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Abstract 

This paper presents a unified framework for 
extracting n-ary property information from 
materials science literature, addressing the 
critical challenge of capturing complex 
relationships that often span multiple 
sentences. We introduce three 
complementary approaches: RE-
Composition, which transforms binary 
relations into n-ary structures; Direct EAE, 
which models polymer properties as events 
with multiple arguments; and LLM-Guided 
Assembly, which leverages high-
confidence entity and relation outputs to 
guide structured extraction. Our framework 
is built upon two novel resources: 
MatSciNERE, a comprehensive corpus for 
materials science entities and relations, and 
PolyEE, a specialized corpus for polymer 
property events. Through strategic 
synthetic data generation for both NER and 
EAE tasks, we achieve significant 
performance improvements (up to 5.34 F1 
points). Experiments demonstrate that our 
combined approaches outperform any 
single method, with the LLM-guided 
approach achieving the highest F1 score 
(71.53%). The framework enables more 
comprehensive knowledge extraction from 
scientific literature, supporting materials 
discovery and database curation 
applications. We plan to release our 
resources and trained models to the 
research community. 

1 Introduction 

Materials science encompasses diverse entities 
ranging from broad categories like organic and 
inorganic materials to specialized subcategories 
such as polymers. The exponential growth of 
scientific publications in this field creates 
significant challenges for researchers attempting to 
efficiently access and organize critical information. 

Particularly crucial is the extraction of property 
information, defined as structured knowledge 
about materials and their properties, measured 
values, experimental conditions, and 
characterization methods. This information is 
essential for materials discovery, database curation, 
and accelerating research. 

Extracting property information from materials 
science literature presents unique challenges 
compared to traditional information extraction (IE) 
tasks. Property information typically involves 
complex n-ary relationships connecting multiple 
entities (e.g., a polymer with a specific property 
value under certain conditions, measured by a 
particular method). These relationships frequently 
span multiple sentences, requiring cross-sentence 
reasoning. Additionally, specialized terminology, 
diverse experimental contexts, and varied writing 
styles further complicate automated extraction. 

Previous materials information extraction 
approaches have focused primarily on Named 
Entity Recognition (NER) to identify materials 
(Weston et al., 2019; Shetty et al., 2023) or binary 
Relation Extraction (RE) between entity pairs (Phi 
et al., 2024). While promising for specific subtasks, 
these methods fail to capture the n-ary property 
information essential for comprehensive materials 
knowledge bases. Recent Event Argument 
Extraction (EAE) advancements offer pathways for 
modeling n-ary relationships, but their application 
to materials science remains limited. Large 
Language Models (LLMs) have demonstrated 
capabilities in extracting structured information, 
yet their performance on specialized scientific 
content is inconsistent without appropriate 
guidance (Kumar et al., 2025). 

In this work, we introduce a unified framework 
for n-ary property IE in materials science that 
integrates three complementary approaches: (1) 
RE-Composition, which transforms binary 
relationship predictions into n-ary structures; (2) 
Direct EAE, which models property information as 

A Unified Framework for N-ary Property Information Extraction 
in Materials Science 

 
 

Van-Thuy Phi and Yuji Matsumoto 

Center for Advanced Intelligence Project, RIKEN 
{thuy.phi, yuji.matsumoto}@riken.jp 

 
 

2369



 
 

events with property names as triggers and other 
elements as arguments; and (3) LLM-Guided 
Assembly, a novel hybrid approach that leverages 
high-confidence entity and relation predictions to 
guide LLMs in generating complete n-ary 
structures. 

The main contributions of this paper are: 

• A unified framework integrating three 
distinct approaches for n-ary property IE, 
enabling comprehensive coverage and 
comparative analysis. 

• Two novel corpora: MatSciNERE for 
materials science NER/RE and PolyEE for 
polymer property event extraction, 
providing essential resources for developing 
domain-specific IE systems. 

• Strategic synthetic data generation for both 
NER and EAE tasks, demonstrating 
significant performance improvements (up 
to 5.34 F1 points). 

• Extensive empirical evaluation showing our 
combined approaches outperform any single 
method, with the LLM-guided approach 
achieving the highest F1 score (71.53%). 

• A practical solution for structured 
knowledge extraction from materials science 
literature that can adapt to different 
extraction scenarios. 

Our unified framework addresses the critical 
need for structured knowledge extraction from 
materials science literature, offering a robust 
solution that can adapt to different extraction 
scenarios. 

2 Related Work 

Resources for Materials Science IE Materials 
science IE suffers from limited resources despite 
the field’s importance. Early datasets like 
Matscholar (Weston et al., 2019) and 
CHEMDNER (Krallinger et al., 2015) provide 
entity annotations for materials science. Domain-
specific resources include Mysore et al.’s (2019) 
corpus of 230 labeled inorganic synthesis 
procedures, SC-CoMIcs for superconductive 
materials (Yamaguchi et al., 2020), and O'Gorman 
et al.’s (2021) procedural text annotations. Recent 
corpora have significantly advanced polymer 
science IE: PolyNERE (Phi et al., 2024) provides a 
comprehensive corpus of 750 polymer abstracts 

with 14 entity types and 8 relation types, capturing 
complex structures including overlapped and 
discontinuous mentions. However, it only 
annotates entities that are mainly relevant to 
polymers, and a system, PolyMinder (Do et al., 
2025), has been developed based on that corpus. 
POLYIE (Cheung et al., 2024) uses a single, coarse 
"Material" entity type, and derives N-ary relations 
by combining binary relations while discarding 
those that cannot be combined. 

Methods for Structured IE NER approaches fall 
into three main categories: sequence labeling 
(Huang et al., 2015; Lample et al., 2016), which 
struggles with overlapping entities; span-based 
methods (Shen et al., 2021), which handle overlap 
but face scalability challenges; and generation-
based approaches (Yan et al., 2021; Paolini et al., 
2021), which manage flat, overlapped, and 
discontinuous mentions via sequence generation. 
Recent work includes unified frameworks like 
W2NER (Li et al., 2022), which formulates NER 
as word-to-word relation classification, enabling it 
to handle these entity types simultaneously. 

For RE, common approaches include pipeline 
systems where RE follows NER (Huang et al., 
2021) and joint entity and RE methods (Lu et al., 
2022). For more complex n-ary relationships, EAE 
offers promising solutions, with models like 
TagPrime (Hsu et al., 2023) using classification-
based approaches and PAIE (Ma et al., 2022) 
employing generation-based methods. These 
approaches have shown effectiveness in general 
domains but require adaptation for the specialized 
terminology and complex relationships in materials 
science. 

LLMs like GPT-4 excel at general NLP tasks but 
often underperform on domain-specific IE. Kumar 
et al. (2025) note they may hallucinate and generate 
conversational rather than precise outputs, limiting 
effectiveness in tasks like property extraction. 
Smaller BERT-based models are more efficient, 
transparent, and often outperform LLMs on 
specialized scientific tasks. 

3 Novel Corpora for Material Science IE 

This section introduces the two novel annotated 
resources that support our unified framework: 
MatSciNERE for general materials science 
NER/RE, and PolyEE for event-based polymer 
property extraction. 
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We first present MatSciNERE, a high-quality 
corpus representing a significant advancement for 
materials science IE. This resource expands the 
PolyNERE corpus (Phi et al., 2024) with a key 
innovation: a revised annotation assumption that 
captures all entity mentions in the text, not just 
those directly relevant to polymers, enhancing both 
coverage and consistency. 

Following the approach in similar work (Phi et 
al., 2024) and widely used datasets like Matscholar 
(Weston et al., 2019), a single annotator conducted 
the primary annotation work to ensure consistency 
across the corpus, building upon the extensive 
foundation of existing high-quality entity and 
relation annotations. A quality assessment was 
performed where a polymer expert independently 
annotated a sample set from the corpus, yielding a 
Cohen’s Kappa coefficient of 0.835 and 
comparative metrics of 95.88% precision, 79.42% 
recall, and 86.93% F1 score. This validation 
confirms the high quality of the annotations. 

MatSciNERE contains 22,296 entity mentions 
and 11,935 relation pairs, increasing from 18,930 
entities and 11,471 relations in PolyNERE corpus. 
With 14 entity types and 8 relation types, it includes 
overlapped (15.65%) and discontinuous (1.26%) 
mentions crucial for capturing complex scientific 
expressions, enabling practical extraction systems. 
Detailed statistics are in Appendix A. 

In this work, we also introduce PolyEE, a 
specialized corpus for event-based polymer 
property extraction that addresses a critical gap in 
materials science IE. PolyEE reformulates property 
information as events with property names as 
triggers and other elements as arguments, enabling 
the extraction of complete property tuples across 
multiple sentences. 

We define our task based on concepts from 
PoLyInfo (Otsuka et al., 2011), the largest polymer 
database. We focus on five key entity types: 
POLYMER (polymer names like "polyethylene"), 
PROP_NAME (property names such as "glass 
transition temperature"), PROP_VALUE (values 
with units like "25 MPa"), CONDITION 
(measurement conditions like "at 25°C"), and 
CHAR_METHOD (characterization techniques 
such as "DSC"). These five types represent the core 
elements needed for polymer property information 
in PoLyInfo’s schema, which will also serve as the 
primary knowledge source for developing 
synthetic data later in this work. Our event structure 
follows a single "PropertyInfo" type with 

PROP_NAME as the trigger and other types as 
arguments. 

We developed PolyEE through a semi-
automated approach using two advanced LLMs 
(GPT-4o and Claude 3.7 Sonnet Thinking) to 
generate initial event annotations based on existing 
entity and relation annotations from MatSciNERE. 
This dual-LLM approach allowed us to cross-
validate annotations and identify potential 
discrepancies. Out of 750 abstracts in 
MatSciNERE, 503 contain at least one relevant 
event with a PROP_NAME trigger and the 
required POLYMER and PROP_VALUE 
arguments. When events contained multiple 
CONDITIONs or CHAR_METHODs, we split 
them into separate instances. This process yielded 
1,601 distinct events reflecting various property 
measurements and methods. To ensure high-quality 
annotations, we implemented a thorough validation 
process. Event tuples generated by the two LLMs 
were manually compared, with 118 events (7.37%) 
across 86 abstracts (17.10%) undergoing detailed 
verification. Additionally, all annotations in 
development and test sets were manually reviewed. 
To assess annotation quality, we compared LLM-
generated annotations with those produced by the 
primary corpus annotator on a sample of 10 
abstracts containing the highest number of events. 
This comparison yielded a Cohen’s Kappa of 0.87, 
suggesting strong consistency in the annotation 
process. Detailed statistics are in Appendix B. 

4 Unified Framework for Property IE 

Our unified framework integrates three 
complementary approaches for extracting n-ary 
property information from materials science 
literature. As shown in Figure 1, the architecture 
centers on a foundational NER module that 
processes scientific text to identify relevant 
entities. The framework then offers multiple 
approaches to transform these entities into 
structured n-ary property information: (1) RE-
Composition, (2) Direct EAE, and (3) LLM-
Guided Assembly. Each approach has distinct 
strengths, and they can be deployed individually or 
in combination depending on specific extraction 
needs. Two synthetic data generation engines 
enhance both the NER module and EAE models, 
improving overall performance. 
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Foundational NER Module The NER module 
identifies crucial material science entities with 
emphasis on polymer-specific entities, handling 
flat, overlapped, and discontinuous mentions. 
Trained on MatSciNERE and supplemented with 
synthetic data for polymer entities, this module 
significantly improves recognition of key entity 
types (POLYMER, PROP_NAME, 
PROP_VALUE, CONDITION, 
CHAR_METHOD). The module serves as the 
foundation for all extraction approaches: providing 
entity candidates for RE, identifying 
PROP_NAME triggers for event extraction, and 
supplying entities to guide LLM-based extraction. 

RE-Composition The RE-Composition approach 
transforms binary relations into n-ary structures. A 
document-level RE model predicts binary 
relationships between entity pairs, trained on 
MatSciNERE to identify key relations like 
‘has_property’, ‘has_value’, etc. The composition 
logic then transforms these binary relations into n-
ary structures by identifying patterns of connected 
relations sharing common entities. For example, 
POLYMER→has_property→PROP_NAME and 

PROP_NAME→has_value→PROP_VALUE can 
be merged into a single n-ary tuple (POLYMER, 
PROP_NAME, PROP_VALUE). 
Direct EAE The Direct EAE approach 
conceptualizes polymer property information as 
events with PROP_NAME entities as triggers. The 
event schema defines a single "PropertyInfo" event 
type with four argument roles: Polymer, Value, 
Condition, and Char_method. The EAE model 
identifies all relevant arguments associated with 
each property name trigger, even when spanning 
multiple sentences. Trained on PolyEE (derived 
from MatSciNERE but restructured for event 
extraction) and enhanced with synthetic data, this 
approach directly captures complex, multi-
argument property information without 
intermediate binary relation steps. 

LLM-Guided Assembly The LLM-Guided 
Assembly approach leverages LLMs’ inferential 
capabilities while constraining them with high-
confidence predictions from the NER and RE 
modules. Motivated by the observation that certain 
binary relations (particularly ‘has_value’ and 
‘abbreviation_of’) achieve high F1 scores, this 
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Figure 1: Our unified framework for N-ary property information extraction in materials science 
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approach enhances LLM performance on scientific 
content. The component uses a specialized prompt 
(detailed in Appendix J) incorporating text, NER-
identified entities, and high-confidence relations to 
guide LLMs in extracting complete n-ary property 
tuples while ensuring schema consistency.  

Synthetic Data Generation Methodology Our 
framework employs two complementary synthetic 
data generation approaches that leverage the 
PoLyInfo database (Otsuka et al., 2011) to enhance 
both NER and EAE performance. While PoLyInfo 
contains predominantly lengthy and complex 
IUPAC nomenclature that scientific literature 
rarely uses in the exact form, making direct 
alignment between database entries and research 
articles challenging, we utilize LLMs and distant 
supervision to generate realistic linguistic 
variations that bridge this terminology gap while 
preserving scientific accuracy. 

For NER, we use Llama 3.1 70B Instruct to 
create paragraphs rich in polymer entities based on 
strategically selected sample tuples from PoLyInfo. 
For EAE, we employ advanced LLMs (Claude 3.7 
Sonnet Thinking and GPT-4.1) with specialized 
templates, one mimicking general materials 
science writing (T2) and another leveraging actual 
PolyEE abstracts as guides (T3), to generate self-
annotated paragraphs with explicit entity tagging 
and structured event tuples. The generated outputs 
undergo three-stage distant supervision alignment: 
(1) entity and event tuple extraction from LLM 
outputs, (2) abbreviation and relation refinement, 
and (3) context-sensitive refinement using 
sentence-level linguistic analysis. Additional 
details are provided in Appendix F. 

Integration and Flexibility A key advantage of 
our unified framework is its flexibility. During 
inference, the system can employ any single 
approach or combine multiple approaches based on 
the specific extraction needs or document 
characteristics. Our experimental analysis (Section 
5) explores the performance characteristics of each 
approach and identifies optimal combinations for 
different scenarios, providing guidance for 
practical applications of the framework. 

5 Experiments 

5.1 Experimental Setup 

Our experimental evaluation assesses each 
component of the unified framework both 

individually and in combination. We conducted 
comprehensive experiments on the MatSciNERE 
and PolyEE corpora to evaluate the performance of 
different pathways for n-ary property extraction. 

Implementation Details For our unified 
framework, we implemented multiple state-of-the-
art models for each component. The NER module 
utilized various advanced methods with different 
encoders, including domain-specific ones. 
Similarly, for Approach A (RE-Composition), 
Approach B (Direct EAE), and Approach C (LLM-
Guided Assembly), we implemented several 
competitive models. For each experiment, the 
reported results represent the average of five runs. 
Detailed implementation specifics are provided in 
Appendix C. 

Evaluation Metrics For NER, we report precision 
(P), recall (R), and F1-score at the entity level. For 
binary RE, we use similar metrics at the relation 
level. Following Lin et al. (2020), we evaluate EAE 
models using both argument classification (AC) 
and the stricter AC-attached metric, which assesses 
whether predicted arguments are correctly linked to 
their appropriate triggers, a critical consideration 
for property IE where correct trigger-argument 
associations are essential. 

5.2 Results 

NER Performance Table 1 presents the best-
performing NER models on the MatSciNERE test 
set. W2NER with MatSciBERT encoder achieved 
the highest overall F1 score (78.32%), with well-
balanced precision (77.47%) and recall (79.18%). 
TriG-NER with MatSciBERT showed the highest 
precision (78.85%) but lower recall, while 
MaxClique with MatSciBERT demonstrated 
competitive performance. Domain-specific 

Method Encoder P R F1 
MaxClique 
(Wang et al., 

2021) 

MatSciBERT 78.65 75.50 77.04 

RoBERTa-large 76.37 76.11 76.24 

W2NER 
(Li et al., 

2022) 

MatSciBERT* 78.05 76.53 77.28 
MatSciBERT 77.47 79.18 78.32 

RoBERTa-large 77.31 77.60 77.45 
TriG-NER 
(Cabral et 
al., 2025) 

MatSciBERT 78.85 74.97 76.86 

RoBERTa-large 77.17 74.89 76.01 

Table 1:  Results for NER on MatSciNERE test set 
(*trained and evaluated on PolyNERE). 
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MatSciBERT consistently outperformed general-
purpose encoders like RoBERTa-large across all 
architectures, with F1 improvements of 0.80-
0.87%. This highlights the importance of domain-
specific pre-training for materials science text. 
Additional experiments with various approaches 
(span-based, transition-based, generation-based) 
and other encoders (BERT-large, SciBERT) are 
detailed in Appendix D. 

The W2NER model trained and evaluated on 
PolyNERE (denoted with *) achieved a lower F1 
score (77.28%) than when trained on our 
comprehensive MatSciNERE corpus, 
demonstrating the value of our expanded 
annotation approach for materials science NER.  

RE Performance Binary RE results on 
MatSciNERE using gold standard entity mentions 
are shown in Table 2. ATLOP with DeBERTa-v3-
large encoder achieved the highest F1 score of 
87.40%, outperforming other model 
configurations. ATLOP, KD-DocRE, and 
PEMSCL demonstrated robust performance across 
different encoders, consistently achieving F1 
scores above 86% when paired with powerful 
encoders like RoBERTa-large or DeBERTa-v3-
large. Interestingly, we observe that DeBERTa-v3-
large generally outperforms domain-specific 
encoders like MatSciBERT across most models, 
suggesting that the advanced architecture and 
larger scale of DeBERTa may compensate for 
domain specialization in this RE task. 

The exception to these strong results comes from 
our approach based on Eider, where performance 
was notably lower (best F1 of 76.30% with BERT-

large). This is likely due to our implementation 
constraint of using only one or two sentences 
containing head and tail entities as evidence 
sentences (see Appendix C), which limits the 
model’s access to broader contextual information. 
This limitation highlights a potential area for 
improvement in our framework. Additional 
experiments with other approaches (DocuNet) and 
encoders (BERT-large, SciBERT, MatSciBERT) 
are in Appendix E. 

Analysis by relation type revealed particularly 
high F1 scores for ‘has_value’ (94.93%) and 
‘abbreviation_of’ (94.95%) relations. This finding 
motivated the design of Approach C, which 
leverages these high-confidence relations to guide 
LLM-based n-ary extraction. 

EAE Performance Table 3 presents the 
performance of leading EAE models on the PolyEE 
test set using DeBERTa-v3-large for classification-
based models and T5-large for generation-based 
models. We report both standard Argument 
Classification (AC) metrics and the stricter AC-
attached metric, which evaluates correct linking of 
arguments to triggers. TagPrime-C achieves the 
highest F1 score (75.93%) in standard AC 
evaluation with balanced precision (80.39%) and 
recall (71.93%), while also leading under the AC-
attached metric (68.28%). TagPrime-CR performs 
competitively (74.44% F1) but sees a larger drop in 
the AC-attached setting. DEGREE shows the 
highest precision-recall imbalance, making 
accurate but fewer predictions, though it maintains 
more consistent performance across both metrics. 
Classification-based approaches consistently 
outperform generation-based methods in our 
experiments, contrary to some findings in general 
domain event extraction. This aligns with the 
characteristics of scientific text where property 

Method 
AC AC-attached 

P R F1 P R F1 
TagPrime-C 

(Hsu et al., 2023) 80.39 71.93 75.93 72.07 64.86 68.28 

TagPrime-CR 
(Hsu et al., 2023) 79.84 69.72 74.44 70.46 61.89 65.90 

DEGREE 
(Hsu et al., 2022) 80.65 56.31 66.31 73.53 53.19 61.73 

X-GEAR (Huang 
et al., 2022) 76.37 62.61 68.81 69.46 58.87 63.72 

PAIE 
(Ma et al., 2022) 73.36 66.90 69.98 66.98 58.65 62.54 

Table 3:  Results for EAE on PolyEE test set. 

 

 

Method Encoder P R F1 

ATLOP 
(Zhou et al., 

2021) 

MatSciBERT* 83.99 82.49 83.23 
MatSciBERT 84.15 83.87 84.01 

RoBERTa-large 86.93 86.64 86.78 
DeBERTa-v3L 87.93 86.89 87.40 

Eider 
(Xie et al., 

2022) 

BERT-large 78.11 74.58 76.30 

RoBERTa-large 70.45 75.42 72.85 

KD-DocRE 
(Tan et al., 

2022a) 

RoBERTa-large 86.93 86.44 86.69 

DeBERTa-v3 L 86.59 87.57 87.08 

PEMSCL 
(Guo et al., 

2023) 

RoBERTa-large 87.84 86.22 87.02 

DeBERTa-v3 L 86.22 87.31 86.76 

Table 2:  Results for RE on MatSciNERE test set 
given gold entities, Llarge version (*trained and 
evaluated on PolyNERE). 
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information follows more predictable patterns. 
Additional experiments with various settings are 
provided in Appendix G. 

EAE-Focused Synthetic Data Impact Table 4 
presents the impact of synthetic data on EAE 
performance using TagPrime-C with DeBERTa-
v3-large encoder across different training 
strategies. The baseline model trained only on 
gold-standard PolyEE data achieved an F1 score of 
75.93% on the AC metric and 68.28% on the AC-
attached metric. When combining the gold data 
with just 1,000 synthetic paragraphs generated by 
Claude, we observed modest improvements to 
77.47% (AC) and 68.94% (AC-attached). 
Similarly, incorporating 1,000 GPT-generated 
paragraphs yielded comparable gains. Most 
notably, the combined training strategy with 2,000 
GPT-generated paragraphs produced the optimal 
results, with F1 scores of 78.08% (AC) and 73.62% 
(AC-attached). This represents a substantial 
improvement of 2.15 percentage points for AC and 
5.34 percentage points for AC-attached compared 
to the gold-only baseline. 

Interestingly, increasing the synthetic data 
volume beyond 2,000 paragraphs did not yield 
further improvements. The performance slightly 
decreased with 5,000 paragraphs (77.86% AC, 
71.57% AC-attached), suggesting that model 
capacity or data quality factors may limit the 
benefits of additional synthetic examples. 
Similarly, pre-training on 10,000 or 20,000 
synthetic GPT-generated paragraphs followed by 
fine-tuning on gold standard data showed 
comparable but not superior performance to the 
optimal combined training approach. 

These results demonstrate that moderate 
amounts of high-quality synthetic data can 
significantly enhance EAE performance. The 
synthetic data helps address the limitations of the 

supervised corpus, especially regarding the 
representation of complex argument patterns. 
Additional analyses regarding prompt templates 
and the potential of EAE-focused synthetic data to 
improve NER or RE tasks are provided in 
Appendix H. 

NER-Focused Synthetic Data Impact We 
evaluated the impact of synthetic data on NER 
performance using our best-performing model 
configuration (W2NER with MatSciBERT 
encoder). Since the synthetic data designed for 
EAE is not optimal for NER improvement, we 
developed a specialized approach using Llama 3.1 
70b Instruct to generate NER-focused synthetic 
data targeting polymer entities in PoLyInfo. We 
selected this model for synthetic data generation 
because NER is relatively less complex than EAE. 
Table 5 presents the F1 scores across entity types 
with varying amounts of synthetic data. Adding 
synthetic data to the baseline MatSciNERE model 
(F1: 82.87%) yielded consistent improvements, 
peaking at 84.69% F1 with 50k synthetic 
sentences. Entity-specific gains varied: POLYMER 
improved from 84.42% to 85.71%, PROP_NAME 
from 83.12% to 84.26%, and PROP_VALUE 
showed the largest gain from 84.28% to 89.19%. 
The challenging CONDITION entities improved 
from 68.50% to 71.57%, while high-performing 
CHAR_METHOD entities (90.25%) maintained 
strong results despite fluctuations. We believe these 
improvements are particularly significant for 
crucial polymer-specific entities in the PoLyInfo 
database, directly enhancing the framework’s 
ability to extract structured property information 
from polymer literature. Moderate synthetic data 
volumes (30k-50k sentences) proved optimal, with 
larger amounts (183k) showing diminishing returns 
(F1 decreasing to 83.33%), indicating quality of 
synthetic data matters more than quantity. 

Training 
Strategy 

Synthetic Data 
(paragraphs) 

F1 
(AC) 

F1 
(AC-attached) 

Gold only 0 75.93 68.28 

Combined 
Training 

1,000 (Claude) 77.47 68.94 
1,000 (GPT) 76.77 68.86 
2,000 (GPT) 78.08 73.62 
5,000 (GPT) 77.86 71.57 

Pre-train 
→Fine-tune 

10,000 (GPT) 77.23 70.67 
20,000 (GPT) 77.41 70.59 

Table 4:  EAE results with synthetic data using 
GPT-4.1 and Claude 3.7 Sonnet Thinking. 

 

 

Entity Type 
Synthetic Data (sentences) 

0 5k 10k 30k 50k 183k 
POLYMER 84.42 85.19 84.38 85.63 85.71 82.69 

PROP_NAME 83.12 83.39 83.51 83.99 84.26 84.69 
PROP_VALUE 84.28 88.22 86.84 88.96 89.19 85.52 
CONDITION 68.50 69.46 71.57 69.59 68.48 67.08 

CHAR_METHOD 90.25 89.89 91.43 89.01 89.14 89.77 
Overall 82.87 84.07 83.90 84.34 84.69 83.33 

Table 5:  NER results with synthetic data. 
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LLM-Guided Assembly Results (Approach C) 
This approach was motivated by our observation 
that certain binary relations, particularly 
‘has_value’ (94.93% F1) and ‘abbreviation_of’ 
(94.95% F1), achieve exceptionally high 
performance with our RE models. These domain-
independent relations serve as critical connectors in 
property information structures across materials 
science contexts, allowing our framework to 
leverage these high-confidence predictions to 
guide LLMs in extracting structured information 
for either all 14 entity types or focusing on the 5 
key polymer-specific entity types. 

For resource-constrained deployment scenarios, 
we evaluated Llama 3.1 8B Instruct (fp16), which 
operates efficiently on a single GPU with 16GB 
memory, a significant advantage over larger 
models requiring multiple high-capacity GPUs or 
closed-source API-dependent models. 

Complementary Strengths and Comparative 
Analysis Our framework’s pathways exhibit 
distinct strengths for different extraction scenarios. 
Approach A (RE-Composition) excels with 
discontinuous entity mentions and explicit binary 
relations, offering high interpretability. Approach B 
(Direct EAE) handles standardized property 
descriptions and cross-sentence dependencies 
effectively. Approach C (LLM-Guided Assembly) 
provides flexibility across diverse phrasing styles 
while leveraging high-confidence relations and 
operating efficiently on modest hardware. 

Table 6 presents comparative results across our 
approaches on a diverse test set of 10 real 
paragraphs. The LLM-guided approach achieves 
the highest performance for end-to-end n-ary 
property tuple extraction (F1: 71.53%), followed 
closely by EAE with predicted NER refinement 
(F1: 69.14%). The significant gap between guided 
and unguided LLM approaches (64.91% vs. 
36.46% F1) confirms that even powerful models 

require domain-specific guidance for reliable 
scientific IE. This creates an efficient hybrid 
approach balancing performance with practical 
deployment considerations. 

Figure 2 illustrates this with a case study of the 
EAE + NER refinement process. Additionally, our 
framework’s key advantage is its adaptability to 
different extraction requirements, allowing users to 
select approaches based on their specific 
constraints: EAE-based methods for limited 
computational resources, LLM-guided approaches 
for maximum accuracy, or RE-Composition when 
focusing on specific relation types.  

6 Conclusion 

We presented a unified framework for n-ary 
property IE in materials science integrating three 
approaches: RE-Composition, Direct EAE, and 
LLM-Guided Assembly. Built upon four distinct 
corpora, two standard (MatSciNERE and PolyEE) 
and two synthetic (NER-focused and EAE-
focused), our framework shows synthetic data 
enhances model performance across components, 
with optimal gains at moderate volumes. 

Experimental results confirm different 
extraction scenarios benefit from different 
approaches, with the LLM-guided approach 
achieving highest performance when constrained, 
while specialized models offer competitive results 
with deployment advantages. Our work addresses 
a critical need by advancing structured property IE 
in materials science. 

Future work will expand to additional scientific 
domains, improve pathway integration, and 
explore techniques to reduce LLM hallucination in 
scientific contexts. 

Approach F1 
LLM-based + NER + has_value + 

abbreviation_of 71.53 

EAE + Predicted NER Refinement 69.14 
EAE (base) 66.72 

LLM only (GPT 4.1) 64.91 
EAE + Predicted has_value Constraints 64.35 

RE-Composition 58.87 
LLM only (Llama 3.1 8B) 36.46 

Table 6:  F1 scores of n-ary property extraction. 

 

 

Sample Text
The ion exchange membranes were post-treated and the IEC of poly ether
ether ketone (PEEK) was increased to 1.83 meq/g when sulfonated. The
conductivity performance was measured at 80°C and ambient humidity,
showing values of approximately 1.9V. These SPEEK membranes
exhibited excellent mechanical and adhesive properties.

Direct EAE Predictions NER Module Entities

POLYMER: "poly ether ether ketone”, 
“PEEK", "SPEEK"
PROP_NAME: "IEC", "conductivity"
PROP_VALUE: "1.83 meq/g", 
"approximately 1.9V"
CONDITION: "when sulfonated", "at 80°C 
and ambient humidity"

Event: PropertyInfo
Trigger: “conductivity” (PROP_NAME)
Arguments:
- Polymer: “poly ether ether  ketone” (POLYMER)
- Value: “1.9” (PROP_VALUE) ← Incomplete,

missing ”V” and “approximately”
- Condition: “at 80” (CONDITION) ← Incomplete, 

missing "°C and ambient humidity"

Refinement
- Value: “approximately 1.9V” (PROP_VALUE)
- Condition: “at 80°C and ambient humidity” (CONDITION)

Figure 2: A case study. 
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Limitations 

The LLM-Guided Assembly approach, despite 
achieving the highest performance, relies on 
external LLM infrastructure and remains 
susceptible to hallucination even with our guiding 
mechanisms in place. Additionally, the full 
framework implementation demands substantial 
computational resources, especially when 
utilizing larger encoders such as DeBERTa-v3-
large or employing the LLM-Guided Assembly 
approach. These resource requirements may be 
excessive in computationally constrained 
environments. Although we offer more efficient 
alternatives (such as W2NER+MatSciBERT for 
NER), these options inevitably involve 
performance trade-offs. 
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A Construction of MatSciNERE Corpus 

In the PolyNERE corpus, only entities and relations 
relevant to our target domain were annotated. As a 
result, in Figure 3a, even though the second 
‘SWCNTs’ mention is an inorganic material, it was 
not provided a label. We argue that it greatly affects 
the overall performance of NER and RE systems 
trained on those annotations, and limits the 
practical usage of these systems. Therefore, in this 
work, we made an important change in the 
annotation assumption by considering all entity 
mentions in the text, aiming at a practical RE 
system for both general material science and its 
subdomains like polymer science. Figure 3b 
illustrates our new annotation assumption applied 
to our newly developed MatSciNERE corpus. 

Our MatSciNERE corpus consists of a total of 
750 abstracts, divided into three sets: 637 for 
training, 38 for development, and 75 for testing. 
Table 7 displays the statistics for our corpus, 
presenting details about the annotation type, and 
the number of annotations across various 
categories within MatSciNERE. Overall, our 
MatSciNERE corpus provides a rich source of 
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information for training and evaluating models in 
the field of polymer science, particularly for tasks 
related to NER and RE. 

B PolyEE Corpus Details 

We selected five types (POLYMER, 
PROP_NAME, PROP_VALUE, CONDITION, 
CHAR_METHOD) because they represent the 
core elements needed for polymer property 
information in PoLyInfo's schema and because 
annotations for other entity types are relatively 
sparse. Our PolyEE corpus comprises 503 abstracts 
and 1,601 events, with a balanced split into training 
(396 abstracts, 1,253 events), development (50 
abstracts, 177 events), and test (50 abstracts, 171 
events). A few abstracts were excluded from model 
training because certain event arguments exceeded 
the 512-token limit. 

C Implementation Details 

Model Selection and Implementation For NER 
tasks, we experimented with multiple architectures 
capable of handling flat, overlapped, and 
discontinuous mentions: Span-based (Li et al., 
2021), Transition-based (Dai et al., 2020), 
MaxClique (Wang et al., 2021), BARTNER (Yan 
et al., 2021), W2NER (Li et al., 2022) and TriG-
NER (Cabral et al., 2025). 

For RE tasks, we implemented several 
document-level models: DocuNet (Zhang et al., 
2021), ATLOP (Zhou et al., 2021), KD-DocRE 
(Tan et al., 2022a), PEMSCL (Guo et al., 2023), 
and Eider (Xie et al., 2022). With Eider, we 

(b) Annotations applicable to the broader domain of materials science

(a) Annotations specific to the field of polymer science

Figure 3: Annotation assumption (a) In PolyNERE corpus: only entities and relations relevant to the target domain 
were annotated; the first ‘SWCNTs’ was labeled as it is part of a composite with another polymer class. (b) In our 
MatSciNERE corpus: other labeled entities include ‘camphor sulfonic acid’, ‘CSA’. 

#tokens/sentence 11.87 
#entities/abstract 29.73 
#relations/abstract 15.91 
Overlapped entities 3,490 mentions (15.65%) 
Discontinuous entities 281 mentions (1.26%) 
ENTITY (14) Total: 22,296 mentions 
POLYMER  4,053 (582/750 abstracts) 
POLYMER_FAMILY 1,159 (315) 
PROP_NAME 3,882 (717) 
PROP_VALUE 1,829 (587) 
MONOMER 1,600 (320) 
ORGANIC 1,855 (435) 
INORGANIC 1,939 (393) 
MATERIAL_AMOUNT 539 (267) 
COMPOSITE 398 (172) 
OTHER_MATERIAL 258 (120) 
CONDITION 1,376 (552) 
SYN_METHOD 381 (231) 
CHAR_METHOD 1,752 (435) 
REF_EXP 1,275 (460) 
RELATION (8) Total: 11,935 pairs 
has_property 3,502 (661/750 abstracts) 
has_value 1,903 (582) 
has_amount 424 (225) 
has_condition 1,104 (406) 
synthesised_by 282 (193) 
characterized_by 1,347 (391) 
abbreviation_of 2,033 (627) 
refers_to 1,340 (459) 

Table 7:  Statistics of our MatSciNERE corpus. 
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restricted the context to only one or two sentences 
containing both head and tail entities as evidence, 
due to memory constraints with this model’s 
evidence extraction mechanism. 

For EAE experiments, we evaluated both 
classification-based and generation-based 
approaches: TagPrime-C and TagPrime-CR (Hsu et 
al., 2023), DEGREE (Hsu et al., 2022), X-Gear 
(Huang et al., 2022), and PAIE (Ma et al., 2022). 

Training Configuration For NER and RE models, 
we used Adam optimizer (Kingma and Ba, 2015) 
with linear warmup and decay learning rate 
schedules. All models were trained for 30 epochs 
with a batch size of 8, maintaining consistent 
hyperparameter settings across baselines where 
applicable. 

For EAE models, we extended training to a 
maximum of 90 epochs. For generation-based 

methods, we set the maximum output text length to 
200 tokens. 

Evaluation Metrics Following Lin et al. (2020), 
we primarily report argument classification (AC) 
metrics for EAE performance. Additionally, we 
include the more stringent AC-attached metric 
(Huang et al., 2024), which evaluates whether 
arguments are correctly linked to their appropriate 
triggers. For example, in the text “poly(p-
diethynylbenzene) has a density of 1.097 g/cm³ at 
25°C and a density of 1.082 g/cm³ at 50°C", if a 
model associates "1.082 g/cm³" with the first 
"density" mention, this would be considered correct 
under the AC metric but incorrect under the AC-
attached metric. 

Computing Infrastructure All experiments were 
conducted on a single NVIDIA A100 40GB GPU, 
except for NER-focused synthetic data generation 
with Llama 3.1 70b Instruct (FP16), which required 
4 × NVIDIA A100 40GB GPUs. 

D NER Performance 

Table 8 compares the performance of different 
NER methods on the MatSciNERE test set with 
BERT-large encoder, showing that W2NER and 
TriG-NER achieve the highest F1 scores of 76.28% 
and 76.54% respectively. 

Table 9 demonstrates that domain-specific 
encoders, particularly MatSciBERT, consistently 
outperform general-purpose encoders across 
different NER architectures, with 
W2NER+MatSciBERT achieving the highest 
overall F1 score of 78.32%. 

Performance Analysis by Entity Type Analysis 
by entity type revealed varying performance levels 

Entity Type F1 Entity Type F1 
POLYMER 84.42 PROP_NAME 83.12 
MONOMER 75.58 PROP_VALUE 84.28 
POLYMER_ 

FAMILY 69.43 MATERIAL_ 
AMOUNT 80.00 

ORGANIC 59.38 CONDITION 68.50 

INORGANIC 82.85 SYN_ 
METHOD 76.92 

COMPOSITE 54.32 CHAR_ 
METHOD 90.25 

OTHER_ 
MATERIAL 35.29 REF_EXP 74.25 

Overall 78.32 

Table 10:  NER performance on MatSciNERE test 
set using W2NER with a MatSciBERT encoder. 

 

 

Method P R F1 
Span-based 

(Li et al., 2021) 59.56 26.66 36.84 

Transition-based 
(Dai et al., 2020) 73.49 72.03 72.75 

MaxClique 
(Wang et al., 2021) 77.35 71.86 74.51 

BARTNER 
(Yan et al., 2021) 74.80 73.25 74.02 

W2NER 
(Li et al., 2022) 78.27 74.39 76.28 

TriG-NER 
(Cabral et al., 2025) 77.77 75.34 76.54 

Table 8:  Results for NER on MatSciNERE test set 
with BERT-large encoder. 

 

 

Method Encoder P R F1 

MaxClique 
(Wang et al., 

2021) 

BERT-large 77.35 71.86 74.51 
SciBERT 80.64 71.96 76.05 

MatSciBERT 78.65 75.50 77.04 
RoBERTa-large 76.37 76.11 76.24 

W2NER 
(Li et al., 

2022) 

BERT-large 78.27 74.39 76.28 
SciBERT 75.23 76.84 75.85 

MatSciBERT 77.47 79.18 78.32 
RoBERTa-large 77.31 77.60 77.45 

TriG-NER 
(Cabral et 
al., 2025) 

BERT-large 77.77 75.34 76.54 
SciBERT 73.64 72.51 73.07 

MatSciBERT 78.85 74.97 76.86 
RoBERTa-large 77.17 74.89 76.01 

Table 9:  Results for NER on MatSciNERE test set 
with other encoders. 
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across different categories as shown in Table 10. 
Core entities for property extraction performed 
well, with F1 scores of 84.42% for POLYMER, 
83.12% for PROP_NAME, and 84.28% for 
PROP_VALUE. CHAR_METHOD achieved the 
highest F1 score (90.25%), while 
MATERIAL_AMOUNT (80.00%) and 
INORGANIC (82.85%) also showed strong 
results. Challenges remain for CONDITION 
(68.50%), POLYMER_FAMILY (69.43%), and 
COMPOSITE (54.32%). The lowest performance 
was observed for OTHER_MATERIAL (35.29%). 
Overall, the model achieved a 78.32% F1 score 
across all entity types. 

E RE Performance 

Table 11 presents the performance of various RE 
models (DocuNet, ATLOP, Eider, KD-DocRE, and 
PEMSCL) with different encoders, showing that 

DeBERTa-v3-large achieves the highest F1 score 
(87.40%) with ATLOP architecture, while 
MatSciBERT remains competitive across most 
model configurations. Table 12 breaks down RE 
performance by relation type, revealing 
particularly high F1 scores for ‘has_value’ 
(94.93%) and ‘abbreviation_of’ (94.95%) 
relations, which subsequently motivated the LLM-
Guided Assembly approach in the framework. 

 
 
 

Relation Type F1 
has_property 86.72 

has_value 94.93 
has_amount 74.29 

has_condition 79.50 
synthesised_by 75.86 

characterized_by 88.12 
abbreviation_of 94.95 

refers_to 82.58 
Overall 87.40 

Table 12:  Results for RE on MatSciNERE test set 
using ATLOP with a DeBERTa-v3-large encoder. 

 

 

Method Encoder P R F1 

DocuNet 
(Zhang et al., 

2021) 

BERT-large 78.42 81.07 79.72 
SciBERT 77.03 77.68 77.36 

MatSciBERT 75.81 79.66 77.69 
RoBERTa-large 65.69 75.71 70.34 
DeBERTa-v3L 77.22 61.30 68.35 

ATLOP 
(Zhou et al., 

2021) 

BERT-large 84.67 74.73 79.39 
SciBERT 83.96 82.37 83.16 

MatSciBERT 84.15 83.87 84.01 
RoBERTa-large 86.93 86.64 86.78 
DeBERTa-v3L 87.93 86.89 87.40 

Eider 
(Xie et al., 

2022) 

BERT-large 78.11 74.58 76.30 
SciBERT 71.59 71.17 71.39 

MatSciBERT 71.89 68.64 70.23 
RoBERTa-large 70.45 75.42 72.85 

KD-DocRE 
(Tan et al., 

2022a) 

BERT-large 82.34 77.68 79.94 
SciBERT 82.43 86.16 84.25 

MatSciBERT 83.35 87.21 85.24 
RoBERTa-large 86.93 86.44 86.69 
DeBERTa-v3L 86.59 87.57 87.08 

PEMSCL 
(Guo et al., 

2023) 

BERT-large 83.24 75.55 79.21 
SciBERT 83.62 82.35 82.98 

MatSciBERT 83.39 85.21 84.29 
RoBERTa-large 87.84 86.22 87.02 
DeBERTa-v3L 86.22 87.31 86.76 

Table 11:  Results for RE on MatSciNERE test set 
given gold entities; LDeBERTa-v3-large. 
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# Material Science Event Extraction Task

## Paragraph:
INSERT HERE

## Entity and Relation Annotations:
INSERT HERE

## Instructions:
Extract all event tuples in the form of (POLYMER, PROP_NAME, PROP_VALUE, CONDITION, CHAR_METHOD) from the paragraph using 
the provided entity and relation annotations.

### Entity Types Explanation:
- POLYMER: The polymer material being described
- PROP_NAME: Property name (e.g., molecular weight, conductivity, etc.)
- PROP_VALUE: Property value (the measured or reported value of the property)
- CONDITION: Experimental or measurement conditions (multiple mentions allowed)
- CHAR_METHOD: Characterization or measuring method used (multiple mentions allowed)

### Requirements:
1. Each tuple must contain at minimum: POLYMER entity, PROP_NAME entity, and PROP_VALUE entity
2. CONDITION and CHAR_METHOD entities are optional fields and can have multiple mentions
3. Use EXACTLY the same entity mentions as provided in the annotations - do not combine two or more mentions
4. Only include tuples where PROP_NAME and PROP_VALUE have a " has_value" relation in the annotations (e.g., "R3 has_value Arg1:T4 
Arg2:T5")
5. Format each tuple on a new line with clear labeling
6. Return ONLY the event tuples without any explanations or additional text

### Example Format:
1. (Polymer: "X", Property: "Y", Value: "Z", Condition: ["A", "B"], Method: ["C", "D"])
2. (Polymer: "P", Property: "Q", Value: "R", Condition: [], Method: ["S"])
Note: Empty fields for condition or method should be represented as empty lists as shown in example 2.

You are an expert in polymer science and materials engineering. Your task is to generate a detailed, realistic paragraph discussing multiple 
polymers and their properties, and then extract relevant event tuples from that paragraph.
Use the following guidelines:
1. **Context**: Choose a random context from this list: research paper, industry report, blog post, conference presentation, classroom lecture, 
patent application, product development meeting, or materials database entry.
2. **Polymers**: Include the provided polymers. Compare and contrast their properties, structures, and characteristics.
3. **Properties**: Discuss the provided properties for each polymer, ensuring to differentiate between polymers that share property names but 
have different values.
4. **Measurement Methods**: Describe the provided measurement techniques or instruments used to determine the properties, ensuring clarity 
when multiple methods are involved.
5. **Conditions**: Mention the provided conditions under which properties were measured or observed, and be prepared to include multiple 
conditions for different properties.
6. **Relationships**: Establish complex relationships between polymers, properties, conditions, and measurement methods, ensuring that the 
context is clear and logical.
7. **Technical Details**: Include specific numerical values, units, chemical formulas, and polymer classifications where appropriate.
**Before writing the paragraph**:
1. For conditions, create natural prepositional phrases that start with words like "under", "at", "in", etc. Try to randomly generate some concrete 
details based on the original data in the provided sample information (e.g., values like "at a heating rate of 10°C/min and a frequency of 0.1 Hz").
2. For measuring methods, use complete noun phrases that indicate the measuring or characterization method. Only the actual method 
name/instrument will be tagged.
**Use the following data as a basis for your paragraph, but feel free to extrapolate or invent additional coherent details**:
-----Sample Information-----
[INSERT SAMPLE INFORMATION HERE]
-------------------------------
**Generate a paragraph of 250-350 words that incorporates these elements in a natural, flowing manner**. Ensure that the information is 
presented in a way that would challenge an ML model to correctly identify and relate entities, properties, conditions, and measurement methods. 
Vary the writing style and complexity to create diverse and realistic content. Provide only the paragraphs without any additional explanation.
**After generating the paragraph, extract and list all relevant event tuples from the text** in the following format:
Event Tuples:
1. (Polymer: "...", Property: "...", Value: "...", Conditions: "...", Method: "...")
2. (Polymer: "...", Property: "...", Value: "...", Conditions: "...", Method: "...")
...
Each tuple should contain the exact tagged text from your paragraph, including the complete phrases used for conditions and methods.
**TAGGING RULES**:
- Polymer names: <P>exact polymer name as provided</P>
- Property names: <PROP>exact property name as provided</PROP>
- Property values: <VAL>exact value with unit as provided</VAL>
- Conditions: <COND>entire prepositional phrase</COND>
- Measuring methods: <M>only the method/instrument name</M>
**IMPORTANT**: Ensure that every property measurement mentioned in the paragraph is represented in the event tuples, and that the text in the 
tuples exactly matches the tagged text in the paragraph.

Figure 4: Specialized prompt template used for generating the PolyEE corpus. 

Figure 5: Base prompt template for generating synthetic EAE data using Templates 2 and 3. 
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F LLM Prompt Templates for Event 
Annotation and Data Generation 

Figure 4 illustrates the specialized prompt template 
used to guide advanced LLMs (GPT-4.1 and 
Claude 3.7 Sonnet Thinking) in generating event 
annotations from existing entity and relation data to 
create the PolyEE corpus, while Figure 5 presents 
the base prompt structure employed for synthetic 
EAE data generation that either mimics general 
materials science writing (Template 2) or leverages 
actual PolyEE abstracts as contextual guides 
(Template 3). 

Important instructions for Prompt Template 2 
include: 

**Natural Scientific Writing**:  
   - Use natural scientific writing style with proper sentence 

case (not copying capitalization from the sample information) 
   - Introduce and use appropriate abbreviations for 

polymers, properties, and methods (e.g., "glass transition 
temperature (Tg)" then later just "Tg") 

   - Vary how you refer to properties and methods rather 
than always using the exact terms from the sample information 

   - Use domain-specific jargon and conventions as real 
scientists would 

 
**Linguistic Complexity**: Incorporate these challenging 

linguistic patterns: 
   - Coreference and anaphora (using "it", "this polymer", 

"the latter compound", etc.) 
   - Discontinuous mentions (separating polymer names 

from their properties) 
   - Nested relationships (properties that depend on other 

properties) 
   - Comparative statements between polymers 
   - Negation patterns ("unlike X, polymer Y does not 

exhibit...") 
   - Hedging language ("appears to have", "approximately", 

"estimated to be") 
 
**Domain Challenges**: Include these domain-specific 

complexities: 
   - Properties mentioned for polymer blends or composites 
   - Conditional properties (that only appear under specific 

circumstances) 
   - Properties that change over time or processing 

conditions 
   - Implicit relationships that domain experts would 

understand 
- Abbreviated or alternative names for the same polymer 

Critical instructions for Prompt Template 3 
include: 

**YOU MUST strictly imitate the exact sentence structure, 
flow, and technical presentation format of the provided sample 
text.** Pay careful attention to: 

- Sentence length and complexity 
- How information is sequenced 
- Paragraph structure and flow 
- Technical term introduction patterns 
- Transitions between ideas 

- Use of supporting details 
- Types of clauses and grammatical constructions 
- How data and measurements are presented 
 
Sample text: 
[INSERT HERE] 
 
**Your generated paragraph should be nearly 

indistinguishable in structure from this sample - as if written 
by the same author, but about your assigned polymers.** 
 
Synthetic Data Generation Details 
Our NER-focused synthetic data generation 
approach follows a structured multi-stage 
pipeline: 

1. Strategic Sample Selection: For each 
synthetic instance, we select sample information 
tuples from PoLyInfo, combining them based on 
common polymer names and property names when 
possible. We extract polymer names (POLYMER), 
associated property names (PROP_NAME), 
corresponding property values (PROP_VALUE), 
experimental conditions (CONDITION), and 
characterization techniques (CHAR_METHOD). 
This strategic selection creates complex 
relationships that challenge ML models to learn 
effectively. We focus on these polymer-relevant 
entities because resources for other entity types are 
limited and lack sufficient quality for effective data 
generation. CONDITION and CHAR_METHOD 
can sometimes be absent in the database for certain 
property entries. 

2. Contextual Prompt Engineering: We 
transform the selected polymer information into 
carefully engineered prompts for the Llama 3.1 
70B model. These prompts incorporate explicit 
instructions for generating scientifically coherent 
text with natural variations of formal chemical 
nomenclature, encouraging the model to use 
abbreviated forms, common names, or alternative 
notations typically found in research publications. 

3. Entity Variation Control: The prompt design 
encourages linguistic variation in entity mentions 
while preserving scientific precision. This 
produces diverse representations of the same 
underlying entities, such as using full chemical 
names alongside abbreviations or alternative 
nomenclature systems, mirroring the variability 
found in authentic scientific literature. 

4. Distant Supervision for NER: For NER-
focused generation, we save the initial sample 
information tuples selected from PoLyInfo and 
then align entities in these tuples to the text 
generated by Llama. This alignment process 
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locates where each entity from the original tuples 
appears in the generated text, creating annotations 
based on these alignments rather than using 
dictionaries or rule-based entity extraction. 

5. Generation Scale: We generated up to 20,000 
prompts for this task, resulting in approximately 
183,000 synthetic sentences. Our experiments 
show that moderate volumes (30k-50k sentences) 
yield optimal improvements, with larger quantities 
showing diminishing returns. 

For EAE-focused synthetic data generation, 
we developed an enhanced methodology 
incorporating explicit entity tagging: 

1. Strategic Sample Selection: We use the same 
approach as in NER generation, selecting and 
combining sample information tuples from 
PoLyInfo based on common polymer names and 
property names when available. This creates more 
complex relationships for the model to learn, 
though samples without common elements are still 
utilized. Our focus on polymer-relevant entities 
addresses the limitations in available high-quality 
resources for other entity types in materials science. 
As with NER generation, CONDITION and 
CHAR_METHOD information may be absent for 
some property entries. 

2. Advanced LLM Selection: We employed 
state-of-the-art models (Claude Sonnet 3.7 
Thinking and GPT-4.1) specifically for this task 
due to their superior instruction-following 
capabilities and domain knowledge representation. 

3. Multi-Template Approach: We created three 
complementary prompt templates with increasing 
levels of sophistication: 

- Template 1 (T1): Basic structured template 
focusing on clear entity relationships 

- Template 2 (T2): Enhanced template 
designed to mimic general materials science 
writing patterns, incorporating domain-specific 
terminology, discourse structures, and citation 
styles commonly found in materials science 
literature 

- Template 3 (T3): Template that leverages 
actual PolyEE training corpus abstracts as 
structural guides, replacing original entities with 
new content while preserving the linguistic 
patterns, rhetorical structures, and 
argumentative flows of real-world polymer 
science text 
We generated up to 20,000 prompts for each 

template variant. Templates T2 and T3 proved 
particularly effective at generating text that closely 

resembles authentic scientific writing while 
maintaining explicit entity tagging. 

4. Explicit Entity Tagging and Tuple Generation: 
The LLMs apply XML-style tags to entities 
directly in the generated text along with structured 
event tuples and abbreviation pairs. 

5. Three-Stage Distant Supervision Alignment: 
We transform these self-annotated paragraphs into 
standardized BRAT format annotations through: 

a. Initial Entity and Event Extraction: Parsing 
tagged entities and event tuples from LLM 
outputs 

b. Abbreviation and Relation Refinement: 
Handling abbreviations, entity relationships, and 
event rewiring 

c. Context-Sensitive Refinement: Applying 
linguistic analysis to optimize argument 
assignments based on sentence-level proximity 
and domain constraints 

This alignment process transforms LLM outputs 
into high-quality, consistent annotations that 
adhere to BRAT format specifications and domain-
specific constraints, effectively bridging the gap 
between formal database knowledge and realistic 
scientific text representation. 

G EAE Performance 

Table 13 presents the results of TagPrime-C with 
various encoders for EAE on the PolyEE test set. 
DeBERTa-v3-large achieves the highest 
performance with 75.93% F1 score for Argument 
Classification (AC) and 68.28% F1 score for AC-
attached. Domain-specific encoders like MatBERT 
(74.81% AC F1) and PureMechBERT variants 
show competitive performance, while general 
language models like BERT-large exhibit lower 
scores (65.76% AC F1). The results demonstrate 
the significant impact encoder selection has on 
EAE performance. 

Table 14 compares different EAE methods on 
the PolyEE test set using gold triggers. 
Classification-based approaches like TagPrime-C 
and TagPrime-CR consistently outperform 
generation-based methods such as DEGREE, X-
GEAR, and PAIE. TagPrime-C with DeBERTa-v3-
large achieves the best results with 75.93% F1 on 
AC and 68.28% on AC-attached, while DEGREE 
models show higher precision but notably lower 
recall. The performance gap between AC and AC-
attached metrics highlights the challenge of 
correctly linking arguments to their appropriate 
triggers in materials science text. 
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H EAE Synthetic Data 

We selected GPT-4.1 and Claude 3.7 Sonnet 
Thinking as the primary LLMs for EAE synthetic 
data generation based on the demonstrated superior 
performance of their closely related versions in 
scientific domain tasks. This selection is supported 
by recent research from Bajan et al. (2025), who 
conducted a comprehensive evaluation of 15 
different LLMs on the MatSciQA benchmark. 
Their study revealed that GPT-4o consistently 
achieved superior accuracy across four distinct 
question categories specifically designed to assess 

specialized materials science domain knowledge. 
Similarly, Claude models demonstrated 
exceptional performance in scientific reasoning 
tasks, making these advanced LLMs particularly 
well-suited for generating high-quality synthetic 
data in specialized scientific domains like materials 
science and polymer property extraction. 

Table 15 presents a comprehensive comparison 
of model performance when trained using different 
combinations of gold standard and synthetic data 
for EAE. The table evaluates various training 
strategies, including gold-only baseline, combined 
training with different amounts of synthetic data 
(1,000-5,000 examples), and pre-training followed 

Method Architecture 
AC AC-attached 

P R F1 P R F1 

TagPrime-C 
(Hsu et al., 

2023) 

DeBERTa-v3-large 80.39 71.93 75.93 72.07 64.86 68.28 
SciBERT 79.61 71.48 75.32 70.12 64.05 66.95 
MatBERT 80.24 70.07 74.81 72.24 61.89 66.67 

PureMechBERT-cased-squad 80.49 69.72 74.72 67.06 62.16 64.52 
MechBERT-cased-squad2 78.52 70.77 74.44 65.27 62.97 64.10 

MatSciBERT 77.61 70.77 74.03 67.88 60.54 64.00 
PureMechBERT-cased-squad2 77.65 69.72 73.47 66.57 61.89 64.15 

MechBERT-cased-squad 76.54 70.07 73.16 60.74 61.89 61.31 
MaterialsBERT 78.57 65.85 71.65 70.36 58.38 63.81 
RoBERTa-large 76.05 63.73 69.35 66.35 57.03 61.34 

BERT-large 72.96 59.86 65.76 61.13 52.70 56.60 

Table 13:  Results for EAE on PolyEE test set using TagPrime-C with different encoders. 

 

 
Method 

AC AC-attached 
P R F1 P R F1 

TagPrime-C (DeBERTa-
v3-large) (Hsu et al., 2023) 

80.39 71.93 75.93 72.07 64.86 68.28 

TagPrime-CR (DeBERTa-
v3-large) (Hsu et al., 2023) 

79.84 69.72 74.44 70.46 61.89 65.90 

DEGREE (BART-large) 
(Hsu et al., 2022) 76.92 57.25 65.65 68.95 51.04 58.66 

DEGREE (T5-large) 
(Hsu et al., 2022) 

80.65 56.31 66.31 73.53 53.19 61.73 

X-GEAR (BART-large) 
(Huang et al., 2022) 74.32 62.98 68.18 65.99 57.91 61.69 

X-GEAR (T5-large) 
(Huang et al., 2022) 

76.37 62.61 68.81 69.46 58.87 63.72 

PAIE (BART-large) 
(Ma et al., 2022) 

72.59 66.20 69.24 66.67 58.38 62.25 

PAIE (T5-large) 
(Ma et al., 2022) 

73.36 66.90 69.98 66.98 58.65 62.54 

 Table 14:  Results for EAE on PolyEE test set given gold triggers. 
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by fine-tuning approaches (1,000-42,000 
examples). 

The results demonstrate that incorporating 
moderate amounts of synthetic data (particularly 
2,000 GPT-generated examples) yields the best 
performance, with a significant improvement over 
the gold-only baseline, achieving AC F1 scores of 
78.08% (vs. 75.93%) and AC-attached F1 scores of 

73.62% (vs. 68.28%). Interestingly, the table shows 
that increasing synthetic data beyond 2,000 
examples doesn't yield further improvements, 
suggesting that data quality is more important than 
quantity. The templates (T2 and T3) represent 
different approaches to synthetic data generation, 
with T2 generally showing stronger performance in 
the combined training setting. 

Training Strategy Synthetic Data Template 
AC AC-attached 

P R F1 P R F1 
Gold only (baseline)  0 N/A 80.39 71.93 75.93 72.07 64.86 68.28 

Combined Training 
 'train' + synthetic 

1,000 (Claude) 
T2 80.47 72.28 76.06 74.62 65.95 70.01 
T3 82.54 72.98 77.47 72.54 65.68 68.94 

1,000 (GPT) 
T2 80.24 69.82 74.67 71.82 64.05 67.71 
T3 82.33 71.92 76.77 73.03 65.14 68.86 

2,000 (GPT) 
T2 82.17 74.39 78.08 76.99 70.54 73.62 
T3 81.54 74.38 77.80 76.22 67.57 71.63 

5,000 (GPT) 
T2 79.62 72.62 75.96 73.89 67.31 70.45 
T3 82.10 74.04 77.86 75.07 68.38 71.57 

Pre-train  
à Fine-tune 

1,000(GPT) 
T2 79.01 72.64 75.69 71.26 65.67 68.35 
T3 80.61 74.37 77.36 76.85 67.30 71.76 

2,000 (GPT) 
T2 80.38 73.32 76.69 72.84 65.94 69.22 
T3 80.31 72.97 76.46 74.12 68.10 70.98 

5,000 (GPT) 
T2 81.64 73.32 77.26 74.70 67.84 71.10 
T3 82.93 71.58 76.84 76.03 65.13 70.16 

10,000 (GPT) 
T2 82.73 72.27 77.15 74.13 68.92 71.43 
T3 82.47 72.61 77.23 75.08 66.76 70.67 

20,000 (GPT) 
T2 81.96 73.33 77.41 73.26 68.11 70.59 
T3 83.33 71.91 77.20 75.00 64.84 69.55 

42,000 (All) T2&T3 83.13 72.63 77.53 75.95 64.85 69.96 
 
Pre-train: 90% train/10% val, 10 epochs; Fine-tune (FT): 80% train/10% val/10% test, 90 epochs 
GPT refers to GPT-4.1; Claude refers to Claude 3.7 Sonnet Thinking; All refers to GPT & Claude 
Prompt template 2 (T2): designed to mimic general materials science writing 
Prompt template 3 (T3): leverages actual abstracts from PolyEE as templates to better replicate the style of 
real-world text 

Table 15:  Impact of synthetic data on n-ary property extraction performance across different training 
strategies and data volumes. 
 

 

 
Entity Type 

Gold only Combined 
Training 

P R F1 P R F1 
POLYMER 81.13 88.00 84.42 82.32 84.55 83.42 

PROP_NAME 78.39 88.48 83.12 85.20 79.16 82.07 
PROP_VALUE 81.21 87.58 84.28 85.19 76.16 80.42 
CONDITION 66.27 70.89 68.50 70.16 55.41 61.92 

CHAR_METHOD 85.26 95.86 90.25 89.16 87.57 88.36 

Table 16:  Impact of EAE-focused synthetic data on 
NER task. 

 

 

Relation Type 
Combined Training 

P R F1 
has_property 77.46 71.55 74.39 

has_value 90.14 94.12 92.09 
has_condition 81.44 61.24 69.91 

characterized_by 75.40 74.80 75.10 

abbreviation_of 96.09 93.18 94.61 

Table 17:  Impact of EAE-focused synthetic 
data on RE task. 
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Additional Investigations Tables 16 and 17 
present the impact of EAE-focused synthetic data 
on NER and RE tasks as additional investigations 
to better understand data characteristics. 

As additional investigation, Table 16 compares 
"Gold only" versus "Combined Training" 
approaches for NER across five key entity types. 
Using the W2NER+MatSciBERT model trained on 
supervised data combined with synthetic examples, 
the results show that precision consistently 
improves across all entity types while recall 
generally decreases. This precision-focused 
improvement is particularly beneficial for systems 
that prioritize high-confidence predictions over 
coverage, making the approach valuable for 
applications requiring high precision. 

As additional investigation, Table 17 displays 
the performance of the Combined Training 
approach on RE tasks. Using ATLOP+DeBERTa-
v3-large trained on supervised plus synthetic data, 
the recall is notably decreased compared to gold-
only training. This decline is reasonable since 
LLMs introduce numerous new entities and 
potentially new relations in the synthetic data. 
However, the F1 scores for two relation types 
‘has_value’ (92.09) and ‘abbreviation_of’ (94.61) 
remain exceptionally strong. These high-
performing relation types directly motivated the 
development of Approach C (LLM-Guided 
Assembly) in the unified framework, which 
leverages these reliable relation predictions to 
guide structured extraction. 

I NER Synthetic Data 

Table 18 presents the detailed results of NER 
Synthetic Data experiments, showing F1 scores for 
various entity types across different synthetic data 
volumes. The table demonstrates how performance 

changes when training with MatSciNERE’s 
baseline 4,878 sentences versus adding increasing 
amounts of synthetic data (from 5k to ~183k 
sentences). Performance for most entity types 
improves with moderate synthetic data volumes, 
with the best overall F1 score (84.69%) achieved at 
50k sentences. PROP_VALUE shows the most 
dramatic improvement (from 84.28% to 89.19%), 
while POLYMER and PROP_NAME show 
modest gains. Performance peaks at 50k sentences 
and slightly declines with larger synthetic datasets 
(~183k), suggesting that optimal synthetic data size 
is around 30k-50k sentences (approximately 3k-5k 
paragraphs) for materials science NER tasks. 

J Prompt Design for LLM-Guided 
Extraction 

Figure 6 illustrates the prompt template used in our 
LLM-Guided Assembly approach. The prompt 
integrates a scientific paragraph with pre-identified 
entity mentions and their character offsets from the 
NER module. It includes “Known abbreviations” 
based on high-confidence ‘abbreviation_of’ 
relation predictions and “Entity mapping for 
shortened entities” to handle lengthy mentions that 
might challenge LLM processing. The prompt 
targets a specific property-value pair identified 
through the ‘has_value’ relation and provides 
structured instructions for generating complete 5-
argument tuples. This approach effectively 
constrains the LLM while leveraging its inferential 
capabilities to extract complex n-ary property 
information from scientific text. 

Entity Type / 
No. of sent. 

MatSciNERE 
(train) 

4,878 sent 

5k 
sent 

10k 
sent 

15k 
sent 

30k 
sent 

50k 
sent 

100k 
sent 

150k 
sent 

~183k 
sent 

POLYMER          84.42 85.19 84.38 86.42 85.63 85.71 86.61 83.70 82.69 
PROP_NAME        83.12 83.39 83.51 83.93 83.99 84.26 84.61 84.52 84.69 
PROP_VALUE       84.28 88.22 86.84 87.54 88.96 89.19 88.14 87.58 85.52 
CONDITION        68.50 69.46 71.57 67.09 69.59 68.48 68.52 69.93 67.08 

CHAR_METHOD      90.25 89.89 91.43 90.96 89.01 89.14 88.33 89.71 89.77 
Overall 82.87 84.07 83.90 84.19 84.34 84.69 84.26 83.66 83.33 

Table 18:  Impact of synthetic data amount on NER performance (F1 scores) by entity type. 
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K Practical Applications 

Rather than presenting a single best method, our 
framework acknowledges the diverse requirements 
of real-world extraction scenarios and offers 
multiple viable pathways. This flexibility allows 
users to select the approach that best aligns with 
their specific constraints and priorities: 

1. When computational resources are limited or 
offline deployment is required, the EAE-based 
3approaches offer strong performance without 
external dependencies. 

2. When maximum accuracy is crucial and LLM 
resources are available, the LLM-guided approach 
provides most effective results. 

3. When extraction needs to focus on specific 
relation types or entity categories, the RE-
Composition approach offers more granular 
control and interpretability. 

The framework also enables ensemble methods 
and hybrid approaches that can further enhance 
performance. For instance, high-confidence 
extractions from multiple pathways could be 

combined, or different approaches could be 
deployed based on document characteristics or 
extraction requirements. 

Paragraph:
In a recent study on thermoplastic elastomers, we investigated the properties of two distinct copolymers: poly[(acrylic acid)-co-(butyl acrylate)] (PAA-BA) with a chemical formula C3H4O2/C7H12O2, and poly{[4-
(octadecyloxy)benene-1,3-diamine;4,4'-sulfonyldianiline]-alt-(5,5'-biisobenzofuran-1,1',3,3'-tetrone)} (ODA-PMDA-BTDA) with a chemical formula C40H46N2O5/C28H14N2O6S. A notable difference between these copolymers 
lies in their interfacial properties. PAA-BA exhibited an interfacial tension of 2.915 dyn/cm, measured using the pendant drop method at a temperature of 25°C. In contrast, ODA-PMDA-BTDA displayed a significantly higher 
surface energy due to its aromatic and heterocyclic constituents, resulting in a surface tension of 22.90 N/m, as determined by the Wilhelmy plate technique under identical temperature conditions. Thermal analysis revealed 
distinct differences in their glass transition temperatures (Tg) and thermal decomposition behavior. PAA-BA exhibited a Tg of -21.00 K, measured using thermomechanical analysis (TMA) at a heating rate of 10°C/min and a 
frequency of 0.1 Hz. Conversely, ODA-PMDA-BTDA demonstrated exceptional thermal stability, with an onset decomposition temperature of 401.9°C and a weight loss of only 5.000% during thermogravimetric analysis (TG) 
under nitrogen atmosphere at a heating rate of 20°C/min in vacuum conditions. These findings suggest that the incorporation of rigid aromatic moieties in ODA-PMDA-BTDA enhances its thermal stability, whereas PAA-BA's 
aliphatic backbone contributes to its lower Tg and increased flexibility. The observed differences in their interfacial properties and thermal behavior underscore the importance of tailoring copolymer composition for specific 
applications.

Known entity mentions (non-exhaustive list):
POLYMER: ODA-PMDA-BTDA [312, 325] (ID: T5)
…
POLYMER: PAA-BA [965, 971] (ID: T26)
POLYMER: ODA-PMDA-BTDA [594, 607] (ID: T17)
CHAR_METHOD: pendant drop method [535, 554] (ID: T3)
CONDITION: at a temperature of 25°C [555, 579] (ID: T13)
…

Known abbreviations (non-exhaustive list):
PAA-BA: poly[(acrylic acid)-co-(butyl acrylate)]
…
TG: thermogravimetric analysis

Entity mapping for shortened entities:
poly{[4-(octadecyloxy)benene-1,3-diamin...f6ff0199: poly{[4-(octadecyloxy)benene-1,3-diamine;4,4'-sulfonyldianiline]-alt-(5,5'-biisobenzofuran-1,1',3,3'-tetrone)}
at a heating rate of 10°C/min and a fre...f6708722: at a heating rate of 10°C/min and a frequency of 0.1 Hz
under nitrogen atmosphere at a heating ...4bfdaa67: under nitrogen atmosphere at a heating rate of 20°C/min in vacuum conditions

For the following PROP_NAME and PROP_VALUE pair, provide the completed event tuple(s) (POLYMER, PROP_NAME, PROP_VALUE, CONDITION, CHAR_METHOD) using the correct entity mentions and their offsets 
from the list above, or by identifying new relevant entities from the text. Use the shortened versions of entities where applicable. You may also modify existing CONDITION or CHAR_METHOD entities if a more appropriate 
version is found in the text. Maintain the given PROP_NAME and PROP_VALUE relationship without changes. Include all relevant POLYMER, CONDITION, and CHAR_METHOD entities that apply to the given 
PROP_NAME and PROP_VALUE pair based on the text. Use the known abbreviations to help identify and link related concepts, but be aware that there may be other abbreviations in the text not listed.

PROP_NAME: interfacial tension [479, 498] (ID: T10), PROP_VALUE: 2.915 dyn/cm [502, 514] (ID: T11)

Instructions:
1. Provide a separate event tuple for each unique combination of POLYMER, CONDITION, and CHAR_METHOD that applies to the given PROP_NAME and PROP_VALUE pair.
2. Each event tuple must have exactly 5 arguments: (POLYMER, PROP_NAME, PROP_VALUE, CONDITION, CHAR_METHOD).
3. Use the exact entity mentions and offsets from the list above when applicable. If a more appropriate entity is found in the text but not listed, add it with its correct offsets.
4. If no relevant entity is found for POLYMER, CONDITION, or CHAR_METHOD, use an empty list [] for that argument.
5. Do not combine multiple entities of the same type into a single event. Instead, create separate event tuples for each combination.
6. For each relevant POLYMER, CONDITION, or CHAR_METHOD, create a separate event tuple, even if other arguments remain the same.
7. Do not add explanations or additional text.
8. Maintain the given PROP_NAME and PROP_VALUE relationship without changes.
9. Verify the correctness of each tuple based ONLY on explicit expressions in the raw text that are directly related to the given PROP_NAME and PROP_VALUE pair.
10. Only include information that is directly stated and clearly associated with the specific PROP_NAME and PROP_VALUE pair in the text.
11. Be aware of both listed and unlisted abbreviations in the text, using them to help identify relationships between concepts.
12. Ensure that you have considered all possible POLYMER, CONDITION, and CHAR_METHOD entities mentioned in the text that are relevant to the given PROP_NAME and PROP_VALUE pair.
13. Generate all possible combinations of relevant POLYMER, CONDITION, and CHAR_METHOD entities, including cases where some entity types may be empty ([]).
14. When referring to entities, use the shortened versions provided in the entity mentions list.

Example response format:
(['POLYMER1 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION1 [start, end]'], ['CHAR_METHOD1 [start, end]'])
(['POLYMER1 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION1 [start, end]'], ['CHAR_METHOD2 [start, end]'])
(['POLYMER1 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION2 [start, end]'], ['CHAR_METHOD1 [start, end]'])
(['POLYMER1 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION2 [start, end]'], ['CHAR_METHOD2 [start, end]'])
(['POLYMER2 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION1 [start, end]'], ['CHAR_METHOD1 [start, end]'])
(['POLYMER2 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION1 [start, end]'], ['CHAR_METHOD2 [start, end]'])
(['POLYMER2 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION2 [start, end]'], ['CHAR_METHOD1 [start, end]'])
(['POLYMER2 [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', ['CONDITION2 [start, end]'], ['CHAR_METHOD2 [start, end]'])
([], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', [], [])

Figure 6: Example prompt for LLM-Guided Assembly showing how high-confidence entity and relation 
predictions guide the extraction of n-ary property tuples. 
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