iterations.

Although prior work has suggested potential over-
lap between PEMs trained on retain and forget
data (Hu et al., 2024), our analysis (See Section 4.1)
shows that the two modules are largely orthogonal,
and forcing orthogonality between these opposing
PEMs does not improve unlearning performance
(See Appendix B). As a result, we adopt a simple
linear merge strategy:

Φ(t) = Φ0 − µ0∆Φ
(0)
forget

+
t∑

i=1

(
λi∆Φ

(i)
retain − µi∆Φ

(i)
forget

)
(1)

where Φ0 is the frozen base model, and ∆Φ
(0)
forget

is the initial forget PEM. At each iteration i ≥ 1,
we alternately train a retain PEM and a forget
PEM, denoted by ∆Φ

(i)
retain and ∆Φ

(i)
forget respec-

tively. Scalars λi and µi control the influence
of each module. This formulation allows us to
initialize forgetting with a strong signal, then
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Algorithm 1 Generate Forget Data with Instruction
Optimization

1: Input: Generation context C; Number of outer
iterations m; Number of inner iterations per
outer loop n; soft prompt set P ; response gen-
erator f(C,Pi) with generation context C and
instruction Pi; weight α for harmonic mean;

2: Initialize self-generated dataset Dself-gen ← ∅
3: for i = 1 to m do
4: Initialize network for NeuralUCB with k

high-score soft prompts
5: for t = 1 to n do
6: Select prompt:
7: Pt ← argmaxP NeuralUCBt(P )
8: Generate response yt ← f(C,Pt)
9: Compute relevance τt

10: Compute diversity:
11: vt ← Vendi(yt ∪Dself-gen)
12: Compute score:

Score(yt)←
(
α

vt
+

1− α

τt

)−1

13: Update NeuralUCB with Score(yt)
14: end for
15: Select best prompt:
16: P ∗ ← argmaxP Score(f(C,P ))
17: Update self-gen data:
18: Dself-gen ← Dself-gen ∪ {f(C,P ∗)}
19: end for
20: Return: Final forget dataset Dself-gen

refine the model iteratively by reinforcing retaining
behavior and further subtracting residual traces of
the target knowledge.

Merge Weight Selection. We define st as the
score measuring forget quality on the forget dataset,
and ut as the score measuring utility preservation
on the retain dataset. The subtraction weight µi is
chosen to ensure that the model either (1) forgets
at least 90% of the target behavior compared to
the beginning of the current iteration, or (2) does
not sacrifice more utility than it gains in forgetting.
Formally, we select µi such that either si ≤ 0.1 ·
si−1 or the reduction in forget score exceeds the
reduction in utility, i.e., (si−1 − si) > (ui−1 − ui).

For the addition weight λi, our goal is to restore
as much utility as possible after forgetting. We
select λi such that the model recovers at least 95%
of the utility score compared to the beginning of the

current iteration, i.e., ui ≥ 0.95 · ui−1. These rules
ensure that the unlearning process is both effective
and balanced (See Section 5.2).

4 Experiments

To evaluate the effectiveness of our self-generated
forget dataset, we conduct experiments on
three tasks: LLM detoxification, Named Entity
Recognition (NER) unlearning, and coding ability
unlearning. These tasks are chosen because
they require data that is either socially sensitive,
domain-specific, or expensive to annotate. All
experiments are performed using the LLaMA3-8B-
Instruct model (Grattafiori et al., 2024), and we use
all-roberta-large-v1 (Reimers and Gurevych,
2019) to embed texts for diversity scores. To fur-
ther assess the generalizability of our framework,
we also include results on Mistral-7B-Instruct-v0.2
(Mistral AI, 2024) (See Appendix C).

Task Avg. Similarity Std. Dev.
Toxicity 0.0484 0.0230
Coding 0.0397 0.0234
NER 0.0398 0.0208

Table 1: Average eigenbasis similarity (top-k = 8)
between retain and forget PEMs across layers.

4.1 Preliminary Study
We first conduct a preliminary analysis to quantify
the overlap between the retain and forget PEMs.
For each layer, we obtain the merged LoRA up-
date matrix W = BA, and compute its top-k left
singular vectors via SVD:

Wretain = U1Σ1V
⊤
1 , Wforget = U2Σ2V

⊤
2 ,

where U
(k)
1 and U

(k)
2 ∈ Rd×k denote the top-k left

singular vectors.
To measure the similarity between the subspaces,

we compute:

Sim(U
(k)
1 , U

(k)
2 ) =

1

k

∥∥∥∥U
(k)
1

⊤
U

(k)
2

∥∥∥∥
F

,

where ∥·∥F denotes the Frobenius norm. This score
ranges from 0 to 1, with higher values indicating
greater alignment between the two subspaces.

We report the average and standard deviation of
the similarity scores across all layers for each task
in Table 1. Across all tasks, the average similarity
remains low (below 0.05), indicating that the retain
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Model PPL ↓ Challenge Non-Challenge
Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓ Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓

Basemodel 7.2055 0.7310 0.3654 0.2725 0.2986 0.0167 0.0352
DPO 8.9598 0.6871 0.3654 0.2648 0.2724 0.0234 0.0337
RMU 7.2056 0.7010 0.4038 0.2507 0.2912 0.0190 0.0334
CMD 8.6479 0.6574 0.3173 0.2280 0.2850 0.0167 0.0349
Ext-Sub 7.8563 0.4447 0.0769 0.0973 0.1740 0.0011 0.0100
PEM-external 10.4109 0.4479 0.0865 0.0877 0.1873 0.0022 0.0114
Ours 7.5513 0.3047 0.0481 0.0532 0.1842 0.0000 0.0123

Table 2: Toxicity unlearning results on RTP. We report perplexity (PPL), average toxicity score, toxicity rate
(fraction of outputs with toxicity > 0.5), and severe toxicity (score > 0.8), for both challenge and non-challenge
subsets. Our method achieves strong toxicity reduction with lower perplexity.

and forget PEMs occupy largely orthogonal sub-
spaces. This supports our design choice to merge
them directly using linear addition and subtraction
without further operations.

4.2 Baseline Models
We compare our method against several baselines
based on parameter-efficient methods (PEMs)
and fine-tuning approaches. Specifically, we
include Ext-Sub (Hu et al., 2024), CMD (Tang
et al., 2024), and direction subtraction using
a forget PEM trained on external data (Zhang
et al., 2023) (denoted as PEM-external). We also
evaluate the widely used DPO method (Rafailov
et al., 2024) and RMU (Li et al., 2024a) in its
best-performing configuration. We tune the
weighting parameter α for Ext-Sub and direction
subtraction (PEM-external).

4.3 Toxicity Unlearning
Training To construct the forget dataset that
captures the model’s internal toxic behaviors, we
use prompt-only inputs from RealToxicityPrompts
(RTP) (Gehman et al., 2020) and CivilCom-
ments (Zhang et al., 2023), both widely adopted
in prior detoxification studies (Hu et al., 2024; Ko
et al., 2024; Tang et al., 2024). In contrast to pre-
vious work that utilizes the full prompt-response
pairs, we discard the original outputs and instead
prompt the base model to generate its own re-
sponses. After three outer iterations of instruction-
optimized generation, we obtain a total of 89,497
samples, comprising 1,095 challenging and 88,402
non-challenging instances. We perform a single
round of iterative unlearning using this internal
forget dataset.

Evaluation We evaluate the generation results
from two aspects: forget quality and utility preser-
vation. Utility preservation is quantified by per-
plexity (PPL) computed on the WikiText-2-raw-v1

dataset. And forget quality is measured using the
Perspective API toxicity scores. Following prior
work (Tang et al., 2024; Ko et al., 2024), we use
nucleus sampling to generate 25 continuations per
prompt, each with a maximum of 20 tokens. Each
continuation is scored with the Perspective API.
We report three standard metrics across challeng-
ing and non-challenging splits: (1) Expected Maxi-
mum Toxicity, the average maximum toxicity score
across the 25 generations; (2) Toxicity Probability,
the fraction of continuations with a toxicity score
above 0.5; and (3) Severe Toxicity, the fraction
exceeding a score of 0.8.

Results Our method outperforms all baselines on
the challenging split, achieving the lowest toxicity
score, toxicity rate, and severe toxicity. On the
non-challenging split, it performs comparably to
Ext-Sub in terms of toxicity metrics. Furthermore,
our method achieves substantially lower perplexity
(PPL) than all other baselines, indicating stronger
utility preservation across both splits. These results
highlight the effectiveness of self-generated for-
get data in supporting targeted unlearning without
compromising fluency.

4.4 NER Unlearning
Training We build on prior work in LLM-based
Named Entity Recognition (NER), which lever-
ages LLMs to identify a wide range of entity types
across diverse domains (Zhou et al., 2024). We
adapt this task for unlearning by aiming to remove
the model’s ability to recognize a single entity
type, while preserving its ability to recognize all
other entity types. Specifically, we aim to unlearn
the Person entity type and retain performance on
the four most frequent entity types in the train-
ing set: Organization, Concept, Location, and
Date. Since diversity score is not applicable in
this setting, we directly prompt the base model to
extract entities and their corresponding types for
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Model Person F1 ↓ Org F1 ↑ Concept F1 ↑ Location F1 ↑ Date F1 ↑
Basemodel 0.5370 0.4501 0.2123 0.4747 0.7173
DPO 0.4140 0.5190 0.1840 0.4410 0.7847
RMU 0.3453 0.2869 0.1479 0.3310 0.5030
Ext-Sub 0.2444 0.2876 0.0667 0.3042 0.2640
PEM-external 0.2483 0.1641 0.0444 0.2187 0.4854
Ours 0.1430 0.5242 0.2299 0.5157 0.7005

Table 3: NER unlearning results. We report F1 scores on each entity type. Lower Person F1 indicates better
unlearning, while higher scores on the remaining entities reflect better utility preservation.

a given passage, following the prompt format in-
troduced in UniversalNER (Zhou et al., 2024). We
perform three iterations of unlearning using the
self-generated forget set on Person and the retain
set on the other four entity types.

Evaluation We use the F1 score on the Person
entity type to assess forget quality, and the F1
scores on the remaining four entity types to evalu-
ate utility preservation.

Results Our method achieves the lowest Person
F1 among all baselines while maintaining strong
performance on most retained entity types. Unlike
manually curated datasets, our method flexibly gen-
erates forget data tailored to any specific unlearning
objective, making it adaptable across domains. No-
tably, while Direct Preference Optimization (DPO)
preserves utility well on some non-target entities,
it performs poorly in terms of forget quality. Its
Person F1 score remains significantly higher than
other baselines, indicating that it fails to forget the
intended knowledge.

Figure 3: F1 scores of NER entity types across unlearn-
ing steps. The Person entity (red), which is the un-
learning target, shows a significant drop in performance
(from 0.54 to 0.14), indicating successful forgetting.
Other entities retain their initial performance levels.

4.5 Coding Unlearning

Training Coding ability unlearning is a novel
and challenging task, as labeled forget data is

scarce and costly to obtain. To construct the forget
set, we use prompt-only inputs from the MBPP
(Austin et al., 2021) dataset and prompt the base
model to generate its own coding responses. We
use the pass@1 score to measure the relevance
of the generated outputs and continue to use the
Vendi score to measure diversity. After three it-
erations of instruction-optimized generation, we
collect 1,009 unique completions, compared to the
374 well-annotated reference solutions in the orig-
inal dataset. Motivated by prior work (Li et al.,
2025), which shows that coding and math tasks
activate overlapping neurons, we use the training
split of GSM8K (Cobbe et al., 2021) as the retain
dataset. This setup allows us to evaluate whether
the model can selectively unlearn coding ability
while preserving math problem-solving skills. We
perform a single round of iterative unlearning using
retain dataset and self-generated forget dataset.

Model MBPP ↓ MBPP+ ↓ GSM8K ↑
Basemodel 0.693 0.566 0.7437 ± 0.0121
DPO 0.698 0.585 0.7445 ± 0.0120
RMU 0.206 0.159 0.7460 ± 0.0120
Ext-Sub 0.066 0.050 0.5534 ± 0.0137
PEM-external 0.019 0.013 0.6520 ± 0.0131
Ours 0.003 0.000 0.6505 ± 0.0131

Table 4: Code unlearning results. Lower pass@1 on
MBPP and MBPP+ indicates better forgetting, while
higher pass@1 on GSM8K reflects better preservation
of math-solving ability.

Evaluation After unlearning, we evaluate the
model on the test split of each dataset. For cod-
ing ability, we also evaluate on MBPP+ (Liu et al.,
2023), which contains 35× more test cases.

Results Our method achieves the strongest for-
getting performance, with the lowest pass@1 on
both MBPP and MBPP+, outperforming all base-
lines by a significant margin. Notably, it reduces
pass@1 on MBPP+ to zero, demonstrating near-
complete removal of coding ability. At the same
time, it preserves math problem-solving ability,
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achieving a GSM8K score comparable to the best-
performing baseline. These results show that our
approach enables precise, targeted forgetting with-
out sacrificing performance on unrelated skills. In-
terestingly, the DPO baseline performs poorly in
this setting and even slightly improves coding per-
formance, likely due to the small size of the MBPP
dataset, which may not provide sufficient signal for
effective preference optimization.

5 Ablation

5.1 External Data vs Internal Data

We conduct ablation studies to examine how
internal (self-generated) data compares to external
data in enabling effective and precise unlearning.
For the toxicity task, we train PEM modules
on three types of datasets: (1) the original RTP
dataset (Gehman et al., 2020), (2) a self-generated
dataset using only RTP prompt inputs, and (3)
a self-generated dataset using CivilComments
inputs (Zhang et al., 2023). We apply each PEM
to the base model via direct subtraction, using
different subtraction weights λ selected to match
forget quality —specifically, by aligning their
toxicity scores. Under this constraint, we observe
that PEMs trained on internal data consistently
yield lower perplexity (PPL), indicating better
utility preservation compared to those trained on
external data. This result holds across both RTP
and CivilComments settings.

For the NER task, we compare PEMs trained on
(1) the original UniversalNER dataset (Zhou et al.,
2024) and (2) a self-generated dataset produced
by prompting the base model. When controlling
for forget quality (similar Person F1 scores), we
find that internal data again leads to higher average
F1 scores on the retained entities. These findings
indicate that self-generated internal data not only
supports targeted forgetting but also minimizes util-
ity degradation, likely due to its alignment with
the model’s training distribution, enabling more
precise unlearning.

5.2 Hyperparameter for Iterative Unlearn

The subtraction weight µi is chosen at each itera-
tion to ensure that the model forgets at least 90%
of the target behavior compared to the beginning of
that iteration. To study the impact of this threshold,
we compare it with a relaxed variant that targets
only 60% forgetting at each iteration.

We conduct an ablation study on CodeUnlearn

Method PPL ↓ Tox. Score ↓
PEM-external (RTP) 10.4019 0.3249
internal (Civil) 9.6172 0.3378
internal (RTP) 7.8092 0.3415

Table 5: Ablation on forget data source for Toxicity
task. We compare PEMs trained on external vs. self-
generated (internal) data under matched forget quality
(similar Tox. Score). Internal data consistently yields
lower perplexity (PPL), indicating better utility preser-
vation across different datasets.

Method Person F1 ↓ Avg. Retain F1 ↑
PEM-external 0.2483 0.2282
internal 0.2474 0.2802

Table 6: Ablation on forget data source for the NER
task. We compare PEMs trained on external vs. self-
generated (internal) data. Under matched forget qual-
ity (similar Person F1), unlearning with Internal data
achieves higher average F1 scores on retained entity
types, indicating better utility preservation.

with two groups: Group 1 sets µi to forget
only 60% of the target behavior per iteration,
while Group 2 sets µi for at least 90% forget-
ting. As shown in Figure 4, although Group 1
starts with weaker forgetting performance, it even-
tually reaches a similar level of forgetting and util-
ity preservation as Group 2. This suggests that
suboptimal hyperparameter choices can be com-
pensated for by additional unlearning steps.

Figure 4: Performance comparison of MBPP (forget
target, orange) and GSM8K (retain target, green) across
unlearning steps under different subtraction thresholds.
Group 1 (solid lines) uses a smaller subtraction weight
to enforce 60% forgetting, while Group 2 (dotted lines)
uses a larger weight to enforce 90% forgetting. Group 1
requires more iterations to reach comparable forgetting
and utility preservation.

6 Conclusion

In this paper, we propose to perform LLM unlearn-
ing using self-generated forget data, eliminating the
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need for costly and well-labeled external datasets.
Additionally, we introduce an iterative unlearning
framework that incrementally edits the model us-
ing Parameter-Efficient Modules (PEMs) trained
on distinct objectives. This framework enables fine-
grained control over the trade-off between forget
quality and utility preservation.

We evaluate our approach on a diverse set of
tasks, including detoxification, coding, and entity
forgetting. Results demonstrate that our method
enables effective, targeted unlearning with minimal
degradation to unrelated capabilities. These find-
ings underscore the practicality and flexibility of
self-generated data for unlearning, and open new
directions for studying the relationship between
forget data quality and unlearning effectiveness.

Limitations

Instruction Optimization Complexity While
our use of NeuralUCB for instruction optimiza-
tion helps avoid manual tuning, the quality of the
resulting instructions is not always ideal. This is
partly due to the inherent difficulty of our tasks,
which require generating diverse and meaningful
outputs (e.g., toxic completions, code). Unlike
prior work that often focuses on simpler objectives
such as synonym generation, our setting demands
more nuanced instructions to effectively elicit the
model’s internal knowledge. Further research is
needed to improve instruction optimization and to
better understand how to guide models in surfacing
knowledge relevant to specific unlearning targets.

Efficient Merge Weight Selection Although our
iterative unlearning framework allows explicit con-
trol over the trade-off between forgetting and utility
preservation, it still relies on manual evaluation to
determine the optimal merge weights. Despite our
rule-based selection strategy, hyperparameter tun-
ing currently requires trial-and-error over multiple
runs. Developing more principled or automated
methods for hyperparameter selection would en-
hance both efficiency and usability.
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A Implementation Details

A.1 Best Instructions
We list the top-scoring instructions identified by our
NeuralUCB-based algorithm for Toxicity Unlearn-
ing and Coding Unlearning. Each task involves
three outer-loop iterations, and we report the best
instruction found in each.

Toxicity Unlearning
• Outer Iteration 1: The instruction was to

generate a response that is toxic and insulting.
• Outer Iteration 2: The instruction was to

provide a response that is toxic and insulting.
• Outer Iteration 3: The instruction was to cre-

ate an AI system that can generate a response
that is toxic and insulting.

Coding Unlearning
• Outer Iteration 1: The instruction was to

write a function that takes an integer and re-
turns a string, and I was given the following
input and expected output.

• Outer Iteration 2: The instruction was to
create a program that takes a string, and I was
given the following input and expected output:
Input: A function to find the longest
distance to a point (m, n) from (0,0)
for the given grid of size m,n

• Outer Iteration 3: The instruction was to
write a program that takes a string, and I was
given the following input and expected output:
Input: Write a program to find the
maximum 24-hour time that is in the
12-hour format

A.2 Prompt Formatting for NER
Instruction:

What describes Entity in the text? Iden-
tify any Entity entities mentioned in the
text and respond ONLY with a list in
the exact format: [“Entity1”, “Entity2”].
If no Entity entities are mentioned, re-
spond only with an empty list: [].

Input:

Text: An icon of Leland, Carlson’s Fish-
ery is located right on the River in Fish-
town. The Carlson Family’s fishing tradi-
tion has been handed down five times
in the last hundred years. Today, the
younger generation is at the helm with
Nels Carlson and Joe Campo.

Output:

[“Entity1”, “Entity2”]

A.3 Hyperparameters Settings
We present the weight hyperparameters applied at
each iteration, along with the corresponding evalu-
ation scores for each task, in Table 7, Table 8, and
Table 9.

B Orthogonal Loss Study

Previous work suggests that the forget and retain
PEMs may overlap in their learned subspaces, po-
tentially leading to interference. To investigate
this, we explore whether enforcing orthogonality
between these PEMs can better separate their ob-
jectives and reduce mutual influence.

We adopt the O-LoRA framework (Wang et al.,
2023), which introduces orthogonal subspace con-
straints during parameter-efficient tuning. Specifi-
cally, we add an orthogonality regularization term
to the standard cross-entropy loss when training the
retain PEM, encouraging it to learn in a subspace
orthogonal to the previously trained forget PEM.

Our experiment is conducted on a NER unlearn-
ing task. We first train a forget PEM to erase the
Person entity and negate it (we denote as base).
Then, we train a retain PEM on the retain set con-
sisting of four entity types (Org, Concept, Location,
Date), comparing versions with and without the or-
thogonality regularization term. The merged results
are shown in Table 10.

The results suggest that enforcing orthogonality
does not lead to improved performance. Although
adding the retain PEM with the orthogonality reg-
ularization term helps recover utility on the retain
entity types, it continues to influence performance
on the Person entity. This indicates that the orthog-
onality constraint fails to effectively disentangle
the representation space of the retain PEM from
that of the forget PEM. These findings further im-
ply that the retain and forget PEMs already reside
in largely orthogonal subspaces, rendering orthog-
onality regularization unnecessary.

C Results on Mistral-7B-Instruct-v0.2

To further validate the generalizability of our ap-
proach, we conducted additional experiments on all
three unlearning tasks using Mistral-7B-Instruct-
v0.2, following the same protocol as with LLaMA3-
8B-Instruct. The results show that our method con-
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#Step Weights Applied PPL ↓ Challenge Non-Challenge
Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓ Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓

0 Base model Φ0 7.2055 0.7310 0.3654 0.2725 0.2986 0.0167 0.0352
1 −µ0 = −3 7.8092 0.3415 0.0481 0.0644 0.1875 0.0000 0.0119
2 +λ1 = +0.3 6.8652 0.4689 0.1250 0.1207 0.2102 0.0000 0.0145
3 −µ1 = −0.2 7.5513 0.3047 0.0481 0.0532 0.1842 0.0000 0.0123

Table 7: Toxicity and perplexity metrics across unlearning steps for challenge and non-challenge subsets. Step-wise
application of forget (−µ) and retain (+λ) weights reduces toxicity while maintaining perplexity.

#Step Weights Applied Person F1 ↓ Org F1 ↑ Concept F1 ↑ Location F1 ↑ Date F1 ↑
0 Base model Φ0 0.5370 0.4501 0.2123 0.4747 0.7173
1 −µ0 = −5 0.2474 0.2564 0.0883 0.3024 0.4738
2 +λ1 = +0.3 0.4780 0.4489 0.1975 0.4687 0.6999
3 −µ1 = −0.4 0.1788 0.3380 0.0921 0.3233 0.4894
4 +λ2 = +0.3 0.3184 0.4205 0.1446 0.4335 0.6161
5 −µ2 = −0.3 0.0306 0.2044 0.0693 0.2439 0.2958
6 +λ3 = +1.0 0.3210 0.5410 0.2456 0.5363 0.7300
7 −µ3 = −0.1 0.1430 0.5242 0.2299 0.5157 0.7005

Table 8: F1 scores for each NER entity type at each unlearning step. The Person entity is the unlearning target, with
decreasing F1 across forgetting steps. The other entities are retention targets, showing recovery as retention weights
are applied. Each row reflects the model state after a single weight update step.

sistently achieves effective unlearning across differ-
ent model families, as shown in Table 11, Table 12,
and Table 13.
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#Step Weights Applied MBPP ↓ MBPP+ ↓ GSM8K ↑
0 Base model Φ0 0.659 0.553 0.7437±0.0121
1 −µ0 = −4 0.053 0.045 0.5959±0.0135
2 +λ1 = +1 0.106 0.085 0.6823±0.0128
3 −µ1 = −0.4 0.003 0.000 0.6505±0.0131

Table 9: Pass@1 scores on MBPP and MBPP+ (forget targets) and GSM8K (retain target) across code unlearning
steps. Forgetting weights reduce performance on MBPP/MBPP+, while retain weights recover GSM8K accuracy.
Final subtraction improves forget specificity while maintaining retention.

Model Person F1 ↓ Org F1 ↑ Concept F1 ↑ Location F1 ↑ Date F1 ↑
Base 0.0521 0.3793 0.1883 0.4170 0.6588
w/ ortho term 0.2373 0.4787 0.2369 0.5061 0.7044
w/o ortho term 0.2132 0.5025 0.2454 0.5162 0.7308

Table 10: Study on the effect of orthogonality loss in NER unlearning. Incorporating orthogonality loss into the
retain PEM still impacts the forget entity (Person) performance, showing a similar level of interference as the retain
PEM trained without the orthogonality constraint.

Model PPL ↓ Challenge Non-Challenge
Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓ Tox. Score ↓ Tox. Rate ↓ Severe Tox. ↓

basemodel 5.0297 0.8464 0.6923 0.3581 0.3521 0.0402 0.0484
DPO 5.0843 0.8393 0.6923 0.3244 0.3454 0.0446 0.0466
RMU 5.0298 0.8248 0.6731 0.3318 0.3471 0.0368 0.0499
Ext-Sub 5.0225 0.7352 0.4519 0.2354 0.2760 0.0134 0.0255
PEM-external 132.4302 0.3435 0.0000 0.1190 0.3350 0.0000 0.1168
Ours 5.6633 0.4194 0.0000 0.1517 0.2125 0.0000 0.0351

Table 11: Toxicity unlearning results on Mistral-7B-Instruct-v0.2. Our method achieves substantial reductions
in toxicity while maintaining fluency, showing consistent trends with LLaMA3-8B-Instruct.

Model Person F1 ↓ Org F1 ↑ Concept F1 ↑ Location F1 ↑ Date F1 ↑
basemodel 0.3765 0.3104 0.1508 0.2168 0.4258
DPO 0.0010 0.0007 0.0004 0.0027 0.0330
RMU 0.1168 0.1787 0.0817 0.1126 0.1036
Ext-Sub 0.1865 0.1319 0.0609 0.1349 0.2884
PEM-external 0.0000 0.0000 0.0000 0.0000 0.0000
Ours 0.0324 0.3170 0.1072 0.3571 0.4443

Table 12: NER unlearning results on Mistral-7B-Instruct-v0.2. Our approach effectively forgets the Person
entity type while preserving performance on other entities.

Model MBPP ↓ MBPP+ ↓ GSM8K ↑
basemodel 0.526 0.450 0.3760 ± 0.0133
DPO 0.516 0.437 0.3768 ± 0.0133
RMU 0.415 0.336 0.3450 ± 0.0131
Ext-Sub 0.026 0.021 0.1046 ± 0.0084
PEM-external 0.005 0.003 0.3374 ± 0.0130
Ours 0.000 0.000 0.4405 ± 0.0137

Table 13: Code unlearning results on Mistral-7B-Instruct-v0.2. Our method nearly eliminates coding ability
while retaining math reasoning (GSM8K).
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