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Abstract
The efficient implementation of large language
models (LLMs) is crucial for deployment on
resource-constrained devices. Low-rank tensor
compression techniques, such as tensor-train
(TT) networks, have been widely studied for
over-parameterized neural networks. However,
their applications to compress pre-trained large
language models (LLMs) for downstream tasks
(post-training) remains challenging due to the
high-rank nature of pre-trained LLMs and the
lack of access to pretraining data. In this study,
we investigate low-rank tensorized LLMs dur-
ing fine-tuning and propose sparse augmented
tensor networks (Saten) to enhance their perfor-
mance. The proposed Saten framework enables
full model compression. Experimental results
demonstrate that Saten enhances both accuracy
and compression efficiency in tensorized lan-
guage models, achieving state-of-the-art perfor-
mance. 1

1 Introduction

Transformers have shown great success in various
natural language processing tasks (Vaswani et al.,
2017; Devlin et al., 2019; Raffel et al., 2020). How-
ever, their large number of parameters and com-
putational demands hinder their implementation
on resource-constrained devices. Consequently,
various methods for LLM compression have been
studied, including pruning (Sanh et al., 2020), dis-
tillation (Sanh et al., 2019), quantization (Shen
et al., 2020), and matrix factorization (Lan et al.,
2020; Hsu et al., 2022; Gao et al., 2024).

Low-rank tensor factorization is one of the
prominent neural network compression techniques
that has been widely studied and applied to various
neural network architectures (Lebedev et al., 2014;
Yang et al., 2017; Hawkins and Zhang, 2019). The
tensor-train (TT) format is the most common ten-
sor decomposition method used for neural network

1Representative code and implementation details are avail-
able at: https://github.com/rmsolgi/saten.git.

compression (Novikov et al., 2015). Furthermore,
some studies successfully applied the idea of low-
rank plus sparsity in tensor completion for signal
processing (Mateos and Giannakis, 2012; Driggs
et al., 2019).

Despite their success in improving the efficiency
of LLM fine-tuning and pre-training (Yang et al.,
2024a,b,c), low-rank tensor compression of pre-
trained language models has not yet been success-
fully reported. This task mainly faces two chal-
lenges. First, almost all open-source LLMs are
trained using uncompressed approaches, and the
resulting model parameters of many layers may
not exhibit a low-rank structure. Second, there is a
lack of access to pre-training data to fully retrain
low-rank parameters. These challenges result in
a significant performance drop when post-training
compression of language models is performed dur-
ing fine-tuning using low-rank tensor factorization.

Paper Contributions. In this study, we address
the challenges mentioned above by introducing
sparse augmented tensor networks (Saten). Our
specific contributions are summarized below:

• We propose Saten to compress LLMs with TT
decomposition by incorporating a sparse error
approximation. We study both unstructured and
structured sparsity patterns in the Saten model.

• We analyze the model and computational com-
plexities of the model compressed by Saten.
When the tensor ranks are low and sparsity ra-
tios are high, our model shows both memory and
computational savings in inference.

• We compare Saten, TT and the recent SVD
with adaptive rank selection (Gao et al., 2024)
on BERT-Base and LlaMA. The experiments
demonstrate that Saten achieves state-of-the-art
performance in both compression efficiency and
model accuracy.
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2 Background

Tensors are generalizations of matrices to higher
orders and can be represented by multi-dimensional
data arrays (Kolda and Bader, 2009). A real tensor
of order d and dimension can be denoted as A ∈
Rn1×n2×···×nd , where nj is the size of dimension
j. The (i1, i2, · · · , id)-th element of A is ai1i2···id .
Obviously, matrices and vectors are tensors of order
d = 2 and d = 1, respectively.

Tensor Train (TT) Decomposition. Many prac-
tical tensors have low ranks and can be approxi-
mated using low-rank tensor decompositions. The
TT decomposition approximates an order-d tensor
A with d factors {Gj ∈ Rrj−1×nj×rj}dj=1:

A = G1 ×1
3 G2 ×1

3 · · · ×1
3 Gd, (1)

where r0, r1, · · · , rd are TT ranks and r0 = rd = 1.
Here, operator ×1

3 refers to contracting the third
and first dimensions of the left and right tensors,
respectively (see Appendix A for more details).

3 The Saten Method

In this section, we present the Saten framework to
compress a pre-trained LLM. Since many layers
of a pre-trained LLM may not exhibit a low-rank
property, compressing a pre-trained model directly
using TT decomposition can result in huge accu-
racy drop. To address this challenge, Saten approx-
imates the matrix W as follows:

W ≈ ŴTT +E (2)

where E is a sparse matrix, ŴTT is the matrixiza-
tion of a tensor ŴTT with a TT representation:

ŴTT = G1 ×1
3 G2 ×1

3 · · · ×1
3 Gd+k. (3)

The decomposition in Saten is illustrated in
Fig. 1.

3.1 Computing the Saten Model
Low-rank TT component. We fist get the low-
rank TT repsentation via the following steps:

• Step 1: We factor the dimensions of the matrix
W as N = n1 × n2 · · · × nk and M = m1 ×
m2 · · · × md, and fold W to an order-(d + k)
tensor W ∈ Rm1×···md×n1···nk .

• Step 2: We perform TT decomposition over W :

W ≈ ŴTT = G1 ×1
3 G2 ×1

3 · · · ×1
3 Gd+k. (4)

Figure 1: The sparse + low-rank tensor train representa-
tion for a weight matrix (or embedding table).

The accuracy of the TT decomposition
highly depends on two factors: the TT
ranks (r0, r1 · · · rd+k), and tensor shape
(n1, · · ·nd,m1, · · ·mk). In Saten, we apply
an error-based TT-SVD method (see Appendix A)
in each layer to automatically determine the TT
ranks, which greatly reduces the number of hyper-
parameters. In order to find a memory-efficient
tensor shape in the compression process, Saten
solves the tensor shape optimization problem using
the method described in Appendix B.

Sparse component. After getting the TT factors
in (3), we further determine the sparse matrix E.
We assume that M ∈ {0, 1}N×M is a sparsity
mask for E, and the sparse matrix is decided as:

E =
(
W − ŴTT

)
⊙M, (5)

where ⊙ denotes element-wise product opera-
tions. To compress the linear layers, we have im-
plemented two different methods: Saten(u) and
Saten(2:4).

• Saten(u). In this method, we consider unstruc-
tured sparsity: the error is pruned (by setting the
associated elements in M as zero) to preserve the
top percent absolute values of matrix W−ŴTT.

• Saten(2:4). In this method we consider the 2:4
structured sparsity to enhance the efficiency on
GPU. Specifically, of every 4 elements along a
column of the error matrix W − ŴTT, the 2
largest-magnitude elements are preserved in E.

When W is the parameter in an embedding layer,
a different sparsity pattern (row sparsity) is used
to compute E. Specifically, the error W− ŴTT is
pruned to retain only the rows corresponding to the
most frequent tokens in the training dataset.
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Algorithm 1 Language Model Compression using
Saten
Require: A pre-trained model

for layer in targeted layers do
Extract layer’s weight (W);
Fold W into a high-order tensor W ;
Compute TT factors for W [ Eq. (4)]
Compute sparse error; E with a chosen spar-
sity pattern;
Replace layer by the Saten layer [Eq. (7)].

end for
Fine-tune the Saten model.
Return the Saten model

Fine-tuning. After deciding the values of low-
rank TT factors and the sparse matrix, we still need
to fine-tune the compressed model to further boost
the performance. This can be done directly in the
compressed format. Specifically, the matrix W
does not need to be recovered, and we can use
automatic differentiation to compute directly the
stochastic gradient w.r.t. the TT factors {Gj}d+k

j=1

and w.r.t. the sparse matrix E. Then these com-
pressed components are updated via stochastic gra-
dient descent.

The overall flow of the Saten framework is sum-
marized in Algorithm 1.

3.2 Complexity of Saten
In this subsection, we analyze the model com-
plexity and computational complexity of the com-
pressed model by Saten.

Number of Parameters: The number of model
parameters of a Saten representation of a linear
transformation is computed as follows:

P =

d+k∑

j=1

rj−1sjrj + ρNM. (6)

where s = (n1, · · · , nk,m1, · · · ,md), and ρ is
the density of non-zero elements in E. When the
TT ranks and sparsity are sufficiently small, P be-
comes smaller than the number of parameters in a
linear layer (NM ).

Computational Complexities: Let x ∈ RN be
the input of a linear layer y = WTx. This linear
layer can be written as y = ŴT

TTx+ ETx in the
matrix format after applying the Saten compression
flow. However, since ŴTT is parameterized in a
TT format, we rewrite the linear layer by using the

TT factors directly, leading to

y = ETx+ f(X ,G1, · · · ,Gd+k). (7)

Here X ∈ Rn1×···×nk is obaianed by folding x
into an order-k tensor, f denotes the process of
contracting X with the TT factors as described in
Appendix A. This tensor network contraction leads
to the following number of MACs (multiplication
and accumulation)

CTT =

k∑

i=1

Nri−1ri∏i−1
j=1 nj

+

d∑

i=k+1

(

i∏

j=k+1

mj)ri−1ri,

(8)

which is usually much smaller than that of a stan-
dard matrix-vector multiplication. The total num-
ber MACs for the inference of a Saten layer is

CSaten = CTT + (ρN + 1)M. (9)

When the TT ranks and ρ are sufficiently small,
CSaten becomes smaller than the typical linear layer
MAC count, which is equal to M(N + 1).

4 Experimental Results

In this section, we conduct experiments to com-
press BERT-Base (Devlin et al., 2019) and LlaMA-
3.2-1B (AI, 2024). For details regarding hyperpa-
rameter for fine-tuning and Saten compression, see
Appendix D. In Appendix C, we also show addi-
tional results regarding the compression of Distil-
BERT (Sanh et al., 2019), with a particular focus
on (1) the effectiveness of Saten on the embedding
layer, (2) the balance between sparsity and low-
rank parameterization. In the following, we focus
on discussing the overall performance on BERT-
Base and LlaMA-3.2-1B.

4.1 BERT Compression for GLUE

Table 1 compares Saten with other compression
methods, including TT, singular value decomposi-
tion (SVD), and the most recent SVD with adap-
tive rank selection (SVD-ARS) (Gao et al., 2024),
on the GLUE benchmarks (Wang et al., 2018) for
BERT-Base. It can be seen that Saten achieves
the highest compression ratio (by nearly a fac-
tor of two) while preserving the performance of
the network compared to the BERT-Base model.
Meanwhile, Saten produces much better accu-
racy compared to SVD and TT. Although Saten is
not equipped with adaptive rank selection, it still
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Table 1: The experimental results of the end-to-end compression of BERT for GLUE datasets (SVD and SVD-ARS
are cited from Gao et al. (2024)). (For SST-2, MNLI, and QNLI, the values represent accuracy. For MRPC and
QQP, they correspond to the F1 score. Values for CoLA and STS-B refer to Matthew’s correlation and Pearson
correlation, respectively).

Model MRPC STSB CoLA SST-2 MNLI QNLI QQP # Params (M)
BERT-Base 91.50 89.42 58.92 92.78 84.31 91.38 87.95 109.5
Saten(2:4) 90.19 87.23 45.28 91.86 81.74 89.82 86.87 59.9

TT 84.57 84.32 10.25 89.10 79.02 87.71 86.33 64.8
SVD (Gao et al. (2024)) 83.60 85.67 29.02 91.28 83.02 89.35 87.05 66.5

SVD-ARS (Gao et al. (2024)) 85.57 86.30 47.08 91.97 83.55 89.44 87.39 65.1
Saten(u) 83.38 83.43 23.60 90.25 80.87 87.61 86.91 50.3

SVD (Gao et al. (2024)) 81.06 79.35 9.83 89.11 81.61 86.99 86.35 52.4
SVD-ARS (Gao et al. (2024)) 81.42 82.85 27.62 89.22 83.07 87.50 86.68 52.6

Table 2: The experimental results of the compression of LlaMA-3.2-1B using Saten(2:4), Saten(u), and TT.

Model Llin(%) ρlin(%) BoolQ(%) CB(%) WSC(%) COPA(%) #Params (B) #MACs (M)
Llama-3.2-1B - - 66.48 87.50 63.46 65.00 1.24 973

Saten(2:4) 13 50 66.29 91.07 64.42 65.00 0.78 630
TT 68 0 64.83 58.93 50.00 55.00 0.93 706

Tucker 71 0 63.33 66.07 63.46 47.00 0.95 744
SVD 68 - 65.66 69.64 63.46 51.00 0.93 615

Saten(u) 16 5 67.03 71.43 57.69 52.00 0.38 226
TT 27 0 62.08 51.79 42.31 51.00 0.53 293

Tucker 29 0 63.94 66.07 55.76 49.00 0.55 320
SVD 27 - 65.50 67.86 61.54 50.00 0.53 270

achieves competitive accuracy with fewer model
parameters compared to SVD-ARS, which opti-
mizes SVD ranks.

Both Saten(2:4) and Saten(u) have 8.8 million
parameters in the word embedding layer. Table 3
presents details of the encoder (linear layers) com-
pressed by Saten, including their low-rank and spar-
sity budgets and MAC count relative to the base
model. ρlin and Llin denote the proportion of non-
zero elements and low-rank parameters relative to
the original total number of parameters in the lin-
ear layers, respectively. In Saten(u), linear layers
have 95% sparsity and 40% low-rank parameters,
leading to 1.9× reduction in the network’s MAC
count. Meanwhile, Saten(2:4), which achieves per-
formance comparable to the base model, reduces
the MAC count by 1.7×.

4.2 LLaMA Compression

We further apply Saten to compress LLaMA-3.2-
1B across multiple datasets from SuperGLUE
benchmarks (Wang et al., 2019)

Table 2 presents the specifications and results of
Saten(u) and Saten(2:4), compared with TT, Tucker,
and SVD. Both Saten(2:4) and Saten(u) have 170
million low-rank parameters with 92% sparsity in
their embedding layer. Saten(2:4) outperforms the
base model on CB and WSC while reducing model

Table 3: Specification of the Saten layers relative to the
BERT-Base linear layers for GLUE benchmarks.

Model Llin(%) ρlin(%) MAC Reduction
Saten(u) 40 5 1.9×

Saten(2:4) 8 50 1.7×

size by about 40% and maintaining accuracy on
the BoolQ dataset. Its improved accuracy stems
from better generalization and reduced overfitting.
Meanwhile, Saten(u) achieves over 3× and 4× re-
ductions in model size and MAC counts, respec-
tively.

5 Conclusion

Pre-trained model parameters may exist high-rank
properties in many layers, leading to performance
drops when using tensor factorization for LLM
post-training compression. We have presented
Saten, which integrates a sparse component into
tensor networks to improve model performance in
compression. Saten has been tested on BERT-Base
and LlaMA-3.2-1B, showing best compression ra-
tios and sate-of-the-art accuracy compared to SVD,
TT and the most recent SVD-ARS.
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6 Limitations

We demonstrated that Saten reduces the theoreti-
cal computational time complexities (i.e. MACs)
compared to the uncompressed model. Current
mainstream platforms for implementing large lan-
guage models are not optimized for TT plus sparse
operations. Nevertheless, there is ongoing inter-
est and progress in improving sparse operations
for AI and machine learning tasks (Fu et al., 2024;
Hsu et al., 2023). Meanwhile, in this study, we
utilized structured sparsity, which facilitates the
implementation of Saten on GPUs (Zhou et al.,
2021) and kept the unstructured sparsity at high
levels of 95% for which sparse algebra packages
typically achieve significant speedup. Our findings
motivate future research on custom hardware ac-
celerators as the actual inference speedup of Saten
requires both software- and hardware-level opti-
mization, which is the subject of our future studies.
Another promising direction for future work is the
application of quantization to further enhance com-
pression efficiency and reduce inference cost (Saha
et al., 2024). Finally, we evaluated the LLaMA 3.2
models, which are already distilled and thus more
difficult to compress. This highlights Saten’s practi-
cal utility in resource-constrained, low-redundancy
settings. Although we do not include further larger-
scale models, Saten’s architecture-agnostic design
and layer-wise compression make it scalable, and
we expect the observed improvements to generalize
across model sizes and architectures.
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A Tensor Train Network

Tensor: A tensor is a generalization of scalars,
vectors, and matrices to higher dimensions. A ten-
sor of order d over the real numbers is an array of
components indexed by d indices as follows:

A =
(
ai1,i2,...,id

)
∈ RI1×I2×···×Id ,

∀it = 1, 2, . . . , It, t = 1, 2, . . . , d. (10)

Tensor Contraction: A tensor contraction gen-
eralizes matrix multiplication to tensors. With-
out loss of generality, the contraction of two
tensors A ∈ RI1×···×Iv×T1×···×Th and B ∈
RT1×···×Th×J1×···×Ju over the shared dimen-
sions T1, · · · , Th results in a new tensor C ∈
RI1×···×Iv×J1×···×Ju with elements given by:
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Algorithm 2 TT Contraction Network
Require: X ,G1, · · · ,Gk+d

Y = X ×2
1 G1

for t = 2 to t = k do
Y = Y ×2,1

1,4 Gt

end for
for t = 1 to t = d do
Y = Y ×1

t+1 Gk+t

end for
Reshape Y ∈ R1×m1×···×md×1 to y ∈ RM

Return y

ci1,··· ,iv ,j1,··· ,ju

=
∑

t1,··· ,th
ai1,··· ,iv ,t1,··· ,thbt1,··· ,th,j1,··· ,ju ,

∀ i1, · · · , iv, j1, · · · , ju. (11)

For arbitrary tensors A and B we define a
contraction pattern as a set of index pairs
{(l1, l′1), · · · , (lh, l′h)} where the indices li in A
correspond to indices l′i in B for all i. The contrac-
tion operation can then be written as follows:

C = A×l′1,··· ,l′h
l1,··· ,lh B. (12)

Frobenius norm: The Frobenius norm of a ten-
sor A ∈ RI1×I2···×It , denoted by ∥A∥F , is defined
as follows:

∥A∥F =

√ ∑

i1,i2,··· ,it
(ai1,i2,··· ,it)

2. (13)

Tensor-Train (TT) Decomposition: For a given
tensor W and an error bound ϵ = ∥W−Ŵ∥F

∥W∥F , the
TT factors {Gj}tj=1, are computed by conducting
a hierarchical σ-truncated singular value decom-
position (SVD) for unfolded tensor W along its
different dimensions, where σ = ϵ√

t−1
∥W∥F (Os-

eledets, 2011).

B Tensor Geometry Optimization

To construct a low-rank tensorized layer, a weight
W is folded to a (k + d) dimensional tensor W .
The memory requirement of a tensorized layer de-
pends on the tensor geometry (shape) selected in
the folding process (Mu et al., 2013; Zhong et al.,
2019; Solgi et al., 2023). It is necessary to find an

Table 4: Experimental results demonstrate the compres-
sion of the word embedding layer of DistilBERT using
Saten(e) and TT(e) (γemb denotes the compression fac-
tor of the embedding layer, defined as the ratio of the
compressed size to the uncompressed size).

Model γemb SST2 (Acc%) MRPC (F1%)
Base 1.00 91.28 90.22

Saten(e) 0.46 91.17 90.03
TT(e) 0.43 88.18 81.97
TT(e) 0.58 90.37 84.97

optimal tensor geometry that minimizes the mem-
ory requirement of a low-rank tensorized layer in
the TT format as follows:

min
s

k+d∑

j=1

r
(s)
j−1 × sj × r

(s)
j , (14)

subject to

k∏

j=1

sj = N,

k+d∏

j=k+1

sj = M,

sj ≥ 2, sj ∈ Z, j = 1, · · · , k + d,

where s = (n1, · · · , nk,m1, · · · ,md) and r
(s)
j is

the TT rank associated with the shape s. When
the ranks are unknown, the above problem is hard
to solve. It has been shown that mins

∑k+d
j=1 sj

serves as an upper bound surrogate for the cost
function of Eq. (14) for all ranks r

(s)
j ∈ R.

This upper bound surrogate leads to two indepen-
dent integer programming problems of minimiza-
tion of sum under product constraint whose solu-
tions are the feasible and most balanced shapes
for the input (n1, · · · , nk) and output dimensions
(m1, · · · ,md), separately (Solgi, 2024).

C DistilBERT Compression Results

C.1 Word Embedding Compression
When the embedding layer is compressed using TT
decomposition, the approximation error associated
with high-frequency tokens in a sequence accu-
mulates, significantly perturbing the input to the
encoder network—even if the individual errors are
small. Consequently, incorporating a sparse com-
ponent for highly frequent tokens helps mitigate
error accumulation and the resulting perturbations.

Table 4 lists the scores and compression factor
of the embedding layer denoted by γemb for dif-
ferent datasets and different networks. In Table 4,
base network refers to the uncompressed Distil-
BERT network, Saten(e) refers to a network in
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Figure 2: Accuracy versus density of saten(e) for SST2
and MRPC datasets.

which only the word embedding layer is replaced
by the Saten layer, while the rest of the network
(encoder) remains uncompressed. For Saten(e) we
set row sparsity to keep only 1,000 tokens resulting
in about 96.7% sparsity (ρ = 0.033). TT(e) refers
to the network whose word embedding layer is
compressed with TT without sparsity while the rest
of the network remains uncompressed. For TT(e)
the low-rank budget has been changed to study the
effect of low-rank parameters. Both Saten(e) and
TT(e) have been fine-tuned with the same training
arguments.

As shown in Table 4, Saten(e) compresses the
embedding layer by more than two times without
a significant reduction in the evaluation metrics.
However, TT(e) shows a significant drop in evalua-
tion metrics while having almost the same compres-
sion efficiency. TT(e) with less memory reduction
compared to that of Saten(e), has worse evaluation
metrics, emphasizing that sparsity played a crucial
role. Therefore, simply increasing the rank of the
TT does not provide a matching evaluation metric
to that of Saten(e).

Fig. 2 illustrates the accuracy versus the den-
sity of the sparse component of the saten(e) for
SST2. It is observed that even a high sparsity sig-
nificantly enhances the network’s accuracy. For in-
stance, from TT only (without sparsity component)
to Saten(e) with 99.84% sparsity (ρ = 0.0016, cor-
responding to only the 50 most common tokens),
the accuracy of the network increases from 88.18
to 90.37.

C.2 Low-Rank Versus Sparsity

Table 5 lists the results of end-to-end compression
of DistilBERT. In Table 5, Saten(u) and Saten(2:4)

refer to models in which the encoder network is
compressed using unstructured and 2:4 sparsity pat-
terns, respectively, while the word embedding layer
is compressed using row sparsity, as in Saten(e).
TT refers to a network where the word embedding
layer is compressed using Saten, while the encoder
is compressed using TT. In Table 5, the scores for
SST-2 and MRPC refer to Accuracy and F1-Score,
respectively.

For Saten(u) the low-rank budget is kept the
same, but the sparse budget has been changed to
show the effect of sparsity on Saten versus the
model accuracy. On the other hand, for Saten(2:4)
the sparsity budget is constant due to the pattern of
sparsity, but the low-rank budget has been changed
to investigate the effect of low-rank component on
the network’s performance score. Note that for
Saten(2:4) with Llin = 0, although the low-rank
budget is set to zero, the sparse pattern has been
derived based on the low-rank decomposition error.
For all Saten networks, the total embedding param-
eters are 11.3 million with near 97% sparsity for
the word embedding layer.

For SST2 dataset we can observe that both
Saten(u) and Saten(2:4) were able to compress the
network by 30% and 40%, resepctively with no
drop in accuracy. For both MRPC and SST2 we
were able to compress the DistilBERT by more
than two times with at most 2% drop in the net-
work’s score. Considering the fact that DistilBERT
network is already a compressed model, this level
of compression with no significant drop of accu-
racy is notable and shows the capacity of the Saten
framework for compressing language models.

Comparing the TT and Saten models for both
SST2 and MRPC, TT leads to a more significant
drop in network’s score than Saten even with al-
most the same or worse compression ratios. Com-
paring TT and Saten(u) that have the same low-
rank budget, we can observe that by adding a small
sparse budget the network achieves significantly
higher scores for both MRPC and SST2 dataset.
On the other hand, by increasing the low-rank bud-
get for TT, we do not observe the same amount of
improvement.

Studying the effect of sparsity and the low-rank
component, it is evident that both play a key role
in preserving the performance of the models. Com-
paring Saten(u) and Saten(2:4) with TT, we can
observe that the Saten models not only improve
the compression efficiency but also achieve higher
scores.
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Table 5: The experimental results of full model compression of DistilBERT on the SST-2 and MRPC datasets using
Saten(u), Saten(2:4), and TT.

Model Llin (%) ρlin (%) Score (%) #Params (M) #MACs (M)
DistilBERT-SST2 - - 91.28 67.5 43.1

Saten(u) 31 50 91.51 47.6 38.6
Saten(u) 31 20 90.94 34.4 25.4
Saten(u) 31 10 89.11 28.7 19.7

Saten(2:4) 20 50 91.63 41.6 32.2
Saten(2:4) 8 50 90.83 36.1 25.9
Saten(2:4) 0 50 89.44 32.8 21.5

TT 76 0 90.02 43.8 35.5
TT 31 0 82.22 24.1 15.9

DistilBERT-MRPC - - 90.22 67.5 43.1
Saten(u) 31 25 88.48 35.4 26.4
Saten(u) 31 20 88.04 33.2 24.2
Saten(u) 31 10 85.11 29.9 20.9

Saten(2:4) 20 50 88.40 41.6 32.2
Saten(2:4) 8 50 87.67 36.1 25.9
Saten(2:4) 0.0 50 82.22 32.8 21.5

TT 76 0 83.75 43.0 35.5
TT 31 0 82.21 43.0 35.5

D Implementation and Fine-Tuning
Details

For our experiments we downloaded the pre-trained
models and data from Huggingface (Wolf et al.,
2020). The BERT models are under Apache 2.0
license. In this we also applied LLaMA 3.2-1B
model, developed by Meta Platforms, Inc., avail-
able under the LLaMA 3.2 Community License.
For all applied datasets, we used all training data
for fine-tuning and we evaluated all models using
all the evaluation datasets. All reported evalua-
tion metrics are one-time run. For fine-tuning of
the base models we applied the default setting of
the downloaded models. For both BERT-Base and
LlaMA models we used learning rate 2e-5 and 5
epochs. We used batch size 8 and 2 for BERT-Base
and LlaMA models, respectively. We fine tuned the
models on single NVIDIA RTX 6000 ADA gen-
eration GPU using the default AdamW optimizer
with weight decay of 0.01. After compressing the
models we fine-tuned for another 5 epochs with the
same settings but we used learning rate 5e-6 for
compressed BERT-Base models and learning rate
2e-5 (2e-6 for BoolQ) for compressed LlaMA-3.2-
1B models.

For compressing the models using Saten we need
to set TT error bound ϵ and sparsity ratio for each
layer in the network. For BERT-Base experiments
for Saten(u) we set ϵ = 0.75 for all linear layers
and for Saten(2:4) we used ϵ = 1 for all linear
layers. For LlaMA experiments, Saten(u) uses an
error bound ϵ = 1 for all linear layers but for query

and key layers we used ϵ = 0.4. For Saten(2:4)
we used ϵ = 1 for all layers but for query and key
layers we used ϵ = 0.65. For embedding layers for
both BERT-Base and LlaMA we applied ϵ = 0.5
and used 1,000 (ρ = 0.03) and 10,000 (ρ = 0.08)
tokens for sparsity, respectively. For the sparsity
of Saten(u) in all experiments of BERT-Base and
LlaMA-3.2-1B, we set the sparsity to be 95% for
all linear layers, but 90% for query and key layers,
which on average is about 95% sparsity given the
smaller size of query and key layers.

For TT compression of BERT-Base we used
ϵ = 0.65 for all compressed linear layers. We
did not compress the query and key linear layers
as it degraded its performance. In LlaMA-3.2-1B
experiments we run TT twice with different bud-
gets to compare with both Saten(u) and Saten(2:4).
For comparison with Saten(u) we used ϵ = 0.4
for query and key layers and ϵ = 0.9 for the rest
of linear layers. This setting was set to be similar
to Saten(u) but gives a higher number of param-
eters to TT. For comparison with Saten(m:n) we
set ϵ = 0.6 and ϵ = 0.55 for the query/key linear
layers and the rest of the linear layers, respectively.
For Tucker decomposition, we applied similar set-
ting as the TT but to match the compression ratio
with Saten(u) we set ϵ = 1.0 for all layers.

E Llama-3.2-3B

Additionally, we compressed Llama-3.2-3B for
Wikitext-2 dataset (Merity et al., 2016). To
ensure the generalization of our approach to
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Table 6: Results of compressing LlaMA-3.2-3B using
Saten versus SVD and TT for WikiText-2 dataset (CR
denotes compression ratio).

Model Zero-Shot (PPL) LoRA (PPL) CR
Base 7.60 7.18 1.0

Saten(2:4) 780.66 13.37 0.6
TT 312755.56 1813.55 0.6

SVD 120484.91 776.16 0.6

larger models, we directly compressed the pre-
trained model without initial fine-tuning, followed
by parameter-efficient fine-tuning using low-rank
adapters (LoRA), which is standard practice for
large-scale models (Hu et al., 2021). We also re-
ported perplexity as a proxy for the model evalu-
ation across different tasks. The results presented
in Table 6 show that Saten significantly improves
perplexity (PPL).
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