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Abstract

Large Vision-Language Models (LVLMs)
have demonstrated impressive performance
on vision-language reasoning tasks. However,
their potential for zero-shot fine-grained image
classification, a challenging task requiring
precise differentiation between visually similar
categories, remains underexplored. We present
a novel method that transforms zero-shot
fine-grained image classification into a visual
question-answering framework, leveraging
LVLMs’ comprehensive understanding
capabilities rather than relying on direct class
name generation. We enhance model perfor-
mance through a novel attention intervention
technique. We also address a key limitation
in existing datasets by developing more
comprehensive and precise class description
benchmarks. We validate the effectiveness of
our method through extensive experimentation
across multiple fine-grained image classifi-
cation benchmarks. Our proposed method
consistently outperforms the current state-of-
the-art (SOTA) approach, demonstrating both
the effectiveness of our method and the broader
potential of LVLMs for zero-shot fine-grained
classification tasks. Code and Datasets:
https://github.com/Atabuzzaman/
Fine-grained-classification

1 Introduction

Large Vision-Language Models (LVLMs) such
as LLaVA (Liu et al., 2024a,b), BLIP-2 (Li
et al., 2023), InstructBLIP (Dai et al., 2023),
Molmo (Deitke et al., 2024), Qwen2-VL (Wang
et al., 2024b), InternVL (Chen et al., 2024), and
DeepSeek’s Janus-Pro (Chen et al., 2025) and so on,
alongside closed-source models like GPT-4V (Ope-
nAI, 2024) and others have revolutionized multi-
modal understanding. These models demonstrate
remarkable zero-shot capabilities in tasks that re-
quire extensive real-world knowledge, such as Vi-
sual Question Answering (VQA), visual reasoning,
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Figure 1: Overview of our zero-shot fine-grained image
classification framework. Unlike existing approaches
(top), which directly prompt a Large Vision-Language
Model (LVLM) to generate a class name given an input
image, our method leverages an LVLM combined with
a proposed iterative multiple-choice question-answering
strategy and an attention intervention technique to select
the most accurate fine-grained class description. This
framework effectively matches each input image with
the most appropriate class description without requiring
any training samples.

and image captioning. Their success largely stems
from instruction-tuning and pre-training on vast
multimodal datasets, enabling effective integration
of visual content with textual knowledge.

However, despite their impressive performance
in general vision-language tasks, LVLMs face sig-
nificant challenges in fine-grained image classifi-
cation, which requires distinguishing subtle visual
differences between highly similar categories, such
as bird species or car models (Kim and Ji, 2024).
Unlike coarse-grained tasks where broad visual fea-
tures suffice, fine-grained classification demands a
precise understanding of nuanced visual character-
istics and their alignment with detailed textual de-
scriptions (Figure 1 & 2). This challenge becomes
particularly acute in zero-shot settings, where mod-
els must identify fine-grained categories without
task-specific training.
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Initial attempts to address this challenge include
Finer (Kim and Ji, 2024), which trained mod-
els to generate fine-grained attributes before pre-
dicting class names, and GRAIN (Halbe et al.,
2024), which adapted CLIP (Radford et al., 2021)
with LVLMs to measure similarity between gen-
erated text and ground truth class names. While
these methods represent important first steps, their
limited performance reveals critical gaps in cur-
rent LVLM architectures and methodological ap-
proaches. Although LVLMs excel at generating
descriptive captions and answering general ques-
tions about images, they struggle to capture and dif-
ferentiate the subtle visual distinctions that define
fine-grained categories (Kim and Ji, 2024). This
limitation stems from their reliance on direct class
name generation without sufficient domain knowl-
edge and the use of less powerful models. These
findings suggest that vision-language generation
approaches may not adequately address the level of
detail required for fine-grained classification tasks.

To address these limitations, we propose a novel
method for zero-shot fine-grained image classifi-
cation using LVLMs. Inspired by VQAScore (Lin
et al., 2024), we first develop a strong founda-
tion through likelihood-based yes/no QA classifica-
tion. We then introduce an iterative multiple-choice
question-answering (MCQA) approach to enable
fine-grained classification. To reduce the computa-
tional overhead of iterative MCQA, we also explore
an all-at-once approach that leverages the extended
context capabilities of modern LVLMs to process
all class descriptions simultaneously in a single for-
ward pass. Rather than relying on direct class name
generation, both approaches leverage the models’
comprehensive visual understanding capabilities.
Our method aligns with traditional CLIP-based
fine-grained classification approaches (Menon and
Vondrick, 2022; Saha et al., 2024) by utilizing
class labels and descriptions. Additionally, inspired
by recent advances in LVLM hallucination reduc-
tion (Liu et al., 2025; Zhou et al., 2025; Huang
et al., 2024; Wang et al., 2024a; Jiang et al., 2025),
we introduce a simple yet effective attention in-
tervention technique. This intervention integrates
insights from multiple studies, combining early-
layer visual information flow (Zhang et al., 2024)
with deep-layer ground truth token detection capa-
bilities (Wang et al., 2024a; Jiang et al., 2025) to
enhance classification accuracy.

Furthermore, we identify a critical limitation
in existing class descriptions, which are typically

generated using Large Language Models (LLMs)
such as GPT-3/4 (Menon and Vondrick, 2022; Saha
et al., 2024) or sourced from the internet and re-
fined using GPT-4V (Kim and Ji, 2024). These
descriptions often contain visual attributes that are
absent from the actual class images or include ir-
relevant information that may impair model per-
formance. To address this challenge, we develop
curated class description benchmarks that more ac-
curately capture the visual characteristics present
in the images. Our approach investigates settings
both with and without explicit class names in the
descriptions, providing greater flexibility and ro-
bustness in classification tasks. Through extensive
experiments on major fine-grained classification
benchmark datasets, our methods demonstrate sig-
nificant performance improvements over existing
approaches and achieve SOTA performance. The
main contributions of our work are as follows:

• We introduce a novel method for zero-
shot fine-grained image classification that
leverages LVLMs’ understanding capabilities
rather than relying on class name generation.

• We propose an efficient attention intervention
technique that enhances visual information
flow by combining early-layer visual informa-
tion with deep-layer semantic understanding.

• We introduce improved class description
benchmarks that better align with visual fea-
tures, addressing gaps in existing descriptions.

• We demonstrate substantial performance im-
provements over existing methods across five
major fine-grained classification benchmarks.

2 Related Work

2.1 Zero-shot Image Classification using
Vision-Language Models

Vision-Language Models (VLMs) are trained on
massive web-scraped datasets for zero-shot image
classification. CLIP (Radford et al., 2021) pio-
neered this approach through contrastive training
of image and text encoders, optimizing for high
similarity between matching pairs while minimiz-
ing similarity for non-matching ones. During infer-
ence, CLIP computes similarities between unseen
images and text captions to perform classification.
ALIGN (Jia et al., 2021) extended this framework
by adding a data refinement stage.

Recent approaches leverage LLMs to generate
richer class descriptions. Menon and Vondrick
(2022) prompted LLMs to generate discriminative
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Choose the best option that aligns
well with the image. 

A: Yellow Headed Blackbird has...... 
 --------

D: Sooty Albatross has grey feather.
E: Red-Winged Blackbird has red....

Choose the best option that aligns
well with the image.

A: Yellow Headed Blackbird has.......
 --------

E: Painted Bunting has blue head.....
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Figure 2: Overview of our proposed zero-shot fine-
grained image classification framework using LVLM.
The system takes an input image and class descriptions
with a prompt, and uses an LVLM enhanced with an
attention intervention mechanism. The framework em-
ploys an iterative MCQA approach where the LVLM se-
lects the most appropriate class description through mul-
tiple rounds of refinement. The attention intervention
module guides the visual information flow from shal-
low to deep layers, while deep layers provide grounded
object-attribute information to final layers to improve
classification accuracy.

attributes for each class, while Pratt et al. (2023)
proposed generating multiple prompts per class
to enrich text understanding. Saha et al. (2024)
fine-tuned CLIP using attribute-based descriptions
incorporating visual features, geographic informa-
tion, and habitat context. Chiquier et al. (2024) en-
hanced interpretability by combining concept bot-
tlenecks (Koh et al., 2020) with evolutionary search
for LLM-generated concepts. These methods typ-
ically determine the predicted class through max-
imum cosine similarity between CLIP-generated
text and image embeddings.

2.2 Zero-shot Image Classification using
LVLMs

Recent advancements in LVLMs including
LLaVA (Liu et al., 2024a,b), BLIP-2 (Li et al.,
2023), InstructBLIP (Dai et al., 2023), and Qwen2-
VL (Wang et al., 2024b) have depicted remarkable
zero-shot capabilities in tasks like Visual Question
Answering (VQA), visual reasoning, and image
captioning. However, their ability to classify fine-
grained images remains underexplored.

Prior work in zero-shot fine-grained classifica-
tion with LVLMs includes Finer (Kim and Ji, 2024),
which generates class names and considers a pre-
diction correct if the ground truth appears among
the top 20 generated tokens. GRAIN (Halbe et al.,

2024) extended this approach by computing cosine
similarity between CLIP embeddings of LLaVA-
v1.6 generated text (Liu et al., 2024b) and ground
truth class descriptions. In contrast, following tradi-
tional zero-shot classification paradigms, our work
introduces a novel method that leverages class de-
scriptions instead of generating class names. We
provide these descriptions along with the image
as input to LVLMs. We either measure the prob-
ability of a ‘Yes’ response based on image-text
alignment or prompt the model to select the most
image-aligned description.

2.3 Attention Intervention

Recent research has explored various techniques to
mitigate LVLM hallucinations in training-free set-
tings. These approaches include visual contrastive
decoding (VCD) (Leng et al., 2024), token selec-
tions (Huo et al., 2025), overconfident token pe-
nalization using attention weights (Huang et al.,
2024; Gong et al., 2024), and attention interven-
tion (Liu et al., 2025; Zhou et al., 2025). PAI (Liu
et al., 2025) demonstrated that LVLMs tend to un-
derweight image tokens, with language decoders
showing bias toward text tokens. To address this,
PAI increased image token attention while subtract-
ing language bias, following VCD (Leng et al.,
2024). CAUSALMM (Zhou et al., 2025) employed
various attention intervention strategies (random,
uniform, reversed, and shift) and counterfactual
reasoning at both visual and language attention lev-
els to mitigate modality priors and enhance input-
output alignment. DeCo (Wang et al., 2024a) pro-
posed dynamic selection of previous layers to incor-
porate knowledge into final layers, while Jiang et al.
(2025) introduced a system for hallucination miti-
gation through interpretation and editing of image
embeddings. However, these methods are computa-
tionally expensive (Wang et al., 2024a; Jiang et al.,
2025), as they rely on visual contrastive decod-
ing and token or layer selection. This inefficiency
makes these methods unsuitable for our classifica-
tion task, which involves comparing a single im-
age against multiple class descriptions. Instead,
our method achieves greater efficiency by using a
single forward pass while propagating visual in-
formation from shallow to deep layers and visual
object-attribute grounded information (via atten-
tion weights) from deep layers to final layers. Our
approach significantly reduces computational over-
head while maintaining effectiveness in zero-shot
fine-grained image classification.
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3 Proposed Method

This section presents our proposed method for
zero-shot fine-grained image classification using
LVLMs. We begin by introducing a likelihood-
based Yes/No Question-Answering (QA) approach,
then propose an iterative MCQA framework to ad-
dress the limitations of the initial approach. We
introduce a simple yet effective attention interven-
tion technique inspired by hallucination mitigation
methods to enhance iterative MCQA approach per-
formance. Figure 2 provides an overview of our
iterative MCQA method with attention interven-
tion. Finally, we discuss an all-at-once approach
that leverages the extended context capabilities of
modern LVLMs to reduce computational overhead.

3.1 Yes/No Question-Answering

Inspired by VQAScore (Lin et al., 2024), we in-
troduce a likelihood-based Yes/No QA approach
for zero-shot fine-grained image classification to
determine the aligned class description for a given
image. Given an image I , we formulate a query
Q(Dc) that prompts the LVLM to generate a binary
response ("Yes" or "No") based on the alignment
between a candidate class description Dc and the
image. We use the probability of generating a "Yes"
response as a confidence score to choose the best-
matched class description for that image. Formally,
for each candidate class c ∈ C, we compute:

PYes(c) = p("Yes" | I,Q(Dc)) (1)

where PYes(c) represents the probability of gen-
erating "Yes" for class c, indicating the model’s
confidence that Dc correctly describes the image.

The final predicted class ŷ is determined by se-
lecting the class with the highest probability of
generating "Yes":

ŷ = argmax
c∈C

PYes(c) (2)

While this approach effectively selects class de-
scriptions, it requires access to output token prob-
abilities to compute the likelihood of generating
"Yes", limiting its implementation to LVLMs that
provide token-level log probabilities. Addition-
ally, comparing each image against every class de-
scription is computationally expensive. To address
these limitations, we propose an iterative MCQA
approach that both reduces computational cost and
eliminates the need for model logits access.

3.2 Iterative MCQA

We propose an iterative MCQA framework for
zero-shot fine-grained image classification using
LVLMs. Given an image I and a set of N possible
class descriptions, the LVLM iteratively selects a
small subset of m options (e.g., m = 5) to progres-
sively refine its prediction.

At test time, the model operates without access
to the ground-truth label. In the first iteration, it
is presented with a random subset of m class de-
scriptions and selects the best-matching option. In
subsequent iterations, the model retains the previ-
ously chosen option and compares it against m−1
new class descriptions that have not yet been eval-
uated. This process continues until all class de-
scriptions are considered. The final selection in
the last iteration is taken as the model’s prediction.
For example, in a 20-class task with m = 5, the
model is first shown the set {A,B,C,D,E}. Sup-
pose it selects A; the next round compares A with
{F,G,H, I}. If it then chooses G, the subsequent
round presents {G, J,K,L,M}, and so on. The
model’s prediction is derived from its final selected
option after iterating through the full set of classes.

While our iterative MCQA approach is entirely
label-free, we incorporate an early stopping mecha-
nism during evaluation for computational efficiency.
Specifically, if the ground-truth class appears in a
subset and the model fails to select it, we terminate
the process early, as the final outcome will be incor-
rect regardless of subsequent iterations. This early
termination serves purely as an evaluation short-
cut and does not influence the model’s decision-
making process. Algorithm 1 (Appendix A.3) for-
malizes the complete iterative MCQA procedure.

3.3 Attention Intervention

Recent studies have demonstrated that LVLMs ex-
hibit a bias toward language tokens over image
tokens during response generation (Liu et al., 2025;
Wang et al., 2024a; Zhang et al., 2024). While
existing methods address this through token logit
manipulation (Gong et al., 2024; Huo et al., 2025)
or decoder attention intervention (Liu et al., 2025;
Zhou et al., 2025), they often rely on visual con-
trastive decoding techniques (Leng et al., 2024)
that require more computation. These approaches,
while effective for general tasks, prove computa-
tionally inefficient for fine-grained classification
using LVLMs where multiple class descriptions
must be evaluated against each image.
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Therefore, we propose a simple yet effective
attention intervention technique that enhances vi-
sual information flow while maintaining compu-
tational efficiency. Our approach is motivated
by two key findings: (1) LVLMs process criti-
cal visual information in intermediate early lay-
ers (Zhang et al., 2024), and (2) intermediate
later/deep layers demonstrate better object-attribute
grounding (Wang et al., 2024a; Jiang et al., 2025).
Given an LVLM with L layers, we compute the
average attention weights from layers 3 to k and
incorporate them into layers k+1 to L−2, exclud-
ing the last two layers to optimize visual informa-
tion flow. Additionally, we average the attention
weights from layers k + 1 to L− 2 and propagate
this grounding information to the final two layers:

Āearly =
1

k − 2

k∑

i=3

Ai (3)

A′
j = Aj + λĀearly, j ∈ [k + 1, L− 2] (4)

where Ai represents the attention weights in layer
i, Āearly is the mean attention pattern from selected
early layers, A′

j is the modified attention weights
for layer j, and λ is a scaling factor controlling
the influence of early visual information. With this
approach, we attempt to ensure enhanced visual
information flow and grounded object information
while maintaining computational efficiency.

3.4 All-at-Once Approach
Recent advances in LVLM architectures have en-
abled processing of significantly longer contexts,
with models like Qwen2.5-VL (Team, 2025), In-
ternVL2.5 (Chen et al., 2024), and GPT-4o (Ope-
nAI, 2024) supporting extended text prompts that
can accommodate hundreds or thousands of tokens.
This capability presents an alternative approach to
our iterative MCQA framework by allowing all
class descriptions to be presented simultaneously
in a single forward pass.

In this approach, we provide the complete set of
N class descriptions along with the input image
and prompt the model to select the most appro-
priate description directly. The model receives a
comprehensive view of all possible classes at once,
potentially enabling more sophisticated reasoning
about inter-class relationships and discriminative
features. This method eliminates the iterative na-
ture of our MCQA approach while maintaining the
core principle of leveraging detailed class descrip-
tions rather than generating class names.

We formulate this as a single-pass selection task
where, given an image I and the complete set of N
class descriptions {D1, D2, ..., DN}, the model is
prompted to identify the index of the best-matching
class description:

ŷ = LVLM(I, {D1, ..., DN}, Qall) (5)

where Qall represents a prompt that instructs the
model to select the best matching class description
from all provided options simultaneously.

4 Experiments and Evaluation

To evaluate our proposed method, we conduct com-
prehensive experiments across five fine-grained im-
age classification benchmark datasets using differ-
ent LVLMs and our curated class descriptions. This
section presents the details of our class description
curation process, experimental setup, evaluation
results, and ablation studies.

4.1 Datasets
For our experiments, we utilize several estab-
lished fine-grained image classification datasets:
CUB (Wah et al., 2011) (200 bird species), Stan-
ford Cars (Krause et al., 2013) (196 car models),
FGVC Aircraft (Maji et al., 2013) (102 aircraft vari-
ants), Food-101 (Bossard et al., 2014) (101 food
categories), and Stanford Dogs (Khosla et al., 2011)
(120 dog breeds). These datasets present diverse
challenges in fine-grained visual recognition across
different domains including birds, dogs, cars, air-
crafts, and foods. Following Kim and Ji (2024);
Halbe et al. (2024), we conduct our experiments
on randomly selected subsets of these datasets to
maintain consistency with prior work, ensuring we
exclude any images used in our class description
curation process. For example, for the CUB dataset,
we randomly select 5 images per class, resulting in
1,000 test images across 200 classes.

4.2 Class Description Curation
Existing class descriptions for these five datasets,
provided by Menon and Vondrick (2022), Saha
et al. (2024), and Kim and Ji (2024), are either
generated using LLMs like GPT-3/4 (Menon and
Vondrick, 2022; Saha et al., 2024) or extracted from
the internet and refined using GPT-4V (Kim and
Ji, 2024). We observe that these descriptions often
lack precise fine-grained visual attributes neces-
sary for accurate identification and may contain
irrelevant information.

23573



S
o

o
ty

 A
lb

a
tr

o
ss

C
re

st
ed

 A
u

k
le

t
R

ed
-w

in
g

ed
 

B
la

ck
b

ir
d

Images
Existing Class 

Descriptions

Ours Class 

Descriptions

• Slender body.

• Dark Gray or 

Black Head

• Sharp black beak

• White eye-ring.

• Grayish-brown 

back and wings 

with darker tips.

• Long, narrow 

wings, slightly 

curved.

• Sooty-brown to 

sooty-black 

plumage.

• Darker head and tail.

• White ring around 

its eye.

• Yellow to orange 

line on its lower jaw.

• Glossy Black beak.

• Bright orange beak 
with a white stripe 
near the base.

• Distinctive tuft of 
feathers on the 
head.

• White eye with a 
black pupil.

• Dark gray to black 
body.

• Webbed feet, dark 
in color.

• Dark sooty grey 
body, wings, and tail.

• Reddish-orange bill 
with yellow tips.

• White auricular 
plumes.

• Grey legs and feet.
• Black claws.
• Black forward-

curving crest 
feathers.

• Predominantly black 
plumage (head, 
beak, eyes, body).

• Distinctive bright 
orange and yellow 
patch on wings 
(near shoulder).

• Slender, conical 
beak.

• Black bird.
• Red shoulder 

patches.
• Pale yellow wing bar.

Figure 3: Comparison of class descriptions from an
existing dataset and our introduced class descriptions.
Bold text in the "Ours Class Descriptions" column high-
lights key discriminative features that are either absent
or described with less specificity in the "Existing Class
Descriptions" column. The increased detail in our pro-
posed descriptions facilitates more accurate zero-shot
fine-grained image classification.

To address these limitations, we develop a two-
stage process for curating more accurate class de-
scriptions for these five datasets (prompts in Ap-
pendix A.2). First, we iteratively feed individual
representative images from each class (10 images
total) to Qwen2.5-VL-72B-Instruct (Team, 2025),
a state-of-the-art LVLM, to generate detailed vi-
sual descriptions for each image. Then, we pro-
cess these 10 descriptions through Qwen2.5-72B-
Instruct (Yang et al., 2024) LLM to compile a sin-
gle comprehensive class description that captures
common, distinctive visual features.

Our curation process yields 10 benchmarks -
paired versions of 5 datasets with and without
class names in their descriptions. Figure 3 demon-
strates the enhanced descriptive precision of our cu-
rated descriptions for the CUB dataset (Wah et al.,
2011) compared to existing class descriptions from
Finer (Kim and Ji, 2024). Our descriptions incorpo-
rate more specific visual attributes (highlighted in
bold) that are essential for fine-grained classifica-
tion. For example, in describing the Crested Auklet,
our description specifies a "bright orange beak with
a white stripe near the base" and a "distinctive tuft
of feathers", providing more precise detail than

the existing description’s "reddish-orange bill with
yellow tips" and "black forward-curving crest feath-
ers". Similarly, for the Red-winged Blackbird, we
include the "distinctive bright orange and yellow
patch on wings (near shoulder)", offering crucial
color and spatial information missing from the ex-
isting description’s simple "red shoulder patches".
This enhanced specificity across multiple visual fea-
tures (beak morphology, plumage patterns, body
structure) facilitates more accurate zero-shot clas-
sification among visually similar species.

4.3 Experimental Setup
For our experiments, we employ five state-of-the-
art LVLMs: LLaVA-v1.5-7B, LLaVA-v1.5-13B,
InternVL2_5-8B, Qwen2-VL-7B-Instruct (also re-
ferred to as Qwen2-VL-7B in this literature), and
Qwen2.5-VL-7B-Instruct. For our attention in-
tervention experiments, we set λ=1 and k=21
for LLaVA-v1.5-7B, InternVL2_5-8B models and
k=23 for LLaVA-v1.5-13B model. We evaluate
model performance using classification accuracy
as our primary metric.

4.4 Results
We evaluate our proposed approaches: Yes/No
QA, iterative MCQA, iterative MCQA with at-
tention intervention, and all-at-once across mul-
tiple LVLMs on multiple fine-grained classification
benchmarks. Table 1 presents comprehensive re-
sults under two experimental settings: with and
without class names in class descriptions.

Comparative analysis of proposed methods.
Our iterative MCQA approach consistently outper-
forms the Yes/No QA baseline across all models
and experimental settings. In the "without name"
setting, Qwen2.5-VL-7B-Instruct achieves 30.60%
on CUB with iterative MCQA compared to 21.30%
with Yes/No QA, representing a substantial 9.30%
improvement. We observe a similar trend for Stan-
ford Cars (41.63% vs 22.04%) and FGVC Aircraft
(17.71% vs 10.57%) datasets with the Qwen2.5-
VL-7B-Instruct model. The inclusion of class
names dramatically shifts the performance land-
scape. Yes/No QA becomes highly competitive,
with Qwen2-VL-7B-Instruct achieving exceptional
results (53.30% on CUB, 86.84% on Stanford Cars,
the latter being the best performance across all
methods). Meanwhile, iterative MCQA maintains
strong performance while offering the advantage
of structured multi-step reasoning, particularly ev-
ident in models like InternVL2_5-8B achieving
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Setting Method Model CUB Stanford
Dogs

Stanford
Cars

FGVC
Aircraft

Food
101

W/o name

Yes/No QA

LLaVA-v1.5-7B 11.10 9.50 14.18 7.43 52.28
LLaVA-v1.5-13B 13.80 10.50 18.67 9.71 56.24
Qwen2-VL-7B 20.20 22.33 21.94 13.71 67.33
Qwen2.5-VL-7B 21.30 18.00 22.04 10.57 65.15

Iterative MCQA

LLaVA-v1.5-7B 9.00 15.67 9.90 11.71 40.99
LLaVA-v1.5-7B + Attn 12.10 10.17 14.29 15.14 43.76
∆ +3.10 -5.50 +4.39 +3.43 +2.77
LLaVA-v1.5-13B 7.50 16.00 13.88 10.57 32.87
LLaVA-v1.5-13B + Attn 8.80 16.33 15.10 12.29 30.30
∆ +1.30 +0.33 +1.22 +1.72 -2.57
InternVL2_5-8B 26.50 21.00 27.35 12.86 58.42
InternVL2_5-8B + Attn 27.30 21.67 27.65 13.71 58.81
∆ +0.80 +0.67 +0.30 +0.85 +0.39
Qwen2-VL-7B 32.40 15.67 33.78 20.00 54.85
Qwen2.5-VL-7B 30.60 21.50 41.63 17.71 63.76

All-at-Once

InternVL2_5-8B 15.30 17.67 16.22 10.57 55.84
Qwen2.5-VL-7B 6.60 14.33 21.94 12.00 43.76
Qwen2.5-VL-32B 15.60 23.83 47.96 21.43 49.31
GPT-4o 35.00 50.00 50.51 27.14 80.20
o4-mini (reasoning) 48.50 58.33 64.29 40.00 89.11

With name

Yes/No QA

LLaVA-v1.5-7B 15.60 17.00 36.22 19.14 55.84
LLaVA-v1.5-13B 15.60 22.17 36.02 23.14 61.98
Qwen2-VL-7B 53.30 62.33 86.84 63.43 75.45
Qwen2.5-VL-7B 53.80 58.00 75.71 49.14 67.92

Iterative MCQA

LLaVA-v1.5-7B 18.40 19.83 20.20 30.86 47.92
LLaVA-v1.5-7B + Attn 23.30 22.50 21.94 31.14 48.32
∆ +4.90 +2.67 +1.74 +0.28 +0.40
LLaVA-v1.5-13B 12.60 29.83 32.45 18.00 40.59
LLaVA-v1.5-13B + Attn 13.80 31.33 31.43 18.57 37.43
∆ +1.20 +1.50 -1.02 +0.57 -3.16
InternVL2_5-8B 36.60 38.50 42.65 33.43 56.63
InternVL2_5-8B + Attn 37.50 38.00 42.86 32.57 57.03
∆ +0.90 -0.50 +0.21 -0.86 +0.40
Qwen2-VL-7B 53.20 46.33 71.12 54.57 54.26
Qwen2.5-VL-7B 53.00 46.17 65.92 52.86 67.13

All-at-Once

InternVL2_5-8B 20.60 30.00 21.84 24.86 57.82
Qwen2.5-VL-7B 15.20 31.33 31.63 40.00 51.49
Qwen2.5-VL-32B 33.00 52.67 62.24 42.86 55.05
GPT-4o 70.50 74.17 80.10 77.14 90.10
o4-mini (reasoning) 67.20 71.67 83.16 77.14 91.09

Table 1: Zero-shot fine-grained visual classification performance in accuracy using different methods and models.
Results compare Yes/No QA, iterative MCQA, and all-at-once approaches, with our proposed attention intervention
(+Attn) enhancement. We conducted experiments with and without class names in descriptions on five fine-grained
classification benchmarks. ∆ rows show the performance gains from our introduced attention intervention. Best
performance in each setting is highlighted in bold.

balanced performance across all datasets.
Impact of Attention Intervention. The at-

tention intervention shows variable effectiveness,
with improvements varying across architectures
and datasets. LLaVA-v1.5-7B demonstrates the
most consistent gains from attention intervention,
particularly in the "with name" setting where it
achieves +4.90% improvement on CUB (18.40%
→ 23.30%). LLaVA-v1.5-13B shows moderate im-
provements ranging from +1.20% to +1.72% across
most datasets, though with some minor decreases
on Stanford Cars and Food-101. InternVL2_5-8B

exhibits the most stable response to attention inter-
vention, with modest but consistent gains (+0.21%
to +0.90%) across datasets in both settings. We per-
formed layer selection optimization for the LLaVA-
v1.5-7B model using the CUB dataset and applied a
similar layer selection to the larger models. As we
optimized layer selection specifically for LLaVA-
v1.5-7B, the intervention proves most beneficial
for this model. However, the fact that similar layer
selection also shows performance gains for other
models indicates that model-specific and dataset-
specific layer selection could further enhance the
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effectiveness of our attention intervention method.
All-at-once vs. iterative approach. Our

all-at-once approach reveals interesting trade-
offs between context utilization and performance.
While state-of-the-art proprietary models (GPT-
4o: 70.50% on CUB, o4-mini: 67.20% on CUB)
achieve competitive results, open-source models
suffer significant performance degradation when
processing all class descriptions simultaneously.
The stark contrast is evident in Qwen2.5-VL-7B-
Instruct, which achieves 53.00% on CUB with it-
erative MCQA but only 15.20% with all-at-once
in the "with name" setting, a 37.80% performance
drop that highlights the cognitive burden of simul-
taneous multi-class comparison.

Key Findings. Four critical insights emerge
from our evaluation: (1) Iterative MCQA con-
sistently outperforms Yes/No QA, with aver-
age improvements ranging from 5% to 20%
across datasets; (2) Attention intervention effec-
tiveness varies across different model architec-
tures, with LLaVA-v1.5-7B benefiting more than
InternVL2_5-8B, particularly when using our op-
timized layer selection tailored for the LLaVA-
v1.5-7B model on the CUB dataset; (3) Including
class names significantly enhances performance
across all approaches, with particularly notable im-
provements on FGVC Aircraft and Stanford Cars
datasets; (4) The all-at-once approach works well
for proprietary models but shows substantial degra-
dation in open-source models, highlighting the
advantage of iterative processing. These results
demonstrate that structured, iterative processing
with attention guidance provides superior perfor-
mance for zero-shot fine-grained classification com-
pared to single-pass approaches.

4.5 Comparison
Table 2 presents a performance comparison be-
tween our proposed method and existing ap-
proaches across four fine-grained visual classifi-
cation datasets. Our method significantly outper-
forms Finer (Kim and Ji, 2024), the current SOTA
approach, across all datasets. While Finer achieves
accuracies of 1.56%, 4.20%, 0.50%, and 1.50% on
CUB, Stanford Dogs, Stanford Cars, and FGVC
Aircraft, respectively, our approaches demonstrate
substantial improvements across all datasets.

Our iterative MCQA approach with attention
intervention (MCQA + Attn) achieves SOTA per-
formance on most datasets: CUB (23.30%), Stan-
ford Dogs (22.50%) and Aircraft (31.14%), with

absolute accuracy gains of 21.74%, 18.30%, and
29.64% over Finer, respectively. Meanwhile, the
Yes/No QA approach excels on Stanford Cars with
the highest accuracy of 36.22%, achieving a sub-
stantial 35.72% improvement over the baseline.

These significant improvements, with absolute
accuracy gains ranging from 18.30% to 35.72%
over Finer, validate that our proposed approaches
effectively enhance the model’s ability to focus on
discriminative visual features for fine-grained clas-
sification. Among our proposed approaches, the
iterative MCQA with attention intervention demon-
strates the most consistent performance across mul-
tiple datasets. A detailed comparison with CLIP-
based methods is provided in Appendix A.7, and a
discussion of the computational efficiency of our
approach relative to the baselines is included in
Appendix A.6.

Method CUB Stanford
Dogs

Stanford
Cars

FGVC
Aircraft

Finer (Kim and Ji, 2024) 1.56 4.20 0.50 1.50
Ours (Yes/No QA) 15.60 17.00 36.22 19.14
Ours (MCQA) 18.40 19.83 20.20 30.86
Ours (MCQA + Attn) 23.30 22.50 21.94 31.14

Table 2: Performance comparison of our proposed
method with existing methods. For a fair comparison,
all experiments use the LLaVA-v1.5-7B model. For
Finer, values are extracted from the published results
graphs with a potential variance of 1-2%. Best perfor-
mance for each dataset is highlighted in bold.

4.6 Ablation Study

We conduct a series of ablation studies to evalu-
ate the impact of key components in our proposed
method. Additional ablation results are provided in
Appendix A.4, and A.5.

4.6.1 Comparison of Datasets
Table 3 highlights the importance of our introduced
class descriptions in zero-shot fine-grained clas-
sification using Qwen2.5-VL-7B-Instruct (Team,
2025) in the iterative MCQA setting. The existing
class descriptions, sourced from the Finer (Kim
and Ji, 2024) (except for Food-101, which comes
from Menon and Vondrick (2022)), lack detailed
attribute representation, leading to lower accuracy.
In contrast, our introduced descriptions, which em-
phasize precise visual attributes, significantly im-
prove performance, with notable gains on Food-101
(+13.07%) and CUB (+8.3%). This demonstrates
that richer attribute-based descriptions enhance the
model’s ability to distinguish fine-grained classes.
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Including class names further improves accuracy
across all datasets, as the model benefits from ex-
plicit textual cues. However, even in this setting,
our descriptions consistently outperform the ex-
isting ones by up to +30.30%, demonstrating the
effectiveness of structured visual attributes. Inter-
estingly, the performance gap narrows with class
names, suggesting that while names aid classifica-
tion, detailed descriptions remain crucial for cap-
turing fine-grained distinctions. This underscores
the importance of precise textual descriptions for
improving zero-shot classification in LVLMs.

Dataset Without Class Name With Class Name

Existing Ours ∆ Existing Ours ∆

CUB 22.30 30.60 +8.30 50.10 53.00 +2.90
Stanford Dogs 14.50 21.50 +7.00 44.00 46.17 +2.17
Stanford Cars 42.55 41.63 -0.92 65.20 65.92 +0.72
FGVC Aircrafts 14.86 17.71 +2.85 51.71 52.86 +1.15
Food-101 50.69 63.76 +13.07 36.83 67.13 +30.3

Table 3: Performance comparison of Qwen2.5-VL-7B-
Instruct model with iterative MCQA approach on ex-
isting class descriptions and our introduced class de-
scriptions, with and without the class name in the class
descriptions. The ∆ columns show the performance
gain of our introduced class descriptions over the exist-
ing ones in both settings.

4.7 Impact of Model Scale
To evaluate the effect of model capacity, we
conducted experiments using Qwen2.5-VL-7B-
Instruct and Qwen2.5-VL-32B-Instruct in our all-
at-once approach. As shown in Table 1, per-
formance consistently improves with increased
model size across most datasets and settings. In
the "with name" setting, the 32B model demon-
strates substantial improvements over the 7B vari-
ant: CUB (33.00% vs 15.20%), Stanford Dogs
(52.67% vs 31.33%), Stanford Cars (62.24% vs
31.63%), FGVC Aircraft (42.86% vs 40.00%), and
Food-101 (55.05% vs 51.49%). In the "without
name" setting, similar trends are observed with sig-
nificant improvements on Stanford Dogs (23.83%
vs 14.33%) and Stanford Cars (47.96% vs 21.94%),
while FGVC Aircraft shows notable enhancement
(21.43% vs 12.00%). The results highlight that
larger models generally provide better capacity for
distinguishing fine-grained visual features, partic-
ularly when class names are available to provide
additional semantic context. This scaling benefit
is most pronounced on datasets requiring detailed
visual discrimination, such as Stanford Cars and
Stanford Dogs.

4.7.1 Robustness of Iterative MCQA

To assess the robustness of our iterative MCQA ap-
proach, we analyze how often models deviate from
providing the requested index numbers by giving
non-numerical responses. Our experiments show
high instruction adherence across models. Among
many experiments, LLaVA models produced only
2-43 non-numerical responses across 8 experi-
ments, each involving 3,000-20,000 generation
calls. Similarly, InternVL2_5-8B and Qwen2.5-
VL models showed strong reliability with just 3-19
such errors in 3 experiments. These minimal er-
ror rates are negligible compared to the total num-
ber of model calls, and the rare instances of non-
compliance could be addressed by directly comput-
ing probabilities for option indices. In contrast, the
all-at-once approach showed more formatting is-
sues, with Qwen2.5-VL and InternVL2_5-8B mod-
els occasionally providing non-numerical values or
responses with explanatory text. The consistently
low error rates in iterative MCQA validate that our
approach is both efficient and robust.

5 Conclusion

The application of Large Vision-Language Models
(LVLMs) to zero-shot fine-grained image classifi-
cation represents a promising direction in vision-
language understanding. We address current limi-
tations by proposing multiple approaches: Yes/No
QA, iterative multiple-choice question answering
(MCQA), and all-at-once methods, enhanced by
a simple yet effective attention intervention tech-
nique. Our investigation revealed the limitations of
existing LLM-generated class descriptions, prompt-
ing us to curate refined descriptions that better cap-
ture fine-grained visual characteristics. Through
comprehensive experiments across five datasets
and multiple model architectures, we demonstrate
that our iterative MCQA method consistently out-
performs the Yes/No QA approach, while the all-
at-once approach shows promising results for pro-
prietary models but limitations for open-source ar-
chitectures. Our methods achieve substantial per-
formance improvements, significantly outperform-
ing existing SOTA approaches across all evaluated
datasets. The effectiveness of our attention inter-
vention mechanism, particularly its benefits for
smaller models, suggests promising directions in
developing more sophisticated attention guidance
techniques tailored to specific LVLM architectures
for zero-shot fine-grained classification tasks.
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6 Limitations

While our iterative MCQA approach with atten-
tion intervention demonstrates promising results in
zero-shot fine-grained visual classification, several
key limitations exist. The lower performance on
most datasets indicates that current LVLMs still
struggle with fine-grained visual distinctions. Ad-
ditionally, our attention intervention technique’s ef-
fectiveness varies across architectures and datasets,
suggesting dependency on model architecture and
task characteristics. The quality of class descrip-
tions is crucial, and despite leveraging advanced
LVLMs and LLMs, they may still miss discrimi-
native features that domain experts would identify.
Refining these descriptions requires substantial ex-
pertise and manual effort, limiting scalability. Like
other zero-shot approaches, our method’s effective-
ness is bounded by the pre-training data quality and
coverage of LVLMs, particularly for specialized
domains underrepresented in the training data.
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A Appendix

This section contains the details of the following
topics:

• Prompt for iterative MCQA (Appendix A.1)
• Prompts for our Class Descriptions Genera-

tion (Appendix A.2)
• Algorithm of our Iterative MCQA (Ap-

pendix A.3
• Impact of Number of Options in Iterative

MCQA Approach (Appendix A.4)
• Impact of Prompts (Appendix A.5)
• Efficiency of the Iterative MCQA Framework

(Appendix A.6)
• Comparison with CLIP-based Methods (Ap-

pendix A.7)

A.1 Prompt for iterative MCQA
For our proposed method, we use a consistent
prompt template across all experiments. Figure 4
shows the prompt used in our iterative MCQA ap-
proach for zero-shot fine-grained image classifica-
tion.

Iterative MCQA Approach Prompt

Please look at this image and choose the
most accurate description of the image from
the following options.

Your answer should ONLY contain the num-
ber (index) of the correct option.

{options}

Answer:

Figure 4: Prompt used for the iterative multiple-choice
question answering (MCQA) approach.

Our prompt structure enforces methodological con-
sistency across datasets and experimental settings
while constraining model outputs to numerical in-
dices.

A.2 Prompts for our Class Descriptions
Generation

We developed a two-stage process for curating
more accurate class descriptions:

First, we feed 10 representative images from
each class to Qwen2.5-VL-72B-Instruct (Team,
2025), a state-of-the-art LVLM, to generate de-
tailed visual descriptions for each image. Figure 5
shows used prompt for this step.

Fine-Grained Image Description Prompt

Briefly describe the visual characteristics
of the main object in this image in sentence
format. The description should highlight
distinguishing features that help differenti-
ate it from similar objects in its category.
List the attributes of its key body parts (e.g.,
texture, shape, color, patterns, and distinc-
tive markings). Focus on fine-grained de-
tails that enhance identification.

Figure 5: Prompt used for obtaining fine-grained visual
descriptions from an LVLM.

Then, we process these 10 descriptions through
Qwen2.5-72B-Instruct (Yang et al., 2024) LLM to
synthesize a single comprehensive class description
that captures common, distinctive visual features.
Figure 6 depicts our employed prompt for this step.
In the prompt, {image_descriptions} represents
the 10 image descriptions we obtained from the
previous step.

Class Description Generation Prompt

The following are captions describing 10
images of a single class. Your task is to gen-
erate a concise class description by identi-
fying the shared visual features and charac-
teristics across the captions. Provide a sin-
gle meaningful sentence, within 60 words.
Do not include the class name or unrelated
details. Your response should start with

’The/This...’.

{image_descriptions}

Figure 6: Prompt used for generating class descriptions
from fine-grained image captions.
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A.3 Algorithm of our Iterative MCQA
This section presents our introduced iterative
MCQA algorithm. Algorithm 1 outlines the steps
used in our zero-shot fine-grained classification
task with LVLMs. Given an image I and a set
of N possible class descriptions, the method itera-
tively selects a subset of m descriptions and queries
the model to identify the best match. The process
continues until either all class descriptions have
been evaluated or a misclassification occurs, with
the predicted class retained in the next (m−1) de-
scriptions. A prediction is considered correct only
if the ground-truth class is consistently identified
throughout all iterations (i.e., in the final predic-
tion). Further details are provided in Section 3.2.

Algorithm 1 Iterative Multiple-Choice Question
Answering for Zero-Shot Image Classification

Require: Image I , Set of Class Descriptions C =
{c1, c2, ..., cn}, Model M , Batch Size m

Ensure: Predicted Class c∗

1: Initialize correct ← False, processed ←
False

2: while not processed do
3: Select m candidate descriptions Cm

4: Query M with I and Cm, obtaining pre-
dicted class cp

5: if c ∈ Cm and cp ̸= c then
6: return Misclassification ▷ Terminate

early as M missed the correct class
7: else
8: Move to next m descriptions keeping

cp in m descriptions.
9: end if

10: if all class descriptions are processed then
11: processed← True
12: end if
13: end while
14: if cp = c and processed then
15: return Classified Correctly
16: else
17: return Misclassified
18: end if

A.4 Impact of Number of Options in Iterative
MCQA Approach

Traditional Multiple-Choice Question Answering
(MCQA) approaches typically employ 4 or 5 op-
tions. Table 5 presents a comparative analysis of
model performance when varying the number of
multiple-choice options in our iterative MCQA

approach. We conducted experiments using the
Qwen2.5-VL-7B-Instruct model across five fine-
grained visual classification datasets. Our choice
of using 5 options was motivated by three factors:
alignment with traditional MCQA practices, the
performance advantages observed with this config-
uration, and the context length limitations of the
LLaVA-v1.5 models. As shown in the results, the
impact of increasing options from 5 to 10 varies
significantly across datasets. While some datasets
show performance degradation (Stanford Dogs: -
22.42%, FGVC Aircraft: -3.96%, Food-101: -
8.12%), others demonstrate substantial improve-
ments (Stanford Cars: +21.48%, CUB: +2.50%).

Notably, Stanford Cars shows the most dramatic
improvement with 10 options (67.65% vs 46.17%),
suggesting that for certain datasets with high inter-
class similarity, additional options may help the
model make more precise distinctions. Conversely,
Stanford Dogs exhibits the largest performance
drop (-22.42%), indicating that too many options
can overwhelm the model’s decision-making pro-
cess for certain classification tasks. With 5 op-
tions, the model achieved accuracies ranging from
46.17% to 67.13% across different datasets, while
with 10 options, the range was 43.50% to 67.65%.

A.5 Impact of Prompts
We investigated the effect of prompt engineering on
our iterative Multiple Choice Question Answering
(MCQA) approach. Specifically, we enhanced the
existing prompt by adding the instruction: "The
options are fine-grained. You have to utilize your
grounding capability or visual attribute matching
capability to select the best-aligned option." This
modification, designed to encourage more precise
visual analysis, yielded mixed results when tested
on our Qwen2.5-VL-7B-Instruct model.

For the Stanford Dogs dataset, we observed mod-
est improvements: accuracy increased from 46.17%
to 48.33% with class names provided, and from
21.50% to 22.67% without class names, respec-
tively. A similar improvement was observed for
the FGVC Aircraft dataset with class names, where
accuracy improved from 52.86% to 54.57%. How-
ever, performance decreased for some datasets: the
Food-101 dataset accuracy declined from 67.13%
to 65.35% with class names.

An important trade-off emerged during testing:
while the modified prompt generally improved ac-
curacy, it also affected response consistency. With-
out the added instruction, the model consistently
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Method CUB Food-101 Aircrafts Cars

Ours 70.50 91.09 77.14 86.84
Menon and Vondrick (2022) 65.26 93.26 – –
CuPL (Pratt et al., 2023) – 93.33 36.69 76.49
CascadeVLM (Wei, 2024) – – 36.80 85.60
LaBo (Yang et al., 2023) 54.19 80.41 32.73 –
Yan et al. (Yan et al., 2023) 64.05 81.85 – 81.85
V-GLOSS (Ogezi et al., 2024) – – 38.70 –

Table 4: Performance comparison (Top-1 Accuracy %) of our method and prior CLIP-based methods across five
fine-grained classification datasets. Missing values (–) indicate that the method did not report results for the
corresponding dataset.

#Options CUB Stanford
Cars

Stanford
Dogs

FGVC
Aircraft

Food
101

5 53.00 46.17 65.92 52.82 67.13
10 55.50 67.65 43.50 48.86 59.01

Table 5: Impact of the number of multiple-choice op-
tions on model accuracy across different fine-grained
visual classification datasets. All experiments were con-
ducted using the Qwen2.5-VL-7B-Instruct model with
class descriptions including class names.

complied with the format requirement of returning
only the option index. However, after introducing
the new instruction, we observed that in 10 to 28
additional instances beyond our normal prompt, the
model deviated from this format, providing addi-
tional explanatory text along with the index. This
suggested that while the instruction helped improve
accuracy in most cases, it compromised the model’s
adherence to output formatting requirements.

A.6 Efficiency of the Iterative MCQA
Framework

Our proposed iterative multiple-choice question
answering (MCQA) framework provides a favor-
able balance between classification accuracy and
computational efficiency. While traditional Yes/No
QA approaches require O(N) forward passes for
N class descriptions—one per class—our MCQA
method reduces the number of passes to approxi-
mately N/4 by employing 5-way batching. For
instance, in a dataset with 200 classes such as
CUB, Yes/No QA requires 200 separate forward
passes, whereas the iterative MCQA framework
typically completes classification in only 40–50
passes, achieving a 75–80% reduction in compu-
tation. As shown in Table 5, increasing the batch
size beyond 5 options results in decreased accu-
racy, indicating that 5-way MCQA provides a prac-
tical trade-off between inference cost and perfor-

mance. These results demonstrate that the iter-
ative MCQA method enables scalable zero-shot
fine-grained classification with significantly lower
computational overhead.

A.7 Comparison with CLIP-based Methods.
We compare our zero-shot fine-grained classifica-
tion framework with several recent CLIP-based
and LVLM-augmented approaches across diverse
datasets. Our results are based on the All-at-Once
approach using GPT-4o or o4-mini. While tradi-
tional CLIP-based methods such as CuPL (Pratt
et al., 2023) and Menon and Vondrick (2022) re-
port high performance on Food-101 (93.33% and
93.26% respectively), they rely heavily on hand-
crafted prompts or multiple prompt augmentations.
In contrast, our approach achieves competitive per-
formance on Food-101 (91.09%) using a unified,
training-free framework. On more fine-grained
datasets, our method substantially outperforms
LaBo (Yang et al., 2023) on CUB (70.50% vs.
54.19%) and FGVC Aircraft (77.14% vs. 32.73%),
while achieving competitive results on Stanford
Cars (83.16% vs. 81.85% from Yan et al. (2023)).
Notably, CascadeVLM (Wei, 2024), which com-
bines CLIP with LVLMs, reports higher perfor-
mance on Stanford Cars (85.60%) but much lower
accuracy on FGVC Aircraft (36.80%), indicating
limited generalizability. Our approach does not
rely on any supervised classifier or handcrafted
prompts, yet provides robust and consistent per-
formance across multiple domains, highlighting
its generalizability and effectiveness for zero-shot
fine-grained image classification.
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