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Abstract

This paper presents a unified framework for
extracting n-ary property information from
materials science literature, addressing the
critical challenge of capturing complex
relationships that often span multiple
sentences. We introduce three
complementary approaches: RE-
Composition, which transforms binary
relations into n-ary structures; Direct EAE,
which models polymer properties as events
with multiple arguments; and LLM-Guided
Assembly, which leverages  high-
confidence entity and relation outputs to
guide structured extraction. Our framework
is built upon two novel resources:
MatSciNERE, a comprehensive corpus for
materials science entities and relations, and
PolyEE, a specialized corpus for polymer

property events. Through strategic
synthetic data generation for both NER and
EAE tasks, we achieve significant

performance improvements (up to 5.34 F1
points). Experiments demonstrate that our
combined approaches outperform any
single method, with the LLM-guided
approach achieving the highest F1 score
(71.53%). The framework enables more
comprehensive knowledge extraction from
scientific literature, supporting materials
discovery and  database  curation
applications. We plan to release our
resources and trained models to the
research community.

1 Introduction

Materials science encompasses diverse entities
ranging from broad categories like organic and
inorganic materials to specialized subcategories
such as polymers. The exponential growth of
scientific publications in this field creates
significant challenges for researchers attempting to
efficiently access and organize critical information.

Particularly crucial is the extraction of property
information, defined as structured knowledge
about materials and their properties, measured
values, experimental conditions, and
characterization methods. This information is
essential for materials discovery, database curation,
and accelerating research.

Extracting property information from materials
science literature presents unique challenges
compared to traditional information extraction (IE)
tasks. Property information typically involves
complex n-ary relationships connecting multiple
entities (e.g., a polymer with a specific property
value under certain conditions, measured by a
particular method). These relationships frequently
span multiple sentences, requiring cross-sentence
reasoning. Additionally, specialized terminology,
diverse experimental contexts, and varied writing
styles further complicate automated extraction.

Previous materials information extraction
approaches have focused primarily on Named
Entity Recognition (NER) to identify materials
(Weston et al., 2019; Shetty et al., 2023) or binary
Relation Extraction (RE) between entity pairs (Phi
etal., 2024). While promising for specific subtasks,
these methods fail to capture the n-ary property
information essential for comprehensive materials
knowledge bases. Recent Event Argument
Extraction (EAE) advancements offer pathways for
modeling n-ary relationships, but their application
to materials science remains limited. Large
Language Models (LLMs) have demonstrated
capabilities in extracting structured information,
yet their performance on specialized scientific
content is inconsistent without appropriate
guidance (Kumar et al., 2025).

In this work, we introduce a unified framework
for n-ary property IE in materials science that
integrates three complementary approaches: (1)
RE-Composition, which transforms binary
relationship predictions into n-ary structures; (2)
Direct EAE, which models property information as
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events with property names as triggers and other
elements as arguments; and (3) LLM-Guided
Assembly, a novel hybrid approach that leverages
high-confidence entity and relation predictions to
guide LLMs in generating complete n-ary
structures.

The main contributions of this paper are:

e A unified framework integrating three
distinct approaches for n-ary property IE,
enabling comprehensive coverage and
comparative analysis.

e Two novel corpora: MatSciNERE for
materials science NER/RE and PolyEE for
polymer  property event  extraction,
providing essential resources for developing
domain-specific IE systems.

e Strategic synthetic data generation for both
NER and EAE tasks, demonstrating
significant performance improvements (up
to 5.34 F1 points).

e Extensive empirical evaluation showing our
combined approaches outperform any single
method, with the LLM-guided approach
achieving the highest F1 score (71.53%).

e A practical solution for structured
knowledge extraction from materials science
literature that can adapt to different
extraction scenarios.

Our unified framework addresses the critical
need for structured knowledge extraction from
materials science literature, offering a robust
solution that can adapt to different extraction
scenarios.

2 Related Work

Resources for Materials Science IE Materials
science IE suffers from limited resources despite
the field’s importance. Early datasets like
Matscholar (Weston et al., 2019) and
CHEMDNER (Krallinger et al., 2015) provide
entity annotations for materials science. Domain-
specific resources include Mysore et al.’s (2019)
corpus of 230 Ilabeled inorganic synthesis
procedures, SC-CoMlIcs for superconductive
materials (Yamaguchi et al., 2020), and O'Gorman
et al.’s (2021) procedural text annotations. Recent
corpora have significantly advanced polymer
science IE: PolyNERE (Phi et al., 2024) provides a
comprehensive corpus of 750 polymer abstracts

with 14 entity types and 8 relation types, capturing
complex structures including overlapped and
discontinuous mentions. However, it only
annotates entities that are mainly relevant to
polymers, and a system, PolyMinder (Do et al.,
2025), has been developed based on that corpus.
POLYIE (Cheung et al., 2024) uses a single, coarse
"Material" entity type, and derives N-ary relations
by combining binary relations while discarding
those that cannot be combined.

Methods for Structured IE NER approaches fall
into three main categories: sequence labeling
(Huang et al., 2015; Lample et al., 2016), which
struggles with overlapping entities; span-based
methods (Shen et al., 2021), which handle overlap
but face scalability challenges; and generation-
based approaches (Yan et al., 2021; Paolini et al.,
2021), which manage flat, overlapped, and
discontinuous mentions via sequence generation.
Recent work includes unified frameworks like
W2NER (Li et al., 2022), which formulates NER
as word-to-word relation classification, enabling it
to handle these entity types simultaneously.

For RE, common approaches include pipeline
systems where RE follows NER (Huang et al.,
2021) and joint entity and RE methods (Lu et al.,
2022). For more complex n-ary relationships, EAE
offers promising solutions, with models like
TagPrime (Hsu et al., 2023) using classification-
based approaches and PAIE (Ma et al., 2022)
employing generation-based methods. These
approaches have shown effectiveness in general
domains but require adaptation for the specialized
terminology and complex relationships in materials
science.

LLMs like GPT-4 excel at general NLP tasks but
often underperform on domain-specific IE. Kumar
et al. (2025) note they may hallucinate and generate
conversational rather than precise outputs, limiting
effectiveness in tasks like property extraction.
Smaller BERT-based models are more efficient,
transparent, and often outperform LLMs on
specialized scientific tasks.

3 Novel Corpora for Material Science IE

This section introduces the two novel annotated
resources that support our unified framework:
MatSciNERE for general materials science
NER/RE, and PolyEE for event-based polymer
property extraction.
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We first present MatSciNERE, a high-quality
corpus representing a significant advancement for
materials science IE. This resource expands the
PolyNERE corpus (Phi et al., 2024) with a key
innovation: a revised annotation assumption that
captures all entity mentions in the text, not just
those directly relevant to polymers, enhancing both
coverage and consistency.

Following the approach in similar work (Phi et
al., 2024) and widely used datasets like Matscholar
(Weston et al., 2019), a single annotator conducted
the primary annotation work to ensure consistency
across the corpus, building upon the extensive
foundation of existing high-quality entity and
relation annotations. A quality assessment was
performed where a polymer expert independently
annotated a sample set from the corpus, yielding a
Cohen’s Kappa coefficient of 0.835 and
comparative metrics of 95.88% precision, 79.42%
recall, and 86.93% F1 score. This validation
confirms the high quality of the annotations.

MatSciNERE contains 22,296 entity mentions
and 11,935 relation pairs, increasing from 18,930
entities and 11,471 relations in PolyNERE corpus.
With 14 entity types and 8 relation types, it includes
overlapped (15.65%) and discontinuous (1.26%)
mentions crucial for capturing complex scientific
expressions, enabling practical extraction systems.
Detailed statistics are in Appendix A.

In this work, we also introduce PolyEE, a
specialized corpus for event-based polymer
property extraction that addresses a critical gap in
materials science [E. PolyEE reformulates property
information as events with property names as
triggers and other elements as arguments, enabling
the extraction of complete property tuples across
multiple sentences.

We define our task based on concepts from
PoLylInfo (Otsuka et al., 2011), the largest polymer
database. We focus on five key entity types:
POLYMER (polymer names like "polyethylene"),
PROP_NAME (property names such as "glass
transition temperature"), PROP_VALUE (values
with units like "25 MPqa"), CONDITION
(measurement conditions like "at 25°C"), and
CHAR_METHOD (characterization techniques
such as "DSC"). These five types represent the core
elements needed for polymer property information
in PoLyInfo’s schema, which will also serve as the
primary knowledge source for developing
synthetic data later in this work. Our event structure
follows a single "Propertylnfo" type with

PROP_NAME as the trigger and other types as
arguments.

We developed PolyEE through a semi-
automated approach using two advanced LLMs
(GPT-40 and Claude 3.7 Sonnet Thinking) to
generate initial event annotations based on existing
entity and relation annotations from MatSciNERE.
This dual-LLM approach allowed us to cross-
validate annotations and identify potential
discrepancies. Out of 750 abstracts in
MatSciNERE, 503 contain at least one relevant
event with a PROP NAME trigger and the
required POLYMER and PROP_VALUE
arguments. When events contained multiple
CONDITIONs or CHAR METHODs, we split
them into separate instances. This process yielded
1,601 distinct events reflecting various property
measurements and methods. To ensure high-quality
annotations, we implemented a thorough validation
process. Event tuples generated by the two LLMs
were manually compared, with 118 events (7.37%)
across 86 abstracts (17.10%) undergoing detailed
verification. Additionally, all annotations in
development and test sets were manually reviewed.
To assess annotation quality, we compared LLM-
generated annotations with those produced by the
primary corpus annotator on a sample of 10
abstracts containing the highest number of events.
This comparison yielded a Cohen’s Kappa of 0.87,
suggesting strong consistency in the annotation
process. Detailed statistics are in Appendix B.

4 Unified Framework for Property IE

Our unified framework integrates three
complementary approaches for extracting n-ary
property information from materials science
literature. As shown in Figure 1, the architecture
centers on a foundational NER module that
processes scientific text to identify relevant
entities. The framework then offers multiple
approaches to transform these entities into
structured n-ary property information: (1) RE-
Composition, (2) Direct EAE, and (3) LLM-
Guided Assembly. Each approach has distinct
strengths, and they can be deployed individually or
in combination depending on specific extraction
needs. Two synthetic data generation engines
enhance both the NER module and EAE models,
improving overall performance.
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Figure 1: Our unified framework for N-ary property information extraction in materials science

Foundational NER Module The NER module
identifies crucial material science entities with
emphasis on polymer-specific entities, handling
flat, overlapped, and discontinuous mentions.
Trained on MatSciNERE and supplemented with
synthetic data for polymer entities, this module
significantly improves recognition of key entity
types (POLYMER, PROP_NAME,
PROP_VALUE, CONDITION,
CHAR_METHOD). The module serves as the
foundation for all extraction approaches: providing
entity candidates for RE, identifying
PROP_NAME triggers for event extraction, and
supplying entities to guide LLM-based extraction.

RE-Composition The RE-Composition approach
transforms binary relations into n-ary structures. A
document-level RE model predicts binary
relationships between entity pairs, trained on
MatSciNERE to identify key relations like
‘has_property’, ‘has value’, etc. The composition
logic then transforms these binary relations into n-
ary structures by identifying patterns of connected
relations sharing common entities. For example,
POLYMER—has_property—PROP_NAME and

PROP_NAME—has value—PROP_VALUE can
be merged into a single n-ary tuple (POLYMER,
PROP_NAME, PROP_VALUE).

Direct EAE The Direct EAE approach
conceptualizes polymer property information as
events with PROP_NAME entities as triggers. The
event schema defines a single "Propertylnfo" event
type with four argument roles: Polymer, Value,
Condition, and Char method. The EAE model
identifies all relevant arguments associated with
each property name trigger, even when spanning
multiple sentences. Trained on PolyEE (derived
from MatSciNERE but restructured for event
extraction) and enhanced with synthetic data, this
approach directly captures complex, multi-
argument  property  information  without
intermediate binary relation steps.

LLM-Guided Assembly The LLM-Guided
Assembly approach leverages LLMs’ inferential
capabilities while constraining them with high-
confidence predictions from the NER and RE
modules. Motivated by the observation that certain
binary relations (particularly ‘has value’ and
‘abbreviation_of’) achieve high F1 scores, this
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approach enhances LLM performance on scientific
content. The component uses a specialized prompt
(detailed in Appendix J) incorporating text, NER-
identified entities, and high-confidence relations to
guide LLMs in extracting complete n-ary property
tuples while ensuring schema consistency.

Synthetic Data Generation Methodology Our
framework employs two complementary synthetic
data generation approaches that leverage the
PoLyInfo database (Otsuka et al., 2011) to enhance
both NER and EAE performance. While PoLyInfo
contains predominantly lengthy and complex
IUPAC nomenclature that scientific literature
rarely uses in the exact form, making direct
alignment between database entries and research
articles challenging, we utilize LLMs and distant
supervision to generate realistic linguistic
variations that bridge this terminology gap while
preserving scientific accuracy.

For NER, we use Llama 3.1 70B Instruct to
create paragraphs rich in polymer entities based on
strategically selected sample tuples from PoLyInfo.
For EAE, we employ advanced LLMs (Claude 3.7
Sonnet Thinking and GPT-4.1) with specialized
templates, one mimicking general materials
science writing (T2) and another leveraging actual
PolyEE abstracts as guides (T3), to generate self-
annotated paragraphs with explicit entity tagging
and structured event tuples. The generated outputs
undergo three-stage distant supervision alignment:
(1) entity and event tuple extraction from LLM
outputs, (2) abbreviation and relation refinement,
and (3) context-sensitive refinement using
sentence-level linguistic analysis. Additional
details are provided in Appendix F.

Integration and Flexibility A key advantage of
our unified framework is its flexibility. During
inference, the system can employ any single
approach or combine multiple approaches based on
the specific extraction needs or document
characteristics. Our experimental analysis (Section
5) explores the performance characteristics of each
approach and identifies optimal combinations for
different scenarios, providing guidance for
practical applications of the framework.

5 Experiments

5.1 Experimental Setup

Our experimental evaluation assesses each
component of the unified framework both

Method Encoder | R F1
MaxClique MatSciBERT 78.65 75.50 77.04
(Wang et al.,

2021) RoBERTa-large 76.37 76.11 76.24
W2NER MatSciBERT* 78.05 76.53 77.28
(Lietal, MatSciBERT 77.47 79.18 78.32

2022)  RoBERTa-large 7731 77.60 77.45
TriG-NER MatSciBERT 78.85 74.97 76.86
(Cabral et

74.89 76.01

al., 2025) RoBERTa-large 77.17

Table 1: Results for NER on MatSciNERE test set
(*trained and evaluated on PolyNERE).

individually and in combination. We conducted
comprehensive experiments on the MatSciNERE
and PolyEE corpora to evaluate the performance of
different pathways for n-ary property extraction.

Implementation Details For our unified
framework, we implemented multiple state-of-the-
art models for each component. The NER module
utilized various advanced methods with different
encoders, including domain-specific  ones.
Similarly, for Approach A (RE-Composition),
Approach B (Direct EAE), and Approach C (LLM-
Guided Assembly), we implemented several
competitive models. For each experiment, the
reported results represent the average of five runs.
Detailed implementation specifics are provided in
Appendix C.

Evaluation Metrics For NER, we report precision
(P), recall (R), and F1-score at the entity level. For
binary RE, we use similar metrics at the relation
level. Following Lin et al. (2020), we evaluate EAE
models using both argument classification (AC)
and the stricter AC-attached metric, which assesses
whether predicted arguments are correctly linked to
their appropriate triggers, a critical consideration
for property IE where correct trigger-argument
associations are essential.

5.2 Results

NER Performance Table 1 presents the best-
performing NER models on the MatSciNERE test
set. W2NER with MatSciBERT encoder achieved
the highest overall F1 score (78.32%), with well-
balanced precision (77.47%) and recall (79.18%).
TriG-NER with MatSciBERT showed the highest
precision (78.85%) but lower recall, while
MaxClique with MatSciBERT demonstrated
competitive  performance. = Domain-specific
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Method Encoder P R F1 Method AC AC-attached
MatSciBERT* 83.99 8249 83.23 etho P R FI P R FI
ATLOP : —
(Zhou et al. MatSciBERT 84.15 8387 84.01 HTagl:r 'lmg()% 80.39 71.93 75.93 72.07 64.86 68.28
5021)  ROBERTa-large 86.93 86.64 86.78 (Hsu etal., 2023)
) TagPrime-CR
DeBERTa-v3l 87.93 86.89 87.40 (Hsu et al., 2023) 79.84 69.72 74.44 70.46 61.89 65.90
Eider  BERT-l 811 74.58 76.30
(Xie et al arge 7 7 l (Hsfft(iﬁ%zz) 80.65 56.31 66.31 73.53 53.19 61.73
” RoBERTa-large 70.45 75.42 72.85 >
2022) X-GEAR (Huang ¢ v ¢ 1 68 81 69.46 58.87 63.72
KD-DocRE RoBERTa-large 86.93 86.44 86.69 etal,2022) P77 DSOT BOOEBTAD 080103
(Tanetal, S FRTav3L 86.59 87.57 87.08 PAIE 3 36 66.90 69.98 66.98 58.65 62.54
2022a) © a-v : . ’ (Maetal., 2022) "~ ' : ' ' :
PEMSCL RoBERTa-large 87.84 8622 87.02
(Guo et al., Table 3: Results for EAE on PolyEE test set.
2023)  DeBERTa-v3' 8622 87.31 8676

Table 2: Results for RE on MatSciNERE test set
given gold entities, “arge version (*trained and
evaluated on PolyNERE).

MatSciBERT consistently outperformed general-
purpose encoders like RoBERTa-large across all
architectures, with F1 improvements of 0.80-
0.87%. This highlights the importance of domain-
specific pre-training for materials science text.
Additional experiments with various approaches
(span-based, transition-based, generation-based)
and other encoders (BERT-large, SciBERT) are
detailed in Appendix D.

The W2NER model trained and evaluated on
PolyNERE (denoted with *) achieved a lower F1
score (77.28%) than when trained on our
comprehensive MatSciNERE corpus,
demonstrating the value of our expanded
annotation approach for materials science NER.

RE Performance Binary RE results on
MatSciNERE using gold standard entity mentions
are shown in Table 2. ATLOP with DeBERTa-v3-
large encoder achieved the highest F1 score of
87.40%, outperforming other model
configurations. = ATLOP, KD-DocRE, and
PEMSCL demonstrated robust performance across
different encoders, consistently achieving F1
scores above 86% when paired with powerful
encoders like RoBERTa-large or DeBERTa-v3-
large. Interestingly, we observe that DeBERTa-v3-
large generally outperforms domain-specific
encoders like MatSciBERT across most models,
suggesting that the advanced architecture and
larger scale of DeBERTa may compensate for
domain specialization in this RE task.

The exception to these strong results comes from
our approach based on Fider, where performance
was notably lower (best F1 of 76.30% with BERT-

large). This is likely due to our implementation
constraint of using only one or two sentences
containing head and tail entities as evidence
sentences (see Appendix C), which limits the
model’s access to broader contextual information.
This limitation highlights a potential area for
improvement in our framework. Additional
experiments with other approaches (DocuNet) and
encoders (BERT-large, SciBERT, MatSciBERT)
are in Appendix E.

Analysis by relation type revealed particularly
high F1 scores for ‘has value’ (94.93%) and
‘abbreviation_of (94.95%) relations. This finding
motivated the design of Approach C, which
leverages these high-confidence relations to guide
LLM-based n-ary extraction.

EAE Performance Table 3 presents the
performance of leading EAE models on the PolyEE
test set using DeBERTa-v3-large for classification-
based models and T5-large for generation-based
models. We report both standard Argument
Classification (AC) metrics and the stricter AC-
attached metric, which evaluates correct linking of
arguments to triggers. TagPrime-C achieves the
highest F1 score (75.93%) in standard AC
evaluation with balanced precision (80.39%) and
recall (71.93%), while also leading under the AC-
attached metric (68.28%). TagPrime-CR performs
competitively (74.44% F1) but sees a larger drop in
the AC-attached setting. DEGREE shows the
highest precision-recall imbalance, making
accurate but fewer predictions, though it maintains
more consistent performance across both metrics.
Classification-based  approaches  consistently
outperform generation-based methods in our
experiments, contrary to some findings in general
domain event extraction. This aligns with the
characteristics of scientific text where property
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Training Synthetic Data F1 F1 Entitv T Synthetic Data (sentences)
Strategy (paragraphs) (AC) (AC-attached) ntity Type 0 5k 10k 30k 50k 183k
Gold only 0 75.93 68.28 POLYMER  84.42 85.19 8438 85.63 85.71 82.69
1,000 (Claude) 77.47 68.94
Combined ~ 1,000 (GPT)  76.77 63,36 PROP NAME 83.12 83.39 83.51 83.99 84.26 84.69
Training 2,000 (GPT) _ 78.08 73.62 PROP VALUE 84.28 88.22 86.84 88.96 89.19 85.52
5,000 (GPT)  77.86 71.57 CONDITION  68.50 69.46 71.57 69.59 68.48 67.08
Pre-train 10,000 (GPT)  77.23 70.67 CHAR_METHOD90.25 89.89 91.43 89.01 89.14 89.77
—Fine-tune 20,000 (GPT)  77.41 70.59

Table 4: EAE results with synthetic data using
GPT-4.1 and Claude 3.7 Sonnet Thinking.

information follows more predictable patterns.
Additional experiments with various settings are
provided in Appendix G.

EAE-Focused Synthetic Data Impact Table 4
presents the impact of synthetic data on EAE
performance using TagPrime-C with DeBERTa-
v3-large encoder across different training
strategies. The baseline model trained only on
gold-standard PolyEE data achieved an F1 score of
75.93% on the AC metric and 68.28% on the AC-
attached metric. When combining the gold data
with just 1,000 synthetic paragraphs generated by
Claude, we observed modest improvements to
7747% (AC) and 68.94% (AC-attached).
Similarly, incorporating 1,000 GPT-generated
paragraphs yielded comparable gains. Most
notably, the combined training strategy with 2,000
GPT-generated paragraphs produced the optimal
results, with F1 scores of 78.08% (AC) and 73.62%
(AC-attached). This represents a substantial
improvement of 2.15 percentage points for AC and
5.34 percentage points for AC-attached compared
to the gold-only baseline.

Interestingly, increasing the synthetic data
volume beyond 2,000 paragraphs did not yield
further improvements. The performance slightly
decreased with 5,000 paragraphs (77.86% AC,
71.57% AC-attached), suggesting that model
capacity or data quality factors may limit the
benefits of additional synthetic examples.
Similarly, pre-training on 10,000 or 20,000
synthetic GPT-generated paragraphs followed by
fine-tuning on gold standard data showed
comparable but not superior performance to the
optimal combined training approach.

These results demonstrate that moderate
amounts of high-quality synthetic data can
significantly enhance EAE performance. The
synthetic data helps address the limitations of the

Overall 82.87 84.07 83.90 84.34 84.69 83.33

Table 5: NER results with synthetic data.
supervised corpus, especially regarding the
representation of complex argument patterns.
Additional analyses regarding prompt templates
and the potential of EAE-focused synthetic data to
improve NER or RE tasks are provided in
Appendix H.

NER-Focused Synthetic Data Impact We
evaluated the impact of synthetic data on NER
performance using our best-performing model
configuration (W2NER with MatSciBERT
encoder). Since the synthetic data designed for
EAE is not optimal for NER improvement, we
developed a specialized approach using Llama 3.1
70b Instruct to generate NER-focused synthetic
data targeting polymer entities in PoLyInfo. We
selected this model for synthetic data generation
because NER is relatively less complex than EAE.
Table 5 presents the F1 scores across entity types
with varying amounts of synthetic data. Adding
synthetic data to the baseline MatSciNERE model
(F1: 82.87%) yielded consistent improvements,
peaking at 84.69% F1 with 50k synthetic
sentences. Entity-specific gains varied: POLYMER
improved from 84.42% to 85.71%, PROP_NAME
from 83.12% to 84.26%, and PROP_VALUE
showed the largest gain from 84.28% to 89.19%.
The challenging CONDITION entities improved
from 68.50% to 71.57%, while high-performing
CHAR_METHOD entities (90.25%) maintained
strong results despite fluctuations. We believe these
improvements are particularly significant for
crucial polymer-specific entities in the PoLyInfo
database, directly enhancing the framework’s
ability to extract structured property information
from polymer literature. Moderate synthetic data
volumes (30k-50k sentences) proved optimal, with
larger amounts (183k) showing diminishing returns
(F1 decreasing to 83.33%), indicating quality of
synthetic data matters more than quantity.
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Approach F1
LLM-based + NER + has_value +

abbreviation of 71.53

EAE + Predicted NER Refinement 69.14
EAE (base) 66.72

LLM only (GPT 4.1) 64.91

EAE + Predicted has value Constraints ~ 64.35
RE-Composition 58.87

LLM only (Llama 3.1 §B) 36.46

Table 6: F1 scores of n-ary property extraction.

LLM-Guided Assembly Results (Approach C)
This approach was motivated by our observation
that certain binary relations, particularly
‘has value’ (94.93% F1) and ‘abbreviation_of
(94.95% F1), achieve exceptionally high
performance with our RE models. These domain-
independent relations serve as critical connectors in
property information structures across materials
science contexts, allowing our framework to
leverage these high-confidence predictions to
guide LLMs in extracting structured information
for either all 14 entity types or focusing on the 5
key polymer-specific entity types.

For resource-constrained deployment scenarios,
we evaluated Llama 3.1 8B Instruct (fp16), which
operates efficiently on a single GPU with 16GB
memory, a significant advantage over larger
models requiring multiple high-capacity GPUs or
closed-source API-dependent models.

Complementary Strengths and Comparative
Analysis Our framework’s pathways exhibit
distinct strengths for different extraction scenarios.
Approach A (RE-Composition) excels with
discontinuous entity mentions and explicit binary
relations, offering high interpretability. Approach B
(Direct EAE) handles standardized property
descriptions and cross-sentence dependencies
effectively. Approach C (LLM-Guided Assembly)
provides flexibility across diverse phrasing styles
while leveraging high-confidence relations and
operating efficiently on modest hardware.

Table 6 presents comparative results across our
approaches on a diverse test set of 10 real
paragraphs. The LLM-guided approach achieves
the highest performance for end-to-end n-ary
property tuple extraction (F1: 71.53%), followed
closely by EAE with predicted NER refinement
(F1: 69.14%). The significant gap between guided
and unguided LLM approaches (64.91% vs.
36.46% F1) confirms that even powerful models

Sample Text

The ion exchange membranes were post-treated and the IEC of poly ether
ether_ketone (PEEK) was increased to 1.83 meq/g when sulfonated. The
conductivity performance was measured at 80°C and ambient humidity,
showing values of  approximately 1.9V. These SPEEK membranes
exhibited excellent mechanical and adhesive properties.

[ Direct EAE Predictions [ NER Module Entities ]

! l

ity” (PROP_NAME)

Event: Propertylnfo
Trigger: “c i

ONDITION) < Incomplete,
ient humidity"

Refinement
- Value: “approximately 1.91” (PROP_VALUE)
- Condition: “ar 80°C and ambient humidity” (CONDITION)

Figure 2: A case study.

require domain-specific guidance for reliable
scientific IE. This creates an efficient hybrid
approach balancing performance with practical
deployment considerations.

Figure 2 illustrates this with a case study of the
EAE + NER refinement process. Additionally, our
framework’s key advantage is its adaptability to
different extraction requirements, allowing users to
select approaches based on their specific
constraints: EAE-based methods for limited
computational resources, LLM-guided approaches
for maximum accuracy, or RE-Composition when
focusing on specific relation types.

6 Conclusion

We presented a unified framework for n-ary
property IE in materials science integrating three
approaches: RE-Composition, Direct EAE, and
LLM-Guided Assembly. Built upon four distinct
corpora, two standard (MatSciNERE and PolyEE)
and two synthetic (NER-focused and EAE-
focused), our framework shows synthetic data
enhances model performance across components,
with optimal gains at moderate volumes.

Experimental  results confirm  different
extraction scenarios benefit from different
approaches, with the LLM-guided approach

achieving highest performance when constrained,
while specialized models offer competitive results
with deployment advantages. Our work addresses
a critical need by advancing structured property IE
in materials science.

Future work will expand to additional scientific
domains, improve pathway integration, and
explore techniques to reduce LLM hallucination in
scientific contexts.
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Limitations

The LLM-Guided Assembly approach, despite
achieving the highest performance, relies on
external LLM infrastructure and remains
susceptible to hallucination even with our guiding
mechanisms in place. Additionally, the full
framework implementation demands substantial
computational  resources, especially when
utilizing larger encoders such as DeBERTa-v3-
large or employing the LLM-Guided Assembly
approach. These resource requirements may be
excessive in  computationally constrained
environments. Although we offer more efficient
alternatives (such as W2NER+MatSciBERT for
NER), these options inevitably involve
performance trade-offs.
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A Construction of MatSciNERE Corpus

In the PolyNERE corpus, only entities and relations
relevant to our target domain were annotated. As a
result, in Figure 3a, even though the second
‘SWCNT5’ mention is an inorganic material, it was
not provided a label. We argue that it greatly affects
the overall performance of NER and RE systems
trained on those annotations, and limits the
practical usage of these systems. Therefore, in this
work, we made an important change in the
annotation assumption by considering all entity
mentions in the text, aiming at a practical RE
system for both general material science and its
subdomains like polymer science. Figure 3b
illustrates our new annotation assumption applied
to our newly developed MatSciNERE corpus.

Our MatSciNERE corpus consists of a total of
750 abstracts, divided into three sets: 637 for
training, 38 for development, and 75 for testing.
Table 7 displays the statistics for our corpus,
presenting details about the annotation type, and
the number of annotations across various
categories within MatSciNERE. Overall, our
MatSciNERE corpus provides a rich source of
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has_property

POLYMER_FAMILY

... Yao et al. prepared a single-wall carbon nanotube (SWCNT)-polyaniline (PANI) hybrid by mixing camphor sulfonic acid (CSA)-doped polyaniline

has_property:

has_value PROP VALUE has_condition CONDITION

and SWCNTs in a solvent, which gave a maximum zT value of 0.12 at440K ...

(a) Annotations specific to the field of polymer science

has_property

[ORGANIC ***" 7" " oRGANIC)

... Yao et al. prepared a single-wall carbon nanotube (SWCNT)-polyaniline (PANI) hybrid by mixing ca;ﬁﬁr sulfonic acid (6SA)-doped

has_property

h, L h diti
INORGANIC) (CONDITION 2s-valie —prop VALUEY - """ “[conpITION
polyaniline and SWCNTs in a solvent, which gave a maximum zZT value of 0.12 at440K ...

(b) Annotations applicable to the broader domain of materials science

Figure 3: Annotation assumption (a) In PolyNERE corpus: only entities and relations relevant to the target domain
were annotated; the first ‘SWCNTs’ was labeled as it is part of a composite with another polymer class. (b) In our
MatSciNERE corpus: other labeled entities include ‘camphor sulfonic acid’, ‘CSA’.

#tokens/sentence 11.87 .
#entities/abstract 29.73 B POlyEE Corpus Details
#relations/abstract 1591

We  selected five types (POLYMER,

Overlapped entities 3,490 mentions (15.65%)

Discontinuous entities

281 mentions (1.26%)

ENTITY (14) Total: 22,296 mentions
POLYMER 4,053 (582/750 abstracts)
POLYMER FAMILY 1,159 (315)
PROP_NAME 3,882 (717)
PROP_VALUE 1,829 (587)
MONOMER 1,600 (320)
ORGANIC 1,855 (435)
INORGANIC 1,939 (393)
MATERIAL AMOUNT 539 (267)
COMPOSITE 398 (172)
OTHER _MATERIAL 258 (120)
CONDITION 1,376 (552)
SYN_METHOD 381 (231)
CHAR_METHOD 1,752 (435)

REF _EXP 1,275 (460)
RELATION (8) Total: 11,935 pairs
has_property 3,502 (661/750 abstracts)
has_value 1,903 (582)
has_amount 424 (225)
has_condition 1,104 (406)
synthesised by 282 (193)
characterized by 1,347 (391)
abbreviation_of 2,033 (627)

refers to 1,340 (459)

Table 7: Statistics of our MatSciNERE corpus.

information for training and evaluating models in
the field of polymer science, particularly for tasks
related to NER and RE.

PROP_ NAME, PROP VALUE, CONDITION,
CHAR_METHOD) because they represent the
core elements needed for polymer property
information in PoLyInfo's schema and because
annotations for other entity types are relatively
sparse. Our PolyEE corpus comprises 503 abstracts
and 1,601 events, with a balanced split into training
(396 abstracts, 1,253 events), development (50
abstracts, 177 events), and test (50 abstracts, 171
events). A few abstracts were excluded from model
training because certain event arguments exceeded
the 512-token limit.

C Implementation Details

Model Selection and Implementation For NER
tasks, we experimented with multiple architectures
capable of handling flat, overlapped, and
discontinuous mentions: Span-based (Li et al.,
2021), Transition-based (Dai et al., 2020),
MaxClique (Wang et al., 2021), BARTNER (Yan
et al., 2021), W2NER (Li et al., 2022) and TriG-
NER (Cabral et al., 2025).

For RE tasks, we implemented several
document-level models: DocuNet (Zhang et al.,
2021), ATLOP (Zhou et al., 2021), KD-DocRE
(Tan et al., 2022a), PEMSCL (Guo et al., 2023),
and Eider (Xie et al.,, 2022). With Eider, we
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Method P R F1 Entity Type F1 Entity Type F1
Span-based 59 56 26.66 36.84 POLYMER 84.42 PROP_NAME 83.12
(Lietal, 202 l)d MONOMER 7558 PROP VALUE 8428
Transition-base
POLYMER MATERIAL
Deteta 2000, 1349 7203 7279 OLYMER o 3 MATERIAL
MaxClique 7735  71.86 74.51 ORGANIC 5938  CONDITION  68.50
(Wang et al., 2021) SYN
INORGANIC 82.85 = 76.92
BARTNER 7480 7325  74.02 METHOD
(Yan et al., 2021) CHAR
W2NER COMPOSITE 54.32 METHOD 90.25
. 78.27 7439 76.28
(Li et al., 2022) OTHER _ 3529 REF EXP 7425
TriG-NER 7777 7534 76.54 MATERIAL ' - '
(Cabral et al., 2025) ) ) ) Overall 78.32

Table 8: Results for NER on MatSciNERE test set
with BERT-large encoder.

Method Encoder P R F1

BERT-large 77.35 71.86 74.51

MaxClique g ;RERT  80.64 71.96 76.05
(Wang et al., -

2021) _MatSCBERT 7865 7550 77.04

RoBERTa-large 76.37 76.11 76.24

BERT-large 78.27 7439 76.28

W2NER  G.iBERT 7523 76.84 75.85
(Lietal., -

2022)  _MaiSCiBERT 7747 79.18 78.32

RoBERTa-large 77.31 77.60 77.45

BERT-large  77.77 7534 76.54

TriG-NER * G iBERT  73.64 72.51 73.07
(Cabral et -

al, 2025 MaiSCBERT 7885 74.97 76.86

RoBERTa-large 77.17 74.89 76.01

Table 9: Results for NER on MatSciNERE test set
with other encoders.

restricted the context to only one or two sentences
containing both head and tail entities as evidence,
due to memory constraints with this model’s
evidence extraction mechanism.

For EAE experiments, we evaluated both
classification-based and generation-based
approaches: TagPrime-C and TagPrime-CR (Hsu et
al., 2023), DEGREE (Hsu et al., 2022), X-Gear
(Huang et al., 2022), and PAIE (Ma et al., 2022).

Training Configuration For NER and RE models,
we used Adam optimizer (Kingma and Ba, 2015)
with linear warmup and decay learning rate
schedules. All models were trained for 30 epochs
with a batch size of 8, maintaining consistent
hyperparameter settings across baselines where
applicable.

For EAE models, we extended training to a
maximum of 90 epochs. For generation-based

Table 10: NER performance on MatSciNERE test
set using W2NER with a MatSciBERT encoder.

methods, we set the maximum output text length to
200 tokens.

Evaluation Metrics Following Lin et al. (2020),
we primarily report argument classification (AC)
metrics for EAE performance. Additionally, we
include the more stringent AC-attached metric
(Huang et al., 2024), which evaluates whether
arguments are correctly linked to their appropriate
triggers. For example, in the text “poly(p-
diethynylbenzene) has a density of 1.097 g/cm® at
25°C and a density of 1.082 g/cm? at 50°C", if a
model associates "1.082 g/cm™ with the first
"density" mention, this would be considered correct
under the AC metric but incorrect under the AC-
attached metric.

Computing Infrastructure All experiments were
conducted on a single NVIDIA A100 40GB GPU,
except for NER-focused synthetic data generation
with Llama 3.1 70b Instruct (FP16), which required
4 x NVIDIA A100 40GB GPUs.

D NER Performance

Table 8 compares the performance of different
NER methods on the MatSciNERE test set with
BERT-large encoder, showing that W2NER and
TriG-NER achieve the highest F1 scores of 76.28%
and 76.54% respectively.

Table 9 demonstrates that domain-specific
encoders, particularly MatSciBERT, consistently

outperform general-purpose encoders across
different NER architectures, with
W2NER-+MatSciBERT achieving the highest

overall F1 score of 78.32%.

Performance Analysis by Entity Type Analysis
by entity type revealed varying performance levels
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Method Encoder P R F1
BERT-large 78.42 81.07 79.72
DocuNet  SCiBERT  77.03 77.68 77.36
(Zhang et al., MatSciBERT 75.81 79.66 77.69
2021)  RoBERTa-large 65.69 75.71 70.34
DeBERTa-v3" 7722 61.30 68.35
BERT-large 84.67 74.73 79.39
ATLOP SCiBERT  83.96 8237 83.16
(Zhou et al., MatSciBERT 84.15 83.87 84.01
2021)  RoBERTa-large 86.93 86.64 86.78
DeBERTa-v3" 87.93 86.89 87.40
BERT-large 78.11 74.58 76.30
Eider SCiBERT ~ 71.59 71.17 71.39
(Xie et al., -
2022) _MatSciBERT 7189 68.64 7023
RoBERTa-large 70.45 75.42 72.85
BERT-large 82.34 77.68 79.94
KD-DocRE  SCiBERT 8243 86.16 84.25
(Tanetal., MatSciBERT 83.35 87.21 85.24
2022a)  RoBERTa-large 86.93 86.44 86.69
DeBERTa-v3" 86.59 87.57 87.08
BERT-large 83.24 75.55 79.21
PEMSCL SciBERT 83.62 82.35 82.98
(Guoetal,, MatSciBERT 83.39 8521 84.29
2023)  RoBERTa-large 87.84 86.22 87.02
DeBERTa-v3" 8622 87.31 86.76

Table 11: Results for RE on MatSciNERE test set
given gold entities; “DeBERTa-v3-large.

across different categories as shown in Table 10.
Core entities for property extraction performed
well, with F1 scores of 84.42% for POLYMER,
83.12% for PROP_NAME, and 84.28% for
PROP_VALUE. CHAR METHOD achieved the

highest F1 score (90.25%)), while
MATERIAL AMOUNT (80.00%) and
INORGANIC (82.85%) also showed strong

results. Challenges remain for CONDITION
(68.50%), POLYMER FAMILY (69.43%), and
COMPOSITE (54.32%). The lowest performance
was observed for OTHER MATERIAL (35.29%).
Overall, the model achieved a 78.32% F1 score
across all entity types.

E RE Performance

Table 11 presents the performance of various RE
models (DocuNet, ATLOP, Eider, KD-DocRE, and
PEMSCL) with different encoders, showing that

Relation Type F1
has_property 86.72
has_value 94.93
has_amount 74.29
has_condition 79.50
synthesised by 75.86
characterized by 88.12
abbreviation_of 94.95
refers_to 82.58
Overall 87.40

Table 12: Results for RE on MatSciNERE test set
using ATLOP with a DeBERTa-v3-large encoder.

DeBERTa-v3-large achieves the highest F1 score
(87.40%) with ATLOP architecture, while
MatSciBERT remains competitive across most
model configurations. Table 12 breaks down RE

performance by relation type, revealing
particularly high F1 scores for ‘has value’
(94.93%) and  ‘abbreviation of  (94.95%)

relations, which subsequently motivated the LLM-
Guided Assembly approach in the framework.
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# Material Science Event Extraction Task

## Paragraph:
INSERT HERE

## Entity and Relation Annotations:
INSERT HERE

## Instructions:

Extract all event tuples in the form of (POLYMER, PROP_]
the provided entity and relation annotations.

ME, PROP_VALUE, CONDITION, CHAR_METHOD) from the paragraph using

### Entity Types Explanation:

- POLYMER: The polymer material being described

- PROP_NAME: Property name (e.g., molecular weight, ductivity, etc.)

- PROP_VALUE: Property value (the measured or reported value of the property)

- CONDITION: Experimental or measurement conditions (multiple mentions allowed)

- CHAR_METHOD: Characterization or measuring method used (multiple mentions allowed)

### Requirements:

1. Each tuple must contain at minimum: POLYMER entity, PROP_NAME entity, and PROP_VALUE entity

2. CONDITION and CHAR_METHOD entities are optional fields and can have multiple mentions

3. Use EXACTLY the same entity mentions as provided in the annotations - do not combine two or more mentions

4. Only include tuples where PROP_NAME and PROP_VALUE have a " has_value" relation in the annotations (e.g., "R3 has_value Argl:T4
Arg2:T5")

5. Format each tuple on a new line with clear labeling

6. Return ONLY the event tuples without any explanations or additional text

### Example Format:
1. (Polymer: "X", Property: "Y", Value: "Z", Condition: ["A", "B"], Method: ["'C", "D"])
2. (Polymer: "P", Property: "Q", Value: "R", Condition: [|, Method: ["'S"])

Note: Empty fields for condition or method should be represented as empty lists as shown in example 2.
Figure 4: Specialized prompt template used for generating the PolyEE corpus.

You are an expert in polymer science and materials engineering. Your task is to generate a detailed, realistic paragraph discussing multiple
polymers and their properties, and then extract relevant event tuples from that paragraph.

Use the following guidelines:

1. **Context**: Choose a random context from this list: research paper, industry report, blog post, conference presentation, classroom lecture,

patent application, product develop meeting, or materials database entry.

2. **Polymers**: Include the provided polymers. Compare and contrast their properties, structures, and characteristics.

3. **Properties**: Discuss the provided properties for each polymer, ensuring to differentiate between polymers that share property names but
have different values.

4. **Measurement Methods**: Describe the provided measurement techniques or instruments used to determine the properties, ensuring clarity
when multiple methods are involved.

5. **Conditions**: Mention the provided conditions under which properties were measured or observed, and be prepared to include multiple
conditions for different properties.

6. **Relationships**: Establish complex relationships between polymers, properties, conditions, and measurement methods, ensuring that the
context is clear and logical.

7. **Technical Details**: Include specific numerical values, units, chemical formulas, and polymer classifications where appropriate.

**Before writing the paragraph**:

1. For conditions, create natural prepositional phrases that start with words like "under", "at", "in", etc. Try to randomly generate some concrete
details based on the original data in the provided sample information (e.g., values like "at a heating rate of 10°C/min and a frequency of 0.1 Hz").

2. For measuring methods, use complete noun phrases that indicate the measuring or characterization method. Only the actual method
name/instrument will be tagged.

**Use the following data as a basis for your paragraph, but feel free to extrapolate or invent additional coherent details**:
ple Informati
[INSERT SAMPLE INFORMATION HERE]

**Generate a paragraph of 250-350 words that incorporates these elements in a natural, flowing manner**. Ensure that the information is
presented in a way that would challenge an ML model to correctly identify and relate entities, properties, conditions, and measurement methods.
Vary the writing style and complexity to create diverse and realistic content. Provide only the paragraphs without any additional explanation.

**After generating the paragraph, extract and list all relevant event tuples from the text** in the following format:
Event Tuples:

1. (Polymer: "...", Property: "...", Value: "...", Conditions: "..."", Method: "...")

2. (Polymer: "...", Property: "...", Value: "...", Conditions: "...", Method: "..."")

Each tuple should contain the exact tagged text from your paragraph, including the complete phrases used for conditions and methods.
**TAGGING RULES**:

- Polymer names: <P>exact polymer name as provided</P>

- Property names: <PROP>exact property name as provided</PROP>

- Property values: <VAL>exact value with unit as provided</VAL>

- Conditions: <COND=>entire prepositional phrase</COND>

- Measuring methods: <M>only the method/instrument name</M>

**IMPORTANT**: Ensure that every property measurement mentioned in the paragraph is represented in the event tuples, and that the text in the
tuples exactly matches the tagged text in the paragraph.

Figure 5: Base prompt template for generating synthetic EAE data using Templates 2 and 3.
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F LLM Prompt Templates for Event
Annotation and Data Generation

Figure 4 illustrates the specialized prompt template
used to guide advanced LLMs (GPT-4.1 and
Claude 3.7 Sonnet Thinking) in generating event
annotations from existing entity and relation data to
create the PolyEE corpus, while Figure 5 presents
the base prompt structure employed for synthetic
EAE data generation that either mimics general
materials science writing (Template 2) or leverages
actual PolyEE abstracts as contextual guides
(Template 3).

Important instructions for Prompt Template 2

include:
**Natural Scientific Writing™*:

- Use natural scientific writing style with proper sentence
case (not copying capitalization from the sample information)

- Introduce and use appropriate abbreviations for
polymers, properties, and methods (e.g., "glass transition
temperature (Tg)" then later just "Tg")

- Vary how you refer to properties and methods rather
than always using the exact terms from the sample information

- Use domain-specific jargon and conventions as real
scientists would

**Linguistic Complexity**: Incorporate these challenging
linguistic patterns:
- Coreference and anaphora (using "it", "this polymer”,
"the latter compound”, etc.)
- Discontinuous mentions (separating polymer names
from their properties)
- Nested relationships (properties that depend on other
properties)
- Comparative statements between polymers
- Negation patterns ("unlike X, polymer Y does not
exhibit...")
- Hedging language ("appears to have", "approximately”,
"estimated to be")

**Domain Challenges**: Include these domain-specific

complexities:

- Properties mentioned for polymer blends or composites

- Conditional properties (that only appear under specific
circumstances)

- Properties that change over time or processing
conditions

- Implicit relationships that domain experts would
understand

- Abbreviated or alternative names for the same polymer

Critical instructions for Prompt Template 3

include:

**YOU MUST strictly imitate the exact sentence structure,
flow, and technical presentation format of the provided sample
text. ** Pay careful attention to:

- Sentence length and complexity

- How information is sequenced

- Paragraph structure and flow

- Technical term introduction patterns

- Transitions between ideas

- Use of supporting details
- Types of clauses and grammatical constructions
- How data and measurements are presented

Sample text:
[INSERT HERE]

**Your generated paragraph should be nearly
indistinguishable in structure from this sample - as if written
by the same author, but about your assigned polymers.**

Synthetic Data Generation Details

Our NER-focused synthetic data generation
approach follows a structured multi-stage
pipeline:

1. Strategic Sample Selection: For each
synthetic instance, we select sample information
tuples from PoLyInfo, combining them based on
common polymer names and property names when
possible. We extract polymer names (POLYMER),
associated property names (PROP NAME),
corresponding property values (PROP_VALUE),
experimental conditions (CONDITION), and
characterization techniques (CHAR METHOD).
This strategic  selection creates complex
relationships that challenge ML models to learn
effectively. We focus on these polymer-relevant
entities because resources for other entity types are
limited and lack sufficient quality for effective data
generation. CONDITION and CHAR_METHOD
can sometimes be absent in the database for certain
property entries.

2. Contextual Prompt Engineering: We
transform the selected polymer information into
carefully engineered prompts for the Llama 3.1
70B model. These prompts incorporate explicit
instructions for generating scientifically coherent
text with natural variations of formal chemical
nomenclature, encouraging the model to use
abbreviated forms, common names, or alternative
notations typically found in research publications.

3. Entity Variation Control: The prompt design
encourages linguistic variation in entity mentions
while preserving scientific precision. This
produces diverse representations of the same
underlying entities, such as using full chemical
names alongside abbreviations or alternative
nomenclature systems, mirroring the variability
found in authentic scientific literature.

4. Distant Supervision for NER: For NER-
focused generation, we save the initial sample
information tuples selected from PoLyInfo and
then align entities in these tuples to the text
generated by Llama. This alignment process

2383



locates where each entity from the original tuples
appears in the generated text, creating annotations
based on these alignments rather than using
dictionaries or rule-based entity extraction.

5. Generation Scale: We generated up to 20,000
prompts for this task, resulting in approximately
183,000 synthetic sentences. Our experiments
show that moderate volumes (30k-50k sentences)
yield optimal improvements, with larger quantities
showing diminishing returns.

For EAE-focused synthetic data generation,
we developed an enhanced methodology
incorporating explicit entity tagging:

1. Strategic Sample Selection: We use the same
approach as in NER generation, selecting and
combining sample information tuples from
PoLyInfo based on common polymer names and
property names when available. This creates more
complex relationships for the model to learn,
though samples without common elements are still
utilized. Our focus on polymer-relevant entities
addresses the limitations in available high-quality
resources for other entity types in materials science.
As with NER generation, CONDITION and
CHAR_METHOD information may be absent for
some property entries.

2. Advanced LLM Selection: We employed
state-of-the-art models (Claude Sonnet 3.7
Thinking and GPT-4.1) specifically for this task
due to their superior instruction-following
capabilities and domain knowledge representation.

3. Multi-Template Approach: We created three
complementary prompt templates with increasing
levels of sophistication:

- Template 1 (T1): Basic structured template
focusing on clear entity relationships

- Template 2 (T2): Enhanced template
designed to mimic general materials science
writing patterns, incorporating domain-specific
terminology, discourse structures, and citation
styles commonly found in materials science
literature

- Template 3 (T3): Template that leverages
actual PolyEE training corpus abstracts as
structural guides, replacing original entities with
new content while preserving the linguistic
patterns, rhetorical structures, and
argumentative flows of real-world polymer
science text

We generated up to 20,000 prompts for each
template variant. Templates T2 and T3 proved
particularly effective at generating text that closely

resembles authentic scientific writing while
maintaining explicit entity tagging.

4. Explicit Entity Tagging and Tuple Generation:
The LLMs apply XML-style tags to entities
directly in the generated text along with structured
event tuples and abbreviation pairs.

5. Three-Stage Distant Supervision Alignment:
We transform these self-annotated paragraphs into
standardized BRAT format annotations through:

a. Initial Entity and Event Extraction: Parsing
tagged entities and event tuples from LLM
outputs

b. Abbreviation and Relation Refinement:
Handling abbreviations, entity relationships, and
event rewiring

c. Context-Sensitive Refinement: Applying
linguistic analysis to optimize argument
assignments based on sentence-level proximity
and domain constraints

This alignment process transforms LLM outputs
into high-quality, consistent annotations that
adhere to BRAT format specifications and domain-
specific constraints, effectively bridging the gap
between formal database knowledge and realistic
scientific text representation.

G EAE Performance

Table 13 presents the results of TagPrime-C with
various encoders for EAE on the PolyEE test set.
DeBERTa-v3-large  achieves  the  highest
performance with 75.93% F1 score for Argument
Classification (AC) and 68.28% F1 score for AC-
attached. Domain-specific encoders like MatBERT
(74.81% AC F1) and PureMechBERT variants
show competitive performance, while general
language models like BERT-large exhibit lower
scores (65.76% AC F1). The results demonstrate
the significant impact encoder selection has on
EAE performance.

Table 14 compares different EAE methods on
the PolyEE test set using gold triggers.
Classification-based approaches like TagPrime-C
and TagPrime-CR consistently outperform
generation-based methods such as DEGREE, X-
GEAR, and PAIE. TagPrime-C with DeBERTa-v3-
large achieves the best results with 75.93% F1 on
AC and 68.28% on AC-attached, while DEGREE
models show higher precision but notably lower
recall. The performance gap between AC and AC-
attached metrics highlights the challenge of
correctly linking arguments to their appropriate
triggers in materials science text.
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AC AC-attached

Method Architecture
R F1 P R F1

DeBERTa-v3-large 80.39 71.93 75.93 72.07 64.86 68.28
SciBERT 79.61 71.48 75.32 70.12 64.05 66.95
MatBERT 80.24 70.07 74.81 72.24 61.89 66.67
PureMechBERT-cased-squad 80.49 69.72 74.72 67.06 62.16 64.52
TagPrime-C MechBERT-cased-squad2  78.52 70.77 74.44 65.27 62.97 64.10
(Hsu et al., MatSciBERT 77.61 70.77 74.03 67.88 60.54 64.00
2023) PureMechBERT-cased-squad2 77.65 69.72 7347  66.57  61.89  64.15
MechBERT-cased-squad ~ 76.54 70.07 73.16 60.74 61.89 61.31
MaterialsBERT 78.57 65.85 71.65 70.36 58.38 63.81
RoBERTa-large 76.05 63.73 69.35 66.35 57.03 61.34
BERT-large 72.96 59.86 65.76 61.13 52.70 56.60

Table 13: Results for EAE on PolyEE test set using TagPrime-C with different encoders.

Method AC AC-attached
etho
P R F1 P R F1
TagPrime-C (DeBERTa-
agPrime-C (De 8039 71.93 75.93 72.07 64.86 68.28
v3-large) (Hsu et al., 2023)
TagPrime-CR (DeBERTa-
79.84 69.72 74.44 70.46 61.89 65.90
v3-large) (Hsu et al., 2023)
DEGREE (BART-large)
(Hsu ot . 2022) 76.92 57.25 65.65 68.95 51.04 58.66
DEGREE (T5-large)
. 31 31 i 1 1.
(Hou ot ol 202) 80.65 56.3 66.3 73.53 53.19 61.73
X-GEAR (BART-large)
(Huang et al. 2022) 74.32 62.98 68.18 65.99 57.91 61.69
X-GEAR (T5-large)
. 261 81 4 . 72
(Huang etal, 2022) 76.37 62.6 68.8 69.46 58.87 63.7
PAIE (BART-large)
2. 2 24 . . 22
(Ma ctal, 2022) 72.59 66.20 69 66.67 58.38 62.25
PAIE (T54
(T5-large) 73.36 66.90 69.98 66.98 58.65 62.54

(Ma et al., 2022)

Table 14: Results for EAE on PolyEE test set given gold triggers.

H EAE Synthetic Data

We selected GPT-4.1 and Claude 3.7 Sonnet
Thinking as the primary LLMs for EAE synthetic
data generation based on the demonstrated superior
performance of their closely related versions in
scientific domain tasks. This selection is supported
by recent research from Bajan et al. (2025), who
conducted a comprehensive evaluation of 15
different LLMs on the MatSciQA benchmark.
Their study revealed that GPT-4o consistently
achieved superior accuracy across four distinct
question categories specifically designed to assess

specialized materials science domain knowledge.
Similarly, =~ Claude = models  demonstrated
exceptional performance in scientific reasoning
tasks, making these advanced LLMs particularly
well-suited for generating high-quality synthetic
data in specialized scientific domains like materials
science and polymer property extraction.

Table 15 presents a comprehensive comparison
of model performance when trained using different
combinations of gold standard and synthetic data
for EAE. The table evaluates various training
strategies, including gold-only baseline, combined
training with different amounts of synthetic data
(1,000-5,000 examples), and pre-training followed
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AC AC-attached
Traini trat thetic Dat: T lat
raining Strategy  Synthetic Data emplate P R 1 P R 1
Gold only (baseline) 0 N/A 80.39 71.93 75.93 72.07 64.86 68.28
T2 80.47 72.28 76.06 74.62 65.95 70.01
1,000 (Claude) T3 8254 | 72.98 | 77.47 | 7254 | 65.68 | 68.94
T2 80.24 69.82 74.67 71.82 64.05 67.71
1,000 (GPT
Combined Training 000 ¢ ) T3 82.33 [ 71.92 | 76.77 | 73.03 | 65.14 | 68.86
'train' + synthetic T2 82.17 | 74.39 | 78.08 | 76.99 | 70.54 | 73.62
2,000 (GPT) T3 81.54 74.38 77.80 76.22 67.57 71.63
5.000 (GPT T2 79.62 72.62 75.96 73.89 67.31 70.45
’ ( ) T3 82.10 74.04 77.86 75.07 68.38 71.57
T2 .01 2.64 5.6 1.26 65.6 68.35
1.000(GPT) 79 7 75.69 7 7
T3 80.61 74.37 77.36 76.85 67.30 71.76
T2 80.38 73.32 76.69 72.84 65.94 69.22
2,000 (GPT) T3 80.31 72.97 76.46 74.12 68.10 70.98
T2 81.64 73.32 77.26 74.70 67.84 71.10
Pre-train 5,000 (GPT)
. T3 82.93 71.58 76.84 76.03 65.13 70.16
= Fine-tune v 8273 | 7227 | 77.15 | 74.13 | 68.92 | 71.43
10,000 (GPT - - - - - -
’ (GPT) T3 82.47 72.61 77.23 75.08 66.76 70.67
T2 1. . 41 2 68.11 0.
20,000 (GPT) 81.96 73.33 77 73.26 8 70.59
T3 83.33 7191 77.20 75.00 64.84 69.55
42,000 (All) T2&T3 83.13 72.63 77.53 75.95 64.85 69.96

Pre-train: 90% train/10% val, 10 epochs; Fine-tune (FT): 80% train/10% val/10% test, 90 epochs

GPT refers to GPT-4.1; Claude refers to Claude 3.7 Sonnet Thinking; All refers to GPT & Claude

Prompt template 2 (T2): designed to mimic general materials science writing

Prompt template 3 (T3): leverages actual abstracts from PolyEE as templates to better replicate the style of

real-world text

Table 15: Impact of synthetic data on n-ary property extraction performance across different training

strategies and data volumes.

, Gold only Combined
Entity Type Training
P R F1 P R F1
POLYMER  81.13 88.00 84.42 82.32 84.55 83.42

PROP_NAME 78.39 88.48 83.12 85.20 79.16 82.07
PROP_VALUE &81.21 87.58 84.28 85.19 76.16 80.42
CONDITION  66.27 70.89 68.50 70.16 55.41 61.92
CHAR_METHOD85.26 95.86 90.25 89.16 87.57 88.36

Table 16: Impact of EAE-focused synthetic data on
NER task.
by  fine-tuning
examples).

The results demonstrate that incorporating
moderate amounts of synthetic data (particularly
2,000 GPT-generated examples) yields the best
performance, with a significant improvement over
the gold-only baseline, achieving AC F1 scores of
78.08% (vs. 75.93%) and AC-attached F1 scores of

approaches  (1,000-42,000

Combined Training

Relation Type P R F1
has_property 77.46 7155 7439
has_value 90.14 94.12 92.09
has_condition 81.44 6124 69091
characterized by 7540 7480 75.10
abbreviation_of 96.09 93.18 94.61

Table 17: Impact of EAE-focused synthetic

data on RE task.
73.62% (vs. 68.28%). Interestingly, the table shows
that increasing synthetic data beyond 2,000
examples doesn't yield further improvements,
suggesting that data quality is more important than
quantity. The templates (T2 and T3) represent
different approaches to synthetic data generation,
with T2 generally showing stronger performance in
the combined training setting.
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MatSciNERE

Entity Type / (train) 5k 10k 15k 30k 50k 100k 150k ~183k
No. of sent. sent sent sent sent sent sent sent sent
4,878 sent
POLYMER 84.42 85.19 8438 86.42 8563 85.71 86.61 83.70  82.69
PROP_NAME 83.12 83.39 83.51 83.93 8399 8426 84.61 84.52 84.69
PROP_VALUE 84.28 88.22 86.84 87.54 8896 89.19 88.14 87.58 85.52
CONDITION 68.50 69.46 71.57 67.09 69.59 6848 6852 6993 67.08
CHAR METHOD 90.25 89.89 9143 9096 89.01 89.14 8833 89.71 89.77
Overall 82.87 84.07 8390 84.19 8434 84.69 8426 83.66 83.33

Table 18: Impact of synthetic data amount on NER performance (F1 scores) by entity type.

Additional Investigations Tables 16 and 17
present the impact of EAE-focused synthetic data
on NER and RE tasks as additional investigations
to better understand data characteristics.

As additional investigation, Table 16 compares
"Gold only" versus "Combined Training"
approaches for NER across five key entity types.
Using the W2NER+MatSciBERT model trained on
supervised data combined with synthetic examples,
the results show that precision consistently
improves across all entity types while recall
generally decreases. This precision-focused
improvement is particularly beneficial for systems
that prioritize high-confidence predictions over
coverage, making the approach valuable for
applications requiring high precision.

As additional investigation, Table 17 displays
the performance of the Combined Training
approach on RE tasks. Using ATLOP+DeBERTa-
v3-large trained on supervised plus synthetic data,
the recall is notably decreased compared to gold-
only training. This decline is reasonable since
LLMs introduce numerous new entities and
potentially new relations in the synthetic data.
However, the F1 scores for two relation types
‘has value’ (92.09) and ‘abbreviation of’ (94.61)
remain exceptionally strong. These high-
performing relation types directly motivated the
development of Approach C (LLM-Guided
Assembly) in the unified framework, which
leverages these reliable relation predictions to
guide structured extraction.

I NER Synthetic Data

Table 18 presents the detailed results of NER
Synthetic Data experiments, showing F1 scores for
various entity types across different synthetic data
volumes. The table demonstrates how performance

changes when training with MatSciNERE’s
baseline 4,878 sentences versus adding increasing
amounts of synthetic data (from 5k to ~183k
sentences). Performance for most entity types
improves with moderate synthetic data volumes,
with the best overall F1 score (84.69%) achieved at
50k sentences. PROP_VALUE shows the most
dramatic improvement (from 84.28% to 89.19%),
while POLYMER and PROP NAME show
modest gains. Performance peaks at 50k sentences
and slightly declines with larger synthetic datasets
(~183k), suggesting that optimal synthetic data size
is around 30k-50k sentences (approximately 3k-5k
paragraphs) for materials science NER tasks.

J Prompt Design for LLM-Guided
Extraction

Figure 6 illustrates the prompt template used in our
LLM-Guided Assembly approach. The prompt
integrates a scientific paragraph with pre-identified
entity mentions and their character offsets from the
NER module. It includes “Known abbreviations”
based on high-confidence ‘abbreviation of
relation predictions and “Entity mapping for
shortened entities” to handle lengthy mentions that
might challenge LLM processing. The prompt
targets a specific property-value pair identified
through the ‘has value’ relation and provides
structured instructions for generating complete 5-
argument tuples. This approach effectively
constrains the LLM while leveraging its inferential
capabilities to extract complex n-ary property
information from scientific text.
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Paragraph:

In a recent study on ther i 5, we investi the properties of two distinct copolymers: poly[(acrylic acid)-co-(butyl acrylate)] (PAA-BA) with a chemical formula C3H402/C7H1202, and poly{|4-
(octadecyloxy)benene-1,3-diami ,4'-sulfonyldianili 1t-(5,5'-bii: 1,1',3,3'-tetrone)} (ODA-PMDA-BTDA) with a chemical formula C40H46N205/C28H14N2068S. A notable difference between these copolymers
lies in their interfacial properties. PAA-BA exhi d an interfacial tension of 2,915 dyn/cm, measured using the pendant drop method at a temperature of 25°C. In contrast, ODA-PMDA-BTDA displayed a si antly higher

surface energy due to its aromatic and heterocyclic constituents, resulting in a surface tension of 22.90 N/m, as determined by the Wilhelmy plate technique under identical temperature conditions. Thermal analysis revealed
distinet differences in their glass transition temperatures (Tg) and thermal decomposition behavior. PAA-BA exhibited a Tg of -21.00 K, measured using thermomechanical analysis (TMA) at a heating rate of 10°C/min and a
frequency of 0.1 Hz. Conversely, ODA-PMDA-BTDA demonstrated exceptional thermal stability, with an onset decomposition temperature of 401.9°C and a weight loss of only 5.000% during thermogravimetric analysis (TG)
under nitrogen atmosphere at a heating rate of 20°C/min in vacuum conditions. These findings suggest that the incorporation of rigid aromatic moieties in ODA-PMDA-BTDA enhances its thermal stability, whereas PAA-BA's
aliphatic backbone contributes to its lower Tg and increased flexibility. The observed differences in their interfacial properties and thermal behavior underscore the importance of tailoring copolymer composition for specific
applications.

Known entity mentions (non-exhaustive list):
POLYMER: ODA-PMDA-BTDA [312, 325 (ID: T5)

POLYMER: PAA-BA [965, 971] (ID: T26)

POLYMER: ODA-PMDA-BTDA [594, 607] (ID: T17)
CHAR_METHOD: pendant drop method [535, 554] (ID: T3)
CONDITION: at a temperature of 25°C [555, 579] (ID: T13)

Known abbreviations (non-exhaustive list):
PAA-BA: poly[(acrylic acid)-co-(butyl acrylate)]

TG: thermogravimetric analysis

Entity mapping for shortened enti
poly{[4-(octadecyloxy)benene-1,3-diamin...f6ff0199: poly{[4 vioxy 1,3-diamine;d,4'-sulfonyldianiline]-alt-(5,5"-bii an-1,1',3,3'"-tetrone)}
at a heating rate of 10°C/min and a fre...f6708722: at a heating rate of 10°C/min and a frequency of 0.1 Hz

under nitrogen atmosphere at a heating ...4bfdaa67: under nitrogen atmosphere at a heating rate of 20°C/min in vacuum conditions

For the following PROP_NAME and PROP_VALUE pair, provide the completed event tuple(s) (POLYMER, PROP_NAME, PROP_VALUE, CONDITION, CHAR_METHOD) using the correct entity mentions and their offsets
from the list above, or ifying new relevant entities from the text. Use the shortened versions of entities where applicable. You may also modi ting CONDITION or CHAR_METHOD entities if a more appropriate
version is found in the text. Maintain the given PROP_NAME and PROP_VALUE relationship without changes. Include all relevant POLYMER, CONDITION, and CHAR_METHOD entities that apply to the given
PROP_NAME and PROP_VALUE pair based on the text. Use the known abbreviations to help identify and link related concepts, but be aware that there may be other abbreviations in the text not listed.

PROP_NAME: interfacial tension [479, 498] (ID: T10), PROP_VALUE: 2.915 dyn/cm [502, 514] (ID: T11)

Instructions:

Provide a separate event tuple for each unique combination of POLYMER, CONDITION, and CHAR_METHOD that applies to the given PROP_NAME and PROP_VALUE pair.
Each event tuple must have exactly 5 arguments: (POLYMER, PROP_NAME, PROP_VALUE, CONDITION, CHAR_METHOD).

Use the exact entity mentions and offsets from the list above when applicable. If a more appropriate entity is found in the text but not listed, add it with its correct offsets.

If no relevant entity is found for POLYMER, CONDITION, or CHAR_METHOD, use an empty st [] for that argument.

Do not combine multiple entities of the same type into a single event. Instead, create separate event tuples for each combination.

For each relevant POLYMER, CONDITION, or CHAR_METHOD, create a separate event tuple, even if other arguments remain the same.

Do not add explanations or additional text.

. Maintain the given PROP_NAME and PROP_VALUE relationship without changes.

9. Verify the correctness of each tuple based ONLY on explicit expressions in the raw text that are directly related to the given PROP_NAME and PROP_VALUE pair.

10. Only include information that is directly stated and clearly associated with the specific PROP_NAME and PROP_VALUE pair in the text.

11. Be aware of both listed and unlisted abbreviations in the text, using them to help identify relationships between concepts.

12. Ensure that you have considered all possible POLYMER, CONDITION, and CHAR_METHOD entities mentioned in the text that are relevant to the given PROP_NAME and PROP_VALUE pair.
13. Generate all possible combinations of relevant POLYMER, CONDITION, and CHAR_METHOD entities, including cases where some entity types may be empty ([]).

14. When referring to entities, use the shortened versions provided in the entity mentions list.

Lk Ak s ok sl M

Example response format:
(I'POLYMERI [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', 'CONDITIONI [start, end]'], 'CHAR_METHODI [start, end]'])
(I'POLYMERI [start, end]'], 'PROP_NAME [start, end]', "PROP_VALUE [start, end]', 'CONDITIONI [start, end]'], 'CHAR_METHOD? [start, end]'])
('POLYMERI [start, end]'], 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]', 'CONDITION2 [start, end]'], 'CHAR_METHODI [start, end]'])
(I'POLYMERI [start, end]'], 'PROP_NAME [start, end]', "PROP_VALUE [start, end]', 'CONDITION2 [start, end]'], 'CHAR_METHOD? [start, end]'])
('POLYMER? [start, end]'], 'PROP_NAME [start, end]', "PROP_VALUE [start, end]', 'CONDITIONT [start, end]'], 'CHAR_METHOD!I [start, end]'])
(I'POLYMER? [start, end]'], 'PROP_NAME [start, end]', "PROP_VALUE [start, end]', 'CONDITIONI [start, end]'], 'CHAR_METHOD? [start, end]'])
('POLYMER? [start, end]'], 'PROP_NAME [start, end]', "PROP_VALUE [start, end]', 'CONDITION2 [start, end]'], 'CHAR_METHODI [start, end]'])
(I'POLYMER? [start, end]'], 'PROP_NAME [start, end]', "PROP_VALUE [start, end]', 'CONDITION2 [start, end]'], 'CHAR_METHOD? [start, end]'])
(11, 'PROP_NAME [start, end]', 'PROP_VALUE [start, end]", [], [1)

Figure 6: Example prompt for LLM-Guided Assembly showing how high-confidence entity and relation
predictions guide the extraction of n-ary property tuples.

combined, or different approaches could be
K Practical Applications deployed based on document characteristics or

) ) extraction requirements.
Rather than presenting a single best method, our

framework acknowledges the diverse requirements
of real-world extraction scenarios and offers
multiple viable pathways. This flexibility allows
users to select the approach that best aligns with
their specific constraints and priorities:

1. When computational resources are limited or
offline deployment is required, the EAE-based
3approaches offer strong performance without
external dependencies.

2. When maximum accuracy is crucial and LLM
resources are available, the LLM-guided approach
provides most effective results.

3. When extraction needs to focus on specific
relation types or entity categories, the RE-
Composition approach offers more granular
control and interpretability.

The framework also enables ensemble methods
and hybrid approaches that can further enhance
performance. For instance, high-confidence
extractions from multiple pathways could be
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