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Abstract

This work introduces SteerVLM, a lightweight
steering module designed to guide Vision Lan-
guage Models (VLMs) towards outputs that
better adhere to desired instructions. Our ap-
proach learns from the latent embeddings of
paired prompts encoding target and converse
behaviors to dynamically adjust activations con-
necting the language modality with image con-
text. This provides fine-grained, inference-time
control over complex output semantics with-
out modifying model weights while preserving
performance on off-target tasks. Our steering
module requires learning parameters equal to
0.14% of the original VLM’s size. Addition-
ally, our steering module gains model control
via dimension-wise activation modulation and
adaptive layer-wise steering without requiring
pre-extracted static vectors or manual tuning of
intervention points. Furthermore, we introduce
VNIA (Visual Narrative Intent Alignment), a
multimodal dataset specifically created to facil-
itate the development and evaluation of VLM
steering techniques. Our method outperforms
existing intervention techniques on steering and
hallucination mitigation benchmarks for VLMs
and proposes a robust solution for multimodal
model control through activation engineering.

1 Introduction

Large Vision Language Models (VLMs) demon-
strate remarkable capabilities across a wide range
of tasks such as image captioning (Vinyals et al.,
2015), visual question-answering (Antol et al.,
2015), and more. Yet, effectively eliciting their
full potential remains a challenge. Naive prompt-
ing does not guarantee optimal performance on
tasks that are highly dependent on following in-
structions (Zhou et al., 2022). Techniques such as
Chain-of-Thought prompts (Wei et al., 2022) and
few-shot examples (Brown et al., 2020) have been
shown to significantly improve Large Language
Model (LLM) performance without modifying the
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Figure 1: SteerVLM overview. We introduce a layer-
agnostic steering module that adjusts the model’s out-
put towards a target prompt and away from a converse
prompt.

underlying model. This suggests the presence of
an “elicitation overhang”: a gap between a model’s
potential and our ability to fully access it (Turner
et al., 2023). We often lack a complete understand-
ing of how to best extract the desired behavior or
knowledge from the model.

Prompt engineering is a primary method for
guiding model behavior, but its effectiveness di-
minishes with complex inputs or nuanced desired
outputs (Ye and Durrett, 2022; Li et al., 2024). In
VLMs, where models must integrate both visual
and textual inputs, prompt engineering becomes
less effective and makes it harder to elicit good
VLM responses. To address the limitations of
prompt-based approaches, we present SteerVLM,
an inference time intervention based steering ap-
proach that aligns model outputs with desired in-
structions (Figure 1). Rather than relying solely
on input prompts, we utilize latent space vector
arithmetic to modify a model’s internal activations,
specifically its hidden states, during inference. Ac-
cording to recent literature (Turner et al., 2023; Sub-
ramani et al., 2024), directly modifying the model’s
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activation can more effectively steer a VLM’s re-
sponse than prompt engineering alone.

Recent lightweight approaches adjust LLM out-
puts without resorting to full-scale fine-tuning
or prompt-tuning. However, these methods of-
ten exhibit several limitations. Existing meth-
ods often require extracting static steering vectors
from a dataset containing steered and unsteered
responses (Khayatan et al., 2025; Rodriguez et al.,
2024; Wang et al., 2025). Furthermore, many
methods require interventions at a predetermined,
hyperparameter-tuned layer and apply the same
uniform steering vector for each generated token
(Turner et al., 2023; Khayatan et al., 2025). Fi-
nally, a significant challenge is that they often do
not adapt well to the complexities of a multimodal
setting (Rodriguez et al., 2024). All these factors
can limit their overall adaptability and effective-
ness in steering. In contrast, we introduce a novel,
parameterized steering mechanism that enhances
control over model behavior without the inflexi-
bility and potential loss of generalizability associ-
ated with fine-tuning. We achieve this by training
a lightweight steering module that learns to pre-
dict adjustments by analyzing pairs of prompts that
encode both the desired target behavior and its con-
verse. At inference time, this trained module dy-
namically computes and applies these adjustments
to the VLM’s intermediate hidden states. Our con-
tributions extend these ideas into the multimodal
VLM setting, where language must be grounded in
vision. Here, the steering is applied to the language
module of the VLM - post projection of visual fea-
tures in the language space. This approach allows
us to explore controlled generation in multimodal
models, following prior methods that intervene
solely on the LLM backbone of VLMs (Huang
et al., 2024; Liu et al., 2025).

Unlike prior methods that are often limited to
direct subtraction of averaged activations (Turner
et al., 2023; Rimsky et al., 2024), our module learns
a more complex, non-linear mapping from these
target-converse activations. This allows it to selec-
tively amplify or suppress relevant activation pat-
terns, effectively learning to ignore irrelevant sig-
nals for robust, token-specific steering signals that
can be adaptively applied across multiple layers. In
comparison to simple prompting-based techniques,
and previous steering techniques (Rodriguez et al.,
2024; Turner et al., 2023; Rimsky et al., 2024),
SteerVLM is capable of modeling the relationship
encoded in semantically rich prompt pairs within

the VLM’s activation space. This leads to better
control over the model’s outputs.

We also introduce VNIA (Visual Narrative Intent
Alignment), a multimodal dataset specifically de-
signed to support the development and evaluation
of steering mechanisms for vision language models.
To our knowledge, VNIA is the first such dataset
to provide steered responses directly conditioned
on images, addressing a key resource gap for VLM
steering research.

In summary, our contributions are as follows 1:

1. We propose a novel lightweight steering mod-
ule for VLMs to learn complex, non-linear
adjustments from target and converse prompt
pairs for finer-grained model intervention.

2. We dynamically apply token-specific steering
across multiple layers without predetermined
layer selection or static vectors.

3. We present VNIA, the first multimodal dataset
providing textual responses conditioned on
images and steering directions.

4. We quantitatively and qualitatively evaluate
our method against existing steering tech-
niques to show that our approach outperforms
previous methods in topic-based steering and
off-target task of hallucination mitigation.

2 Related Works

2.1 LLM Steering Techniques
Previous research has introduced numerous steer-
ing methods for LLMs. These interventions span
weight-based techniques such as supervised fine-
tuning (Goodfellow et al., 2016; Ouyang et al.,
2022; Wei et al.), weight editing (Hu et al.), and
reinforcement learning-based approaches (Ouyang
et al., 2022; Schulman et al., 2017). Prompt-level
interventions include automated prompt engineer-
ing and guided decoding for controlled output or
style transfer. Token embedding interventions, like
soft prompting, append learnable tensors optimized
for specific datasets (Lester et al., 2021; Li and
Liang, 2021). Activation-based interventions uti-
lize steering vectors, adjusting activations directly
to produce targeted behaviors.

2.2 Steering Vectors
Steering vectors can be computed via methods
such as mean activation shifts between sentiment

1Code and dataset available at https://github.com/
22anushka/SteerVLM/

23641

https://github.com/22anushka/SteerVLM/
https://github.com/22anushka/SteerVLM/


prompts (Turner et al., 2023), correlating fea-
ture labels with attention head activations (Li
et al., 2023a), differences in hidden or embed-
ding space vectors (Subramani et al., 2024; Rimsky
et al., 2024), or classifier-based decision bound-
aries (Wang et al., 2025). These vectors effectively
direct activations toward desired outcomes.

2.3 Activation Engineering and
Inference-time Intervention

Activation engineering facilitates efficient infer-
ence time control without full model fine-tuning
(Zhang et al., 2025). Approaches include latent
steering vectors (Subramani et al., 2022), con-
trastive activation addition (Rimsky et al., 2024),
and Adaptive Activation Steering (AAS), which
dynamically adjusts activations to enhance truth-
fulness (Wang et al., 2025). Techniques like Con-
cept Eraser (Gandikota et al., 2024), concept acti-
vation vectors (Zhang et al., 2025), activation trans-
port (Rodriguez et al., 2024), style-specific neurons
(Lai et al., 2024), conceptors (Postmus and Abreu,
2024), and multi-attribute steering (Nguyen et al.,
2025) provide diverse, interpretable tools for model
control.

Although activation steering has shown efficacy
in style transfer, toxicity mitigation, and halluci-
nation reduction, current methods predominantly
focus on language alone, restricting their effective-
ness to knowledge embedded within textual modal-
ities. Our approach introduces image contexts as an
additional modality, requiring the model to produce
coherent, contextually relevant responses. Existing
methods often struggle with zero-shot transferabil-
ity and require extensive tuning to identify optimal
steering layers and steering vectors across different
model architectures (e.g., Llama (Touvron et al.,
2023) vs. Qwen (Bai et al., 2025)).

Our approach overcomes these limitations by us-
ing prompt-embedded activation vectors as steering
signals and a layer-agnostic method to identify op-
timal steering layers, enabling robust and context-
aware steering within vision language models.

3 Approach

3.1 Steering Module

The Steerer and the SteeringGate form the pro-
posed steering module. As shown in Figure 2, ac-
tivations from the current layer (post multi-head
attention) pass through the steering module and
are added to the residual stream pre-normalization
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Figure 2: The Steering Module. The steering module
is hooked right after the multi-head attention module
in each layer of the language decoder. The Steering
module consists of the Steerer and the SteeringGate
which steer the activations based on the context vectors.
The steered activation is added to the residual.

and before entering the feed-forward layer of the
language decoder for that layer. The modified ac-
tivation is denoted as z (Equation 1). With this
approach, the steering module learns only the nec-
essary delta to align the activation with the target
behavior, while preserving the information already
present in the original activation x.

Importantly, the same steering module is shared
across multiple layers. This way, the steering mod-
ule does not need predetermined layers to steer on
but rather learns to steer at each individual layer
during training.

Unlike previous methods, this architecture does
not depend on pre-extracted steering vectors com-
puted through probing mechanisms on a set of
samples representing specific concepts or target
behaviors. Instead, it utilizes the activations of
the context token from a pair of prompts (p+, p−),
which denote the target and converse behaviors, re-
spectively. Steering is then performed using these
prompt embeddings.

zl = xl + λx̄l

x̄l = f(xl, p+l
, p−l

)
(1)

f(xl, p+l
, p−l

) = g(h(xl, cl), p+l
, p−l

)⊙h(xl, cl)
(2)

xl denotes the activation after the attention op-
eration at layer l before the add and normalize op-
eration in the decoder. f(xl, p+l

, p−l
) denotes the

steering module operation in the activation space
on xl with the activations of the target prompt p+l

and converse prompt p−l
at a particular layer l.

Steering module operation is further broken down
in Equation 2 where cl denotes context vectors
({ul, p+l

, p−l
} as seen in Figure 2 and defined in

Section 3.2), g(.) denotes the SteeringGate, and
h(.) denotes the Steerer. Additionally, the steering
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strength λ can be adjusted during inference to con-
trol the amount of steering applied to the model’s
activations during the forward pass.

Features Represented by Dimensions Drawing
upon observations from research in mechanistic in-
terpretability, we note that features within a layer’s
activation space are often represented as superposi-
tions of dimensions (i.e., combinations of neurons)
(Templeton et al., 2024). Building on this, our ap-
proach focuses on steering across these dimensions.
We hypothesize that the features captured from the
embeddings of the target and converse prompts can
be manipulated along these dimensions to influence
the overall feature representation, thereby steering
the model’s output (Lindsey et al., 2024).

The steering module intervenes in the model’s
latent space to align the generated output with the
desired behavior. The Steerer determines the nec-
essary adjustments by amplifying or suppressing
dimensions to align with the target behavior, while
the SteeringGate modulates the amount of steer-
ing required per dimension, based on the target
behavior and the output from the Steerer.

3.2 Steerer

The Steerer is designed to interpret the rela-
tionships among the target prompt, the converse
prompt, and the current activation. It uses a
lightweight, two-layer, multi-head attention archi-
tecture to effectively capture subtle interactions
within the activations.

The Steerer’s architecture starts with a down-
projection layer that reduces the model’s dimension
to one-eighth of its original size. This reduction sig-
nificantly decreases the parameter count, making
the model lightweight.

The Steerer receives four concatenated activa-
tions2 as input: the current activation from the main
model x, the unsteered activation u from the cur-
rent layer, and the target-converse activation p+ and
p−. u is the activations for the same set of inputs
to the model but without any steering on prior lay-
ers. This helps provide context about cumulative
steering effects from earlier layers. {u, p+, p−} are
considered as the context vectors c.

c = u′ : p′+ : p′−,

j(x, c) = MHA1

(
q = x′; k, v = x′ : c

)
,

s = h(x, c) = Wup

(
MHA2(q = j; k, v = j : c)

)

(3)

2":" denotes concatenation along the sequence dimension

where the Steerer function is denoted by h(.),
and the superscript ′ denotes down projected in-
put vectors from d_model (embedding dimension
of the VLM) to a lower dimension and Wup de-
notes the up projection of the dimensions back to
d_model.

The model utilizes a combination of self-
attention and cross-attention where x serves as the
query and x, u, p+, and p− concatenated together
serve as the keys and values. The steerer works
along the dimension of the tokens to capture com-
plex relationships between the input vectors. This
approach, in comparison to a contrastive approach,
is effective even when the prompt pair does not con-
sist of exact opposites. For example "Volunteering
feels fulfilling" versus "Volunteering feels obliga-
tory,". Fulfillment and obligation, while not direct
antonyms, represent mutually exclusive sentiments
in the given context. The attention mechanism cap-
tures such intricacies in semantically rich prompt
pairs.

1 0 0 1 0 0 1 1

0 1 0 0 1 0 1 1

0 0 1 0 0 1 1 1

Figure 3: Attention mask for the Steerer’s Attention
Block. i denotes token at timestep 0 and i+ 1 denotes
token at timestep 1. We make use of a boolean mask
here where 1, 0 denote unmasked tokens and masked
tokens respectively.

Attention Mask The attention module within the
steerer employs a sparse attention mask. Each
token xi attends only to: itself xi, its unsteered
counterpart ui, the target prompt token p+, and
the converse prompt token p− as seen in Figure 3.
The attention module within the VLM already com-
putes attention over previous tokens, so the Steerer
uses this focused cross-attention to choose the right
steering pattern for each token.

3.3 SteeringGate
The SteeringGate is a multilayer perceptron (MLP)
designed to regulate the amount of steering applied
at each dimension. It determines steering intensity
based on relationships among the target prompt,
the converse prompt, and the steered activations.
The SteeringGate takes in s, p+, p−, as inputs.
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Similar to the Steerer, the SteeringGate uses
down-projection and up-projection layers, ensuring
a lightweight yet effective structure.

The MLP captures complex, nonlinear relation-
ships among the computed steering vector and the
pair of target-converse prompts. A sigmoid gating
mechanism is applied to the output for dimension-
specific control over the steering intensity. This is
formulated as,
g(s, p+, p−) = σ

(
Wup

(
MLP (s′, p′+, p

′
−)

))

(4)
where g(.) is the SteeringGate function, and

Wup is the up-projection layer, restoring the di-
mensions to match d_model. The superscript ′

indicates down-projected input vectors. The in-
puts s′, p′+, p

′
− are concatenated along the hidden

dimension before being fed into the MLP.

4 Dataset

We also contribute VNIA (Visual Narrative In-
tent Alignment), a multimodal steering dataset
designed to train and evaluate our steering mod-
ule. We randomly sampled 61,391 images from the
CC3M dataset (Sharma et al., 2018) and generated
steered responses to prompts using Qwen2.5-VL-
72B (Bai et al., 2025) (see Appendix for details).
Figure 4 illustrates the complete process used to
generate this dataset.

Image-prompt
matching with
CLIP + nucleus

sampling

QwenVL2.5 
72B VLM

Difficulty of
generating

steered
response?

CC3M images

IMAGE, TASK, (P+, P-)
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FILTE
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Figure 4: VNIA Dataset synthesis pipeline. We be-
gin by generating target/converse prompt pairs. The
prompts are then paired with images using CLIP-score
matching with adaptive nucleus sampling for diversity.
Finally, steered and unsteered responses are generated
by Qwen2.5-VL-72B VLM.

Prompt Sampling First, we used GPT-4o (Ope-
nAI et al., 2024) to generate pairs of mutually exclu-
sive prompts for various topics (see Appendix Ta-
ble 9). These prompts were then manually filtered
and modified to align with our steering objectives.
Include a wide variety of topics that explore emo-
tional states, daily activities, and abstract themes.
The goal is to create a list with contrasting pairs
that span these areas, offering a rich mix of relation-
ships between positive and negative perspectives.

The pairs of target and converse prompts were
manually inspected by the authors. Since the
dataset contains only 463 prompts, applying
human-in-the-loop techniques with a set of filter-
ing criteria was manageable. The criteria included
ensuring diversity in both the topics of the prompts
(e.g., cooking, running, astronomy, etc.) and their
semantics (e.g., love–hate, easy–difficult, intrigu-
ing–confusing), removing duplicates, and ensuring
mutually exclusive semantics. For example, con-
sider the pair "Volunteering is fulfilling" vs. "Volun-
teering is time-consuming." While both can be true
simultaneously, similar to the approach in (Turner
et al., 2023), we aimed to ensure a degree of mu-
tual exclusivity between the target and converse
prompts.

Next, the set of prompts was split into distinct
training and evaluation sets. We then matched these
prompts with the sampled images using CLIP em-
bedding scores.

Image-Prompt Pairing A key requirement was
to ensure the steering prompts were relevant to the
image content but not so trivially descriptive that
the steering task offered little challenge. To achieve
this balance between relevance and difficulty when
selecting the final image-prompt pairs, we em-
ploy an adaptive, entropy-based nucleus sampling
threshold where the value of top−p is selected
based on the sharpness or flatness of the probabil-
ity distribution obtained from softmax-normalized
CLIP outputs. This method ensures that the chosen
image and steering prompt pair share some correla-
tion without being obviously or directly linked. As
seen in Figure 5, we conduct an ablation study for
entropy thresholds τ ∈ [0.1, 0.9] (over a batch size
of 1024) to quantify the trade-off between CLIP
scores and diversity measured by the number of
unique prompts. In qualitative terms, overly low
thresholds select a small subset of the target ver-
sus converse prompts lowering the diversity of the
prompts in the dataset whereas overly high thresh-
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Figure 5: Entropy threshold analysis to analyze trade-
off between diversity and matching between image and
prompt pairs

olds increase sample rejection and random prompt
assignments, undermining dataset consistency and
size. By adopting τ = 0.6 as our default (with an
optional τ = 0.7 setting for diversity-critical ap-
plications), we ensure an optimal balance between
steerable outputs and steering signals.

Generating Steered Responses During the
dataset generation phase, we prompted Qwen2.5-
VL-72B to assess the difficulty of producing a
steered output for a given image and prompt pair
(target and converse). Samples deemed too difficult
were pruned. We constructed two forms of steering
prompts for the dataset: one based on descriptive
image captions and the other based on creative
short stories. The image description prompts are
adapted from those proposed in the LLaVA paper
(Liu et al., 2023, 2024a) and include variations re-
questing both short, concise answers and detailed,
descriptive responses.

We utilize the generated VNIA dataset through-
out our training process, including supervised fine-
tuning (SFT), as well as during the evaluation stage
to assess the quality of the steered generation. De-
tailed descriptions of the prompts and examples of
the steering pairs can be found in the Appendix.

5 Training

The supervised fine-tuning stage is essential to sta-
bilize the steering module due to the random initial-
ization of model weights and the shared nature of
the architecture across layers. The SFT alignment
stage provides quick adaptation to the steering task.

Given that our dataset (Section 4) size is approx-
imately 20-25% smaller than typical supervised
fine-tuning datasets and considering stabilization
requirements of the shared module across all lay-
ers, we trained SteerVLM on 8 A100 GPUs for 5

epochs. Additionally, we keep steering strength
λ as 1, and learning rate as 3e − 4 with cosine
learning rate scheduler during training.

We used standard cross-entropy loss to optimize
log probabilities of tokens aligned towards the tar-
get behavior.

6 Evaluation Setup

We compare our approach against prior works us-
ing an evaluation set derived from the VNIA bench-
mark. We extract five topic steering vectors from
VNIA and generate 150 image-prompt pairs per
vector as training data for methods requiring exam-
ples to construct steering vectors. An additional
set of 20 samples per vector is held out for evalua-
tion. We extract steering vectors for methods that
require it from the training set. For all experiments,
SteerVLM is applied in a zero-shot setting, i.e. on
unseen p+/p−. GPT-o4-mini (OpenAI, 2025) is
used as the judge model to evaluate the perfor-
mance on this task (Appendix A.2.3).

We also benchmark our work on hallucination
mitigation. We use 1,000 training samples from the
OHD dataset (Liu et al., 2024b), which consists of
COCO (Lin et al., 2014) images paired with both
faithful and hallucinated captions. For baselines re-
quiring negative examples to compute steering vec-
tors, we randomly select one hallucinated caption
from the “adversarial” category for each training in-
stance. Evaluation is conducted using the standard
OHD benchmark, which reports POPE F1 score
and accuracy across the popular, adversarial, and
random categories (Li et al., 2023b). As before,
our method operates zero-shot, using handcrafted
positive (target behavior) and negative (converse
behavior) prompts related to hallucination (listed
in Appendix Table 12).

7 Experiments

We compared our proposed method against sev-
eral baseline and state-of-the-art steering tech-
niques adapted to the LLaVA architecture: ActAdd
(Turner et al., 2023), ML-ACT (Rodriguez et al.,
2024), CAA (Rimsky et al., 2024), ACT (Wang
et al., 2025) and (Khayatan et al., 2025) which are
primarily designed for steering. Additionally, we
included a baseline involving contrasting the activa-
tions of the prompt vectors (p+, p−) at each layer
of the language model. All experiments were run
with temperature = 0.6 and top-p = 0.9 setting (Liu
et al., 2024a).
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Model Zero-shot Accuracy / F1-Score
Adversarial Popular Random Overall

LLaVA1.5-7B Zero-shot (Liu et al., 2024a) ✓ 79.8/81.7 85.5/86.1 88.3/88.8 84.5/85.5
ML-ACT (Rodriguez et al., 2024) ✗ 79.8/75.7 80.8/76.6 81.1/76.8 80.6/76.4
MLLM Steering (Khayatan et al., 2025) ✗ 72.4/76.1 76.9/79.1 78.4/80.5 75.9/78.6
CAA (Rimsky et al., 2024) ✗ 53.0/68.0 54.9/68.9 60.6/71.6 56.2/69.5
Contrastive / layer ✓ 79.8/81.8 85.7/86.4 89.3/89.4 84.9/85.7
Act Add (Turner et al., 2023) ✓ 79.2/81.3 85.7/86.3 89.3/89.5 84.7/85.7
ACT (Wang et al., 2025) ✗ 79.0/80.7 85.5/85.9 89.0/88.9 84.5/85.1
Ours ✓ 81.5/82.5 87.6/87.7 90.2/90.1 86.4/86.8

Table 1: Evaluation on the OHD (Liu et al., 2024b) dataset on the POPE metric. The best scores are highlighted in
bold. Zero-shot implies there was no precomputed steering vectors on any types of hallucination mitigation datasets.

Model sv1 sv2 sv3 sv4 sv5 Overall
ML-ACT (Rodriguez et al., 2024) 0.46 0.475 0.485 0.49 0.44 0.47
MLLM Steering (Khayatan et al., 2025) 0.49 0.56 0.51 0.485 0.535 0.51
CAA (Rimsky et al., 2024) 0.55 0.65 0.61 0.47 0.57 0.57
Contrastive / layer 0.53 0.58 0.55 0.50 0.56 0.54
Act Add (Turner et al., 2023) 0.52 0.60 0.59 0.475 0.58 0.55
ACT (Wang et al., 2025) 0.56 0.54 0.55 0.535 0.59 0.55
Ours 0.84 0.69 0.83 0.56 0.63 0.71

Table 2: Topic-steering evaluation for 5 steering vectors, evaluated by the judge model. The scores represent an
average on a scale of 0-1. The best scores are highlighted in bold.

Model C1 C2 C3 C4
ML-ACT (Rodriguez et al., 2024) ✓ ✓ ✓ ✗

MLLM Steering (Khayatan et al., 2025) ✗ ✗ ✗ ✗

CAA (Rimsky et al., 2024) ✗ ✗ ✗ ✗

Act-Add (Turner et al., 2023) ✗ ✗ ✗ ✓

ACT (Wang et al., 2025) ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓

Table 3: Comparison of properties of steering methods
where C1 denotes Layer Agnosticity, C2 denotes param-
eterized, C3 denotes Dynamic Steering, and C4 denotes
Zero-shot Steering.

Table 1 summarizes our results on the effects
steering on hallucination mitigation. We make the
following observations. SteerVLM achieves state-
of-the-art results in zero-shot hallucination mit-
igation on the OHD dataset (Liu et al., 2024b)
benchmark. Our method achieves superior perfor-
mance in a zero-shot setting, unlike other methods
that extract steering vectors from hallucination mit-
igation dataset. Notably, SteerVLM improves over-
all accuracy by 1.7% and F1 score by 0.9% over
(Turner et al., 2023). This suggests that carefully
designed prompts representing both target and con-
trasting behaviors can effectively direct activations
toward more truthful outputs. This conclusion is
further supported by the performance of ActAdd
(Turner et al., 2023) and the baseline Contrastive
method, both of which relied on randomly sampled
positive and negative prompts (defined in Appendix
Table 12) during their respective processes.

Table 2 summarizes the performance of steer-

Model sv2 sv5 Overall
ML-ACT (Rodriguez et al., 2024) 2.4 1 1.7
MLLM Steering (Khayatan et al., 2025) 3.8 3.8 3.8
CAA (Rimsky et al., 2024) 6.4 6 6.2
Act-Add (Turner et al., 2023) 5 3.8 4.4
ACT (Wang et al., 2025) 5.2 5 5.1
Ours 8 6.2 7.1

Table 4: Blind Human evaluation on randomly selected
examples of steering vector 2 and steering vector 5. Av-
erage scores out of 10. The best results are highlighted
in bold.

ing techniques on the VNIA evaluation dataset.
SteerVLM outperforms existing methods in
zero-shot steering on the VNIA dataset. Our
method surpasses existing intervention techniques
and performs 21% better than the best-performing
baseline approach on all steering vector evalua-
tion subsets. While other methods extract steer-
ing vectors based on a sample set of the responses
steered using p+, p− prompts, we operate in a zero-
shot manner without having seen the set of p+, p−
prompts before. ML-ACT (Rodriguez et al., 2024)
encountered difficulties building efficient Optimal
Transport (OT) maps for each topic on multimodal
data. This resulted in NaN values or degener-
ate answers in some instances, indicating unsuc-
cessful steering in the multimodal setting with its
vector-based approach. Similarly, (Khayatan et al.,
2025)’s method also struggled to steer captions ef-
fectively, frequently producing empty strings in
response to prompts when using its approach based
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on fine-grained steering vectors derived from a
steering prompt rather than a single token of in-
terest.

In contrast, our method demonstrated improved
quality of steered responses. The experiment was
evaluated using the Qwen2.5-VL-72B model (Bai
et al., 2025) as an automated judge, based on crite-
ria detailed in the Appendix Table 11.

Table 4 summarizes the average performance
of the model on randomly selected examples of 2
randomly selected steering vectors from the evalu-
ation set of steering vectors. SteerVLM achieves
better qualitative results on blind human evalua-
tion in comparison to existing steering methods.
We made use of the same judge prompt (Appendix
Table 11) to evaluate the steered responses.

8 Ablation Study

To justify the architectural choices of our steering
module, we conducted ablation studies comparing
performance against several variations and base-
lines. Qwen2.5-VL-72B (Bai et al., 2025) is used
as the judge model with the judging criteria de-
tailed in the Appendix A.2.3. Table 5 presents
the ablation results on the VNIA evaluation dataset
containing 384 samples.

Experiment name Score
Zero-shot prompting 0.57
One-shot prompting 0.35
No steeringGate (SG) 0
Same SG sigmoid across dim 0.59
No Unsteered activations 0.69
Ours 0.78
Ours (Specific layers) 0.75

Table 5: Ablation studies justifying architectural and
logical choices of the steering module. The best scores
are highlighted in bold.

SteerVLM surpassed prompt engineered zero-
shot and one-shot methods at steering on the
VNIA evaluation dataset. We compared against
standard zero-shot prompting and one-shot prompt-
ing with manually engineered prompts designed to
guide the model towards a steered response.

The SteeringGate Module and the unsteered
context vector u are essential to SteerVLM’s
training and inference stability, and qualitative
performance. We assessed variations of our mod-
ule: one lacking the SteeringGate mechanism to
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Figure 6: Layer Agnostic Steering. Learning how much
to steer at each layer of the LLaVA1.5-7B model.

evaluate its importance (especially in stable train-
ing), and another without the unsteered context vec-
tor to highlight its contribution to layer agnosticity.
We also applied steering only to layers showing
strong effects (Figure 6), highlighting the module’s
role in adaptive selection and dynamic steering.

SteeringGate’s dimension-specific steering en-
hances the model’s qualitative performance.
Lastly, we compare against a variant of the Steer-
ingGate module that applies a uniform sigmoid
flow-of-control value across all dimensions to
demonstrate the benefit of our dimension-specific
steering approach.

SteerVLM is robust to semantic shifts. We
evaluated SteerVLM’s robustness to semantic shifts
in prompting by testing varied prompt phrasings for
3 randomly selected steering vector prompts. As
detailed in Appendix A.4.4, performance remained
highly stable despite these semantic shifts. We
noted minor performance changes only when intro-
ducing more abstract concepts (e.g., ’energizing’
to ’chaotic’), confirming the model’s effective gen-
eralization against common linguistic variations.
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Figure 7: Projection of embeddings onto the Target-
Converse semantic axis.

SteerVLM steers embeddings towards target
semantics and away from converse semantics.
Figure 7, analyzes steering specificity by project-
ing embeddings onto the Target-Converse semantic
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Task: Describe the
image concisely.

Target Prompt: Learning new skills is overwhelming
Converse Prompt: Learning new skills is exciting

SteerVLM The individual in the image appears to be on stage, possibly performing ... The
expression on their face is uncertain, possibly conveying a range of emotions, from
focus to concentration. The overall atmosphere seems intense, with the person
possibly feeling the weight of the moment. The setting and the person’s posture
may evoke a sense of pressure or a high stakes situation, as they stand on stage.

Prompting The man on stage is wearing a black shirt and has his arms up in the air, possibly
expressing excitement or enthusiasm. He appears to be the main focus of the
scene, possibly indicating ....

Table 6: Steered with SteerVLM vs. Prompt-Engineered Task prompt captions produced for the same task and
prompt pairs.

Task: Write a short story.
Target Prompt: Bright
colors are energizing
Converse Prompt:
Bright colors are over-
whelming

λ = 1.5 The . . . Ferris wheel spun in a kaleidoscope of colors. ... brought a new burst of
vibrant hues, dancing in the sky like a symphony of happiness. . . . as if the sky
itself was a canvas of endless possibilities. The city’s heartbeat, .., now thrived on
the pulse of these vibrant hues, each one a note in a grand, uplifting melody.

λ = 1.0 . . . wheel spun with vibrant colors, from red to blue to yellow, each a testament
to the boundless energy that filled the air. The smiles on the faces of those who
rode it were as bright as the lights that illuminated ... where the spirit of the city
soared.

λ = 0.0 The image features a colorful Ferris wheel . . . impressive height, it is a perfect
attraction for visitors to enjoy. .. a fun and exciting experience for everyone who
comes to ride it.

Table 7: Effect of steering strength on steered responses.

axis. The distribution of Steered responses shows
a significant rightward shift compared to the un-
steered responses. This shift demonstrates that
steering effectively moves the embeddings closer to
the target prompt’s semantics and further from the
converse prompt, confirming the method’s ability
to control for specific attributes. The embeddings
are extracted using Qwen3-8B (Yang et al., 2025).
Additional analysis is presented in Appendix A.3.

We evaluate our technique in a zero-shot setting
on the VNIA evaluation dataset with unseen prompt
pairs and image pairings. Our proposed method
outperforms both baselines and ablated variants,
clearly demonstrating how the contribution of each
component of the steering module.

9 Qualitative Analysis

We present two qualitative analyses in Table 6
and in Table 7. Table 6 compares an example of
SteerVLM against the same prompt used to gener-
ate the ground-truth (prompt defined in Appendix
Table 10). As seen in the example, with just prompt-
ing, the model struggles to integrate the target be-
havior with the description of the image and rather
integrates it with the converse prompt which it finds
easier to do considering the context of the image.

However, SteerVLM understands the context of the
target prompt and invokes the desired behavior in
a naturally compelling way. Table 7 demonstrates
the effect of the intervention strength λ in intensity
of steering the response towards the desired behav-
ior. It is evident that increasing λ elicits a stronger
steering response.

10 Conclusion

In this paper, we introduce SteerVLM, a
lightweight steering module that operates at in-
ference time for fine-grained VLM control. Our
method utilizes target and converse prompts to iso-
late and amplify behaviors aligned with the target
and divergent from the converse. SteerVLM is
a lightweight module comprising only 0.14% of
the main model’s parameters, and is orthogonal
to existing prompting techniques and fine-tuning.
Its additive steering capabilities and layered ap-
proach to model control, along with token-wise and
dimension-wise control over latent variables within
the model’s activation space, allow for precise
steering control. SteerVLM consistently outper-
forms existing steering methods in both quantita-
tive benchmarks and qualitative assessments, prov-
ing its performance in eliciting steered responses.
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Limitations

We outline the limitations of our work. First,
the VNIA dataset is synthetically generated, and
so there is no guarantee that the dataset is
hallucination-free. Second, our method requires
additional forward passes to cache activations for
the context vectors c, which reduces its efficiency
compared to fine-tuning. additionally, as seen
in Table 2, most existing methods including our
proposed method, struggle to compellingly inte-
grate prompts with negative connotations into the
model’s response for steering. Finally, the steering
module inherits risks and capabilities from the base
vision language model.

Ethical Considerations

Artifacts The artifacts that we used had public
use licenses. Furthermore, we plan to release our
code artifacts for public use after acceptance.

Dataset Considerations We use publicly
available datasets that underwent safety checks
such as CC3M and COCO captions.

Documentation of Artifacts Our work gener-
ates English text, and our codebase is primarily in
Python.

Use of AI Assistants We used AI assistants to
help write our code and revise our paper.
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A Appendix

A.1 Computational Efficiency
We measured inference latency and floating-point operations on an NVIDIA A30-24G GPU on the Intel
Xeon Platinum 8462Y+ chip in Table 8 (no optimizations). The results, summarized in the table below,
compare the baseline zero-shot prompt steering (LLaVA1.5-7B without our module) to the configuration
with the steering module enabled. We note that this increase is primarily attributed to the additional
forward pass required to cache unsteered activations for comparison. We recognize that minimizing
inference latency is critical for real-time applications. We have identified two architectural optimizations
that substantially reduce overhead from our current implementation. First, by leveraging PyTorch’s
FlexAttention (Dong et al., 2024) within the steerer’s sparse attention mechanism, our calculations show
we can reduce computation in the attention module of the Steerer. In dense attention, computing attention
for the query at position t requires O(t) operations, since it must attend to all t previous keys. Over a full
sequence of length L, the total cost is the sum across all positions:

L∑

t=1

t =
L(L+ 1)

2
≈ O(L2).

With a sparse mask that restricts each query to 4 unmasked positions, the cost at each step is constant
O(4). Summing across all L positions yields:

L∑

t=1

4 = 4L ≈ O(L).

Thus, the per-step FLOP reduction at position t is a factor of t/4, while the total FLOP reduction across
the sequence is a factor of L/8.

Second, the forward pass for caching unsteered activations can potentially be parallelized with the
steering pass, allowing for significant overlap in computation and further reducing run-time latency.

Metric LLaVA w/o steering module LLaVA w/ steering module
Self CPU time total (ms) 279.5 686
Self CUDA time total (ms) 136.72 372.2
Total FLOPs 1.06× 1013 2.04× 1013

Table 8: Comparison of computational metrics for LLaVA1.5-7B with and without the steering module.
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A.2 Prompts
A.2.1 Steering Pair Generation Prompt
We generated all prompt pairs using GPT-4o by supplying a structured template with illustrative examples,
modeled on the target-versus-converse framework of (Turner et al., 2023). The Table 9 presents the
template provided to the model.

Table 9: Full Prompt for Generating Target-Converse Pairs

Prompt

Generate a comprehensive list of diverse topics, and sentiments that can be modeled as relation-
ships for positive and negative prompts. The list should cover a broad spectrum of emotions,
everyday activities, random scenarios, and abstract themes. For each topic, provide contrasting
perspectives in the form of short phrases or word pairs. The contrasting pairs should encompass:
Emotional states and sentiments (e.g., happiness vs. sadness), Specific activities and scenarios
from daily life (e.g., I love weddings vs. I hate weddings), abstract concepts (e.g., confidence
vs. doubt).

The following pair of prompts are examples of expected outputs:

I love weddings vs. I hate weddings
Running is difficult vs. Running is easy
I always answer truthfully vs. I always lie

Include a wide variety of topics that explore emotional states, daily activities, and abstract
themes. The goal is to create a list with 500 contrasting pairs that span these areas, offering a
rich mix of relationships between positive and negative perspectives.
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A.2.2 Dataset Creation Prompt

Table 10: Example Prompt Templates Used for Generating Steering Dataset.

Template Name Template Content

Filtering Prompt Consider whether this image contains ANY elements that could be in-
terpreted as someone who "[TARGET_PROMPT]", even indirectly or
metaphorically. Think broadly about visual cues that might connect to this
perspective. Answer with yes or no only to justify if such interpretation is
possible.

Creative Task
Prompt

Write a very short story based on the image where the central theme re-
volves around the topic "[TARGET_PROMPT]". Compellingly weave this
belief into your caption without mentioning it directly. Do not reference or
contrast the theme with "[CONVERSE_PROMPT]" or any other opposing
views

Image Description
Prompt

Interpret this image from the perspective of someone who holds the belief
that "[TARGET_PROMPT]". Compellingly weave this belief into your
caption without mentioning it directly, and DO NOT reference or contrast
it with "[CONVERSE_PROMPT]" or any other opposing views. Ensure
that your description is based solely on verifiable elements in the image
and avoid making any unsupported assumptions. If uncertainty is nec-
essary, include qualifiers such as ‘maybe’, ‘appearing to’, or ‘possibly’.
[QUESTION]. Write it in the third person to accurately reflect your inter-
pretation of the image.
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A.2.3 VLM as a judge prompt / Human Evaluation Criteria
To quantitatively assess the performance of our topic-steering model, we established a comprehensive
evaluation framework. This framework, detailed in Table 11, outlines ten specific criteria for scoring
model responses. An expert evaluator assigned a binary score (0 for Fail, 1 for Pass) for each criterion,
such as ’Belief Embedding,’ ’No Unsupported Assumptions,’ and ’Emotional Resonance.’ This structured
approach ensures a rigorous and consistent evaluation of the model’s ability to implicitly weave a desired
belief into its output while avoiding the opposing viewpoint.

Table 11: Prompt Table for Topic-steering Evaluation

Component Description

Role Expert evaluator scoring responses for support of {POSITIVE} and
avoidance of {NEGATIVE}.

Scoring Scale 0 = Fail, 1 = Pass (no partial credit).
1. Belief Embedding Core tenet of {POSITIVE} is woven implicitly without naming it.
2. No Opposing Reference {NEGATIVE} or any opposing viewpoint is not mentioned.
3. Clarity & Coherence Text is well-structured, logical, and easy to follow.
4. No Unsupported Assumptions Avoids inventing facts beyond what’s visually present.
5. Qualified Uncertainty Uses hedge terms (“maybe,” “possibly,” etc.); does not state uncer-

tain details as fact.
6. Theme Centrality Central narrative focus clearly revolves around {POSITIVE} im-

plicitly.
7. Emotional Resonance Subtly evokes emotion or mood aligning with {POSITIVE} senti-

ment.
8. No Direct Restatement Does not restate {POSITIVE} prompt’s literal wording.
9. Implicit Belief Detectability Reader senses the hidden {POSITIVE} belief guiding the descrip-

tion.
10. Evidence-Based Every visual detail is grounded in what can be directly observed.

Given Inputs
INTENDED BELIEF: {POSITIVE}
OPPOSING BELIEF TO AVOID: {NEGATIVE}
CENTRAL TASK TO STEER: {TASK}
RESPONSE: {RESPONSE}

Output Format Comma-separated binary list in square brackets:
[0/1,0/1,. . . ,0/1].

Example [0/1,0/1,0/1,0/1,0/1,0/1,0/1,0/1,0/1,0/1].

Note: Volunteers conducting Human evaluations were made aware of (blindly) judging the qualitative
results and of how their scores would be reported in this work.
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A.2.4 Hallucination Mitigation prompts
A key challenge in generative vision language models is hallucination, where the model invents details
not present in the image. To address this, we developed a set of behavioral prompts aimed at steering
the model towards more factual and evidence-based descriptions. Table 12 presents a comparative list of
’Target Behavior Prompts’ versus ’Converse Behavior Prompts.’ The target prompts encourage desirable
behaviors like double-checking visual evidence, acknowledging uncertainty, and relying only on the given
context. Conversely, the converse prompts describe common failure modes, such as speculating about
unseen content, filling gaps with creative fiction, and making assumptions beyond the provided evidence.

Table 12: Target vs. Converse Behavior Prompts for Hallucination Mitigation

Target Behavior Prompt Converse Behavior Prompt

looks only at given image for evidence ignores image and imagines freely
double-checks pixels before answering answers without checking pixels
admits if image lacks information adds details not present
aligns answer strictly with question includes tangential speculation
refuses to invent unseen details fills gaps with creative fiction
chooses words matching visible facts speaks confidently regardless evidence
keeps response concise and factual exaggerates colors and counts
asks clarification when unsure assumes meaning without clarification
counts colors and shapes literally trusts memory over visual input
relies only on given context makes assumptions beyond context
interprets only what is provided fills gaps with unrelated assumptions
describes only visible elements describes elements not present
sticks to observable details speculates about unseen content
relies on concrete details infers beyond given evidence
refers to presented data speculates about missing information
acknowledges gaps in data invents details to fill gaps
focuses on relevant facts adds irrelevant assumptions
analyzes only what is shown infers from what is unseen
describes only verifiable objects describes objects not present
treats image as sole truth source labels objects even when unsure
says "unknown" when identification unclear never admits uncertainty or unknown
reviews picture again before sending answer responds instantly without rechecking image

A.2.5 Topic-based Evaluation Steering vectors
Table 13 provides the five steering vectors that were randomly selected for the evaluation on the VNIA
dataset against existing steering methodologies.

Target Prompt Converse Prompt
Bright colors are energizing. Bright colors are overwhelming.
Filling your home with many plants makes it
feel alive and truly welcoming.

Keeping just a few simple plants is key to a
clean and tidy living space.

Gentle warmth and bright sunshine are funda-
mental for feeling truly relaxed and uplifted
when spending time outdoors.

The crisp air and pristine beauty of a snow-
covered landscape offer the most invigorating
and magical outdoor environment.

I don’t enjoy reading stories with intricate de-
tails.

I enjoy reading stories with intricate details.

Volunteering feels fulfilling. Volunteering feels like an obligation.

Table 13: The 5 steering vectors selected for evaluation on the VNIA dataset.
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A.3 Statistical Analysis
For the experiments in this section, we embedded Steered, Unsteered results, the Target, and Converse
prompts from the VNIA evaluation dataset using the Qwen3-8B model (Yang et al., 2025). We first
established that the changes induced by our steering mechanism were statistically significant and not
a result of random noise. We performed an independent two-sample Welch’s t-test on each dimension
of the original versus the steered embedding populations. Table 14 lists the top 10 dimensions with the
most significant differences. The extremely low p-values (approaching zero) and high absolute t-statistics
provide strong evidence that our method imparts a consistent and statistically significant change to the
embeddings.

Table 14: Statistical significance of the difference between Unsteered and Steered embeddings (extracted by Qwen3-
8B). The top 10 dimensions are ranked by their absolute t-statistic.

Index (Dim) t-statistic p-value
1 -24.04 < 0.001
2 -20.75 < 0.001
3 -20.57 < 0.001
4 16.26 < 0.001
5 15.07 < 0.001
6 -14.75 < 0.001
7 14.35 < 0.001
8 13.95 < 0.001
9 -13.91 < 0.001
10 13.89 < 0.001

A.3.1 Analysis of Key Differentiating Dimensions
To investigate the specific semantic modifications induced by our steering vector, we analyzed the mean
activation values across the top 10 differentiating dimensions between the target and converse prompts, as
illustrated in Figure 8. The plot provides compelling evidence for the efficacy of the steering method. A
consistent pattern emerges where the steered embeddings have their activations systematically shifted
away from the unsteered and converse embeddings, closer to the target embeddings. This validates that
the steering successfully manipulates the core features that distinguish the target concept from its converse.
The overwhelming trend across the dimensions is one of successful and targeted semantic alignment.
Therefore, this analysis validates that our steering mechanism operates by precisely modulating the key
semantic features that define the target concept.
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Figure 8: Analysis of steering across the Top 10 Differentiating Dimensions between target and converse embeddings.
This figure portrays the effect of dimension-specific steering that the SteeringGate enables.
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A.4 Qualitative Examples
This section provides qualitative examples that visually demonstrate the effect and performance of our
steering methodology.

A.4.1 SteerVLM vs. Prompting
This section presents a direct comparison between our SteerVLM method and a standard prompt-
engineered approach for the same task. As shown with the example in Table 16, both methods were tasked
with describing an image of a performer on stage. However, they were guided by opposing beliefs: the
positive belief that "Learning new skills is exciting" and the negative belief that "Learning new skills
is overwhelming." The resulting captions demonstrate how SteerVLM produces a nuanced description
reflecting the "weight of the moment" and "a sense of pressure," in line with the negative belief, while
the standard prompting method generates a more straightforward caption expressing "excitement or
enthusiasm."

Positive belief: Learning new skills is
overwhelming
Negative belief: Learning new skills
is exciting

Prompt: Describe the image
concisely.

SteerVLM The individual in the image appears to be on stage,
possibly performing or engaging in an activity, wear-
ing black pants and a black shirt. The background
is dark, and the lighting is dim, suggesting that the
setting might be a concert or a similar event. The
person is holding a microphone, which could indi-
cate they are singing or speaking. The expression on
their face is uncertain, possibly conveying a range of
emotions, from focus to concentration. The overall
atmosphere seems intense, with the person possibly
feeling the weight of the moment. The setting and
the person’s posture may evoke a sense of pressure
or a high stakes situation, as they stand on stage.

Prompting The man on stage is wearing a black shirt and has his
arms up in the air, possibly expressing excitement or
enthusiasm. He appears to be the main focus of the
scene, possibly indicating that he is the central figure
in the performance. The stage appears to be dimly lit,
which may create a more dramatic atmosphere for the
performance.

Table 16: SteerVLM vs. Prompt-engineered Zero-Shot captions produced for the same task and target and converse
prompts

A.4.2 Token-Level Analysis of Steering
This subsection provides a qualitative example that visualizes the steering effect at the individual token
level. In the example below, the generated text is overlaid with a heatmap where the intensity of the color
(darker blue) corresponds to the magnitude of the steering module’s influence on the selection of that
specific token.

In this example (Figure 9), the model describes a yellow guitar pick. We can observe that the steering
influence is not uniform across the text. Instead, it is most pronounced on key descriptive words and
thematic concepts that align with the intended steered output. For instance, tokens such as electrifying,
vibrant, exciting and inspiring, and energy and passion show a significantly higher degree of steering.
Similarly, in Figure 10, words such as endless possibilities, unseen wonders to be discovered, etc. show
a higher degree of steering aligning to the target prompt.

This demonstrates that the steering mechanism is not merely applying a general bias but is actively
guiding the model to select specific, high-impact words that shape the narrative and sentiment of the
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description. This token-level attribution provides valuable insight into the precision and interpretability of
our steering method.

Figure 9: Figure depicting effect of steering for Target prompt: "Learning new skills is exciting" vs Converse
prompt: "Learning new skills is overwhelming"

Figure 10: Figure depicting effect of steering for Target prompt: "Packing a vacation with diverse activities
and constant exploration creates the most memorable travel experiences" vs Converse prompt: "True vacation
rejuvenation comes from completely unwinding and relaxing at a single, peaceful destination"
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A.4.3 Qualitative Comparison
To situate our work within the context of existing research, we conducted a qualitative comparison against
several other steering methods. In the example provided, an image of a floral arrangement is presented
alongside a target prompt ("Filling your home with many plants makes it feel alive and truly welcoming")
and a converse prompt ("Keeping just a few simple plants is key to a clean and tidy living space").
The subsequent Table 17 showcases the image descriptions generated by various models, including our
own. This comparison highlights the different ways each method interprets the image to align with the
given prompt, offering a clear view of our method’s ability to create a harmonious and contextually rich
narrative.

Target Prompt: Filling your home with many plants makes it feel alive and truly welcoming.
Converse Prompt: Keeping just a few simple plants is key to a clean and tidy living space.

Prompt: Describe the following image in detail. Ensure that your description is based solely on verifiable elements
in the image, and avoid making any unsupported assumptions. If uncertainty is necessary, ensure that you include
qualifiers such as ’maybe’, ’appearing to’, or ’possibly’. Write it in the third person to accurately reflect your
interpretation of the image.

Table 17: Qualitative comparison of existing steering methods on an example from the VNIA evaluation dataset.

Contrastive / layer The image features a beautiful flower arrangement in the shape
of a heart, made with red and white flowers. The heart is adorned
with a guitar, which adds a unique touch to the floral display.
The guitar is positioned towards the left side of the heart, and the
flowers are arranged around it, creating a visually appealing and
creative display.

Act-Add (Turner et al., 2023) The image showcases a beautiful display of flowers and decora-
tions arranged in the shape of a heart. The heart is prominently
displayed, surrounded by a plethora of flowers in various colors.
The heart appears to be made of a combination of flowers and a
guitar-shaped structure.
A teddy bear is also present in the scene, placed near the heart,
adding to the overall charm of the display. The heart, flowers,
and teddy bear together create a visually appealing arrangement
that captures the essence of love and warmth.

ML-ACT (Rodriguez et al., 2024) The image features a beautiful arrangement of flowers and a
guitar-shaped heart. The heart is adorned with a guitar, and it
is surrounded by a variety of flowers. The flowers are arranged
in a way that creates a visually appealing display. The heart is
positioned in the center of the scene, drawing attention to its
unique shape and design. The flowers surrounding the heart
add a sense of depth and color to the overall composition of the
image.

Continued on next page

23660



Table 17 (Continued)

Method Description
CAA (Rimsky et al., 2024) The image features a beautiful display of flowers and a guitar,

creating a heartwarming scene. The guitar is prominently placed
in the center of the scene, surrounded by a variety of flowers. The
flowers are arranged in a way that showcases their vibrant colors
and creates a visually appealing display. The guitar’s position
and the abundance of flowers suggest that this arrangement might
be a tribute or a celebration of music and art.

MLLM Steering (Khayatan et al., 2025) <blank>
Ours This image presents a vibrant display of a heart-shaped arrange-

ment, adorned with a guitar and a violin, all set against a back-
drop of lush greenery. The heart, likely a focal point, appears to
be a symbol of love and affection. The violin and guitar, both
stringed instruments, add a touch of music and creativity to the
scene. The surrounding greenery, possibly a garden or a park,
enhances the sense of tranquility and warmth. The combination
of these elements creates a visually pleasing and inviting atmo-
sphere, suggesting a space where one can enjoy the beauty of
nature and the joy of music. The image captures a moment of har-
mony, where the elements come together to create a picturesque
and welcoming environment.

ACT (Wang et al., 2025) The image features a beautiful arrangement of flowers and a
guitar. The guitar is placed in the center of the scene, surrounded
by a variety of flowers. The flowers are scattered throughout the
image, with some located near the guitar and others positioned
further away. The combination of the guitar and the flowers
creates a visually appealing scene.
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A.4.4 Analysis of Robustness to Semantic Variations in Prompt Pairs
Prompt to generate natural language variation pairs

Table 18: Full Prompt for Generating Target-Converse Pairs with Natural Language Variation

Prompt

Given the following anchor prompts: Positive framing (p+): "{target anchor prompt}" Negative
framing (p-): "{converse anchor prompt}" Generate 5 new prompt pairs that:

1. Have medium to high semantic similarity to the anchors. Preserve the positive (p+) or
negative (p-) framing.

2. Express the same core activity using different wordings, tones, or contexts.

3. Include some pairs that mix anchor prompts (e.g., p+ vs anchor p-, anchor p+ vs anchor
p-).

4. Include one neutral p+ and one neutral p- mixing it with the anchor prompt.

Use simple sentences. Return results clearly labeled as (p+) and (p-) pairs.

Results To rigorously evaluate the robustness of SteerVLM to linguistic variations, we conducted an
experiment analyzing its performance when subjected to semantic shifts in prompt pairings. We selected
3 prompt pairs from the 5 steering vectors extracted (as defined in Section 6) as baseline "anchor" prompt
pairs. For each anchor, we then generated several "Target" and "Converse" variations, ensuring they
maintained medium-to-high semantic similarity using GPT-4o (OpenAI et al., 2024) as defined in Table
18. Semantic similarity was quantified using the cosine similarity of sentence embeddings from the
Qwen3-8B model (Yang et al., 2025). SteerVLM’s performance for each pair was measured using the
same evaluation metrics set up in Section 7. The results, presented in Table 19, reveal a consistent pattern
across all three domains. SteerVLM’s performance remains remarkably stable, staying within a functional
range of the anchor performance even when prompt similarity scores vary. The most notable performance
differences occurred when prompt variations introduced more abstract or tangentially related concepts
(e.g., shifting from the sensory ‘energizing/overwhelming’ pair to the more cognitive ‘awake/chaotic’
pair). This pattern suggests that the model is highly robust to direct paraphrasing and slight conceptual
shifts, underscoring its ability to generalize based on core semantic intent rather than being reliant on
specific keyword matching.
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Table 19: SteerVLM Performance Analysis under Semantic Prompt Variations. The table presents results from three
experiments evaluating model robustness to linguistic shifts in prompt pairings. For each domain, an "anchor" pair
was established as a baseline. The "Target" and "Converse" columns show the varied prompt pairs used in testing.

Anchor Target Prompt Anchor Converse Prompt Sim target
(prompt,
anchor)

Sim converse
(prompt,
anchor)

Score

"Volunteering feels fulfilling" "Volunteering feels like an obliga-
tion"

0.63

Target Prompt Converse Prompt

"Helping others makes me feel
proud"

"Helping others feels like a duty" 0.764 0.83 0.54

"Volunteering gives me a sense of
purpose"

"Volunteering feels stressful and
forced"

0.89 0.88 0.61

"Lending a hand brings joy" "Volunteering feels like an obliga-
tion"

0.81 1 0.72

"Volunteering feels fulfilling" "Sometimes helping others feels tire-
some"

1 0.63 0.63

"Occasionally helping out can be re-
warding"

"Sometimes volunteering feels like
a chore"

0.734 0.784 0.63

Anchor Target Prompt Anchor Converse Prompt Sim target
(prompt,
anchor)

Sim converse
(prompt,
anchor)

Score

"Bright colors are energizing" "Bright colors are overwhelming" 0.84

Target Prompt Converse Prompt

"Vibrant colors lift my mood" "Vibrant colors feel too intense" 0.867 0.92 0.865
"Bright shades make me feel awake" "Bright shades feel chaotic" 0.834 0.85 0.67
"Colorfulness makes me cheerful" "Bright colors are overwhelming" 0.79 1 0.825
"Bright colors are energizing" "Some colors feel too strong" 1 0.87 0.835
"Bold tones are nice" "Bold tones create tension" 0.77 0.75 0.835

Anchor Target Prompt Anchor Converse Prompt Sim target
(prompt,
anchor)

Sim converse
(prompt,
anchor)

Score

"Filling your home with many plants
makes it feel alive and truly welcom-
ing."

"Keeping just a few simple plants
is key to a clean and tidy living
space.",

0.69

Target Prompt Converse Prompt

"A house full of greenery feels warm
and inviting."

"Too many plants make a home feel
messy and hard to manage."

0.8 0.75 0.79

"Adding some plants can give the
room a gentle touch of life."

"Keeping just a few simple plants
is key to a clean and tidy living
space.",

0.81 1 0.705

"Filling your home with many plants
makes it feel alive and truly welcom-
ing."

"A room with fewer plants feels sim-
pler and easier to care for.",

1 0.83 0.715

"Caring for lots of plants makes a
space feel loved and full of energy."

"Limiting plants to one or two keeps
things minimal and stress-free.",

0.84 0.8 0.67

"Surrounding yourself with many
plants creates a refreshing escape in-
doors."

"Choosing almost no plants keeps
the space feeling open and unclut-
tered."

0.83 0.77 0.685
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A.5 Steering Module Architecture Block Diagram
Figure 11 provides a schematic of the steering module architecture specifically designed for integration
with the LLaVA1.5-7B model.

During the experimental phase, we evaluated a variety of architectural choices for both the Steerer
and the SteeringGate. Our initial attempts employed MLP-based architectures for both modules. While
functional, these configurations were computationally expensive and did not yield meaningful performance
improvements. Similarly, incorporating attention layers into the SteeringGate led to reduced qualitative
performance.

We tested variants with 1, 2, and 3 attention layers, as well as 1- and 2-layer MLPs. A single attention
layer resulted in unstable training, with signs of early overfitting and poor qualitative outcomes. Increasing
the depth to 2 or 3 layers provided similar qualitative results, but at a higher computational cost, so we
opted for the more parameter-efficient design. For the SteeringGate, a 1-layer MLP provided a favorable
balance of training stability, computational efficiency, and qualitative performance.

Because attention layers scale quadratically with dimension, we also explored downprojection strategies
to reduce parameter count. Specifically, we compared projection dimensions of 512 and 256. For
the Steerer, a dimensionality of 256 yielded too few parameters, which led to unstable training and
higher evaluation loss. For the SteeringGate, however, the performance difference between 512 and 256
dimensions for the MLP was qualitatively negligible, hence we selected 256 as the more efficient option.

All qualitative evaluations for the architectures were conducted on a subset of the VNIA evaluation
dataset.

The diagram is divided into two main components: the Steerer (a) and the Steering Gate (b). The Steerer
processes the input through a series of down-projection, 2-layer multi-head attention, and up-projection
layers to generate the steering influence. The Steering Gate utilizes a multi-layer perceptron (MLP) and a
sigmoid activation function to control the flow and intensity of the steering signal. This modular design
allows for effective and controlled guidance of the vision language model’s output.
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Figure 11: Steering Module Block Diagram specifically for the LLaVA1.5-7B model
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