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Abstract

Knowledge-based complex reasoning remains
a significant challenge for large language mod-
els (LLMs) with in-context learning. To tackle
this issue, previous studies focus on ensuring
behavior fidelity, factuality, or reliability in gen-
erated reasoning processes that guide LLMs to
produce solutions. However, these studies of-
ten neglect the simultaneous optimization on
all these three aspects for each thought. The
main challenges are the lack of comprehensive
assessment mechanisms and the difficulty of
efficient thought-level optimization. This pa-
per introduces the Evolution of Thoughts (EoT)
framework, which enhances the factuality, fi-
delity, and reliability of each thought in the rea-
soning process through a few LLM inferences.
We propose a thought assessment method that
is sensitive to knowledge and LLM behaviors,
using three scorers to evaluate each thought
by considering domain context, semantic align-
ment, and behavior impact. Additionally, we
establish a self-reflective evolution mechanism
to facilitate each reasoning process generation
in a single-forward inference. Extensive exper-
iments demonstrate that, for knowledge-based
complex tasks, EoT improves the factuality
and fidelity of reasoning processes by approxi-
mately 16.5% and 48.8%, respectively, while
enhancing LLM reasoning capability by about
6.2%, outperforming advanced approaches. 1

1 Introduction

Large language models (LLMs), exemplified by
the GPT (Achiam et al., 2024) and DeepSeek
(DeepSeek-AI, 2025) series, have achieved remark-
able success in various natural language processing
(NLP) tasks. These models often employ in-context
learning (ICL) schemes, enabling them to learn

*Corresponding author
1The code of EoT and the case of experiment data can

be found at https://github.com/citsjtu2020/EoT.git
and https://github.com/citsjtu2020/EoT_data.git re-
spectively.

from contextual examples without updating billions
of parameters (Brown et al., 2020). However, com-
plex reasoning tasks requiring the comprehension
of long-context knowledge and the generation of
intricate solutions remain challenging for LLMs
with ICL prompting (Chen et al., 2024).

Many studies have shown that guiding LLMs
through step-by-step thought prompts significantly
enhances their reasoning capabilities (Chen et al.,
2024; Lyu et al., 2023). These prompts inspire
LLMs to create reasoning processes that explain
their behaviors and aid in task resolution. Each
reasoning process, such as the chain of thoughts
(CoT) and its variants (Wang et al., 2023), com-
prises a sequence of coherent text units known as
thoughts, which serve as intermediate reasoning
steps. In these mechanisms, the reasoning capa-
bility of LLMs is often reflected in the reliability
of reasoning processes, which assesses the confi-
dence or correctness of the solutions produced by
LLMs under the guidance of reasoning processes
(Zhang et al., 2024; Madaan et al., 2023). There-
fore, many efforts have been dedicated to exploring
logical reasoning processes with high reliability
(Radhakrishnan et al., 2023; Besta et al., 2024).

Existing studies on optimizing reasoning pro-
cesses can be categorized into three main areas.
Firstly, some studies focus on enhancing behavior
fidelity (Chuang et al., 2024; Lyu et al., 2023). Pre-
vious research (Liang et al., 2024) indicates that
LLMs often provide reasoning processes that differ
significantly from their actual reasoning behaviors,
which compromises their reasoning capabilities.
This discrepancy arises from the lack of awareness
regarding the internal knowledge state in black-box
LLMs. To address this issue, xLLM (Chuang et al.,
2024) revises reasoning processes through evolu-
tionary iterations to improve their behavior fidelity.
Secondly, some studies address non-factual errors
in reasoning processes to mitigate the hallucination
phenomenon in LLMs. For example, Ye et al. (Ye
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Table 1: Comparison of existing studies

Framework
Reasoning Process Optimization & Assessment

Components Generation
Factors

Level
Reli. Fact. Fide.

BoT (Chen et al., 2024) ToT ITE ✓ % % Thought
GoT (Besta et al., 2024) GoT ITE ✓ % % Thought

CoT-dec (Radhakrishnan et al., 2023) SQAT SFI ✓ % % CRP

Ye et al. (Ye and Durrett, 2022) CoT SFI % ✓ ✓ CRP

xLLM (Chuang et al., 2024) CoT SFI % % ✓ CRP
EoT (ours) CoT SFI ✓ ✓ ✓ Thought

1 CoT , ToT , GoT and SQAT stand for chain of thoughts, tree of thoughts, graph of thoughts, and sub question-answer as
thoughts, respectively. Reli., Fact. and Fide. stand for the factors of Reliability, Factuality and Fidelity respectively.

2 ITE, SFI and CRP stand for iterations of each thought exploration, single forward inference, and complete reasoning
process, respectively.

and Durrett, 2022) extract the most factual reason-
ing process in each generation. Thirdly, many stud-
ies directly explore reasoning processes with high
reliability (Madaan et al., 2023; Besta et al., 2024).
For instance, BoT (Chen et al., 2024) uses an itera-
tive method to explore many trees of thoughts, and
accumulates trial-and-error experiences to derive a
reasoning process yielding a reliable answer.

Nevertheless, enhancing the reasoning process
for complex tasks presents three major challenges.
multi-objective optimization regarding factuality,
fidelity, and reliability has been a long-standing
issue, as highlighted by previous research (Ye and
Durrett, 2022; Liang et al., 2024). Secondly, the
complexity of long-textual tasks exacerbates the
difficulty in optimizing reasoning thoughts. These
tasks require detailed knowledge across domains
and expect complex solutions, it necessitates a rea-
soning process with multiple thought steps, involv-
ing intricate logic and precise extraction of relevant
facts. This complexity hinders the assessment and
improvement of the effectiveness of each thought.
Thirdly, achieving thought-level optimization for
reasoning processes while maintaining efficiency is
challenging. Some studies (Chen et al., 2024; Rad-
hakrishnan et al., 2023) improve thought quality by
generating individual reasoning thoughts through
extensive explorations, which incurs significant
overhead. Conversely, studies like (Chuang et al.,
2024; Ye and Durrett, 2022) strive to produce an im-
proved reasoning process using a single LLM infer-
ence, it enhances time efficiency but compromises
the fine-grained optimization for each thought step.

To address these challenges, we propose EoT,
a framework that evolves reasoning processes to
achieve multi-objective optimization in factuality,
fidelity, and reliability. Firstly, EoT includes an as-
sessment mechanism designed for complex reason-
ing tasks, which evaluates each thought in reason-
ing processes from all three perspectives. Secondly,
we introduce a prompting mechanism to facilitate

the creation of evolved reasoning processes with a
single-forward LLM inference. This enables LLMs
to comprehend thought assessment outcomes and
ensure collaborative optimization for each thought
within a few rounds of self-reflective evolution.

As highlighted in Table 1, EoT distinguishes it-
self from existing studies with two key innovations.
First, EoT evaluates reasoning processes more com-
prehensively in three critical dimensions, achieving
collaborative optimization across them. Second,
EoT effectively manages both time efficiency and
thought-level optimization, producing a complete
reasoning process in each iteration through sin-
gle forward inference and ensuring optimization at
each thought within the reasoning processes.

We conducted extensive experiments on two
datasets, including one with 40 production oper-
ational maintenance tasks. Compared to five ad-
vanced frameworks, EoT improves reliability, fac-
tuality, and fidelity of reasoning processes by about
6.2%, 16.5%, and 48.8% respectively. The contri-
butions of this work are summarized as follows:

• We consider reliability, factuality, and fidelity
of reasoning processes to enhance LLMs’ rea-
soning capabilities, and assess each thought
in reasoning processes based on these factors.

• We propose an evolving mechanism that effi-
ciently facilitates multi-objective optimization
at the thought level via single-forward genera-
tion of the reasoning process in each iteration.

• We evaluate the effectiveness of EoT on a real
production dataset and verify its generality on
the LongBench dataset including questions
obtained from diverse fields, such as Mul-
tifieldQA and HotpotQA. Each question in-
volves a context with thousands of tokens.

2 Problem Setup

This section formulates reasoning processes, intro-
duces three key factors that impact LLMs’ reason-
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ing capabilities, and defines the evolution problem.

2.1 Formalization of Reasoning Process
We first formalize LLM-generated reasoning pro-
cesses used for solving complex tasks.

Let Q = (q1, q2, · · · ), X = (x1, x2, · · · ) and
A = (a1, a2, · · · ) represent a question description,
knowledge context and a reference answer for any
complex task. Each component consists of sequen-
tial statements, denoted by qi, xi, and ai respec-
tively. When an LLM pθ receives a task (X,Q), it
generates a reasoning process R to explain its rea-
soning behaviors. Using R, the LLM guides itself
to produce a solution Ŷ for the task, formalized as:

Ŷ = pθ(X,Q|R) (1)

A generated reasoning process R comprises mul-
tiple thoughts, denoted as R = {T1, T2, · · ·Tn}.
Each thought includes several statements, i.e., Ti =
(ti,1, ti,2, · · · ). This study explores an evolved rea-
soning process R∗ for each task (X,Q), to en-
hance the reasoning ability of pθ. The guidance
of R to produce Ŷ , as depicted in Eq.(1), is real-
ized through instructions to prompt LLM to reason
based on thoughts in R, as shown in Figure 4 in Ap-
pendix B. Figures 5 and 7 in Appendix B presents
examples of question-solving with thoughts.

2.2 Reliability, Factuality and Fidelity of
Thoughts

Next, we outline and define three key factors of
reasoning processes that impact LLM’s reasoning
capabilities. To aid comprehension, we illustrate
them with examples in Appendix C.

Previous studies (Chen et al., 2024; Zheng et al.,
2023; Paul et al., 2023) have revealed that the relia-
bility of reasoning processes is essential in evaluat-
ing LLMs’ question-solving abilities. To elucidate,
we define the reliability of a reasoning process R:

Definition 1: Reliability of R is measured by
the similarity between the answer from LLMs
guided by R and the reference answer. Greater
similarity indicates higher reliability. Given a task,
a generated answer Ŷ guided by R, and reference
answer A, the reliability of R is defined as:

Reliability(R) = Similarity(Ŷ , A) (2)

The similarity metric can be computed using var-
ious methods, such as token overlaps (Lin, 2004),
learning-based distance (Sellam et al., 2020), and
entailment extent in natural language inference

(NLI) (Gao et al., 2023). Intuitively, Figure 6 and
Figure 8 in Appendix C illustrate reasoning pro-
cesses with different levels of reliability.

As outlined in Section 1, enhancing behavior
fidelity and reducing hallucinations of reasoning
processes can improve LLMs’ reasoning capabil-
ities. Inspired by prior studies (Ye and Durrett,
2022; Chuang et al., 2024), we define two key fac-
tors of reasoning processes, factuality and fidelity:

Definition 2: Factuality pertains to how well
thoughts in reasoning processes are grounded in the
relevant knowledge context. As shown in Figure
6 in Appendix C, a fully factual reasoning process
excludes hallucinations that contradict the context.
Conversely, a non-factual reasoning process with
hallucinations can lead to erroneous solutions. Let
Ti = (ti,1, ti,2, · · · , ti,J) represent a thought step
consisting of J statements in R for question Q with
context X . The factuality of Ti is expressed as:

Factual(Ti) =

∑
ti,j∈Ti

Ground(X, ti,j)

J

Ground(X, ti,j) =

{
1 ti,j is grounded in X

0 Otherwise
(3)

Definition 3: Fidelity evaluates the faithfulness
of thoughts in the reasoning process to explain
the actual behaviors of the LLM when generat-
ing answers. Based on previous studies (Lopardo
et al., 2023; Chuang et al., 2024), fidelity is de-
fined by the extent to which an explained reasoning
thought influences the LLM-generated answers, as-
suming ground-truth reasoning behaviors are typi-
cally available. A greater degree indicates higher
fidelity. Specifically, for a reasoning process R, the
fidelity of each thought Ti ∈ R is assessed by com-
paring the answers generated by the LLM guided
by R with and without Ti. This is expressed as:

Fidelity(Ti) = Diff(pθ((X,Q)|R),

pθ((X,Q)|(R\Ti)))
(4)

where (R\Ti) represents the reasoning process
without thought Ti, and Diff(·, ·) denotes the
difference estimation. Appendix C.2 illustrates
thoughts with high and low fidelity.

In summary, EoT guides LLMs to find a refined
n-step reasoning process R∗ = (T ∗

1 , T
∗
2 , ..., T

∗
n)

via iterative self-reflecting evolution. In each itera-
tion, the LLM pθ generates an enhanced reasoning
process to address multiple-objective optimization
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Figure 1: The framework of EoT.

in reliability, factuality and fidelity for each reason-
ing thought, as defined in Eq. (5):

R∗ ← argmax
R

Reliability(R)

maxmize Factual(T ∗
i ) for ∀T ∗

i ∈ R∗

maxmize F idelity(T ∗
i ) for ∀T ∗

i ∈ R∗
(5)

3 Evolution of Thoughts

3.1 Overview

This section introduces the Evolution of Thoughts
(EoT) framework to enhance reasoning processes.
EoT refines thoughts evolutionarily to simultane-
ously improve their reliability, factuality, and be-
havior fidelity, thereby boosting LLMs’ reasoning
capabilities. Each iteration of evolution enables
LLMs to comprehend the assessment of the current
reasoning process and provides feedback to refine
a group of individual thoughts in the reasoning pro-
cess via a single-forward inference. In this way,
EoT effectively and efficiently guides reasoning
process optimization toward multiple objectives.

Figure 1 illustrates the framework of EoT, com-
prising three modules: an assessor, a prompter
and a generator. These modules collaborate to
achieve multi-objective optimization of reasoning
processes over iterations of evolution. Initially, the
assessor uses three scorers to evaluate the reliability,
fidelity and factuality of thoughts in the reasoning
process during each iteration. The prompter then
guides LLMs to thoroughly comprehend the perfor-
mance of the current reasoning process across the
three aspects, prompting self-reflection in LLMs
to ensure thought-level optimization. Lastly, in
each iteration, the generator served by task-solving
LLMs, uses our crafted prompts to generate a re-
fined reasoning process through a single-forward
inference. After N iterations, EoT produces an im-
proved reasoning process, denoted as R∗. Further
details of the three modules are provided below.

3.2 Assessor
EoT focuses on optimizing the factuality, reliability
and fidelity of reasoning processes. Therefore, we
design three scorers in the assessor to quantify the
performance of thoughts across these three aspects.

3.2.1 Factuality Scorer
As defined in Eq.(3), the factuality of reasoning pro-
cess for complex tasks is expressed by how well the
thoughts in it can be supported by relevant domain-
knowledge facts. For tasks with long-textual con-
text, EoT leverages the impressive capability of
LLMs in natural language inference (NLI) to tackle
the scoring of factuality. We employ an NLI model
ϕ to estimate Ground(·, ·) in the factuality defini-
tion in Eq. (3). Specifically, given a pair of premise
and hypothesis statements, represented as xpre and
thyp respectively, ϕ infers their relationship through
a triple-label classification task:

ϕ(xpre, thyp) =





0 thyp contradicts with xpre

1 xpre entails thyp

2 xpre is neutral with thyp

(6)
Definitions of “Entailment”, “Contradiction” and
“Neutral” are provided in Appendix E.1. Inspired
by prior work (Gao et al., 2023), consider a rea-
soning process R = (T1, T2, · · · ) for task (X,Q),
where each thought Ti = (ti,1, ti,2, · · · , ti,J) con-
tains J statements. For ∀ti,j ∈ Ti, we define
Ground(X, ti,j) = 1 iff ϕ(X, ti,j) = 1; other-
wise, it is 0. We use a GPT-4 model with few-shot
learning for ϕ. The efficacy of this NLI scheme
is presented in Appendix E.2. Then, the factuality
score Sfac(Ti) for ∀Ti ∈ R is computed as:

Sfac(Ti) = Factual(Ti) (7)

3.2.2 Reliability Scorer
According to Eq.(2), assessing the reliability of the
reasoning process R largely relies on measuring
the similarity between the answer generated under
R and the reference answer. However, existing
similarity metrics struggle to ensure both sufficient
variation sensitivity and robust human-level align-
ment simultaneously. To address these issues, EoT
proposes a novel similarity metric.

Recent studies propose learning-based methods,
such as SimCSE (Gao et al., 2021) and BLEURT
(Sellam et al., 2020), to improve sensitivity to
semantic and syntactic variations beyond hand-
crafted metrics like ROUGE (Lin, 2004) and BLEU
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(Papineni et al., 2002). These methods utilize lan-
guage models such as BERT (Devlin et al., 2019) to
encode statement pairs, producing scalar similarity
scores based on the encoded representations.

However, learning-based metrics struggle to
robustly align with human judgment in domain-
specific scenarios. These metrics typically rely
on end-to-end predictions from models trained on
synthetic or commonsense datasets (Zhang et al.,
2019). Discrepancies between distributions of train-
ing data and domain knowledge can lead to mis-
alignment due to domain drift (Honovich et al.,
2022). Moreover, while syntactic alignment strate-
gies are prevalent, achieving semantic alignment
akin to human judgment remains challenging.

To enhance robustness while maintaining high
sensitivity, we introduce Hssim, a hybrid met-
ric to score similarity between statements, which
combines the learned metric BLEURT with the
NLI judgement of model ϕ, as detailed in Eq. (6).
Specifically, given a reasoning process R for task
(X,Q), the LLM generates an answer of n1 state-
ments Ŷ = (ŷ1, ŷ2, · · · , ŷn1) guided by R. Let
A = (a1, a2, · · · an2) represent a reference answer
n2 statements. The similarity between Ŷ and A is
evaluated using Hssim(Ŷ , A) calculated as:

Hssim(Ŷ , A) =

∑
ŷi∈Ŷ sim(ŷi, A)

n1

sim(ŷi, A) =





0 ϕ(A, ŷi) = 0

µ+ (1− µ)βw(A, ŷi) ϕ(A, ŷi) = 1

(1− µ)βw(A, ŷi) Otherwise

(8)

where µ ∈ (0, 1) is the weight coefficient for mea-
suring similarity between the NLI judgement and
the learning-based scalar metric, and βw(·, ·) de-
notes an approximation of the BLEURT score at
the statement window level, calculated as:

βw(A, ŷi) = max({BLEURT (A[i1 : i2], ŷi)|
∀0 < i1 < i2 ≤ n2})

(9)
Leveraging the exceptional in-context learning

capabilities of LLMs, their NLI judgment can be
robustly aligned with human judgement even fac-
ing domain drift, as noted in previous work (Ye and
Durrett, 2022). Furthermore, the window-based
estimation of BLEURT scores ensures sensitivity
and alignment at the syntactic level. This allows for
a rational and effective assessment of the reliability
of any reasoning process R for question (X,Q),
using Hssim, which balances variation sensitivity

Figure 2: Prompt template to evolve reasoning process.

and semantic alignment robustness:

Srel(R) = Hssim(pθ(X,Q|R), A) (10)

3.2.3 Fidelity Scorer
Based on the fidelity definition in Eq.(4), scoring
the fidelity of thoughts involves two key aspects: 1)
efficiently excluding a thought from LLMs’ reason-
ing behaviors, and 2) accurately measuring the dif-
ference between answers produced with and with-
out the thought. We use a thought masking scheme
and metric Hssim to achieve these goals.

Given a reasoning process R, each thought Ti ∈
R is removed from R to create a masked reasoning
process (R\Ti), as shown in Figure 8 in Appendix
C. According to Eq.(1), a prompt directs the LLM
to generate answers Ŷ and Ŷ\Ti

for task (X,Q),
using instructions from R and (R\Ti) respectively.
An example is provided in Figure 4 in Appendix B.
Finally, with Ŷ as the reference, the fidelity score
of Ti is assessed using the Hssim metric:

Sfid(Ti) = 1−Hssim(Ŷ\Ti
, Ŷ ) (11)

Moreover, enhancing LLMs’ reasoning capabilities
requires fidelity optimization to focus on thoughts
that faithfully represent the reasoning behaviors
essential for reliable answers. Thus, we propose a
weighted fidelity score for thought Ti, accounting
for the reliability of the reasoning process:

Srel
fid(Ti) = Sfid(Ti)× Srel(R) (12)

Ultimately, we achieve a comprehensive assess-
ment of the reasoning process and its thoughts:
(
Srel(R), {Sfac(Ti), S

rel
fid(Ti)|∀Ti ∈ R}

)
(13)

3.3 Prompter
The prompting mechanism of EoT is designed to
enhance the reasoning process by enabling LLMs
to comprehend the scoring outcomes from previous
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iterations. This prompt LLMs to self-reflect and
refine reasoning processes, optimizing reliability,
fidelity, and factuality at the thought level.

The prompt template for the K-th iteration (1 ≤
K ≤ N ) is presented in Figure 2. Each evolution
iteration includes a prompt with three components:
(1) the question description Q, knowledge context
X , and reference answer A for the task; (2) the
evolution logic, encompassing: a) the significance
of three score types and b) instructions for multi-
objective optimization; and (3) the assessing results
of reasoning processes produced in prior iterations,
as defined in Eq.(13). An example of a complete
prompt is shown in Figure 9 in Appendix D.

3.4 Self-reflective Generator

To align the LLM’s reasoning capability with the
fidelity of its behavioral patterns, EoT employs the
LLM used for question answering as the generator
to iteratively refine reasoning processes via self-
reflection. Each iteration uses prompts to guide
the generator to produce an enhanced reasoning
process, leading to multi-objective improvements
recognized by LLMs. After N iterations, the rea-
soning process with the highest reliability score is
chosen as the final evolved process R∗.

4 Experiments

4.1 Setup

Datasets To evaluate the effectiveness of EoT,
we conduct experiments on two datasets: 1) Op-
sQA: a question-answering dataset with 40 com-
plex operational maintenance (OM) tasks covering
cloud computing, code management, application
upgrades, and more. 2) LongBench (Bai et al.,
2023b): a benchmark comprising problems from
various open-source datasets such as HotpotQA,
MultifieldQA, WikimQA. We select 60 represen-
tative questions from LongBench. Since EoT is
designed to improve the capability of LLMs on
knowledge-intensive reasoning tasks, we carefully
select complex reasoning tasks for evaluation. Each
task includes a long domain knowledge context
with thousands or tens of thousands of tokens, a
question description, and a reference answer, neces-
sitating intricate solutions. To highlight the com-
plexity of these 100 representative reasoning tasks,
we provide statistics on the context length of se-
lected questions, including the mean, the 95th per-
centile (P95) and the maximum (Max) value.

As presented in Table 2, the average length of

Table 2: Statistics of Context Length of Selected Tasks

Dataset
Context (token)

Mean P95 Max
OpsQA 6, 052 11, 640 21, 045

LongBench (selected) 5, 700 11, 782 14, 640

Table 3: The parameter settings in evaluations

Parameter Value Description
N 10 The number of iterations
µ 0.5 The alignment weight in Eq.(8)

knowledge context reaches 6, 052 and 5, 700 to-
kens for the selected tasks in the OpsQA and Long-
Bench datasets, respectively. Moreover, the max-
imum context length can reach up to 21, 045 and
14, 640 tokens for these tasks in the OpsQA and
LongBench datasets respectively. This consider-
able complexity of domain knowledge context for
tasks could demonstrate that our experiments accu-
rately assess the effectiveness of EoT in addressing
complex reasoning tasks that require understand-
ing extensive domain knowledge and producing
intricate solutions.

Testbed and Parameter Settings We utilize two
widely used LLMs, Qwen2-72B (Bai et al., 2023a)
and GPT-4 Turbo (Openai, 2023), each serving
as the generator of both reasoning processes and
solutions. For the assessor, EoT uses GPT-4 Turbo
to implement the NLI model ϕ, due to its advanced
NLI accuracy as evaluated in Appendix E.2, and
compute window-based BLEURT scores in Eq. (9)
using V100 GPUs. Table 3 outlines the hyper-
parameter settings in our evaluations.

Metrics To assess LLMs’ reasoning capabilities,
we compute four metrics by comparing answers
generated by the reasoning process Ŷ with the ref-
erence answer A: 1) reliability defined in Eq. (10),
2) BLEURT, 3) ROUGE-L (Lin, 2004), and 4) NLI
results from GPT-4 Turbo, denoted as entail(%),
which measures the percentage of statements in Ŷ
entailed by A. Additionally, following prior stud-
ies (Ye and Durrett, 2022; Lyu et al., 2023), we
use Sfac and Sfid from Eq.(7) and Eq.(11) to as-
sess performance in factuality and behavior fidelity,
respectively. Scores of a reasoning process are
averaged from those of thoughts. Higher values
indicate better performance for each metric.

Baselines We compare EoT with five advanced
frameworks for evolving reasoning processes: 1)
BoT (Chen et al., 2024), CoT-dec (Radhakrishnan
et al., 2023), and its variant Factor-dec, which em-
phasize reliability optimization; 2) xLLM (Chuang
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et al., 2024) designed for fidelity optimization; and
3) Calibrator (Ye and Durrett, 2022) targeting fac-
tuality and fidelity optimization.

According to the schema of reasoning process
generation, these frameworks can be categorized
into three groups. (1) Exploration of structured
thoughts: BoT guides LLMs to explore ensemble
of trees of thoughts (ToTs) and acquire trial-and-
error reasoning experiences for each explored ToT.
In BoT, a reasoning thought is generated by the
LLM as a node of ToT in each inference, and the
complete reasoning process is formed by a series of
such LLM inferences. (2) Revision of the complete
reasoning process: a) xLLM provides feedback on
the fidelity assessment for the complete reasoning
process and guides LLMs to optimize reasoning
processes through iterative improvements; b) Cali-
brator focuses on revising reasoning processes to
improve factuality and further enhance the reason-
ing capability of LLMs through iterations. In these
studies, LLMs generate a complete reasoning pro-
cess in textual paragraphs via a single-forward in-
ference. (3) Question decomposition: a) CoT-dec
prompts LLMs to decompose the reasoning process
to a sequence of subquestion-subanswer pairs pro-
duced in single-forward inference in each iteration.
It seeks decomposed results that achieve the best re-
liability performance as the final reasoning process
after multiple iterations; b) Factor-dec is a variant
of CoT-dec. In each evolution iteration, Factor-dec
guides LLMs to decompose a reasoning process
into a subqeustion sequence and prompts LLMs
to answer these subquestions through step-by-step
inferences. In other words, each iteration of Factor-
dec involves multiple steps of question-answering
in generating a reasoning process.

4.2 Overall Performance

We conduct experiments on the OpsQA and Long-
Bench datasets to evaluate the performance of the
six frameworks in terms of the reasoning capability,
factuality and fidelity of reasoning processes and
time efficiency. Moreover, the ablation study of
EoT is detailed in Appendix G. To further exam-
ine EoT’s generality, in Appendix H, we conduct
evaluations on additional 40 OM tasks collected in
production, with LLMs of diverse parameter sizes.

4.2.1 Reasoning Capability (Reliability)
Table 4 presents the average reasoning capability
of two LLMs utilizing the six frameworks. EoT
surpasses the five baselines in three areas. First,

compared to the leading baseline, CoT-dec, EoT
boosts reliability scores on the OpsQA and Long-
Bench datasets by about 11.7% and 5.8% using
Qwen2-72B, and by about 3.3% and 3.7% using
GPT-4 Turbo. Second, in terms of sensitivity to
token and semantic variation, EoT improves the
ROUGE-L and BLEURT on LongBench dataset
by about 7.2% and 16.2% using Qwne2-72B, and
2.6% and 6.8% using GPT-4 Turbo. Third, regard-
ing semantic alignment robustness, on the OpsQA
dataset, EoT improves entail(%) by around 14.4%
and 6.7% using Qwen2-72B and GPT-4 Turbo, re-
spectively. These findings indicate that EoT em-
powers diverse LLMs to enhance overall reasoning
capability in complex tasks.

Figure 3a intuitively shows that, with GPT-4
Turbo, EoT achieves a reliability score > 0.75 for
52.5% of tasks in the OpsQA dataset, surpassing
BoT, xLLM, Calibrator, CoT-dec, and Factor-dec
by about 50%, 27.5%, 22.5%, 7.5% and 35%, re-
spectively. Furthermore, for tasks in OpsQA and
LongBench, the complete CDF results of reason-
ing capability using Qwen-72B and GPT-4 Turbo,
equipped with the six frameworks, are detailed in
Appendix F.1. These findings confirm EoT’s signif-
icant generality in enhancing reasoning capability
across diverse fields with various LLMs.

EoT’s enhanced reasoning capability stems from
two key aspects. Firstly, we introduce an effective
similarity scoring metric Hssim to measure the
reliability of reasoning processes. By accounting
for sensitivity to semantic variations and robustness
in semantic alignment, Hssim promote the relia-
bility improvement of EoT, facilitating comprehen-
sive optimization of LLMs’ reasoning capabilities
across various semantic aspects. For instance, on
the OpsQA dataset, despite EoT’s BLEURT per-
formance being about 1.79% lower than CoT-dec
using GPT-4 Turbo, EoT improves NLI results by
about 6.7%, thereby raising the reliability score by
3.3%. Secondly, unlike baselines focusing on indi-
vidual or partial factors, EoT efficiently achieves
multi-objective optimization in reliability, factual-
ity, and fidelity during reasoning process evolution,
thereby enhancing LLMs’ reasoning capabilities.

4.2.2 Factuality & Fidelity Performance.
The central concept of EoT is to improve the fac-
tuality and behavior fidelity of thoughts, in a di-
rection of enhancing LLMs’ reasoning capabilities.
To assess these efforts, Table 5 presents the average
performance in fidelity and factuality of reason-
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Table 4: Reliability performance for reasoning processes evolved by six frameworks with two LLMs on two datasets.

LLMs Models
OpsQA LongBench

BLEURT ROUGE-L
NLI results Reliability

BLEURT ROUGE-L
NLI results Reliability

entail(%) Score entail(%) Score

Qwen2

BoT 0.499 0.297 43.29 0.401 0.494 0.677 62.92 0.526
xLLM 0.554 0.355 65.83 0.576 0.572 0.739 87.50 0.721

Calibrator 0.559 0.365 70.27 0.597 0.575 0.744 80.88 0.675
CoT-dec 0.579 0.361 73.35 0.632 0.586 0.769 92.63 0.757

Factor-dec 0.545 0.324 62.55 0.569 0.570 0.745 84.47 0.729
EoT (ours) 0.595 0.395 83.90 0.706 0.681 0.824 91.52 0.801

GPT-4

BoT 0.486 0.307 48.50 0.443 0.530 0.704 67.99 0.568
xLLM 0.575 0.408 72.16 0.609 0.629 0.801 85.09 0.729

Calibrator 0.554 0.380 68.50 0.589 0.592 0.775 83.98 0.709
CoT-dec 0.613 0.446 83.02 0.694 0.617 0.805 91.65 0.767

Factor-dec 0.541 0.358 74.48 0.632 0.587 0.767 89.44 0.739
EoT (ours) 0.602 0.427 88.58 0.717 0.659 0.826 92.47 0.795

1 Qwen2 and GPT-4 represent the LLMs of Qwen2-72B and GPT-4 Turbo, respectively.
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Figure 3: The CDF results of the reliability, factuality and fidelity scores of reasoning processes evolved by the six
frameworks using GPT-4 Turbo on 40 tasks in the OpsQA dataset.

Table 5: The performance on factuality and fidelity for
reasoning processes evolved by six frameworks.

LLMs Models
OpsQA LongBench

Factuality Fidelity Factuality Fidelity
Sfac Sfid Sfac Sfid

Qwen2

BoT 0.752 0.234 0.879 0.208
xLLM 0.720 0.216 0.864 0.152

Calibrator 0.860 0.258 0.935 0.141
CoT-dec 0.638 0.167 0.839 0.179

Factor-dec 0.706 0.208 0.901 0.197
EoT (ours) 0.823 0.267 0.943 0.243

GPT-4

BoT 0.775 0.203 0.896 0.237
xLLM 0.607 0.238 0.848 0.169

Calibrator 0.878 0.257 0.942 0.180
CoT-dec 0.685 0.199 0.934 0.171

Factor-dec 0.769 0.228 0.936 0.208
EoT (ours) 0.906 0.281 0.956 0.275

ing processes evolved by six frameworks, using
Qwen2-72B and GPT-4 Turbo on the two datasets.
These results highlight two key aspects.

Firstly, EoT significantly reduces non-factual
errors in thoughts while boosting the behavior fi-
delity of LLMs. Compared to the leading baseline
Calibrator, using GPT-4 Turbo, EoT improves the
factuality score by about 3.2% and 1.3% on the Op-
sQA and LongBench datasets respectively. With
Qwen2-72B, EoT shows a factuality improvement
of around 4.0% on the LongBench dataset. Ad-
ditionally, on the OpsQA dataset, EoT surpasses
Calibrator by enhancing the fidelity score by about
9.3% using GPT-4 Turbo. Similarly, on the Long-
Bench dataset, compared to BoT, EoT improves the

fidelity score by roughly 16.8% and 16.0% using
Qwen-72B and GPT-4 Turbo respectively. These
results confirm EoT’s capability to effectively en-
hance both factuality and behavior fidelity.

Secondly, EoT’s optimization on factuality and
fidelity effectively boosts reasoning capabilities of
LLMs. On the OpsQA dataset, EoT surpasses CoT-
dec in factuality and fidelity by about 28.9% and
59.9% respectively, resulting in a reliability im-
provement of around 11.7%. This enhanced rea-
soning capability is largely due to substantial ad-
vancements in factuality and fidelity of reasoning
processes. Moreover, although Calibrator improves
factuality by about 4.4% over EoT on the OpsQA
dataset, EoT improves fidelity and reliability by
about 3.5% and 18.3% respectively.

To illustrate EoT’s generality in optimizing fac-
tuality and fidelity, Figures 3b and 3c show the
CDF of factuality and fidelity scores for reason-
ing processes evolved by six frameworks using
GPT-4 Turbo on the OpsQA dataset, respectively.
EoT achieves a factuality score of 1.0 for 50% of
OpsQA questions, surpassing BoT, xLLM, Cali-
brator, CoT-dec, and Factor-dec by around 15%,
47.5%, 20%, 35%, and 42.5%, respectively. More-
over, EoT exceeds a fidelity score of 0.25 for 60%
of questions, surpassing BoT, xLLM, Calibrator,
CoT-dec, and Factor-dec by about 32.5%, 20%,
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Table 6: The average performance on time efficiency
of the six frameworks on the OpsQA dataset.

Models Overhead(s) Iterations
BoT 945.85 4.48

Factor-dec 114.77 5.21
xLLM 70.89 5.25

Calibrator 67.75 4.92
CoT-dec 70.22 5.34

EoT (ours) 75.46 4.62

25%, 50%, and 37.5%, respectively. Further CDF
results for fidelity and factuality on OpsQA and
LongBench datasets are provided in Appendix F.2
and F.3. These results confirm that EoT’s improve-
ments in fidelity and factuality are generalized to
tasks across various domains, including operational
maintenance and academic literature.

These improvements stem from two aspects.
Firstly, EoT effectively assesses factuality and fi-
delity at a granular thought level, providing a foun-
dation for effective optimization. Secondly, our
prompter fully leverages ICL capabilities of LLMs,
enabling them to rationally comprehend perfor-
mance experiences and simultaneously optimize
across three objectives, as defined in Eq.(5).

4.2.3 Time Efficiency
We assess the time efficiency of six frameworks
using two criteria: 1) the average overhead per iter-
ation, where lower values denote higher efficiency;
and 2) the convergence rate, measured as the av-
erage number of iterations needed to produce the
final enhanced reasoning process for various ques-
tions. Lower values signify quicker convergence.

Table 6 showcases the time efficiency of the six
frameworks on the OpsQA dataset. EoT reduces it-
eration overhead by about 92.0% compared to BoT
and 33.4% versus Factor-dec, both of which involve
multiple thought explorations per iteration. In addi-
tion, compared to three other baselines employing
single-forward inference, EoT uses fewer iterations
to generate refined reasoning processes with simi-
lar iteration time. These results validate that EoT
achieves comprehensive, fine-grained optimization
of each thought with high time efficiency.

5 Conclusion

Through in-depth analysis, we outline three key fac-
tors in reasoning processes to enhance LLMs’ ca-
pabilities, namely factuality, fidelity and reliability.
We propose EoT to evolve LLM-generated reason-
ing processes across these dimensions. An asses-
sor is designed to quantify performance on these
aspects for each thought in reasoning processes.

Additionally, we propose a prompting mechanism
that efficiently guides LLMs to comprehend assess-
ments and trigger self-reflection to achieve thought-
level and multi-objective optimization of reasoning
processes via single-forward inference. EoT offers
two key advantages. First, it considers comprehen-
sive factors to improve reasoning capability. Sec-
ond, it ensures thought-level evolution with high
time efficiency. In the future, we will address unsu-
pervised evolution of reasoning processes to further
enhance reasoning capabilities of LLMs for out-of-
domain tasks without reference solutions.
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A Limitations

The EoT framework exhibits two principal limita-
tions that warrant discussion. First, its assessing
mechanism inherently relies on reference solutions
to assess reasoning reliability and subsequently re-
fines the reasoning processes based on these super-
vised signals. This paradigm creates a dependency
on domain-specific answer templates, potentially
constraining the framework’s capacity to general-
ize and enhance LLM reasoning performance for
out-of-domain tasks where authoritative references
are unavailable or undefined.

Second, the Hssim metric implementation in-
troduces an intrinsic dependency on the LLM’s
natural language inference (NLI) capabilities. The
effectiveness of Hssim measurements becomes
contingent upon the model’s cross-domain NLI
accuracy, introducing potential error propagation
across different knowledge domains. To address
this limitation, our future work will focus on inte-
grating state-of-the-art LLMs with enhanced NLI
datasets while developing domain-agnostic verifi-
cation mechanisms to strengthen metric robustness.

B Examples of Reasoning Process
Formalization

As formulated in Section Problem Setup, for each
complex task (X,Q), an LLM expresses its reason-
ing behaviors in the form of a reasoning process
R. This process consists of multiple thought steps
and helps guide the LLM in producing the task’s
solution, denoted as Ŷ in Eq. (1) of our submitted
manuscript. Specifically, LLMs that respond to
questions by following a reasoning process oper-
ate by using specific prompting instructions. The
prompt template used in these invocations is pre-
sented in Figure 4. This prompting strategy en-
courages LLMs to execute their genuine reason-
ing behaviors in a way that closely reflects self-
explanatory thoughts, with the goal of enhancing
the influence of these thoughts on the LLMs’ solu-
tion generation.

On this basis, to intuitively illustrate the self-
explained reasoning process, Figure 5 and 7 present
two examples of reasoning processes generated by
the widely used LLM Qwen2-72B. These exam-
ples are specifically aimed at guiding the LLM in
addressing two distinct tasks in LongBench.

C Illustration of Factuality, Fidelity and
Reliability

In Section Problem Setup of our submitted
manuscript, we define three critical factors that
influence the reasoning capability of LLMs: factu-
ality, fidelity and reliability. To aid in the intuitive
understanding of the measurement of these three
factors, this appendix presents both positive and
negative examples of reasoning thoughts for each
of them. For each factor, the positive examples
demonstrate strong performance, while the nega-
tive ones illustrate poor performance.

C.1 Factuality

Figure 6 presents a completely factual reason-
ing process Rfac, alongside a reasoning process
that contains non-factual errors Rnonfac. Specifi-
cally, all four thought steps in Rfac are factually
grounded in the knowledge context. In contrast, T2

and T3 in Rnonfac contain errors that contradict es-
tablished domain knowledge, as highlighted in the
underlined part, which demonstrates that T2 and
T3 exhibit poor factual performance. On this basis,
Qwen2-72B generates two answers to the question
“Which film came out first", denoted as Ŷfac and
Ŷnonfac, under the guideline of Rfac and Rnonfac,
respectively.

Then, we observe that, when Qwen2-72B re-
sponds to the question following the guideline of
reasoning process Rnonfac which contains non-
factual date errors, non-factual hallucination may
emerge in its generated solution Ŷnonfac. In con-
trast, a correct answer Ŷfac can be produced by
LLMs under the guideline of Rfac, where the fac-
tuality of the explanatory reasoning thoughts is
ensured. These clear examples highlight the im-
portance of ensuring the factuality of reasoning
processes during optimization, as this is crucial to
prevent the reasoning capability of LLMs being
compromised by non-factual hallucinations.

C.2 Fidelity

We review the reasoning process R that guides
Qwen2-72B in solving the question, “What are
some fields in which the inverse problem is encoun-
tered?", as presented in Figure 7. This reasoning
process consists of four steps of thought. To investi-
gate whether each step faithfully reflects the actual
reasoning behaviors of LLMs, we demonstrate the
measurement of behavior fidelity for each reason-
ing step as defined in Eq.(4). Specifically, we mask
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Figure 4: An example prompt template that guides LLMs to generate task solutions under the guideline of specified
self-explanatory reasoning processes.

thoughts T1 and T3 in R to obtain two masked rea-
soning processes R\T1 and R\T3 respectively, as
discussed in subsection Fidelity Scorer. Figure 8
shows that Qwen2-72B generates two answers to
the question under the guidelines of RP\T1 and
RP\T3, denoted as Ŷ\T1

and Ŷ\T3
, respectively.

A comparison reveals that, relative to the answer
guided by R, represented as Ŷ , a significant change
is observed in Ŷ\T1

, while only a minor modifica-
tion is noted in Ŷ\T3

.

In light of this, we can derive two insights.
Firstly, the reasoning behavior exhibited in T1,
namely “Extract Key Concepts", faithfully reflects
a critical step in the actual reasoning actions of
Qwen2-72B. This indicates that LLMs delve into
the significance of each key entity, including “in-
verse problem" and its related fields, at the begin-
ning of inference. In other words, T1 significantly
affects the reasoning results of LLMs, which indi-
cates that T1 exhibits strong behavior fidelity for
Qwen2-72B. Secondly, the reasoning claim in T3,
termed “Contextual Understanding", inadequately
uncovers the actual behaviors that Qwen2-72B ex-
ecutes, as omitting these claims has only a minor
impact on the LLM’s reasoning results. Thus, rea-
soning thoughts such as T3 can be regarded as

unfaithful thoughts in the reasoning processes ex-
plained by LLMs. In other words, thoughts like T3

demonstrate poor behavior fidelity for the LLM.

C.3 Reliability

As demonstrated in Section Problem Setup, the
reliability of a reasoning process for LLMs in ad-
dressing any task can be measured by the simi-
larity between the generated solution and the ref-
erence answer. Since solutions often consist of
long-textual statements, the assessment of similar-
ity should occur at both syntactic and semantic
levels. In addition, all measurements should aim
to align with the understanding of experts in the
relevant domain.

Intuitively, the reasoning processes presented in
Figure 5 and Figure 7 perform satisfied reliability
as they effectively guide Qwen2-72B in produc-
ing solutions that adequately address the respective
questions. Consequently, we should evaluate the
high similarities between the produced and refer-
ence solutions for these two reasoning processes
accordingly. Conversely, the assessed similarity
should be significantly low for unreliable reasoning
processes. For example, as shown in Figure 6, the
non-factual reasoning process Rnonfac results in
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Figure 5: A factual reasoning process produced by Qwen2-72B for problem "Which film came out first?". The
highlighted part represents the critical information and claims in the context and reasoning behaviors.

Figure 6: Examples of total factual and non-factual reasoning processes produced by Qwen2-72B for problem
"Which film came out first?". The highlighted part in factual reasoning process represents the key factual claims,
while the underlined part is the claims with non-factual errors which cause the hallucination in answers.

23876



Figure 7: A reasoning process of Qwen2-72B for the problem “What are some fields in which the inverse problem
is encountered?". The highlighted part represents the critical information and claims in the context and reasoning
behaviors.

an incorrect answer to the question. Therefore, we
should accurately measure a low similarity between
these hallucinations and the correct reference. In
addition, as presented in Figure 8, a reasoning pro-
cess excluding faithful thoughts, denoted as R\T1,
will diminish the reasoning capabilities of LLMs,
and results in the emergence of redundant state-
ments in generated answers, which are unrelated
to problem-solving. Thus, a low similarity needs
to be measured to represent the decline of reliabil-
ity in terms of the precision of extracting useful
knowledge.

D Prompting Mechanism of EoT

To illustrate the design of prompting scheme in EoT
that drives the evolution of the reasoning process,

Figure 9 provides an example prompt in an evo-
lution iteration. This prompt is intended to guide
a specific optimization of the reasoning process
explained by Qwen2-72B for the question “What
are some fields in which the inverse problem is en-
countered?". Specifically, this prompt follows the
template illustrated in Figure 2 of our submitted
manuscript, and includes a textual description of
the assessment results from an existing reasoning
process, as shown in Figure 7.

E NLI mechanism in Assessment of
Reasoning process

In EoT, we prompt LLMs to perform natural lan-
guage inference (NLI) judgements to evaluate the
effectiveness of reasoning processes. Overall, lever-
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Figure 8: Examples of masked reasoning processes produced by Qwen2-72B for problem "What are some fields in
which the inverse problem is encountered?". The highlighted part represents the critical information and claims in
the context and reasoning behaviors. We exclude the claims of thoughts T1 and T3 respectively, and find that T1 has
a higher fidelity performance compared with T3.

aging the NLI of LLMs is intended to improve
semantic alignment with the human-level percep-
tion, particularly when estimating the extent of
estimation of knowledge entailment and assessing
similarities. This approach further enhances the
robustness of the scoring scheme in EoT. In this
appendix, we first define the triple labels of the
statement-pair relationships. Then, we evaluate the
effectiveness of NLI mechanism when using var-
ious types of LLMs and discuss the threats to the
EoT framework given the use of the GPT-4 model.

E.1 Definition of Triple Labels in NLI
Mechanism

In Section 3.2 in our submitted manuscript, EoT re-
gards the NLI judgements as triple-label classifica-
tion tasks as shown in Eq.(6). Specifically, let xpre

and thyp denote a premise and hypothesis state-
ment, respectively. In a canonical NLI mechanism,

there are three category labels to represent the re-
lationship between any statement pair (xpre, thyp),
which is defined as follows.

Definition 4 Entailment: If hypothesis state-
ment thyp is necessarily true or appropriate when-
ever the premise statement xpre is true, we label the
relationship between the statement pair (xpre, thyp)
as “Entailment”. In other words, xpre entails thyp.

Definition 5 Contradiction: If hypothesis state-
ment thyp is necessarily false or inappropriate
whenever the premise statement xpre is true, we
label the relationship between the statement pair
(xpre, thyp) as “Contradiction”. In other words,
thyp contradicts with xpre.

Definition 6 Neutral: When neither “Entail-
ment” nor “Contradiction” applies to relationship
between the statement pair (xpre, thyp), we label
this relationship between (xpre, thyp) as “Neutral".
In other words, xpre is neutral with thyp.
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Figure 9: Instance of a specific complete prompt to evolve the reasoning process in Figure 7, involving the
instructions of evolution and the textual description of assessment results of reasoning process shown in Figure 7

Table 7: The Accuracy of NLI using LLMs

LLM Model Accuracy(%)
Qwen2-72B 76.14

GPT-3.5 Turbo 67.64
GPT-4 Turbo 85.80

E.2 Performance of NLI using Various Types
of LLMs

To evaluate the effectiveness of NLI in LLMs using
few-shot prompts, we conduct experiments on the
MNLI dataset (Williams et al., 2018). This dataset
is well-known and comprises 40, 000+ samples of
NLI tasks collected from dozens of different do-
mains, including transcribed speech, fiction, and
reports. For our evaluation, we select 10, 000 repre-
sentative samples from the MNLI dataset, consider-
ing the scale and overhead of experiments. On this
basis, we evaluate the NLI performance of three
widely used LLMs: Qwen2-72B, GPT-3.5 Turbo
and GPT-4 Turbo, using the selected samples.

Table 7 presents the accuracy performance of

NLI achieved by the three LLMs. It is evident that
GPT-4 Turbo outperforms the others in NLI tasks
that require context from various domains. More-
over, based on previous studies (Gao et al., 2023)
and our experiment results, we observe that GPT-
4 Turbo achieves state-of-the-art accuracy in NLI.
This suggests that using GPT-4 Turbo for NLI can
lead to superior alignment between the judgements
of LLMs and human assessments. Consequently,
EoT employs GPT-4 Turbo with tailored few-shot
learning to perform NLI by default, aiming to better
align with human judgement.

Finally, we discuss the limitations of the NLI
mechanism based on the GPT-4 Turbo. As we can
see, the classification accuracy of NLI in EoT still
needs to be improved, which could result in threats
to the precise alignment of the assessment of EoT
with that of humans. To further enhance EoT’s ca-
pabilities, we intend to improve NLI performance
in EoT by integrating novel LLMs with advanced
NLI capabilities or optimizing the few-shot prompt-
ing mechanism.
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Figure 10: The CDF results of the reliability scores of evolved reasoning processes for various complex questions

F Experiment Results of Diverse
Questions

In this appendix, we intuitively present the perfor-
mance of the six evolution frameworks applied to
various tasks within the OpsQA and LongBench
datasets, utilizing two LLMs Qwen2-72B and GPT-
4 Turbo. The results demonstrate that EoT sig-
nificantly enhances the reasoning capabilities of
diverse LLMs, as well as behavior fidelity and fac-
tuality of the explained reasoning processes across
a broad spectrum of tasks.

F.1 Reasoning Capability (Reliability)

Figure 10a ∼ Figure 10d present the CDF results
of reliability scores of reasoning processes evolved
by the six frameworks on the two LLMs for all
questions in the two datasets. Notably, EoT demon-
strates superior reasoning capabilities compared
to the five baselines for most tasks across diverse
LLMs. For instance, in the case of the 40 questions
in the OpsQA dataset, Figure 10a shows that EoT
achieve a reliability score exceeding 0.6 for 85.0%
of the questions. This performance surpasses that
of BoT, xLLM, Calibrator, CoT-dec and Factor-dec
by about 75.0%, 35.0%, 22.5%, 15.0% and 40.0%,
respectively, when using Qwen2-72B. As for the
60 questions in the LongBench dataset, when us-
ing Qwen2-72B, Figure 10c illustrates that EoT
achieves a reliability score exceeding 0.8 for about
61.67% of the questions. This performance sur-
passes that of BoT, xLLM, Calibrator, CoT-dec
and Factor-dec by about 43.43%, 33.34%, 43.34%,
21.67% and 38.34%, respectively. In addition,
when employing GPT-4 Turbo, Figure 10d indi-
cates that EoT attains a reliability score higher than
0.8 for roughly 63.3% of these 60 questions, which
exceeds the performance of BoT, xLLM, Calibrator,
CoT-dec and Factor-dec by roughly 45.0%, 20.0%,
34.67%, 16.67% and 31.67%, respectively.

In summary, these results confirm that EoT
achieves exceptional reliability across a wide range

of tasks. This suggests that the improvement of rea-
soning capabilities in LLMs, facilitated by EoT, is
well-suited for problem-solving in various domains
with leading generality.

F.2 Factuality

Figure 11a ∼ Figure 11d present the CDF results
of factuality scores of reasoning processes evolved
by the six frameworks on the two LLMs for all
the questions in the two datasets. We find that,
compared with the five baselines, EoT remark-
ably optimizes the factuality of reasoning processes
for a wider range of questions on diverse LLMs.
Specifically, as for the 40 questions in OpsQA,
Figure 11b illustrates that EoT achieves the upper
limit of factuality score 1.0 for about 50.0% of
the questions, which exceeds the performance of
BoT, xLLM, Calibrator, CoT-dec and Factor-dec
by about 15.0%, 47.5%, 20.0%, 35.0% and 42.5%,
respectively when using GPT-4 Turbo. As for
the 60 questions in the LongBench dataset, when
using Qwen-72B, Figure 11c illustrates that EoT
achieves factuality scores of 1.0 for about 73.3%
of the questions, which exceeds the performance
of BoT, xLLM, Calibrator, CoT-dec and Factor-dec
by about 25.0%, 20.0%, 3.3%, 13.3% and 26.7%,
respectively. Moreover, when using GPT-4 Turbo,
Figure 11d shows that EoT obtains factuality scores
of 1.0 for 75% of these 60 questions, which sur-
passes the performance of BoT, xLLM, Calibrator,
CoT-dec and Factor-dec by about 26.7%, 36.7%,
3.3%, 5.0% and 25.0%, respectively.

These results suggest that EoT demonstrates re-
markable generality in ensuring the factuality of
reasoning processes, proving to be highly robust
across various knowledge domains. This assur-
ance stems from the detailed evaluation of thoughts
and the effective evolving framework that enables
LLMs to eliminate non-factual errors during the
explanation of these thoughts.
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Figure 11: The CDF results of the factuality scores of evolved reasoning processes for various complex questions
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Figure 12: The CDF results of the fidelity scores of evolved reasoning processes for various complex questions

F.3 Fidelity

Figure 12a ∼ Figure 12d illustrate the behavior fi-
delity performance of reasoning processes evolved
by the six frameworks on the two LLMs for all
the questions in the two datasets. Compared to
the five baselines, EoT implements an evolution
mechanism that guides diverse LLMs in generating
reasoning processes, resulting in state-of-the-art
performance in behavior fidelity across most tasks
from various knowledge domains. These enhance-
ments demonstrate the exceptional generality of
EoT in improving behavior fidelity. Specifically, as
for the 40 questions in the OpsQA dataset, when
using Qwen2-72B, Figure 12a illustrates that EoT
obtains fidelity scores higher than 0.225 for 71.7%
of the questions, which exceeds the performance
of BoT, xLLM, Calibrator, CoT-dec and Factor-
dec by about 36.7%, 53.3%, 5.0%, 58.3% and
43.3%, respectively. Moreover, when using GPT-4
Turbo, Figure 12b presents that EoT achieves fi-
delity scores higher than 0.25 for 60.0% of these
40 questions, which surpasses the performance
of BoT, xLLM, Calibrator, CoT-dec and Factor-
dec by roughly 32.5%, 20.0%, 25.0%, 50.0% and
37.5%, respectively. As for the 60 questions in the
LongBench dataset, when using Qwen2-72B, Fig-
ure 12c presents that EoT achieves fidelity scores
higher than 0.2 for 40% of the questions, which
surpasses the performance of BoT, xLLM, Cali-
brator, CoT-dec and Factor-dec by roughly 10%,
26.7%, 26.7%%, 21.7% and 6.7%, respectively. In
addition, when using GPT-4 Turbo, Figure 12d il-

lustrates that EoT obtains fidelity scores higher
than 0.2 for 75.0% of the questions, which exceeds
the performance of BoT, xLLM, Calibrator, CoT-
dec and Factor-dec by about 16.7%, 41.7%, 36.7%,
51.7% and 26.7%, respectively.

These results demonstrate that EoT significantly
improves the fidelity of reasoning processes as ex-
plained by various LLMs, and this improvement is
broadly applicable across diverse tasks rooted in
different domains of knowledge. In summary, this
enhancement in behavior fidelity can be attributed
to two key factors. Firstly, building on prior stud-
ies, EoT implements an effective mechanism for
assessing the behavior fidelity of explained reason-
ing thoughts in a detailed manner. Secondly, the
evolution mechanism of EoT effectively encour-
ages LLMs to clarify their reasoning with enhanced
faithfulness.

The optimization of reasoning processes regard-
ing factuality and fidelity, as shown in Appendices
F.2 and F.3, is beneficial for further enhancing the
reasoning capabilities of LLMs, as illustrated in
Appendix F.1.

G Ablation Study

G.1 Setup

We conduct ablation studies for EoT on the OP-
SQA dataset. To evaluate the effectiveness of the
optimization achieved by EoT concerning the three
factors, namely reliability, factuality and behavior
fidelity of reasoning processes, we design three
variants of EoT: EoT_w/o_fact, EoT_w/o_fide, and
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Table 8: The performance on reliability for reasoning
processes evolved by EoT and its variants using two
LLMs on the OpsQA dataset.

LLMs Models
OpsQA

BLEURT ROUGE-L
NLI results Reliability
entail(%) Score

Qwen2

EoT_w/o_fact 0.593 0.362 70.16 0.607
EoT_w/o_fide 0.602 0.377 76.32 0.651
EoT_w/o_reli 0.609 0.386 77.33 0.655

EoT 0.595 0.395 83.90 0.706

GPT-4

EoT_w/o_fact 0.573 0.403 78.75 0.658
EoT_w/o_fide 0.597 0.417 80.03 0.675
EoT_w/o_reli 0.593 0.402 75.84 0.634

EoT 0.602 0.427 88.58 0.717
1 Qwen2 and GPT-4 represent the LLMs of Qwen2-72B and GPT-4 Turbo, respectively.

Table 9: The performance on factuality and fidelity for
reasoning processes evolved by EoT and its variants
using two LLMs on the OpsQA dataset.

LLMs Models
OpsQA

Factuality Fidelity
Sfac Sfid

Qwen2

EoT_w/o_fact 0.737 0.231
EoT_w/o_fide 0.840 0.226
EoT_w/o_reli 0.723 0.272

EoT 0.823 0.267

GPT-4

EoT_w/o_fact 0.722 0.277
EoT_w/o_fide 0.869 0.262
EoT_w/o_reli 0.882 0.296

EoT 0.906 0.281

EoT_w/o_reli. Each variant removes the optimiza-
tion related to factuality, behavior fidelity, and reli-
ability respectively from the evolution of thoughts.
We then compare the performance of the canonical
EoT with that of these three variants.

Table 8 presents the reasoning capability of
Qwen2-72B and GPT-4 Turbo equipped with the
canonical EoT and its three variants. Additionally,
Table 9 shows the fidelity and factuality perfor-
mance of the reasoning processes evolved by the
EoT and its variants.

G.2 Effectiveness of Factuality Optimization

We compare the performance of EoT with that of
EoT_w/o_fact to assess the effectiveness of evo-
lution in terms of factuality. First of all, it can
be observed that EoT significantly enhances the
factuality of reasoning processes through the fine-
grained evolution explicitly optimizing factuality.
For instance, Table 9 shows that, when using GPT-4
Turbo, EoT increases the factuality score by about
25.5% compared to EoT_w/o_fact. Furthermore,
the experiment results validate that the optimiza-
tion on the factuality of reasoning processes in EoT
further enhances the reasoning capabilities of di-
verse LLMs. For instance, Table 8 demonstrates
that compared to EoT_w/o_fact, EoT improves

BLEURT, ROUGE-L and NLI result entail(%)
by about 5.1%, 6.0%, and 12.5% respectively, and
finally obtains the improvement of reliability score
by about 9.0% when using GPT-4 Turbo.

G.3 Effectiveness of Fidelity Optimization

We compare the performance of EoT with that of
EoT_w/o_fide, and then there are two insights can
be observed, which indicates the effectiveness of
behavior fidelity evolution in EoT. Firstly, com-
pared to EoT_w/o_fide, EoT produces reasoning
processes that achieve a significantly improved be-
havior fidelity. Specifically, as shown in Table 9
, when using Qwen2-72B, EoT increases the fi-
delity score by about 18.1%. This enhancement is
attributed to the fine-grained assessment of fidelity
of reasoning thoughts and the effective prompting
scheme aimed at faithfully explaining the behaviors
of LLMs.

Secondly, the mechanism that enhances behavior
fidelity in EoT facilitates the positive emergence of
reasoning capabilities in LLMs. For instance, com-
pared to EoT_w/o_fide, EoT increases the reliabil-
ity score by about 8.5% when using Qwen2-72B.
In detail, this improvement is mainly attributed to
that the fidelity enhancement achieved by EoT si-
multaneously enhances the reasoning capabilities
of LLMs from aspects of token overlapping and
semantic alignment with human judgement. Specif-
ically, EoT improves ROUGE-L and NLI result
entail(%) by about 4.8% and 9.9% respectively
when using Qwen2-72B.

G.4 Effectiveness of Reliability Optimization

We assess the performance of EoT in comparison to
EoT_w/o_reli to determine the effectiveness of the
evolution incorporated in the canonical EoT, which
aims to directly improve the overall reliability of
reasoning processes. As shown in Table 8, EoT
increases the reliability score by about 13.1% when
using GPT-4 Turbo, compared to EoT_w/o_reli.
For further details, EoT improves the BLEURT,
ROUGE-L and entail(%) by about 1.5%, 6.2%
and 16.8% respectively. These findings suggest
that explicitly addressing the reliability factor can
lead to a significant improvement in the overall
reasoning capabilities of LLMs, in contrast to the
unsupervised evolution that does not consider the
solving reliability under the guideline of previously
produced reasoning processes.
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G.5 Effectiveness of Multi-objective
Optimization on Three Factors

According to the experiment results of ablation
studies as mentioned above, it can be observed
that EoT achieves the best collaborative optimiza-
tion among the three factors compared with the
three variants. In other words, when considering
the three factors simultaneously, EoT produces the
evolved reasoning processes that achieves the best
trade-off among the three factors under the promise
of reasoning capability improvement on LLMs.

Firstly, excluding a factor from EoT can make
evolved reasoning processes achieve a better per-
formance on some other factors. However, this
improvement of performance on other factors is
always along with the degradation of the perfor-
mance on the excluded factor, and would further
compromise reasoning capabilities of LLMs. For
instance, as shown in Table 8 and Table 9, when us-
ing Qwen2-72B, EoT_w/o_fide improves the factu-
ality performance by about 2.1% compared to EoT.
However, EoT attains the improvement on fidelity
performance and the overall reasoning capabilities
by about 18.1% and 8.5% respectively.

Secondly, evolving reasoning process in terms
of fidelity and factuality in a unsupervised way,
can effectively optimize the behavior fidelity of
reasoning processes produced by diverse LLMs.
Nevertheless, EoT which evolves reasoning pro-
cess with supervised awareness of reliability perfor-
mance further enhance the factuality of produced
reasoning processes and the reasoning capability of
LLMs simultaneously. Specifically, compared to
EoT, EoT_w/o_reli improves the fidelity score by
about 1.9% and 5.3% when using Qwen2-72B and
GPT-4 Turbo, respectively. In contrast to that, EoT
improves the factuality score and reliability score
by about 13.8% and 7.8% when using Qwen2-72B,
and by about 2.7% and 13.1% when using GPT-4
Turbo, respectively.
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Figure 13: The CDF results of the reliability scores of
evolved reasoning processes for 40 complex tasks

H Additional Experiments to Validate the
Generality of EoT

In this appendix, we conduct additional experi-
ments for EoT using Qwen3-32B and Qwen3-253B
on 40 new QA tasks sourced from real operational
maintenance (O&M) systems of Alibaba’s cloud
clusters. These tasks cover application compila-
tion errors, Docker containers deployment, manage-
ment of access permission in workflows, and more.
We compare the performance of EoT with that of
three outstanding frameworks, namely xLLM, Cal-
ibrator and CoT-dec. Combining the results from
Section 4.2 and this appendix, we examine the gen-
erality of EoT from three key aspects: 1) the effec-
tiveness on diverse, knowledge-intensive reasoning
tasks; 2) scalability across LLMs of varying sizes;
and 3) adaptability to tasks with different knowl-
edge scales.

Table 10: The reliability performance for reasoning
processes evolved by EoT and baselines using LLMs of
diverse parameter sizes on additional complex tasks.

LLMs Models
Additional OM Tasks

BLEURT ROUGE-L
NLI results Reliability
entail(%) Score

Qwen3-32B

xLLM 0.637 0.457 59.12 0.546
Calibrator 0.679 0.528 64.31 0.585
CoT-dec 0.681 0.494 69.94 0.616

EoT (ours) 0.699 0.543 73.87 0.659

Qwen3-235B

xLLM 0.668 0.494 60.82 0.553
Calibrator 0.627 0.452 58.34 0.531
CoT-dec 0.715 0.530 67.56 0.630

EoT 0.736 0.577 77.83 0.686

H.1 Effectiveness of EoT on Additional
Knowledge-intensive Tasks

Reasoning Capability Table 10 presents the av-
erage reasoning performance of Qwen3-32B and
Qwen3-235B, when applying the four evolution
frameworks. The results indicate that the EoT out-
performs its counterparts in three aspects. First,
compared to the leading baseline, CoT-dec, EoT
improves reliability scores on the 40 questions
by about 7.0% and 8.9% using Qwen3-32B and
Qwen3-235B respectively. Second, in terms of
sensitivity to token and semantic variation, EoT
increases ROUGE-L and BLEURT scores by about
5.9% and 2.8% on average with Qwen3 models.
Third, for semantic alignment robustness, EoT
raises entail(%) by around 5.6% and 15.2% using
Qwen3-32B and Qwen3-235B respectively. These
findings further demonstrate that EoT effectively
enhance the reasoning capabilities of LLMs for
diverse, knowledge-intensive reasoning tasks.
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Moreover, Figure 13 visually illustrates the rea-
soning abilities of the two Qwen-3 models em-
powered by the four evolution frameworks on the
40 complex tasks. It can be observed that, when
using Qwen3 models, EoT achieves a reliability
score > 0.6 for 63.75% of tasks on average. This
surpasses xLLM, Calibrator, and CoT-dec by ap-
proximately 27.5%, 27.5%, and 20%, respectively.
These findings further confirm the strong generality
of EoT in improving reasoning capabilities across
different tasks.

Table 11: The performance on factuality and fidelity
for reasoning processes evolved by EoT and baselines
using LLMs of varying scales on additional tasks.

LLMs Models
Additional OM Tasks
Factuality Fidelity

Sfac Sfid

Qwen3-32B

xLLM 0.884 0.220
Calibrator 0.831 0.242
CoT-dec 0.822 0.193

EoT 0.879 0.274

Qwen3-235B

xLLM 0.900 0.221
Calibrator 0.877 0.248
CoT-dec 0.833 0.199

EoT 0.907 0.298
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Figure 14: The CDF results of the factuality scores of
evolved reasoning processes for 40 complex tasks

0.0 0.2 0.4 0.6
Fidelity Score

0

20

40

60

80

100

C
D

F(
%

)

EoT
Calibrator
xLLM
CoT-dec

(a) Qwen3-32B

0.0 0.2 0.4 0.6
Fidelity Score

0

20

40

60

80

100

C
D

F(
%

)

EoT
Calibrator
xLLM
CoT-dec

(b) Qwen3-235B

Figure 15: The CDF results of the fidelity scores of
evolved reasoning processes for 40 complex tasks

Factuality and Fidelity One of the key innova-
tions of EoT is its ability to achieve collaborative
optimization between the factuality and behavior
fidelity of thoughts and the reasoning capabilities
of LLMs. In this sub-appendix, we focus on evalu-
ating the generality of EoT in enhancing the factu-
ality and fidelity of thoughts. Table 11 reports the

average fidelity and factuality performance of rea-
soning processes evolved by the four frameworks,
using Qwen3-32B and Qwen3-235B on the 40 ad-
ditional tasks. These results highlight the effective-
ness of EoT in different knowledge-intensive tasks
from two aspects.

First, EoT significantly enhances the behavior
fidelity of LLMs, demonstrating a leading ability to
reduce non-factual errors in thoughts. Compared to
the leading baseline Calibrator, EoT increases the fi-
delity score by approximately 13.2% and 20.1% on
the 40 tasks when using Qwen3-32B and Qwen3-
235B respectively. Second, in terms of factuality,
with Qwen3 models, EoT achieves an average fac-
tuality score that is extremely close to that of the
leading baseline xLLM. These results confirm the
strong adaptability of EoT in enhancing both factu-
ality and behavior fidelity across various question-
answering tasks. Furthermore, by combining the
results from Table 10 and Table 11, it is evident
that the collaborative optimization among the three
key factors of reasoning demonstrates significant
robustness on a wide range of tasks and different
LLMs.

Additionally, Figure 14 and Figure 15 intuitively
show the CDF results for the factuality and be-
havior fidelity of reasoning processes evolved by
the four frameworks across the 40 complex tasks,
respectively. We find that, when using Qwen3 mod-
els, EoT achieves a factuality score > 0.8 for an
average of 82.5% of tasks. This surpasses xLLM,
Calibrator and CoT-dec by approximately 1.25%,
13.75%, and 18.75%, respectively. Meanwhile,
EoT achieves a fidelity score > 0.25 for an av-
erage of 63.75% of tasks, outperforming xLLM,
Calibrator and CoT-dec by around 40.0%, 22.5%
and 48.75% respectively. These findings further
confirm that EoT can effectively improve both the
factuality and fidelity of evolved thoughts across a
wide range of questions.

H.2 Scalability Across LLMs of Varying Sizes
As shown in Table 10 and Table 4 in Section 4, com-
pared to the leading baseline, EoT improves the
average reliability score by approximately 7.0%,
8.8%, and 8.9% when using Qwen3-32B, Qwen2-
72B, and Qwen3-235B, respectively. These results
indicate that EoT effectively enhances the reason-
ing capabilities of LLMs across different parameter
sizes.

Additionally, Table 11 and Table 5 show that,
compared to leading counterparts, EoT improves
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Table 12: The performance of six frameworks on the three task categories in terms of reliability, factuality and
fidelity.

LLMs Models
Short Medium Long

Reliability Factuality Fidelity Reliability Factuality Fidelity Reliability Factuality Fidelity
Srel Sfac Sfid Srel Sfac Sfid Srel Sfac Sfid

Qwen2

BoT 0.435 0.797 0.211 0.563 0.862 0.229 0.510 0.884 0.246
xLLM 0.616 0.749 0.196 0.774 0.898 0.151 0.668 0.881 0.150

Calibrator 0.608 0.861 0.217 0.729 0.971 0.152 0.657 0.926 0.149
CoT-dec 0.721 0.740 0.170 0.743 0.797 0.175 0.744 0.716 0.178

Factor-dec 0.619 0.792 0.204 0.741 0.900 0.198 0.625 0.770 0.196
EoT (ours) 0.719 0.864 0.265 0.829 0.945 0.251 0.851 0.929 0.208

GPT-4

BoT 0.467 0.815 0.230 0.631 0.869 0.206 0.540 0.949 0.213
xLLM 0.636 0.680 0.218 0.762 0.876 0.152 0.695 0.829 0.187

Calibrator 0.623 0.899 0.229 0.744 0.952 0.187 0.673 0.926 0.182
CoT-dec 0.701 0.766 0.176 0.818 0.940 0.167 0.764 0.928 0.180

Factor-dec 0.653 0.827 0.215 0.752 0.950 0.208 0.788 0.893 0.220
EoT (ours) 0.732 0.917 0.287 0.825 0.966 0.278 0.794 0.963 0.227

the behavior fidelity of evolved thoughts by about
13.2%, 10.8% and 20.1% when using the Qwen
models with 32B, 72B and 235B parameters, re-
spectively. Meanwhile, EoT achieves factuality
performance that is close to the leading baselines
across these LLMs of different scales. Overall,
these results confirm that EoT demonstrates strong
scalability when applied to LLMs with a wide
range of parameter sizes.

H.3 Generality of EoT under Varying Context
Length

As shown in Table 2, we have conducted experi-
ments on hundreds of tasks which address complex
reasoning within contexts ranging from thousands
to tens of thousands of words. To further exam-
ine the generality of EoT for tasks having varying
knowledge intensity, this sub-appendix investigates
the effectiveness of EoT under the different con-
ditions of context length. Specifically, our overall
evaluation presented in Section 4 involves 100 dif-
ferent tasks, and we classify them into three cat-
egories: 1) short tasks, each of which contains
context fewer than 5,000 words; 2) medium tasks,
each of which has context more than 5,000 words
and fewer than 10,000 words; and 3) long tasks,
each of which involves context more than 10,000
words. The short, medium and long categories
account for 64%, 24% and 12% of the 100 tasks
respectively.

Table 12 presents the performance of EoT and
five baselines on the three task categories in terms
of reliability, factuality, and fidelity. It can be ob-
served that, when using GPT-4, EoT outperforms
all five baselines across all three categories of tasks
with respect to these metrics. Additionally, when
using Qwen2-72B to handle tasks with varying
context lengths, EoT still achieves the best overall
performance in collaborative optimization across
reliability, factuality, and fidelity. These results in-

dicate that EoT demonstrates strong adaptability to
tasks with different knowledge scales.

I Significance of Performance
Improvement or Decrease

In this appendix, we use the T-test, an appropriate
method of statistical test, to evaluate the signif-
icance of performance improvement or decrease
presented in Table 4 and Table 5 in our submitted
manuscript. In general, for each of the five base-
lines, we compute the p-value in T-test between
the distribution of each performance metric ob-
tained by the baseline and EoT respectively when
using each type of LLMs on each dataset. Specif-
ically, the performance metric includes BLEURT,
ROUGE-L, NLI score and reliability score for
reasoning capability evaluation and the factuality
score and fidelity score for the evaluation of factu-
ality and behavior fidelity of reasoning processes.
When computing the p-value of any metric for each
baseline on a specific dataset, the performance dis-
tribution is estimated among the metric value for
each question in the dataset. A lower p-value rep-
resents a higher significance for performance im-
provement and decrease, and p-value ≤ 0.05 often
indicates that the evaluation results achieve the suf-
ficient significance in statistical tests.

As for the performance metrics reflecting the
reasoning capability of LLMs, namely BLEURT,
ROUGE-L, NLI results and reliability score, As
presented in Table 13, the p-value between perfor-
mance achieved by the baselines and that obtained
by EoT can be limited below 0.05 in most scenar-
ios. These results indicate that the performance im-
provement or decrease achieved by EoT in terms of
reasoning capability of LLMs which are presented
in our submitted manuscript, have the outstanding
significance. Thus, our conducted evaluations and
the conclusion that EoT effectively achieves the
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Table 13: The p-value of performance improvement or decrease in terms of reasoning capability of LLMs between
the five baselines and EoT in T-test.

LLMs Models
OpsQA LongBench

BLEURT ROUGE-L
NLI results Reliability

BLEURT ROUGE-L
NLI results Reliability

entail(%) Score entail(%) Score

Qwen2

BoT 8.602× 10−5 3.720× 10−6 6.449× 10−10 6.463× 10−10 6.007× 10−9 2.843× 10−7 3.143× 10−6 2.308× 10−9

xLLM 0.011 0.003 1.362× 10−5 3.263× 10−7 1.561× 10−9 1.598× 10−7 0.026 0.001
Calibrator 0.028 0.036 0.006 9.268× 10−6 1.032× 10−10 8.322× 10−8 0.003 3.122× 10−7

CoT-dec 0.023 0.043 0.008 0.043 1.690× 10−7 6.397× 10−5 0.221 0.038
Factor-dec 0.014 1.343× 10−5 1.657× 10−6 2.380× 10−7 5.173× 10−9 2.270× 10−6 0.030 0.003

GPT-4

BoT 9.132× 10−7 1.546× 10−7 2.110× 10−9 5.074× 10−11 5.971× 10−9 2.993× 10−9 1.892× 10−6 3.809× 10−9

xLLM 0.036 0.045 5.120× 10−8 3.042× 10−8 0.047 0.034 0.013 9.875× 10−4

Calibrator 0.034 0.037 3.330× 10−4 2.664× 10−4 4.896× 10−5 1.813× 10−4 7.135× 10−4 6.534× 10−6

CoT-dec 0.014 0.446 0.039 0.040 0.005 0.041 0.235 0.043
Factor-dec 0.001 1.073× 10−8 0.001 7.063× 10−4 5.572× 10−6 3.859× 10−5 3.864× 10−4 0.001

enhancement of reasoning capability have a reason-
able robustness. Nevertheless, we find that p-value
significantly exceeding 0.05 only occurs between
the value of NLI results achieved by the CoT-dec
and EoT respectively on LongBench dataset. This
is mainly attributed to that CoT-dec and EoT ob-
tains the similar performance of reasoning capabil-
ity on the aspects of semantic alignment robustness
on LongBench dataset. Since EoT achieves ade-
quate significance of performance improvement for
all the remaining metrics i.e., BLEURT, ROUGE-L
and reliability score, it still can be regarded that
EoT enhances the reasoning capability of LLMs
compared with CoT-dec in a robust way on Long-
Bench dataset. In future, we will evaluate the per-
formance difference between NLI results of CoT-
dec and EoT on a larger scale of datasets.

Table 14: The p-value of performance improvement or
decrease in terms of factuality and fidelity for reasoning
processes of reasoning processes between the five base-
lines and EoT in T-test.

LLMs Models
OpsQA LongBench

Factuality Fidelity Factuality Fidelity
Sfac Sfid Sfac Sfid

Qwen2

BoT 0.039 0.041 0.017 0.045
xLLM 0.003 1.215× 10−4 1.590× 10−4 2.047× 10−5

Calibrator 4.258× 10−4 0.046 0.072 2.550× 10−4

CoT-dec 1.142× 10−9 3.172× 10−13 0.007 0.002
Factor-dec 8.081× 10−5 1.488× 10−6 0.045 0.032

GPT-4

BoT 0.001 2.604× 10−6 0.009 0.027
xLLM 3.667× 10−16 1.010× 10−4 2.988× 10−6 1.470× 10−9

Calibrator 0.039 0.041 0.087 6.041× 10−6

CoT-dec 1.644× 10−7 8.337× 10−7 0.074 1.372× 10−6

Factor-dec 8.267× 10−5 4.683× 10−5 0.062 8.401× 10−6

As for the performance metrics mirroring fac-
tuality and behavior fidelity of evolved reasoning
processes, It can be observed in Table 14 that, on
OpsQA dataset, p-value ≤ 0.05 occurs for each
metric achieved by the five baselines in our evalua-
tion. Nevertheless, on LonBench dataset, we find
that p-value for factuality score achieved by Cal-
ibrator, CoT-dec and Factor-dec slightly exceeds
0.05 when using GPT-4 Turbo. This is because
that these three baselines and EoT all obtain the
outstanding but close performance on factuality of

reasoning processes. We will use more open-source
dataset to further evaluate the performance differ-
ence on factuality among these four frameworks in
the future.
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