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Abstract

Large language models perform surprisingly
well on many zero-shot classification tasks, but
are difficult to fairly compare to supervised
classifiers due to the lack of a modifiable deci-
sion boundary. In this work, we propose and
evaluate a method that transforms binary clas-
sification tasks into pairwise comparisons be-
tween instances within a dataset, using LLMs
to produce relative rankings of those instances.
Repeated pairwise comparisons can be used
to score instances using the Elo rating system
(used in chess and other competitions), induc-
ing a confidence ordering over instances in a
dataset. We evaluate scheduling algorithms
for their ability to minimize comparisons, and
show that our proposed algorithm leads to im-
proved classification performance, while also
providing more information than traditional
zero-shot classification.

1 Introduction

In zero-shot classification with large language mod-
els (LLMs), a classification task is presented to the
LLM in a prompt, and a discrete classification de-
cision is extracted from the generated response.
These generated responses can be used to compute
traditional scoring metrics of accuracy, precision,
recall, and F1 score, to compare against other clas-
sification metrics.

Supervised methods, in contrast, typically out-
put a probability distribution over possible outputs.
In the binary classification setting, real-world de-
ployments of classifiers benefit from these explicit
scores, as it allows downstream users to adjust deci-
sion thresholds to adapt classifiers to different use
cases, with the same classifier potentially using dif-
ferent thresholds for different tasks. In a screening
setting, recall is maximized at the expense of preci-
sion, because there may be such a high cost to miss-
ing cases that we can accept more false positives
(e.g., doing research on out-of-hospital mortality,

we want to capture as many potential cases as pos-
sible). In a case-finding setting, we may prefer to
maximize precision at some expense to recall, for
cases where we want our predicted cases to be a
pure representation of that phenomenon (e.g., in a
clinical trial recruitment setting, we want to err on
the side of precision when it comes to satisfying
inclusion and exclusion criteria).

Some commonly used instruments to evaluate
a classifier at different decision points are the
receiver-operator curve (ROC) and the precision-
recall curve (PRC). Measuring the area under the
ROC and PRC curves (AUROC and AUPRC, re-
spectively) can also be used as a single metric
to summarize the amount of signal captured by
a given classifier across all thresholds.

Zero-shot classification with LLMs does not
have a straightforward way to perform the equiv-
alent actions. Unlike supervised methods, LLMs
do not have the concept of a decision threshold,
so they can only be evaluated at one point, and
whether this point represents a bias towards high
recall or high precision is not easy to measure. For
classification tasks where the class of interest has
low prevalence, small changes in the number of
positive predictions or in the decision threshold can
have outsized effects on the F1 score. In such cases,
it may be preferable to use threshold-independent
metrics like AUROC, especially when comparing
between classification paradigms (supervised vs.
zero-shot LLMs).

In this paper, we describe a method for estimat-
ing AUROC or AUPRC for a zero-shot LLM by
turning the classification task into a ranking task
between pairs of instances. We use the Elo rat-
ing system (Elo, 1978), used for chess and on-
line videogames, to assign scores to instances in
a dataset, updating them after “wins” or “losses,”
and use the ordering this rating induces to compute
AUROC. Since this system requires more LLM
calls than straightforward classification, we also
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investigate various tournament scheduling strate-
gies and empirically measure which schedules min-
imize the number of competitions to reach com-
petitive performance. On three diverse datasets,
CoLA, CliniFact and a patient outcome prediction
task derived from Yoon et al. 2025 (LCD bench
(Summ)), we find that our proposed method leads
to stronger classification performance in terms of
F1 scores. Random scheduling performs surpris-
ingly well, though the “Swiss” system used in chess
and a novel graph-based method are also strong in
most settings.

2 Background and Related Work

Our method is inspired by ratings systems like Elo,
developed in chess (Elo, 1978), but applied to many
other settings, including online video games. This
and other related systems (c.f., the Bradley-Terry
model (Bradley and Terry, 1952)) are implicitly
grounded in probability distributions around player
ratings, where differences in distributions can be
used to calculate probability of one competitor win-
ning against another. These methods also consist of
update methods where, after a competition between
player A and player B, respective Elo ratings can
be updated based on the difference between scores.
For the Elo system, the updated rating for player A
(êA) with Elo rating eA against player B with Elo
rating eB is:

êA = eA +K ∗ ([wA]− P (eA, eB)) (1)

where [wA] is 1 if player A wins or 0 if not, and
K is a constant that modulates the rate of update.
We use K = 32, as conventionally used in chess
for players with few games played and lower rat-
ings. P is a function representing the expected win
probability of player A against player B, defined
as:

P (eA, eB) =
1

1 + 10
(eB−eA)

400

(2)

Our method is motivated by the goal of gener-
ating ROC curves, and allowing practitioners to
select appropriate cut-offs for downstream classifi-
cation applications. However, it shares a similarity
with a recent thread of LLM-based research on the
topic of estimating confidence of LLM answers.
If certainty could be estimated reliably, directly
from LLM outputs, then ROC curves could be gen-
erated directly from those outputs. However, re-
cent work in this area shows mixed results, with

some work showing difficulty finding correlations
with certainty in zero-shot classification tasks (Gao
et al., 2024). Other work does find some signal, but
with white-box methods showing much greater sig-
nal than black-box methods (Savage et al., 2024).
Work studying calibration claims that LLM un-
certainties are calibrated for true/false question an-
swering (Kadavath et al., 2022), but that calibration
only holds for the largest model they evaluate.

3 Methods

3.1 Baseline

To establish baseline performance, we use standard
zero-shot prompting to get classification results
and to measure the self-consistency of the LLMs.
The prompt templates for our three datasets can be
found in Appendix A.

Explicitly trading off precision and recall via
zero-shot classification off generation alone is im-
possible, but we explored the possibility of “prompt
steering,” that is, prompting to encourage the model
to err on the side of precision or recall (see Ap-
pendix A for specific prompt steering variations).

3.2 Tournament-based method

Our proposed method is to induce an overall
ranking of instances by converting our zero-shot
prompts into pairwise comparison prompts, it-
eratively comparing pairs of instances from our
dataset, and scoring each instance based on its
“wins” and “losses” in the tournament. These scores
can be converted to probabilities, and the probabili-
ties used as thresholds for decision-making, allow-
ing for the computation of receiver-operator char-
acteristic (ROC) or precision-recall (PR) curves.

3.2.1 Tournament setup

We randomly initialize every instance in our dataset
D to have an Elo rating distributed around 1000. In
each round R, we obtain a ranking of instances by
Elo rating, and produce a set of pairs of matchups
for that round via a scheduling algorithm. The
instance pair in each matchup is inserted into a
pairwise comparison prompt template (see Ap-
pendix A), and an answer is extracted using regular
expressions.1 At the end of each round, Elo rat-
ings for each instance are updated according to
Equation 1.

1We use the Inspect Eval framework(AI Safety Institute)
from the UK AI Safety Institute.
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Model Prompt style
CoLA CliniFact

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Llama3.2-
3b-Instruct

Plain 0.868 0.547 0.671 0.634 0.338 0.976 0.502 0.491
Precision 0.759 0.458 0.571 0.533 0.312 0.928 0.467 0.443

Recall 0.754 0.660 0.704 0.619 0.324 0.976 0.487 0.459

GPT-4o-
mini

Plain 0.914 0.877 0.895 0.858 0.660 0.747 0.701 0.832
Precision 0.910 0.890 0.900 0.863 0.670 0.735 0.701 0.835

Recall 0.869 0.929 0.898 0.854 0.660 0.747 0.701 0.832

Table 1: Performance of two LLMs on CoLA and CliniFact, when run in binary classification mode (Zero-shot,
single run). Precision and recall prompts emphasize the greater cost of false positives or false negatives, respectively.
Precision, recall, and F1 are defined in terms of the positive class, Acceptable or True, for our two datasets.

3.2.2 Scheduling strategies

Since each instance is processed by the LLM one
time in each round, a single round performs approx-
imately as much computation as zero-shot classifi-
cation. However, after a single round the Elo scores
and probabilities derived from them are unlikely
to be very well sorted, so they likely require mul-
tiple rounds. Therefore, we explore a variety of
scheduling algorithms, with the goal of finding the
algorithm that empirically minimizes the number of
rounds required to obtain reliable AUROC values.
We evaluate the following scheduling strategies:

Random: In each round, we sample two in-
stance indices at a time, without replacement, and
match up those two indices in that round. There
is no guarantee that two instances won’t matchup
repeatedly across rounds.

Graph: We model the set of instances as a graph
with adjacency matrix A, initialized as the zero ma-
trix. At the end of each round, we set Ai,j = 1 for
instance indices i and j that were matched up in
that round. To schedule each round, we use the net-
workx library (Hagberg et al., 2008) to compute the
minimum distance between all pairs of instances,
and pair up instances that are furthest from each
other first, again removing each instance from the
pool for that round once it has been matched up.
Instances that are not connected at all (all instances
in the first round) are assigned distance equal to the
size of the dataset. The motivation for this approach
is the intuition that instances with long distance be-
tween them in the graph have the most uncertainty
about their relative rankings and should be paired
up. Compared to the Random method, this will
also reduce the number of repeated matches.

Swiss: This method, with empirically strong per-
formance (Sziklai et al., 2022), ranks the instances
by Elo rating, and splits the ordered list of instances
into groups of size eight, and creates instance pair-

ings within groups. In the variant we use, called
“The Dutch system,” within each group (of size 8)
player i < 4 plays player 7− i. A motivation for
this approach is to allow players of similar rank to
play each other. This may be beneficial in our case,
where we might suspect local ordering to be more
important for optimizing AUROC.

4 Evaluation

We use Llama-3.2-3B-Instruct and GPT-4o-mini2

as representative models, ranging from smaller,
more open models, to larger, more closed mod-
els. We further evaluated our approach on
three different instruction-tuned models, Qwen 2.5
(Team, 2024), distilled DeepSeek R1 (DeepSeek-
AI, 2025), and Phi-tiny-MoE (Abdin et al., 2024),
and present the results in the Appendix B. Our code
to run these models uses the Inspect eval frame-
work (AI Safety Institute), which runs the Llama
models using Huggingface transformers (Wolf
et al., 2020).

4.1 Metrics

We report precision, recall, F1, accuracy, and AU-
ROC.

AUROC AUROC is a threshold-independent
metric that evaluates how well positive instances
are ranked above negative ones, and it depends only
on the relative ordering of the predicted scores. Our
proposed approach assigns an Elo rating system
score to each instance in the dataset, which natu-
rally induces a ranking of the instances and can
serve as input to the metric when reversed. For the
self-consistency–based baseline, we iterate zero-
shot prompt based classification with temperature
of 1, which is the default value. treat the number of
positive answers (npos) across N iterations as the

2Specifically, we use gpt-4o-mini-2024-07-18.
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(a) Llama-3.2-3B-Instruct performance on CoLA
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(b) GPT-4o-mini performance on CoLA
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(c) Llama-3.2-3B-Instruct performance on CliniFact

0 5 10 15 20 25 30 35 40
Rounds

0.70

0.75

0.80

0.85

M
et

ric
: A

UR
OC

GPT-4o-mini Performance (CliniFact (Dev))

random
graph
swiss
Self-consistency
Zero-shot (avg)

(d) GPT-4o-mini performance on CliniFact

Figure 1: Figures showing AUROC improvements across rounds for each dataset and model.
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Figure 2: Figures showing LCD bench (Summ) results
on Llama3.2-Instruct. Cloud-hosted models were not
evaluated on this dataset in compliance with data usage
restrictions.

confidence score (C = npos/N ) for an instance,
and use the confidence score to rank the instances
to evaluate performance using the AUROC metric.

4.2 Datasets
To evaluate our proposed methods, we selected
three datasets: one from the general domain (lin-
guistics publications), one from the scientific do-
main (biomedical literature), and one from the clin-
ical domain (electronic health records).

CoLA The Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2018) is a dataset con-
sisting of sentences from linguistics publications,
labeled with whether they were considered accept-
able or not. We use version 1.1 of CoLA, and
evaluate on the in-domain development set.

CliniFact Our second data source is Clini-
Fact (Zhang et al., 2025), a dataset of scientific
claims from clinical trial protocols labeled for
whether they are supported or not by corresponding
publications.

LCD Benchmark (Summary) The Long Clin-
ical Document Benchmark (LCD Benchmark)
(Yoon et al., 2025) is designed to evaluate lan-
guage models on 30-day out-of-hospital mortality
prediction using patient discharge notes from the
MIMIC-IV (Johnson et al., 2023) database. Be-
cause the original notes often exceed 8,000 tokens,
we created summarized versions to reduce input
length, enabling us to process pairs of samples
plus prompts without exceeding the GPU memory
available in a typical local research environment.
Unless otherwise specified, we use the term LCD
bench (Summ) in this paper to refer to this sum-

23586



marized version of the dataset. In compliance with
MIMIC/PhysioNet data use restrictions, we did not
run this dataset on GPT.3

4.3 Results

Preliminary Table 1 shows the result of the zero-
shot classifiers on our two datasets. GPT-4o-mini
significantly outperforms Llama-3.2-3b at both
tasks, as might be expected. F1 scores are re-
spectable for CoLA, but show imbalanced preci-
sion and recall. For Clinifact, Llama-3.2-3b strug-
gles significantly, but GPT-4o-mini performs re-
spectably, with higher overall F1 and better balance
between precision and recall. On all configurations,
prompt-based steering towards higher precision
is completely ineffective, while steering towards
higher recall does succeed for CoLA. This prelim-
inary experiment highlights the need for methods
that can be steered toward precision or recall.

Figure 1 and 2 shows AUROC values across
tournament rounds for CoLA CliniFact and LCD
bench (Summ). Different schedulers, and two base-
lines (zero-shot prompting and self-consistency)
are represented as color lines. For the self-
consistency baseline, the x-axis (“Rounds”) rep-
resents the number of iterations (N ). The zero-shot
prompting baseline is averaged over 40 indepen-
dent runs and shown as horizontal dashed lines.

Across the datasets and LLMs we experiment
with, our tournament approach consistently outper-
forms the two baselines, regardless of the sched-
uler selection. One exception is the CoLA dataset,
where the self-consistency baseline occasionally
performs better. We observe comparable results
for the other LLMs (Figure 3, 4, and 5) in Ap-
pendix B. The Random scheduler is strong, obtain-
ing the high overall AUROC for all the datasets in
the early rounds, but the differences between the
schedulers converge over the rounds. Table 2 shows
the F1 scores that are obtained by finding the opti-
mal cutoff point on the ROC curve for the optimal
AUROC round for each tournament experiment.
While the added benefit of AUROC scores and
thresholds mean it would be sufficient to match the
performance in the zero-shot setting, in fact we find
that the tournament-style method leads to greatly
improved F1 scores. For CoLA, Llama improves
from 0.671 to 0.866, and GPT-4o-mini improves
from 0.895 to 0.910. For CliniFact, F1 scores with
Llama improve from 0.502 to 0.651, and with GPT-

3https://physionet.org/news/post/gpt-responsible-use

4o-mini they improve from 0.701 to 0.753.

Model
CoLA CliniFact

Acc F1 AUC Acc F1 AUC
Llama3.2-
3b-Instruct

0.801 0.866 0.825 0.816 0.651 0.828

GPT-4o-
mini

0.873 0.910 0.928 0.873 0.753 0.883

Table 2: Optimal performance of two LLMs at
CoLA andCliniFact, when run in tournament mode. Pre-
cision, recall, and F1 are defined in terms of the positive
class, Acceptable or True, for our two datasets. The
Graph scheduler was used for the GPT-4o-mini CoLA
results, while the Random scheduler was used for the
Llama CoLA results. For CliniFact, Random and Swiss
scheduler were used for Llama and GPT, respectively.

5 Discussion and Conclusion

One major benefit of this approach relative to other
methods for estimating uncertainty is that it can
be computed from generations only. While closed
models like ChatGPT make log probabilities avail-
able in their API, there is no guarantee that such
functionality will always exist. Our method only
relies on the core functionality of LLMs, the ability
to generate text.

A drawback of our approach is its requirement
of multiple passes over the dataset. Our results
show asymptotic behavior after 10-20 rounds, but
the smaller dataset does asymptote quickly, raising
the possibility that the optimal number of rounds
is a function of dataset size. Future work should
explore this relationship to judge the feasibility of
applying this method to larger datasets.

The code implementing our methods and
generating these results is available at:
https://github.com/
Machine-Learning-for-Medical-Language/
cnlp_llm.
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Limitations

This work evaluates on three datasets, chosen to
have different properties, but still limiting the gen-
eralizeability of the work. Our selection of the
models, which, though representative, cannot rep-
resent all models. While our method applies in
black box scenarios that other methods do not (like
looking at first token probability), we did not in-
clude a comprehensive suite of alternative methods
for comparison of performance. The method we
describe also requires more inference time than
simple classification. While we test scheduling
algorithms to improve this performance, it will al-
ways require the equivalent of multiple inference
passes per instance.
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A Prompt Templates

A.1 Single instance prompts

For the CoLA dataset, our baseline (single instance
classification) prompt was:

Please read the following sentence and
decide whether it is "acceptable" in
a linguistic sense (i.e., grammatical).
Don’t explain your reasoning, just an-
swer "Yes" (acceptable) or "No" (unac-
ceptable) on a new line. {Input sentence}

For the CliniFact dataset, our baseline (single
instance classification) prompt was:

Instruction: Given a scientific claim and
an abstract, determine if the abstract
reports positive results (TRUE) or not
(FALSE) about the claim. The task is to
classify the pair claim abstract as follows:
TRUE: if the abstract provides positive
support for the claim. FALSE: if the ab-
stract provides negative or inconclusive
support for the claim or if the abstract
provides contextual or background infor-
mation without directly reporting results
about the claim. {Input sentence}

For the LCD bench (Summ) dataset, our baseline
(single instance classification) prompt was:

Instruction: You are an experienced criti-
cal care physician with expertise in accu-
rately predicting patient outcomes. Pre-
dict whether a patient will die within
30 days after discharge (TRUE) or sur-
vive (FALSE), based on the provided
discharge summary note. If an abstract
presents inconclusive findings or does
not provide information relevant to the
claim, the answer is FALSE. Don’t ex-
plain your reasoning, just answer TRUE
or FALSE on a new line. {Input sen-
tence}

A.2 Precision and recall-enhanced prompts

We attempted to guide the model towards higher
precision or recall with variations of the prompt
stressing the consequences of false positives or neg-
atives. These prompts are the same as the baseline
prompt, with the following text added.

For the version favoring precision:

The consequences for wrongly guessing
{Positive class} are worse than the conse-
quences for wrongly guessing {Negative
class}.

For the version favoring recall:

The consequences for wrongly guessing
{Negative class} are worse than the con-
sequences for wrongly guessing {Posi-
tive class}.

A.3 Pairwise comparison prompts
For the CoLA dataset, the pairwise prompt was:

You are an expert linguist deciding
whether sentences are grammatically ac-
ceptable or not. Your task is to take in
a pair of sentences and decide which
is more acceptable. The output for-
mat should be {"choice": <Sentence>,
"reasoning": <your reasoning>}, where
<Sentence> should be the more accept-
able or less unacceptable sentence, either
"Sentence 1" or "Sentence 2". Here are
the two sentences.

Sentence 1: {text1}

Sentence 2: {text2}

For the CliniFact dataset, the pairwise prompt
was:

You are a biomedical researcher evaluat-
ing whether given scientific claims and
their corresponding abstracts report pos-
itive results (TRUE) or not (FALSE). If
an abstract presents inconclusive find-
ings or does not provide information
relevant to the claim, the answer is
FALSE. Your task is to compare two
claim-abstract pairs and determine which
one is more likely to be classified as
TRUE. If both pairs should be answered
"TRUE", choose the one with higher con-
fidence. The output format should be
{"choice": <Pair>, "reasoning": <your
reasoning>}, where <Pair> should be the
claim abstract pair more likely to have
the answer TRUE, either "Pair 1" or "Pair
2". Here are the two questions.

Pair 1: {text1}

Pair 2: {text2}
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B Additional experiments on various
LLMs

Figure 3, 4, and 5 present additional experimental
results from our method on different models and
datasets. Since AUROC was chosen as the evalua-
tion metric, a score of 0.5 represents the baseline
of a random or uninformative classifier, and a score
below 0.5 indicates that the model is making pre-
dictions in the opposite direction of the correct
answers.

An interesting result can be observed with the
DeepSeek-R1-Distill-Qwen-1.5B model. This
model did not follow the instruction in the bi-
nary classification task prompts to respond with
[“Yes” or “No”] or [“True” or “False”] and instead
produced other types of sentences (e.g.,“Okay, so
I’m trying ...”), which led to all its answers being
marked incorrect. One possible interpretation is
that, as this model was primarily developed for
reasoning tasks, it may be inclined to output such
sentences. This remains an interesting topic for
future investigation.

Another noteworthy result comes from the Phi-
tiny-MoE model on the LCD bench (Figure 5 (c)),
which achieved performance below 0.5. One pos-
sible explanation is that the model may have inter-
preted the task as predicting survival rather than
mortality. This is also a point worth further explo-
ration in future work.

Some experiments in Figure 5 are not completed
within the given time window due to limited GPU
resources.
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(c) Phi-tiny-MoE-instruct performance on CoLA

Figure 3: Figures showing AUROC improvements
across rounds for CoLA.
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(b) DeepSeek-R1-Distill-Qwen-1.5B performance on Clin-
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(c) Phi-tiny-MoE-instruct performance on CliniFact

Figure 4: Figures showing AUROC improvements
across rounds for CliniFact.
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(a) Qwen2.5-3B Instruct performance on LCD bench
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(b) DeepSeek-R1-Distill-Qwen-1.5B performance on
LCD bench (Summ)
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Figure 5: Figures showing AUROC improvements
across rounds for LCD bench (Summ).
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