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Abstract

Model NLP models are commonly trained (or
fine-tuned) on datasets from untrusted plat-
forms like HuggingFace, posing significant
risks of data poisoning attacks. A practical yet
underexplored challenge arises when such back-
doors are discovered after model deployment,
making retraining-required defenses less desir-
able due to computational costs and data con-
straints. In this work, we propose Guided Mod-
ule Substitution (GMS), an effective retraining-
free method based on guided merging of the
victim model with just a single proxy model.
Unlike prior ad-hoc merging defenses, GMS
uses a guided trade-off signal between utility
and backdoor to selectively replaces modules
in the victim model. GMS offers four desir-
able properties: (1) robustness to the choice
and trustworthiness of the proxy model, (2)
applicability under inaccurate data knowledge,
(3) stability across hyperparameters, and (4)
transferability across different attacks. Exten-
sive experiments on encoder models and de-
coder LLMs demonstrate the strong effective-
ness of GMS. GMS significantly outperforms
even the strongest defense baseline, particu-
larly against challenging attacks like LWS. The
code is available at https://github.com/
weijun-1/guided-module-substitution.

1 Introduction

Modern NLP models are frequently adapted to spe-
cific downstream tasks through fine-tuning on cus-
tom datasets (Howard and Ruder, 2018). In prac-
tice, these datasets are often collected from diverse
sources, some of which may be unreliable (e.g.,
open repositories like HuggingFace (Lhoest et al.,
2021)). As a result, models can unknowingly in-
corporate poisoned data, leading to backdoor vul-
nerability (Zhang et al., 2021; Xu et al., 2021):
a backdoored model, trained with poisoned data,
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behaves normally on clean inputs but misbehaves
when exposed to the trigger (Bai et al., 2025).

A critical yet underexplored problem arises
when such backdoors are discovered after model
deployment. Existing defenses, such as data fil-
tering and retraining (He et al., 2024), pruning
followed by fine-tuning (Liu et al., 2018; Zhao
et al., 2024b), or unlearning backdoors based on
clean (Li et al., 2023) or poisoned data (Min et al.,
2024; Li et al., 2021b; Chen et al., 2022), typically
incur substantial computational costs (Wu et al.,
2022)—especially for large-scale models or propri-
etary pipelines. This raises a practical and timely
question: Can we effectively purify a trained back-
doored model without retraining?

Recent work (Arora et al., 2024) has proposed
model merging as a cost-efficient and retraining-
free defense method for model purification: lever-
aging the abundance of open-source proxy mod-
els online!, this approach merges several proxy
models—backdoored or not—with the victim model.
While promising, this approach relies on ad hoc
merging of multiple models with no principled
selection, such as utility and defense performance.
Its effectiveness is thus unpredictable and sensi-
tive to the number of models involved. Our later
experiments in Section 5.2 demonstrate that when
only a single proxy model is available, such de-
fenses become ineffective. More seriously, In prac-
tice, collecting more homogeneous proxy models
also requires more effort and often harm utility
more (Zhou et al., 2025a; Wang et al., 2025b), even
though more merged parameters can help neutral-
ize backdoors. We therefore target a more challeng-
ing scenario—designing guided merging using only
one proxy model.

In this work, we propose a simple yet effective

'For reference, on Hugging Face, there are 74 LLaMA-
7B and 262 BERT-base models trained on SST-2 alone, and
the pool of proxy models is even larger when considering all
datasets within the same task domain.
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alternative: guided merging with a single proxy
model. Rather than blindly merging models, we
explicitly guide the merging process using a signal
that approximates the trade-off between utility and
backdoor risk. Intuitively, if retaining a particular
module from the victim model contributes signifi-
cantly more to the attack performance than to task
utility, it is likely critical for encoding backdoor
features. We thus progressively identify such mod-
ules and replace them with their counterparts from
the proxy model, as long as the resulting utility
degradation remains limited relative to backdoor
mitigation gain. We refer to this method as Guided
Module-Substitution (GMS). While training-free
and more efficient than prior model-merging-based
defenses, our method GMS not only retains the
robustness of model-merging defenses to proxy
model trustworthiness, but is also tolerant of imper-
fect data knowledge, stable across hyperparameters,
and exhibits strong transferability across different
attacks. Further discussion of these desirable prop-
erties is in Section 5.3.
The contributions of this work are as follows.

1. We propose GMS, the first backdoor purification
method based on guided merging of a victim
model with a single proxy model. This design
enables purification without retraining while re-
maining efficient and practical.

2. Experiments on standard NLP models and
LLMs (Section 5.2) show that GMS consistently
surpasses competitive defense baselines, with
especially strong performance against the more
challenging attacks like LWS and HiddenKiller.

3. We further validate four desirable properties of
GMS in Section 5.3 and Appendices B.4 to B.12,
namely (1) robustness to proxy model choices,
(2) applicability to varied data conditions, (3)
stability across hyperparameters, and (4) trans-
ferability across attacks.

2 Related works

Backdoor attack. Backdoor attacks aim to ma-
nipulate models to behave normally on benign in-
puts while exhibiting attacker-controlled behav-
ior when specific triggers are present. They can
be categorized into two series (Wu et al., 2022):
(1) Data-poisoning attacks, exemplified by Bad-
Nets (Gu et al., 2017), involve tampering with a
subset of training data by adding triggers and alter-
ing labels, making them practical in real-world sce-
narios with minimal attacker assumptions (Turner

et al., 2019; Carlini and Terzis, 2022; Goldblum
et al., 2023; Li et al., 2021c¢). Initially explored in
image classification, backdoor attacks have since
raised significant security concerns in NLP (Dai
etal., 2019; Qi et al., 2021c,b) with triggers range
from misspelled words (Chen et al., 2021), rare
words (Yang et al., 2021a; Kurita et al., 2020)
and syntactic structures (Qi et al., 2021b) to text
styles (Pan et al., 2022), posing serious challenges
for detection. (2) Training-control attacks, on the
other hand, assume complete control over the train-
ing process and data (Nguyen and Tran, 2021; Ku-
rita et al., 2020), with advances such as layer-wise
weight poisoning ensuring backdoor persistence
even after fine-tuning (Li et al., 2021a). In this
work, we focus on data-poisoning backdoor at-
tacks in NLP due to their widespread applicability
and practical implications.

Backdoor defense. Post-training backdoor de-
fense approaches can be broadly categorized as:
(1) Backdoor sample detection followed by train-
ing, which first filters poisoned samples from the
dataset and then retrains or fine-tunes the model.
These defenses typically rely on the assumption
that poisoned samples exhibit distinct character-
istics compared to clean (benign) ones, enabling
their detection (Qi et al., 2021a; Yang et al., 2021b;
Tran et al., 2018; He et al., 2023), or attempt to
reverse-engineer backdoor triggers to neutralize
their impact (Wang et al., 2019, 2022, 2023; Xu
et al., 2024). Afterward, such strategies usually in-
volve unlearning the identified backdoor samples or
retraining/fine-tuning on the filtered dataset. How-
ever, their effectiveness is often unsatisfactory (Sun
et al., 2025; Wang et al., 2023; Qi et al., 2021a), pri-
marily because accurately identifying all poisoned
samples is (increasing) difficult (Wu et al., 2022; Qi
et al., 2021a; Yang et al., 2021b; Tran et al., 2018;
He et al., 2023), leaving residual backdoor behavior
even after retraining or unlearning. Our method, in
this regard, compensates for these shortcomings by
being more robust to data filtering quality, and thus
provides a more reliable alternative to unlearning-
or retraining-based defenses. (2) Backdoor model
purification: These methods aim to eliminate back-
door features directly from a well-trained model
and are generally regarded as achieving state-of-
the-art defense performance (Zhu et al., 2023; Zhao
et al., 2024b). Common approaches involve merg-
ing parameters with other proxy models (Arora
et al., 2024; Chen et al., 2024a), or pruning and fine-
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tuning using a limited amount of clean data (Wu
and Wang, 2021; Min et al., 2023; Liu et al., 2018;
Zhao et al., 2024b; Zhu et al., 2023), which may
sometimes be assisted by clean proxy models as
well (Liu et al., 2018; Zhang et al., 2023). Our
work advances the second line of research by mini-
mizing the number of auxiliary models to one and
by eliminating the need for additional training and
strictly clean datasets.

Model merge. Model merging methods have
emerged as an efficient way to build powerful
models by combining existing trained domain-
specialized models without requiring extensive
retraining (Wortsman et al., 2022; Ilharco et al.,
2023; Cheng et al., 2025). Most advances focus
on developing utility-preserving multi-task mod-
els (e.g., merging models trained on different tasks
like coding and mathematics (He et al., 2025)),
or stronger domain-specific models by combin-
ing within-domain models (Wortsman et al., 2022).
Surprisingly, recent work shows that naive weight
averaging across multiple models can mitigate
backdoors (Arora et al., 2024). Yet such blind
merging is inefficient-requiring unpredictable trial-
and-error in model collection, since one cannot
know in advance how many models are needed for
purification—and often harmful, as merging many
models can yield utility drops from parameter inter-
ference and redundancy (Zhou et al., 2025a; Wang
et al., 2025b). Thus, our work address these issues
by proposing effective and efficient guided merging
with a single proxy model. Note that while there
are some works studying how model merging sys-
tems themselves can be exploited for backdooring,
leveraging the fact that merging methods aim to
preserve (task) parameters from all models (Wang
et al., 2025a; Zhang et al., 2024; Yuan et al., 2025),
our objective is fundamentally different: we use
merging as a tool to purify a single target model,
where only the target model’s clean task is relevant
and other tasks can all be discarded. Since our
main goal is to demonstrate guided merging can
act as a defense—and obtaining a single homoge-
neous proxy is practical-we focus on the standard
homogeneous setting. As heterogeneous merging
itself remains an open challenge (Xu et al., 2025;
Du et al., 2025), exploring its use for defense is left
to future work.

Safety Localization. Recent studies suggest that
safety-critical behaviors in LLMs are often local-
ized to specific layers or components. For example,

jailbreak defenses identify safety layers that are
critical for aligning harmful queries (Zhao et al.,
2024a; Ouyang et al., 2025; Zhou et al., 2024); a
small set of safety layers (Li et al., 2025) or safety
modules (e.g., attention heads) (Zhou et al., 2025b)
are crucial for distinguishing malicious from be-
nign inputs; and modifying specific safety-related
parameters can further enhance alignment (Wei
et al., 2024). Similarly, backdoor research shows
that certain layers (Jebreel et al., 2023) and even
neurons or heads (Zhao et al., 2024b) disproportion-
ately influence attack success, enabling defenses
through targeted editing or masking. These find-
ings motivate our focus on module- and layer-level
guided merging, which balances efficiency with
effectiveness.

3 Preliminary

Modern neural network (NN) architectures can be
viewed as layer-wise compositions of functional
blocks, where each block serves as a reusable unit
performing a well-defined computational operation.
Hereby, we define two aspects to systematically
describe generic NN architectures:

1. Layer Set (£) is the set of block indices that
captures the depth of the model.

2. Module Set (M) is the set of representative
functional modules within each block.

Transformer blocks. In this paper, we use
Transformer-based architecture (Vaswani et al.,
2017) as the testbed, given its widespread atten-
tion and implementation in NLP.

For each Transformer block, the input will be
processed through Attention and Feed-Forward
Network (FFN) modules. An attention module con-
tains four components: Wg, Wi, Wy, and Wo,
projecting the input into query, key, value, and the
final output representation, respectively. The fol-
lowing FFN contains two components: W for
the forward layer and Wp for the projection layer,
connected by a non-linear activation function.

In total, each Transformer block contains
six key functional modules with parameters
Wo, Wk, Wy, Wo,Wg, and Wp. For simplic-
ity, we adopt notations Q, K, V,O, F, and P to
refer to these weight matrices throughout the pa-
per. Accordingly, we define the module set for
Transformer models M = {Q,K,V,O,F,P}
and layer set L = {1,2,... L}.
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Figure 1: The pipeline of our method.

used for computing score

in Equation (1). Step 2: Iteratively update a substitution matrix S to greedily maximize the trade-off score

between backdoor removal and utility preservation.

. For more details, refer to Algorithm 1.

4 Methodology

In Section 4.1, we introduce the problem setting,
and we present our methods in Section 4.2.

4.1 Problem setting

Defense Setting. The defender (e.g., a model ven-
dor) has trained a potentially backdoored victim
model M, on an unauthenticated dataset D, which
may contain poisoned samples. Following the stan-
dard setting (Li et al., 2021b), we assume the de-
fender has full control over the training process
but lacks prior knowledge of the backdoor pat-
terns, their proportion, or their distribution within
D. If an isolation method is employed, it may only
identify a subset of the poisoned examples, as per-
fect detection is not guaranteed. The defender has
white-box access to the trained victim model M,
as well as access to a proxy model M), trained on
similar downstream tasks.

4.2 Our method

We aim to combine a victim model with a proxy
model. Unlike traditional model merging (Arora
et al., 2024), which prioritizes utility across all
models’ tasks, our method targets backdoor re-
moval and requires preserving only the clean task
performance of the target model. This enables a
more targeted substitution strategy: directly replac-
ing backdoor-encoded modules in the victim model
M, with counterparts from the proxy model M,,.

Specifically, we operate at the module- and layer-
level, inspired by recent findings that malicious
behaviors in LLMs are often localized to specific
safety layers and safety modules (discussed in Sec-
tion 2). While not the only possible granularity, this
level strikes a balance between efficiency and effec-
tiveness, and offers greater robustness and transfer-
ability than neuron-level edits, as discussed in Sec-
tion 4.2.3 and Section 5.3.

Our main algorithm, Guided Module-
Substitution (GMS), is detailed in Section 4.2.3.
Section 4.2.1 defines the objective optimized by
GMS, and Section 4.2.2 provides an example of
constructing proxy datasets.

4.2.1 Objective

The defender’s objective is to identify a purified
model M within the model space M, defined by all
possible substitution strategies over the layer set £
and module set M, that effectively eliminates the
backdoor while preserving task utility:

argmax (1 —a)-Aper(M)+a-(1—Apee(M)) (1)
M

where A, (M )is a score that reflects the extent of
backdoor removal and A, (M) assesses the reduc-
tion in task utility. Specifically, if given access to
clean and poisoned samples, we can evaluate the
attack success rate (ASR) on poisoned data and the
clean accuracy (ACC) on benign inputs. The im-
provement in backdoor defense and degradation in
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utility for a given model M relative to the original
victim model M, are defined as:

Aasr(]\4) = Sasr(Mv) - Sasr(M)> (2)
Aacc(]\4) = sacc(Mv) - Sacc(M)- (3)

The hyperparameter o € [0, 1] controls the trade-
off between backdoor removal and task utility
preservation. A larger « favors utility, while a
smaller « prioritizes backdoor defense.

4.2.2 Proxy datasets Dy;son and D jcqn

To approximate Equations (2) and (3), we extract
two proxy datasets: a proxy clean set Dgjean and
a proxy poison set Dpgison, Without assuming any
prior knowledge of the backdoor. We only fol-
low the standard setting to assume access to the
(potentially poisoned) training set D, or to a sig-
nificantly smaller subset (e.g., 1%) of it (e.g., in
user-reporting scenarios).

In literature, various methods can be used to con-
struct proxy datasets under such settings, such as
sample diagnosis (Gao et al., 2019; Huang et al.,
2022; Guo et al., 2023) and trigger inversion (Wang
etal., 2019, 2022, 2023; Xu et al., 2024). For sim-
plicity, we adopt the following heuristics in this
paper: we construct Dcjean Via random sampling,
assuming that poisoned samples do not dominate
the dataset; and we construct Dpison Using a naive
confidence-based heuristic, based on the obser-
vation that poisoned examples often yield higher
output confidence scores on backdoored models (Li
et al., 2021b; Swayamdipta et al., 2020).

4.2.3 Greedy search for purified model ),

Using the extracted proxy datasets Dpoison and
Delean, We compute (potentially inaccurate) esti-
mates of Equations (2) and (3)%and plug into the
objective Equation (1) to get the scoring function
that guides the substitution process.

While our goal is to purify M, by replacing
its modules across L layers, an exhaustive search
is computationally impractical due to its expo-
nential complexity (e.g., 2612 for a BERT-base
model (Devlin et al., 2019)). Moreover, consider-
ing individual parameters as functional units for
editing often falls short in breaking backdoor con-
nections (thereby leading prior purification works
to heavily rely on clean fine-tuning to restore clean

2An imperfect Dyoison Will lead to an underestimated
A (M), while an impure Dejean results in an overestimated
Agec(M). However, what matters is only the relative scaling
between these two after weighting by « (Appendix C).

Algorithm 1 Guided-Module-Substitution (GMS)

1: Input: Victim model M, proxy model M, module set
M, layer set L, proxy datasets Deiean and Dpoison

2: Output: Purified model Mpyre

3: Initialize S < 1\M\><|L\v Chest < —00, Spest +— &
4: (Sqce, Sasr) < Evaluate(M,)

5: Modules

6: while [M| > 1or |£]| > 1do

7 cf— —00, S — o

8 for each m € M or do

9: Sl<—SWitth7m:0Lxl OI‘SL: =014 M
10: M, + Replace(M,, My, S)

11: ¢ + ComputeScore(Mpure, Sacc; Sasr)

12: if c > ¢ then

13: Update ¢* + ¢, S* < §’

14: end if

15: end for

16: S < S™ and update M, L accordingly

17: if ¢* > cpest then

18: Update cpest < €*, Spest < S™

19: end if

20: if cpest not been updated for 7 iterations then
21: break

22: end if

23: end while

24: return My, = Replace(My, M, Spest)

features (Liu et al., 2018)), we propose a greedy
algorithm that transforms the problem into a fea-
sible search—balancing granularity and scalability
by iteratively identifying and replacing the most
critical module, maximizing the objective score to
derive the optimal purified model M.

Purifying M, by module substitution. Given a
victim model M,, (likely to has high ACC and high
ASR), we next illustrate how to identify the specific
modules and layers that, when substituted, allow
the model to maintain strong performance on the
clean task (i.e., minimizing A,..) while eliminating
the backdoor features (i.e., maximizing A ).

Our algorithm, as demonstrated in Figure 1
and Algorithm 1, tracks the parameters selected
for substitution using a module set (M) and a layer
set (£), e.g., if M ={O, F, P} and L = {7,8,9},
it indicates that the O, F', and P module parameters
in the 7th, 8th, and 9th layers of the victim model
M, should be replaced with the corresponding pa-
rameters from proxy model M,,. For simplicity, we
introduce a substitution matrix S € {0, 1}MI*I£|
to specify which modules in which layer in the vic-
tim model M, are selected for substitution. Note
that while the shape of S is determined by the
initial sizes of sets M and L, these two sets are
iteratively updated throughout the algorithm. Each
row of S corresponds to a layer in the layer set
L, and each column corresponds to a module in
the module set M. The value of S[l,m] = 1 in-
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dicates that the module m € M in layer ! € £
in the victim model M, is selected for substitu-
tion, and S|/, m] = 0 otherwise. Given .S, we can
succinctly represent the parameter substitution as
S®M,+ (1-S5)® M,, where ® denotes the
element-wise product.

Since the primary goal is backdoor removal, we
start by selecting all modules in M, to be replaced
with those of M, i.e., M = {K,Q,V,O,F, P},
L={1,...,L}, S = 1pqx|g)- At t-th iteration,
the algorithm considers two types of updates to S*:
deselecting a module from the current module set
M (affecting all selected layers) or

from the layer set £ (affecting all selected
modules). The update that maximizes the score
in Equation (1) is applied to S*!. The process
continues until one of two conditions is met: (1)
further iterations will not yield a better strategy
(controlled by stopping patience 1); or (2) no ad-
ditional layers or modules can be removed, i.e.,
|M| = |£| = 1. Finally, the strategy S that yields
a purified model My, with the highest score is
returned. The complexity of our algorithm is a
practical quadratic O(|M|? + |£|?).

S Experiments

5.1 Experimental settings

Datasets. We evaluate our method on four datasets:
SST-2 (Socher et al., 2013), OLID (Zampieri et al.,
2019), MNLI (Williams et al., 2018), and AG-
NEWS (Zhang et al., 2015). These datasets cover
text classification and natural language inference
(NLI) tasks, including binary and multi-class clas-
sification scenarios, and are widely used for evalu-
ating text backdoor attacks and defenses (Qi et al.,
2021a; He et al., 2023; Gupta and Krishna, 2023;
Arora et al., 2024). We adapt the open-source
datasets provided by HuggingFace (Lhoest et al.,
2021). Table 1 are the statistics of these datasets.

Backdoor Attacks. We study defenses against
four prominent types of data-poisoning backdoor
attacks: (1) BadNets (Kurita et al., 2020), (2) In-
sertSent (Dai et al., 2019), (3) Learnable Word
Substitution (LWS) (Qi et al., 2021c¢), and (4) Hid-
denKiller (Qi et al., 2021b). The first two corre-
spond to insertion-based methods, while the latter
two involve synonym substitution and syntactic
paraphrasing approaches, respectively. A more re-
cent attack, BITE (Yan et al., 2023), is discussed
separately in Appendix B.3 due to its atypical be-
havior on benign models.

Dataset Classes Train & Target Class
Clean Poison
SST-2 2 67,349 872 444 Negative (0)
OLID 2 13,240 860 240 Not offensive (1)
MNLI 3 100,000 400 285 Neutral (1)
AGNews 4 120,000 7,600 5,700 Sports (1)

Table 1: The statistics of our evaluated datasets.

Follow Arora et al. (2024), we use rare words
{"cf", "mn", "bb", "tq", "mb" } as triggers for Bad-
Nets and phrases {"I watched this movie", "no
cross, no crown" } for InsertSent. The poison
target labels for each dataset are listed in Table 1.
While our main experiments focus on 20% poison
rate (in line with the literature (Dai et al., 2019; Qi
etal., 2021b; Arora et al., 2024)), i.e., 20% of train-
ing samples are poisoned, we also evaluate lower
poison rates of 10%, 5% in Appendix B.4.

Defense Baselines. We choose seven renowned
defenses as main baselines, including two data-
wise detection methods: (1) ONION (Qi et al.,
2021a) and (2) Z-Def. (He et al., 2023), and four
model-wise purification methods: (3) PURE (Zhao
et al., 2024b), (4) ABL (Li et al., 2021b), (5)
TIES (Yadav et al., 2023), (6) DARE (Yu et al.,
2024), and (7) WAG (Arora et al., 2024).

Among these, ONION and Z-Def. detect and
remove triggers from datasets. ONION identifies
outlier words (potential triggers) using language
models, e.g., GPT-2 (Radford et al., 2019), while Z-
Def. detects spurious correlations between tokens
and labels. In contrast, (2)-(7) are model purifica-
tion methods. PURE purifies the victim model us-
ing attention head pruning and normalization tech-
niques, and ABL introduces a robust anti-backdoor
training framework that first isolates, then unlearns
backdoor associations. TIES, DARE and WAG
are mode-merging baselines. We also report three
additional baselines in Appendix B.2: two model
purification methods, Fine-mixing (Zhang et al.,
2022) and Fine-purifying (Zhang et al., 2023), and
one data filtering method, SEEP (He et al., 2024),
followed by retraining.

Evaluation Metrics. Following previous litera-
ture (Qi et al., 2021a), we adopt Clean Accuracy
(CACC) and Attack Success Rate (ASR) to mea-
sure utility and defense performance respectively.
CACC is evaluated on a clean test set, where both
the samples and labels are ground truth. In contrast,
ASR is evaluated on a poisoned test set, where trig-
gers are implanted into each sample, and the labels
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BadNet InsertSent LWS HiddenKiller
Dataset Method ASR| CACC! ASR| CACC! ASR| CACCt ASR| CACCt
Benign 41 95.9 22 959 128 959 165 959
Victim 1000 960 1000 963 980 954 965 957
Proxy Model (IMDB) 74 89.1 43 8.1 108 891 137  89.1
ONION 568 929 999 933 857 919 929 99
Z-Def. 4.6 96.1 1.8 956 973 953 357 954
) PURE 0.0 50.9 0.0 50.9 0 50.9 0.0 50.9
SST- ABL 750 492 517 508 323 503 929 474
TIES 999 957 1000 958 935 952 888 953
DARE w/ TIES 993 960 1000 962 964 957 927 958
WAG 844 948  60.1 952 588 948 562 925
Ours (GMS) 45 91.6 1.9 925 9.7 917 104 912
Benign 1.9 95.4 0.5 95.4 0.5 95.4 1.1 95.4
Victim 999 951 996 953 996 945 1000  95.1
Proxy Model (BBCNews) 1.5 702 17 702 18 702 3.4 702
ONION 594 948 978 951 848 945 996 947
Z-Def. 1.6 95.3 0.4 953 979 961 1000  95.0
N ‘ PURE 2.8 86.3 3.0 85.4 6.5 85.0 9.4 84.6
GNews ABL 50.2 55.0 48.8 54.8 100.0 55.0 90.2 54.9
TIES 999 946 996 944 977 958 1000 944
DARE w/ TIES 99.9 952 996 954 978 965 1000 952
WAG 927 941 978 944 780 939 909 943
Ours (GMS) 25 91.0 24 92.6 32 91.7 6.5 90.4

Table 2: (Partial) Performance of our method on two datasets compared to baselines under various backdoor attacks
on the RoBERTa-large model, with each value averaged over three seeds. We highlight the top-2 lowest ASR results
in blue cells, and the highest CACC results in bold. Results for other datasets are in Table 8.

are flipped to the target class.

Implementation details. Following Arora et al.
(2024), we compare all methods on RoBERTa-
large (Liu et al., 2019), BERT-base-uncased (De-
vlin et al., 2019), as well as LLMs including Llama
2 7B (Touvron et al., 2023), Mistral 7B (Jiang et al.,
2023), and Qwen 2.5 7B (Team, 2024), with low-
rank adaptation LoRA (Hu et al., 2022). All vic-
tim models are fine-tuned on poisoned datasets
using the Adam optimizer with no weight de-
cay (Kingma and Ba, 2015) and a learning rate of
2 x 1075, All defense baselines are implemented
based on their open-source repositories (see Ap-
pendix A.3). The high-confidence proxy datasets
(Deiean and Dpoison) are extracted following Sec-
tion 4.2.2. To train proxy models for selection,
we use IMDB (Zhang et al., 2015) for the SST-
2 victim model, Twitter Abusive (Founta et al.,
2018) for the OLID, SNLI (Young et al., 2014) for
MNLI, and BBCNews (Greene and Cunningham,
2006) for AGNews.

Our method uses hyperparameter o in Equa-
tion (1) to control the trade-off between backdoor
defense and task utility. By default, « is set to 0.4
but can be adjusted based on priorities: smaller
values (e.g., 0.1) for lower ASR and larger values
(e.g., 1.0) for higher utility. The stopping patience

T = 5 is default in Algorithm 1. In Appendix B.5,
we justify these choices and show that our method
is NOT particularly sensitive to hyperparameters.

5.2 Main results

Table 2 presents the performance of our method
compared to all baselines under benchmark back-
door attacks on the RoBERTa-large model, with
scores averaged over three runs using different
seeds. Results on other datasets and architec-
tures are provided in Appendix B.1. Across all
datasets and backdoor attacks, our method con-
sistently ranks among the top 2, regarding back-
door removal performance, with minor harm to
clean accuracy. In particular, under the two par-
ticularly challenging backdoor tasks, LWS and
HiddenKiller, GMS demonstrates significant im-
provements (i.e., at least 25%) over all baselines—
for example, for SST-2, our method reduces the
ASR on LWS to 9.7%, compared to 58.8% for the
following baseline Z-Def. While Z-Def achieves
competitive performance with GMS in defending
against BadNet and InsertSent, Z-Def is much less
effective against LWS on both datasets. We at-
tribute this to Z-Def.’s reliance on lexical and syn-
tactic features to detect outliers in the poisoned
dataset, whereas LWS attacks subtly replace words
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with synonyms, effectively bypassing outlier de-
tection. As for PURE, another competitive re-
cent approach, we found its head-pruning step is
highly unstable across both tasks and architectures.
For example, it performs well on the BERT-base
model in Table 9 (following the settings reported in
PURE (Zhao et al., 2024b)), but performs poorly
on most tasks with RoBERTa-large. Unlearning-
based methods (ABL (Li et al., 2021b)) exhibit
similar issues—often degrading CACC more than
reducing ASR. Such instability has also been noted
in prior works (Liu et al., 2018; Wu et al., 2022),
which shows that these methods are sensitive to
both hyperparameter choices and the quality of
the proxy data. Additionally, we observed that all
model-merging baselines suffer in defense perfor-
mance when merging with a single proxy model,
aligning with the results in Arora et al. (2024), and
tend to prioritize preserving accuracy over remov-
ing backdoors. We discuss the potential reasons for
this and the instability of PURE in Appendix B.1.
We also compare our approach with two earlier
model purification baselines, Fine-mixing (Zhang
et al., 2022) and Fine-purifying (Zhang et al., 2023)
in Appendix B.2.

Performance on LLMs. Given the growing pop-
ularity of LLMs, we evaluate the performance of
our method on Llama-2-7B, Mistral-7B and Qwen-
2.5-7B for the SST-2 dataset (Table 4). Remarkably,
in all cases, GMS effectively removes backdoors.

Proxy Model Backdoor CACCtT ASRvictim |
Hidden Killer 95.4 4.5
BadNet (Diff. Trigger) 87.8 6.9
BadNet (Same Trigger) 95.8 100.0
Victim Model (BadNet) 95.6 100.0

Table 3: Proxy models with implanted backdoors can
still effectively purify victim models if the backdoor is
not identical in both attack strategy and trigger.

5.3 Ablation studies

We next examine the key property of GMS—
robustness across diverse proxy datasets. For com-
pleteness, we defer additional results to the ap-
pendix: stability under different hyperparameter
settings (Appendix B.5), transferability across at-
tacks (Appendix B.12), preservation of clean vic-
tim model utility (Appendix B.6), and resilience to
re-tuning attacks (Appendix B.10).

Proxy-model robustness: GMS retains the ro-
bustness property of model-merging defenses: it
is resilient to both the specific choice of the proxy
model and the benign or malicious nature of the
proxy model; i.e., as long as the backdoors in the
two models are not identical, the backdoor can be
effectively removed. We examine the sensitivity
of GMS to the selection of proxy models in two
scenarios. Scenario 1: Different proxies. We
evaluated the performance of using different proxy
models trained on homologous datasets, such as
IMDB, Yelp, and Amazon (Zhang et al., 2015), to
purify a victim model trained on SS7-2. As shown
in Table 5, our method is largely insensitive to
the choice of proxy model across all backdoor at-
tacks. Using any proxy model, GMS effectively de-
fends against all tested attacks. Scenario 2: Back-
doored proxies. We tested cases where the victim
model and the proxy model were trained on the
same dataset (SST2) with different backdoor at-
tacks (BadNet and Hidden Killer) or on different
datasets (SST2 and IMDB) with the same attacks
(BadNet). From Table 3 and Table 17, we observed
that as long as the backdoor in proxy model is not
identical to that in victim model (i.e., the same
backdoor strategy with an identical backdoor trig-
ger), GMS consistently mitigates the backdoor.
We attribute this to the combination of module-
level substitution and disruptive nature of model
merging, which breaks the backdoor pathway such
that a non-identical proxy cannot restore it.

Proxy-data robustness: Prior pruning- and
unlearning-based methods strictly rely on access to
clean data or known backdoor triggers (Min et al.,
2024; Li et al., 2021b; Chen et al., 2022; Li et al.,
2023), typically extracted from the training subset.
In contrast, GMS operates under more practical
settings, e.g., post-processing after suboptimal data
detections, where the data received is a mixture of
clean and poisoned samples. Our previous experi-
ments used D jeqr from random sampling (contain-
ing 20% poisoned data) and Dpy;son from heuristic
outlier detection. Table 7 shows that even when
70% of the “clean” proxy dataset is poisoned, GMS
is still effective in purification. In Appendix C,
we mathematically justify this and discuss the an-
alytical constraints on proxy datasets. These re-
sults demonstrate that our method is highly robust
to proxy-data construction. Nevertheless, Table 6
shows that more accurate proxy datasets—such as an
oracle clean or label-flipped poison dataset—can fur-
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BadNet InsertSent LWS HiddenKiller

Model Method

ASR| CACCT ASR| CACCtT ASR] CACCtT ASR| CAcCCt
Llama-2 Benign 3.6 96.7 3.5 96.7 14.9 96.7 15.2 96.7
Victim  100.0 97.0 100.0 97.1 98.7 96.1 95.9 96.7
GMS 3.5 91.7 3.6 93.4 12.2 91.5 7.6 91.1
Mistral Benign 3.8 97.1 4.5 97.1 7.7 97.1 12.3 97.1
Victim  100.0 95.8 100.0 96.5 98.9 95.5 95.9 96.4
GMS 4.4 92.1 7.1 92.4 3.8 91.9 53 91.9
Benign 5.0 97.0 2.7 97.0 15.1 97.0 15.7 97.0
Qwen-2.5 L

Victim  100.0 96.3 100.0 92.9 98.5 98.5 96.0 96.2
GMS 6.3 94.5 7.5 94.4 164 91.7 15.0 93.0

Table 4: Performance of our method on Liama-2-7b, Mistral-7b and Qwen-2.5-7b on SST-2 dataset, averaged over

three seeds.

BadNet InsertSent LWS HiddenKiller
Victim Model Proxy Model
et Xy ASR| CACC+ ASR], CACCt ASR| CACCT ASR| CACC+
IMDB 54 92238 16 94.0 12,6 938 1.0 93.0
SST-2 YELP 43 96.8 8.1 94.8 232 923 19.1 93.8
AMAZON 38 92.9 .1 95.8 20.1 92.6 13.5 93.8

Table 5: Proxy models trained on different datasets can all effectively purify victim models (trained on the SST-2).

Sub-proxy datasets ‘ GMS
Proxy Clean Proxy Poison ‘ CACC1T ASR|
Random Sample  Outlier Detection 93.6 3.2
Random Sample Oracle 94.9 4.1
Oracle Outlier Detection 92.7 4.3
Oracle Oracle 95.6 4.3
Benign SST-2 | 956 4.1

Table 6: Performance comparison of different sub-proxy
dataset configurations on GMS.

‘ SST-2 ‘ AGNews
Ratio p | CACCt ASR| | CACCt ASR
0.00 9358 338 | 9176 242
030 9151 315 | 9159 3.6l
0.60 89.11 518 | 88.67 1.42
0.70 89.11 518 | 88.67 1.42
0.80 89.11 518 | 9459 9975
0.90 89.11 518 | 9483  99.82

Table 7: Purification performance as the ratio p of poi-
soned data in extracted D, jcqn INCreases.

ther enhance performance, enabling precise mod-
ule identification and full utility preservation (e.g.,
CACC of 95.6%). However, even without optimal
proxies, our method consistently removes back-
doors, achieving benign-level ASR (4.1%) with
comparable CACC.

6 Conclusion

We propose Guided-Module-Substitution (GMS), a
model purification defense against data-poisoning
attacks in NLP based on guided merging of the

victim model with a single (existing) proxy model.
Extensive experiments on both standard NLP mod-
els and LLMs validate its effectiveness, particu-
larly against challenging attacks like LWS and Hid-
denKiller. Beyond strong empirical results, we
validated desirable properties of GMS: robustness
to proxy selection, tolerance to imperfect data, sta-
bility across hyperparameters, and transferability
across attacks. These findings suggest that guided
single-proxy merging offers a practical alternative
to retraining-based defenses.

Limitations

Our method advances model-merging-based de-
fenses by guiding the merging process with a trade-
off signal between task utility and backdoor risk,
reducing the requirement from a number of proxy
models to just one. One potential limitation is that,
like prior proxy-model-based defenses, we focus on
the homogeneous setting and do not explore hetero-
geneous proxies. We make this choice for two rea-
sons. First, in the defense scenario, merging serves
solely as a tool for purification rather than an end in
itself, so defender can control which proxy model
to use. In practice, obtaining a homogeneous proxy
is not difficult, making the heterogeneous case less
relevant for our scenarios. Second, our goal is
to introduce and validate the concept of guided
merging for backdoor defense, rather than to de-
velop state-of-the-art merging techniques. Since
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knowledge transfer across heterogeneous models
itself remains an open challenge (Xu et al., 2025;
Du et al., 2025), we leave such extensions to fu-
ture work. Moreover, while our method tolerates
the use of a malicious proxy model, as long as its
backdoor is not identical to the victim’s (i.e., the
same attack method with the exact same trigger,
which is rare in practice), as shown in Table 17,
further relaxing this, such as enabling defenses
against identically backdoored proxies or develop-
ing proxy-free approaches, could lead to even more
robust and powerful defense strategies.

Ethical statement

Our method introduces a retraining-free purifica-
tion approach for backdoored models, contributing
to mitigating security risks in NLP systems from
backdoor attacks. Additionally, our defense ap-
proach reduces the need for reannotating datasets
to ensure they are purely clean, minimizing the po-
tential harm of exposing annotators to harmfully
poisoned contents. While we do not anticipate any
direct negative consequences from this work, we
hope it inspires further advancements in the devel-
opment of robust, retraining-free defense methods
for more realistic scenarios in future research.
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A Experiment details

A.1 Experiment setup

We adopt the same training configuration as
WAG (Arora et al., 2024) to ensure a fair compar-
ison. This includes fine-tuning RoBERTa-large,
BERT-base-uncased, as well as LLMs includ-
ing Llama 2 7B (Touvron et al., 2023), Mistral
7B (Jiang et al., 2023), and Qwen 2.5 7B (Team,
2024) on poisoned datasets, using the Adam opti-
mizer with no weight decay (Kingma and Ba, 2015)
and a learning rate of 2 x 107°. For encoder mod-
els, the batch size, maximum sequence length, and
epoch are set to 32, 128, and 3, respectively. For de-
coder LLMs, due to computational limits, we adapt
low-rank adaptation (LoRA) (Hu et al., 2022) for
all the linear modules within the Transformer lay-
ers and apply our method to substitute those LoORA
modules after training. We train these LLMs for
2 epochs with a batch size of 8 and a maximum
sequence length of 128.

To validate our defense, we first adapt the afore-
mentioned backdoor methods and datasets to obtain
victim models. Specifically, to train backdoored
models, we construct poisoned datasets by inject-
ing triggers into the training split, while the val-
idation split is used to construct a clean and a
poison test set respectively. For MNLI, we use a
random subset of 100,000 samples to reduce over-
head. Next, we train proxy models on homologous
datasets to prepare for future merging. We then con-
struct high-confidence proxy-clean (D jeqy,) and
proxy-poison (Dpeison) sets from the training data
(using the methods illustrated in Section 4.2.2) to
guide our parameter substitution strategy search.

For a model trained on unverified data, access to
fully clean data is often not guaranteed. However,
the corresponding task is typically known to the
defender, providing an opportunity to identify ho-
mologous models trained on overlapping tasks that
can be used for merging. For instance, previous
works, WAG and PURE, utilized the IMDB (Maas
et al., 2011) dataset to purify models trained on poi-
soned SST-2 datasets, as both share the sentiment
classification task domain.

In this work, we select proxy models that share
a similar domain with the poisoned tasks. Specifi-
cally, we use Twitter Abusive (Founta et al., 2018)
for OLID, SNLI® (Young et al., 2014) for MNLI,
and BBCNews (Greene and Cunningham, 2006)
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for AGNews. To evaluate generalizability, we
use three sentiment classification datasets—IMDB,
YELP, and Amazon Reviews (Zhang et al., 2015)—
to purify victim SST-2 models through model merg-
ing. All datasets are downloaded from Hugging
Face, which adheres to the Apache License 2.0.

Our method involves only one hyperparameter,
a, as described in Equation (1), which controls
the preference between model utility and attack re-
sistance during the model merging strategy search.
We set a to 0.4 by default, which slightly favors
seeking a more attack-resistant model. It can be
adjusted to smaller values (e.g., 0.1) when a lower
ASR is the primary target, and to larger values (e.g.,
1.0) when high utility is demanded.

A.2 Computational Resources

We conduct experiments using three seeds on a
single A100 GPU, and report the average scores.
Running our method takes only 4 minutes on a
single GPU for a 24-layer RoBERTa-large architec-
ture.

A.3 Implementation details for baselines

We follow the open-source implementations for
each baseline, and basically using their default
hyper-parameters, while maintaining using the
identical datasets, backdoor settings and the trained
models for a fair comparison.

For the baseline DARE (Yu et al., 2024), it first
applies random parameter dropping and rescaling
to the involved models with a specified drop rate,
and then incorporates model merging techniques
to combine the processed models. Various model
merging methods can be integrated with DARE,
and we choose TIES merging as a representative,
as it demonstrates decent performance for encoder-
based models (e.g., bert-base, roberta-base). Their
method involves three tunable hyperparameters for
encoder-based LMs, as outlined in Table 5 of their
paper: drop rate, scaling term, and ratio to retain.
We retained the original search space for drop rate
and scaling term but expanded the ratio to retain
from [0.1, 0.2, 0.3] to [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8] for the roberta-large model to ensure more
complete search.

For the baseline PURE (Zhao et al., 2024b),
it first trains the victim model on a proxy clean
dataset (from the same domain or a similar task,
e.g., poisoned on IMDB and fine-tuned on SST-
2) and prunes the attention heads that cause at-
tention drifting between poisoned and clean texts.

The pruned model is then fine-tuned further on
the proxy clean dataset to normalize the remain-
ing attention heads for purification. To ensure a
fair comparison in the main experiments with the
roberta-large model, we use the same poisoned
and proxy datasets, e.g., poisoned on the SST-2
dataset with IMDB as the proxy clean dataset. We
set the hyperparameter accuracy threshold (used
to stop head pruning) to 0.90 for SST-2, MNLI,
and AGNews, and 0.85 for OLID to prevent overly
aggressive pruning. For the bert-base model, we
follow the original implementation, including the
use of the SST-2 dataset for fine-tuning SST-2 vic-
tim models and maintaining the default accuracy
threshold of 0.85. While PURE uses the label flip
rate (LFR) as its evaluation metric for backdoor
defense (implanting triggers into test data while
keeping the labels unchanged), we adopt the attack
success rate (ASR) on label-flipped test data as our
evaluation metric for a fair comparison with our
method.

We adhere to the default implementations and
hyperparameter settings for all other baseline meth-
ods.

B Additional results

B.1 Performance across different model
architectures and different dataset

Performance across different dataset. Due to
space constraints, we present the complete per-
formance results of our method compared to all
baselines under various backdoor attacks on the
RoBERTa-large model across all four datasets in Ta-
ble 2. The settings are consistent with those in Sec-
tion 5.2, with each score averaged over three runs
using different seeds. For the OLID dataset, we
specifically set « = 0.1 to enable more aggres-
sive defense, as shown in Figure 2. The top two
ASR performances are highlighted. Across all
datasets and backdoor attacks, our method con-
sistently ranks among the top two in backdoor re-
moval performance, with minimal harm to clean
accuracy. Notably, under the two particularly chal-
lenging backdoor tasks, LWS and HiddenKiller,
GMS achieves significant improvements (at least
25%) over all baselines. For instance, on SST-2,
GMS reduces the ASR for LWS to 9.7%, compared
to 58.8% for the next-best baseline, Z-Def.

While Z-Def achieves competitive performance
with GMS in defending against BadNet and Insert-
Sent, Z-Def is much less effective against LWS
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BadNet InsertSent LWS HiddenKiller

Dataset Method ASR| CACCt ASR| CACCT ASR, CACCT ASR| CACCt
Benign 41 959 22 959 128 959 165 959
Victim 1000 960 1000 963 980 954 965 957
Proxy Model IMDB) 74 891 43 8.1 108  89.1 137  89.1
ONION 568 929 999 933 857 919 929 929
7-Def. 46 9.1 18 956 973 953 357 954
ST PURE 0 50.9 0 50.9 0 50.9 0 50.9
TIES 999 957 1000 958 935 952 888 953
DARE w/ TIES 993 960 1000 962 964 957 927 958
WAG 844 948  60.1 952 588 948 562 925
Ours (GMS) 45 916 19 925 97 917 104 912
Benign 200 849 310 849 456 849 536 849
Victim 999 852 1000 850 945 851 1000  85.0
Proxy Model (Twitter) ~ 37.8 844 400 844 554 844 671 844
ONION 750 848 994 848 861 841 996 847
Z-Def. 207 856 303 853 935 853 539 857
OLID PURE 82 752 815 752 761 790 1000  72.1
TIES 362 848 382 848 575 845 653 845
DARE w/ TIES 956 8.3 778 8.0 905 859 8.8 863
WAG 520 850 486 846 631 845 682 850
Ours (GMS)* 320 850 280 842 522 844 642 849
Benign 123 876 126 876 264 876 369 876
Victim 1000 894 1000 903 960  89.0 999 894
Proxy Model SNLI) 122 841 92 841 253 841 317 841
ONION 643 861 986 869 890 855 088 866
7-Def. 1.1 883 116 897 922 891 506 897
MNLI PURE 333 338 333 338 333 338 333 338
TIES 9l6 892 045 895 807 892 886  90.0
DARE w/ TIES 935 905 1000 914 939 899 994 905
WAG 710 887 603 885 779 830  80.5 888
Ours (GMS) 108 85 107 863 140 85 317 863
Benign 19 954 05 954 05 954 11 954
Victim 999 951 996 953 996 945 1000  95.1
Proxy Model (BBCNews) 1.5 702 17 702 18 702 34 702
ONION 594 948 978 951 848 945 996 947
7-Def. 16 953 04 953 979 9.1 1000 950
AGNews PURE 28 863 30 854 65 850 94 846
TIES 999 046 996 044 977 958 1000 044
DARE w/ TIES 999 952 996 954 978 965 1000 952
WAG 927 941 978 944 780 939 909 943
Ours (GMS) 25 910 24 926 32 917 65 904

Table 8: Performance of our method compared to baselines under various backdoor attacks on the RoOBERTa-large
model, with each value averaged over three seeds.

BadNet InsertSent LWS HiddenKiller
Dataset Method

ASR| CACCt ASR] CACCT ASR| CACCtT ASR| CAcCCt

Benign 8.5 92.9 3.5 92.9 22.2 92.9 17.3 92.9

Victim 100.0 92.9 100.0 92.2 98.1 91.5 95.9 91.8

Proxy Model (IMDB) 104 85.4 6.4 85.4 17.9 85.4 14.7 85.4

ONION 58.0 89.9 99.7 89.9 85.4 88.6 94.4 89.2

Z-Def. 8.3 92.5 1.8 91.9 97.4 90.9 38.7 91.5

SST-2 PURE 30.1 92.0 10.7 91.5 66.4 91.1 28.7 91.3

TIES 99.2 92.7 98.2 924 91.2 92.3 86.8 92.6

DARE w/ TIES 100.0 93.0 90.8 88.9 92.6 92.7 94.1 90.6

WAG 74.3 91.9 70.7 91.7 73.5 91.7 60.3 91.6

Ours (GMS) 10.8 86.8 9.8 88.8 27.4 88.0 19.5 86.8

Table 9: Performance of our method compared to baselines under various backdoor attacks on the BERT-base model,
with each value averaged over three seeds. The victim model is trained on SST-2 dataset.
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on both datasets. This is because Z-Def relies on
lexical and syntactic features to detect outliers in
the poisoned dataset, whereas LWS attacks sub-
tly replace words with synonyms, effectively by-
passing outlier detection. As for PURE, another
competitive recent approach, we found its head-
pruning step is highly unstable across both tasks
and architectures. For example, it performs well
on the BERT-base model in Table 9 (following the
settings reported in PURE (Zhao et al., 2024b)),
but performs poorly on most tasks with RoOBERTa-
large. This instability seems to arise from PURE’s
reliance on accuracy from the clean proxy dataset
as the pruning stopping criterion. For well-trained
models with high accuracy, a substantial number
of heads are pruned, leading to a broken puri-
fied model (e.g., 0% ASR but random-guess-level
CACC).

Additionally, although merging multiple models
has been shown to be an effective backdoor defense,
we observed that applying all merging baselines
using a single proxy model is sub-optimal, aligning
with the results in Arora et al. (2024). We found
these methods prioritize preserving accuracy over
removing backdoors. This behavior likely arises
from the design of merging mechanisms, which
are intended to preserve the performance of each
merged model on downstream tasks. Consequently,
backdoor tasks are treated equivalently to down-
stream tasks, exposing a persistent vulnerability.

Performance across different model architec-
tures. We also evaluated our method on differ-
ent architectures. Table 9 shows the results on the
BERT-base model. The poison rate remains at 20%,
and each model is trained for three epochs. Scores
are reported under o = 0.4 and averaged over three
seeds: 1000, 2000, and 3000. Across all attacks,
our method performs consistently well, particularly
excelling against more challenging attack strate-
gies. Notably, it achieves over a 39% advantage
in defending against LWS and a 9% improvement
over the second-best baseline for HiddenKiller.

B.2 Comparisons to other baseline defenses

Model purification baselines Fine-mixing (Zhang
et al., 2022) and Fine-purification (Zhang et al.,
2023) are two additional model purification base-
lines. We compare our method against their re-
ported performance in their papers®, strictly follow-
ing their experimental settings. Specifically, we

*The code is not publicly available yet.

evaluate under the same conditions using two types
of attacks (BadNet and InsertSent) and two model
architectures (BERT-base and RoBERTa-base) on
the AGNews dataset. As shown in Table 10, our
method consistently achieves better defense per-
formance across all settings. Notably, against the
more advanced InsertSent attack, our approach re-
duces the attack success rate (ASR) by at least 17%
in absolute values compared to Fine-mixing and
Fine-purification.

Poison sample detection with retraining:
SEEP (He et al., 2024) While this paper
focuses on the important but often overlooked
post-deployment setting, it is natural to ask: if we
had access to a highly effective data detection
method capable of identifying most poisoned
samples, how would our method compare? To
explore this, we evaluate against SEEP (He et al.,
2024), a state-of-the-art poison detection method,
on defending against BadNet attacks on the
SST-2 dataset. As shown in Table 11, although
SEEP performs well under this relatively simple
attack, our method—despite relying only on a
naive heuristic for proxy data selection—achieves
even better performance. As further discussed
in Table 6, incorporating more advanced prior
knowledge (e.g., by using stronger detection
methods to construct sub-proxy datasets) can
further enhance the effectiveness of our approach.

B.3 Comparisons of all defenses under a more
recent attack: BITE (Yan et al., 2023)

BITE (Yan et al., 2023) is a recent insertion-based
textual backdoor attack that leverages label-biased
tokens as stealthy triggers. Table 12 shows the
performance of our method and four baselines in
defending against BITE on the SST-2 dataset. Our
method consistently ranks among the top two in de-
fense effectiveness, achieving comparable or even
lower ASR than the benign model, while maintain-
ing clean accuracy.

We exclude BITE from the main results in Sec-
tion 5.2 due to a peculiar issue: BITE tends to yield
an unusually high ASR even on benign models.
This undermines the reliability of ASR as an eval-
uation metric in this setting and makes it difficult
to confidently interpret defense performance. We
attribute this to BITE’s trigger selection process,
which biases trigger tokens toward naturally label-
correlated words, effectively exploiting model pri-
ors without requiring explicit poisoning.
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Architecture Methods

BadNet InsertSent

CACCt ASR| | CACCT ASR/

Fine-mixing* 90.17 12.32 90.40 32.37

BERT-base Fine-purifying* 90.86 33 91.13 23.69
Ours 91.8 1.8 86.49 7.00

Fine-mixing”* 86.39 18.12 86.11 35.97

RoBERTa-base  Fine-purifying* 86.64 17.56 86.85 19.20
Ours 91.2 1.63 89.62 1.42

Table 10: Performance comparison of our method against Fine-mixing (Zhang et al., 2022) and Fine-
purifying (Zhang et al., 2023) on AGNews dataset. The best results are in bold. Results in rows marked with * are

taken directly from the respective papers.

Architecture Defense Method

RoBERTa-large  SEEP with retraining 95.5 24.3
Ours 91.7 9.7

BERT-base SEEP with retraining 92.4 29.4
Ours 88.0 274

Table 11: Comparison of our method with retraining-
based defenses on BERT-base and RoBERTa-large for
SST-2 dataset.

B.4 Performance under different poison rate:
20%,10% and 5%

While the experiments in the main paper are con-
ducted with a 20% poison rate to ensure fair com-
parison with the baselines, following the settings
in (Dai et al., 2019; Qi et al., 2021b; Arora et al.,
2024), i.e., 20% of the training samples are poi-
soned, we also evaluate lower poison rates of 10%
and 5%, as shown in Table 13. Our method is effec-
tive in model purification across all poison rates.

B.5 Stability: How sensitive is our method to
the selection of hyperparameters?

We next show that GMS exhibits stable perfor-
mance across a wide range of hyperparameters,
in contrast to pruning-based and unlearning-based
methods, which have been shown to be more sen-
sitive to hyperparameter choices (Liu et al., 2018;
Wau et al., 2022) (as also observed in Table 2). Our
method involves two hyperparameters: « in Equa-
tion (1) and stopping patience 7', with default val-
ues of « = 0.4 and T" = 5 used in main results. Be-
low, we justify these choices. As shown in Figure 2
and Figure 3, for most dataset and backdoor attack
combinations, the default value v = 0.4 strikes a
balanced trade-off between utility and backdoor de-
fense strength. An exception is the HiddenKiller at-
tack on the OLID dataset, where a more aggressive

CACCt ASR] «a = 0.1 is recommended. This is because OLID is

a dataset collected from tweets, while HiddenKiller
paraphrases the data using formal syntactic tem-
plates, drastically altering OLID’s language style.
This change significantly impacts CACC, neces-
sitating a higher weight for backdoor removal to
ensure effective purification. For stopping patience,
as shown in Figure 4, the score computed in Equa-
tion (1) generally follows a (weakly) monotonically
decreasing trend. While a larger I" improves perfor-
mance, we choose T" = 5 as a reasonable balance
between performance and efficiency.

B.6 If the victim model is benign, will our
method affect its utility?

While all our previous experiments focus on mali-
cious victim models, it is also important to consider
scenarios where the victim model is benign. Does
our method compromise the utility of a clean victim
model? As shown in Table 14, our results effec-
tively dispel this concern. When applying GMS to
a benign model, the CACC remains unaffected.

B.7 Can our method be effective with a fully
clean proxy dataset?

While we primarily consider the practical scenario
of receiving a mixed dataset, is our method still
effective if the received dataset is entirely clean?
As shown in Table 15, when provided only with
a clean proxy dataset—without any information
about the poisoned dataset—GMS can still effec-
tively remove backdoors. This is because our sub-
stitution strategy starts by fully removing back-
doors and then gradually recovering task utility.
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Model Defense Method BERT-base RoBERTa-Large
CACCtT ASR] CACCtT ASR]
- Benign Model 92.9 41.4 95.9 38.3
Vietim (BITE) Defense 926 8.7 956 810
Z-Defense 92.3 51.9 95.2 44.9
ONION 89.7 70.5 92.9 68.2
Defense ABL 92.0 82.1 51.6 1.0
WAG 92.9 47.5 94.4 45.2
Ours 88.9 49.9 90.3 27.9

Table 12: Defense performance against the BITE (Yan et al., 2023) attack on BERT-base and RoBERTa-large

models for SST-2 dataset.
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Figure 3: Results of using different weights (alpha) on AGNEWS dataset.

B.8 GMS remains effective as long as the

proxy model is not backdoored with
exactly the same attack and trigger.

1.0
0.91
oe An important question to consider is: What hap-
o 0. . . .
S pens if the proxy model itself contains a backdoor?
‘%0.7
% 06 BadNet
& o5{ ~* InsertSent Victim  Proxy Poison Rate Metric  Result
—o— LWS
0.4 —e— Hidden ASR| 4.5
I [ .. 2 T N T S I S I O 20% CACCt? 916
0O 2 4 6 8 10 12 14 16' 18 20 22 24 26 28 SST-2 ASR\L 4.5
Search Iteration (BadNet) IMDB 10% CACCt 94 4
ASR] 124
>% CACCY 91.9

Figure 4: The search iteration history for four kinds of
backdoors on SST-2 dataset.
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Examples of Searched Substitution Strategy
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Figure 5: The optimal substitution strategy for defending against each backdoor attack for the roberta-large model

trained on the SST-2 dataset. The

To investigate this, we considered scenarios where
the victim and proxy models were either trained on
the same dataset but with different backdoor attacks
or on different datasets with the same attack.

From Table 17, our findings indicate that GMS
remains effective in backdoor removal as long as
the proxy model’s backdoor is not an exact match
to that of the victim model, i.e., both the same
attack method and the same trigger.

B.9 Purification effectiveness as the poison
ratio increases.

Due to space constraints, we included an incom-
plete version of Table 7 in the main paper. Here,
the full ratio table Table 18 provides a clearer trend:
(1) As the proportion of poisoned data in the proxy
“clean” dataset increases, the CACC of the puri-
fied model slightly decreases. This suggests that
under a default weight of a = 0.4 for D jeqn, a

Dataset Model CACC T
Benign Victim Model 95.9
SST-2 Proxy Model (IMDB) 88.7
Purified Model (GMS) 95.8
Benign Victim Model 95.2
AGNews  Proxy Model (BBCNews) 78.1
Purified Model (GMS) 95.3

Table 14: CACC of benign victim models preserved.

Proxy Dataset CACCT ASR|
Pure clean proxy dataset 88.3 4.7
Mixed poisoned proxy dataset 91.6 4.5

Table 15: Performance of our method with a clean vs.
mixed proxy dataset, for the roberta-large model trained
on the SST-2 dataset.

squares indicate the substituted modules.

higher level of poisoning may introduce confusion,
leading GMS to mistakenly remove some clean
task-critical modules due to their reduced relative
weight (see Appendix C for the analytical explana-
tion). (2) However, even with poisoned ratios as
high as 90% in SST-2 and 70% in AGNews, GMS
remains effective in eliminating backdoor-related
components and purifying the model. This effec-
tiveness is mathematically justified in Appendix C.

B.10 Robustness to Retuning Attacks

Recent works (Min et al., 2024; Qi et al., 2024)
have highlighted a critical pitfall in backdoor de-
fenses: purified models with low ASR often fail
to completely eliminate inserted backdoor features.
A straightforward Retuning Attack (RA)—which
involves fine-tuning a purified model on a small
number of backdoored samples (e.g., 0.2% of the
original poisoned data) mixed with benign samples
(to maintain clean Accuracy on the main task)—can
easily recover the backdoor in the purified model,
as demonstrated in Table 16.

Several related studies (Qi et al., 2024; Chen
et al., 2024b; Tarun et al., 2024) have sought to
uncover the underlying reasons for this failure. A
key observation is that the purified model’s param-
eters do not sufficiently deviate from those of the
backdoored model. Specifically, the weight differ-
ences between a purified model and a (retrained)
benign model are significantly larger than those
between the purified and backdoored models. This
suggests that purified and backdoored models are
connected via a backdoor-related path in the loss
landscape (Min et al., 2024). Such vulnerabili-
ties pose severe risks, as purified models are of-
ten deployed in various downstream applications,
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Methods

Metrics  Stage WAG PURE Clean Ours
Before 94.72 93.12 9576 91.86
caccr After 94.61 91.85 9495 93.80
Before 84.40 6.31 4.05 3.83
ASR| After 98.19 19.37 9.50 11.93

Table 16: Evaluating the robustness of different parameter purification methods towards the Retuning Attack (RA)
using 0.1% of the original poisoned training set (which contains 20% poisoned data) for fine-tuning. We report the

performance of each methods before and after the RA.

Model  Dataset Backdoored Method Before Substitution After Substitution
CACCT ASRV'icii7n Jf CACCT ASRVictim \l/

Victim SST-2 BadNet 95.6 100.0 953 45

Proxy SST-2 HiddenKiller 95.4 7.9 ' '

Victim SST-2 HiddenKiller 95.4 96.7 959 14.0

Proxy SST-2 BadNet 95.6 17.1 ’ ’

Victim SST-2 . . 95.6 100.0

Proxy IMDB BadNet (Different triggers) 877 36 87.8 6.8

Victim SST-2 . 95.6 100.0

Proxy IMDB BadNet (Same triggers) 90.1 100.0 95.8 100.0

Table 17: Proxy models with implanted backdoors can still effectively purify victim models if the backdoor does

not exactly match in both attack strategy and trigger.

\ SST-2 \ AGNews
Ratio p | CACCtT ASR| | CACCT ASR/
0.00 93.58 338 | 9176 242
0.10 9358 338 | 9176 242
0.20 91.06 428 | 9159 361
0.30 9151 3.5 | 9159 3.6l
0.40 80.11 518 | 9159 3.6l
0.50 890.11 518 | 9159 3.6l
0.60 80.11 518 | 88.67 142
0.70 80.11 518 | 8867 142
0.80 89.11 518 | 9459  99.75
0.90 80.11 518 | 9483  99.82

Table 18: Purification performance as the ratio p of
poisoned data in the proxy ‘“clean” dataset D jeqy in-
creases.

and even with backdoor defenses applied, attackers
can easily re-trigger the backdoor in downstream
tasks (Min et al., 2024).

This challenge motivates us to propose a purifi-
cation method aimed at breaking this backdoor-
connected path. Intuitively, achieving this requires
completely replacing "suspected" parameters in-
herited from the backdoored model, rather than
pruning (Zhao et al., 2024b) or merging them with
other parameters (Arora et al., 2024; Yadav et al.,
2023). Moreover, because parameters often inter-

act within functional modules, modifying at the
module level rather than the individual parame-
ter level tends to remove backdoor features more
effectively. As shown in Table 16, when using
0.1% of the original poisoned training set to launch
the Retuning Attack (RA) (Min et al., 2024), the
parameter-merging baseline, WAG (Arora et al.,
2024), is easily re-triggered. In contrast, our
module-substitution method demonstrates greater
robustness while maintaining utility, performing
comparably to the clean model baseline (i.e., fine-
tuning a clean model on the retuning dataset). We
provide our baseline PURE with additional advan-
tages by granting access to the full clean dataset
of the victim task for finetuning, as obtaining a us-
able purified model otherwise proves challenging.
While the recent method PURE also demonstrates
competitive performance, it is worth noting that sig-
nificant effort was required to find a configuration
where its pruning step did not break the purified
model. Even with these adjustments, our method
still substantially outperforms PURE, achieving an
ASR of 11.93% compared to 19.37%-nearly twice
the robustness.
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B.11 Examples of Searched Strategy

We applied our GMS defense to purify victim
models compromised by various backdoor attacks
across four datasets. Examples of the searched
strategies from the SST-2 dataset are shown in Fig-
ure 5. While the obtained strategies vary, we specu-
late that they are transferable, as adapting the min-
imum replacement strategy identified for BadNet
to the other three attacks yields effective defense
results, as discussed in Appendix B.12.

B.12 Transferability of substitution strategies

Interestingly, we find that GMS exhibits strong
transferability: a substitution strategy optimized
for one attack often generalizes to others, enabling
defense even without access to data. Visually, the
module substitution strategies (Spes;) identified by
GMS across different backdoor attacks (examples
in Figure 5 in Appendix B.11), though distinct,
share many similar patterns across attacks.

In Table 19, for each task dataset, we apply the
substitution strategy found on BadNet (replacing
the fewest modules and layers as shown in Fig-
ure 5) to to determine which modules to substitute
in the three other victim models under different
attacks, replacing them with modules from their
corresponding proxy models, i.e., directly execut-
ing Line 24 in Algorithm 1 using Spqdne:. Com-
pared with the complete GMS (i.e., searching for
the optimal strategies Sp.s; for each attack), the
transferred strategy consistently performs compara-
bly. This demonstrates that for defenders who only
have access to the victim model and are unaware of
the victim dataset, a universal GMS defense strat-
egy exists for each task that can effectively defend
against multiple attacks.

C Constraints on the proxy datasets
Dclean and Dpoison

Table 7 and Table 6 illustrates that our method
is quite robust to the construction of the proxy
datasets D jeqn and Dpoison, €.8., even random sam-
pling (for D,jeqrn) and inaccurate heuristics (for
Dpoison) can yield effective defense. Natural ques-
tions arise: Are there any constraints on the
proxy datasets? Could the random sampling
strategy for constructing D ;c,,, fail if Dpison
is highly inaccurate? We next establish the con-
straints and demonstrate that, in most cases, even
when only half of the extracted samples in Dpoison
are poisoned, our approach can still use random

sampling for D, to effectively purify the model.

Let the constant values sqs-(My) and sqcc (M)
in Equation (2) and Equation (3) be denoted as c;
and cg, respectively, for simplicity. We use ASR
and ACC to represent the ground-truth attack suc-
cess rate and clean accuracy of a model (that can be
measured on oracle poisoned and clean test sets),
respectively.

Assuming we have two imperfect proxy datasets:
a proxy “clean” dataset that contains a proportion
p of poisoned data and a proxy “poisoned” dataset
contains a proportion 1 — A of the non-poisoned
data. Denote the poisoned and clean data distribu-
tions as P and C, respectively.

Then, by the rule of total probability and defini-
tion in Section 3, we obtain:

Sace(M) = Bz, (1M (2) = y)]
=p(x € P |z ~ Deean)
p(M(z) =y |z € P,z ~ Detean)
+p(z € C| 2 ~ Deean)
p(M(z) =y |z €C,z~ Deean)
= pASR + (1 — p)ACC.

Similarly, for z ~ Dpoison, wWe have:
Sasr(M) = X-ASR+ (1 — \) - ACC.

Substituting these into Equation (1) gives us
(1—a)a +a(l —c2) + (ap+ar— ) ASR +
(2 — 1 —ap—aX+ A)ACC. From this, the
constraints ensuring effective purification are:

ap < (1 —a)A,
{ al—p)>(l-a)1=n. P

That is, as long as the clean portion in Dy,
receives more attention than that in Dj4;s0n, OUr
method will effectively remove backdoor modules
while preserving utility; the same applies to the
poisoned portion in reverse.

To further illustrate, for an accurate proxy
dataset, the constraints are simplified to a(1+ p) —
1 < 0and a(l — p) > 0. Thus, if p < 1, setting
a such that 0 < a < ﬁ can ensure effective
purification.

In our experiments, o is set to 0.4 by default.
Then, the requirement becomes p < %/\ — % This
implies that even with a random-guess backdoor
data detection method, we can tolerate up to 25%
poisoned data in Dgjeqn- Given that real-world
poisoning rates are usually low (e.g., below 20% or
even 1%), random sampling for the “clean” proxy
dataset remains highly feasible in practice.
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BadNet InsertSent LWS HiddenKiller

Dataset Method ASR| CACC! ASR| CACC? ASR| CACCT ASR| CACCt
Benign 41 959 22 959 128 959 165 959

Wi 1000 960 1000 963 980 954 965 957

SST-2  ProxyModel IMDB) 7.4 891 43 8.1 108 8.1 137  89.1
GMS 45 916 19 925 97 917 104 9i2

SST2 BadNet Swategy 45 916 98 930 223 928 132 903

Benign 200 849 310 849 456 849 536 849

Victim 999 852 1000 850 945 851  100.0 850

OLID  Proxy Model (Twitter) ~ 37.8 844 400 844 554 844 671 844
GMS 321 850 280 842 522 844 642 849

OLID BadNet Strategy __ 33.6 850 374 846 565 843 650 847

Renign 123 876 126 876 264 876 369 876

Victim 1000 894 1000 903 960  89.0 999 894

MNLI  ProxyModel SNLI) 122 841 92 841 253 841 317 841
GMS 108 865 107 823 140 865 317 863

MNLI BadNet Strategy 122 863 108 863 270 852 352 864

Benign 19 954 05 954 05 954 11 954

Vietim 999 951 996 953 996 945 1000  95.

AGNews Proxy Model BBCNews) 15 702 17 702 18 702 34 702
GMS 25 910 24 926 32 917 65 904

AGNews BadNet Strategy 1.4 90.7 1.2 89.8 2.6 90.1 12.0 90.2

Table 19: The performance of transferring strategy searched based on BadNet to other attacks.

D Al Assistants

We use ChatGPT/Gemini for writing and format-
ting supports, including grammar checks, improv-
ing the clarity of figure and table captions, and
other surface-level edits.
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