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Abstract

Large language models (LLMs) are reshaping
how scientific knowledge is accessed and rep-
resented. This study evaluates the extent to
which popular and frontier LLMs including
GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5
Pro recognize scientists, benchmarking their
outputs against OpenAlex and Wikipedia. Us-
ing a dataset focusing on 100,000 physicists
from OpenAlex to evaluate LLM recognition,
we uncover substantial disparities: LLMs ex-
hibit selective and inconsistent recognition pat-
terns. Recognition correlates strongly with
scholarly impact such as citations, and remains
uneven across gender and geography. Women
researchers, and researchers from Africa, Asia,
and Latin America are significantly underrecog-
nized. We further examine the role of training
data provenance, identifying Wikipedia as a po-
tential sources that contributes to recognition
gaps. Our findings highlight how LLMs can
reflect, and potentially amplify existing dispari-
ties in science, underscoring the need for more
transparent and inclusive knowledge systems.

1 Introduction

Large language models (LLMs) are increasingly
used to retrieve factual knowledge across domains.
With growing capabilities in discovery, reason-
ing, summarization, and interpretation (Binz et al.,
2025), in science LLMs emerge as knowledge
agents alongside structured databases (Gao and
Wang, 2024; Almarie et al., 2023; Liang et al.,
2024) such as OpenAlex (Priem et al., 2022) and
Web of Science. This broad adoption raises an
important question: how well do LLMs actually
understand the scientific community? Can they
accurately recognize individual scientists, a core
signal of their grasp of the social structure of sci-
ence and the distribution of expertise?

Our study contributes a novel framework for au-
diting scientific recognition in LLMs, advancing
beyond prior work in three key ways. First, we

move to analyze cross-model agreement of enti-
ties, beyond only coverage metrics, offering insight
into mutual versus isolated recognition. Second,
we benchmark LLMs recognition against authori-
tative knowledge bases to assess whether models
amplify or mitigate representational biases across
demographic groups. Third, we examine the role
of training data provenance, specifically links to
sources like Wikipedia in shaping recognition out-
comes (Longpre et al., 2024). Together, these con-
tributions highlight how LLMs reflect systemic
disparities and provide tools for evaluating repre-
sentational fidelity in AI-generated knowledge of
science and scientific communities.

2 Related Work

Biases in LLMs. Bias evaluation is central to the
study of LLM fairness and trustworthiness (Huang
et al., 2024). LLMs are known to learn, perpetuate,
and even amplify biases present in their training
data (Gallegos et al., 2024). Prior work has investi-
gated LLM biases across domains including social
identity (Hu et al., 2025), scientific domains (Peters
and Chin-Yee, 2025), and high-stakes applications
such as hiring (Armstrong et al., 2024). These bi-
ases span dimensions such as gender (Zhao et al.,
2024; Fang et al., 2024; Omiye et al., 2023), social
status (Qu and Wang, 2024), geography (Manvi
et al., 2024; Simmons and Hare, 2023), and cul-
tural background (Fang et al., 2024).

Systemic biases in science. Extensive lit-
erature has documented inequalities of cumula-
tive advantage in scientific recognition and re-
wards. Women (Huang et al., 2020; Larivière
et al., 2013), scholars from the underrepresented
affiliations/regions (Wapman et al., 2022; Gomez
et al., 2022), and those from lower-prestige institu-
tions or marginalized backgrounds (Hofstra et al.,
2020; Morgan et al., 2022; Li et al., 2019) consis-
tently receive less visibility and fewer career bene-
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Figure 1: Multi-stage evaluation pipeline to audit scientific recognition in LLMs. First, we design a profile prompting
protocol to query three frontier LLMs (GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro) on 100,000 physicists. We
then analyze: (1) Mutual recognition over LLMs using overlap visualizations and Cohen’s κ (Thakur et al., 2025;
McHugh, 2012); and (2) Biases in recognition, estimating marginal effects by gender and region, conditional on
scientific impact and career stage. Finally, we investigate data provenance as a potential driver of recognition, using
both observational analysis and a natural experiment through training cutoffs for Claude.

fits. These structural disparities form the baseline
against which LLM behavior must be evaluated.

LLMs and scientific knowledge. Despite their
impressive capabilities, LLMs continue to ex-
hibit limitations in memorizing and retrieving fac-
tual knowledge accurately (Kandpal et al., 2023;
Li et al., 2022a). Prior work has documented
recognition gaps tied to recency (Kandpal et al.,
2023), visibility (Algaba et al., 2024), and demo-
graphic groups (Rhue et al., 2024). Given that
LLMs are partially trained on publicly available
sources (Longpre et al., 2024), and that structured
repositories such as Wikipedia, OpenAlex, and
MAG exhibit well-documented coverage and bi-
ases (Samoilenko et al., 2017; Wagner et al., 2016;
Tripodi, 2023; Yang et al., 2024; Martín-Martín
et al., 2021), these databases provide a useful and
interpretable baseline for evaluating whether LLMs
amplify representational disparities.

Our work builds on these foundations by sys-
tematically benchmarking LLMs’ recognition of
scientists against structured knowledge bases, with
a focus across gender, region, and source coverage.

3 Methodology

We develop a multi-stage evaluation pipeline to
assess how LLMs recognize scientists, combining
profile-level prompting, mutual recognition analy-
sis, bias auditing, and source provenance analysis
(Figure 1). This framework enables robust mea-

surement of both overall coverage and subgroup
disparities across models.

3.1 Large Language Models
We begin with OpenAlex (Priem et al., 2022), a
scholarly database with over 250 million works, in-
cluding journal articles, books, datasets, and theses.
We curate a sample of 100,000 physicists. Each
profile is then queried through the following LLMs:

• GPT-4o (OpenAI) (OpenAI et al., 2024,
200B), a multimodal transformer with en-
hanced latency and context length.

• Gemini 1.5 Pro (Google) (Team et al., 2024,
200B), long-context model designed for inte-
grated reasoning and retrieval.

• Claude 3.5 Sonnet (Anthropic, 400B), opti-
mized for wide range of tasks, including com-
plex analysis and problem-solving.

While our primary focus is on proprietary LLMs
due to their widespread use, we also include re-
sults from DeepSeek-V3 (DeepSeek-AI et al., 2025,
671B) in certain experiments to show that the ob-
served patterns hold in strong open-weight models
too. We used a temperature setting of 0.3 and re-
peated each prompt 5 times, selecting the top-1
response for consistency.

As a baseline, we incorporate recognition from
Wikipedia, a large, volunteer-curated knowledge
repository that includes over 2.29 million individ-
ual profiles across Wikipedia and Wikidata (Laoue-
nan et al., 2022).
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Example: Scientist Profiling Prompt

Instruction:
Provide a detailed profile of the following scientist:
Name: [Full Name of Scientist]
Include the following structured information:
• Research Areas: Key topics or fields of expertise.
• Affiliations: Universities or labs affiliated with.
• Key Collaborators: Notable co-authors or col-

leagues.
• Major Contributions: Theories, models, or break-

throughs.
If the scientist is not recognized, reply with: Not
recognized

Figure 2: Structured prompt used to query language
models for scientist profiles.

3.2 Scientist Profiling Prompt

We implemented a structured prompting protocol
(Figure 2), where each prompt requested the model
to generate a detailed profile for a given physicist,
including research areas, affiliations, key collabo-
rators, and major contributions. If the model could
not provide this information, it was instructed to
respond with Not recognized.

Then, we applied this protocol to three LLMs
across our dataset of 100,000 physicists. Each
model’s response was fact-checked for accuracy
in research areas, affiliations, and collaborators,
returning a binary outcome which serves as the
foundation for subsequent analyses.

3.3 Evaluation

We evaluate recognition performance using a com-
bination of agreement metrics and bias estimation:

Mutual recognition metrics We assess
recognition consistency across LLMs using Venn
diagrams and Cohen’s κ (McHugh, 2012) as in Fig-
ure 1, which quantifies agreement in binary recog-
nition outcomes:

κ =
po − pe
1− pe

(1)

Where po is the observed agreement proportion,
and pe is the expected agreement by chance. κ
ranges from −1 (no agreement) to 1 (perfect agree-
ment), capturing the extent of overlap in recognized
scientists across models.

Marginal effect between groups To evalu-
ate biases of LLMs between multiple groups, we
compute the marginal effect of group membership
through:

∂ Pr(Y = 1)

∂Group
= β1 · Pr(Y = 1) · (1− Pr(Y = 1)) (2)

Figure 3: Mutual recognition across LLMs measured by
Cohen’s κ. Agreement is notably higher among high-
impact scientists (citations > 10k).

Y is the recognition outcome and β1 is the co-
efficient on the group indicator. A significantly
positive marginal effect indicates higher likelihood
of recognition for the group.

Causal effect of exposure To estimate the
effect of training data exposure, we use Inverse
Probability Weighting (IPW) (Robins et al., 2000)
to compute the Average Treatment Effect on the
Treated (ATET) after logistic regression:

Pr(Y = 1) = logit−1
(
β0 + β1 · Group

+ β2 · Impact (Citations, Productivity)

+ β3 · i.Career Stage
)

This method is specifically used in quasi-
experimental settings, like the natural experiment
study we have in Section 4.4.

4 Results and Analysis

For each scientist, we prompt three frontier LLMs
to assess whether the model can correctly identify
and describe the individual. Results as followed.

4.1 Mutual Recognition of LLMs

As shown in Figure 3 and Figure 6, Claude achieves
the highest overall coverage, followed by Gem-
ini and GPT. Across all models, Figure 3 reveals
stronger agreement in recognizing high-impact sci-
entists (citations > 10,000), suggesting that despite
differences in underlying knowledge, LLMs tend
to converge on scholars with greater scientific vis-
ibility. This highlights a shared recognition bias
toward academic prominence.

4.2 Gender Disparity

Building on prior work in scientific recognition, we
carefully examine career age (Allison and Stewart,
1974), gender (Larivière et al., 2013), affiliations
and regions (Wapman et al., 2022; Gomez et al.,
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Figure 4: Marginal effects of gender on recognition across LLMs and Wikipedia. From left to right: no control
variables, controlled for impact and controlled for impact and career stage.

2022) and key indicators of scientific visibility in-
cluding citations (Aksnes et al., 2019), productiv-
ity (Li et al., 2022b). By controlling for these fac-
tors, we isolate the extent to which gender alone
contributes to disparities in LLMs recognition.

Figure 4 and Table 3, 4, 5, present the marginal
effects of gender across models. All LLMs show
higher recognition for men in unadjusted data. Af-
ter controlling for scientific impact and career stage,
Wikipedia exhibits no significant gender disparity
(margins = −0.0005, p = 0.571 ≫ 0.05), sug-
gesting baseline parity. In contrast, significant gaps
persist for all LLMs (Claude: p < 0.0001, Gem-
ini: p < 0.0001, GPT: p < 0.0001), indicating
that these models amplify gender disparities rela-
tive to external baselines. While the recognition
gap for women narrows among high-impact au-
thors, the differences remain systematically signif-
icant across all three proprietary LLMs and the
open-weight DeepSeek model, as shown in Table 7.
These findings underscore how LLMs may rein-
force structural inequities, even when controlling
for scholarly impact.

In parallel, we examined domains with compara-
tively higher female representation, namely health
sciences, social sciences, and education (Ross et al.,
2022; Huang et al., 2020). Despite differences in
overall coverage across fields, the results in Ta-
ble 8 reveal a consistent pattern: male scientists are
recognized at higher rates than their female coun-
terparts. This suggests that even in fields where
women are better represented, LLMs continue to
reproduce and amplify gender disparities in recog-
nition.

4.3 Regional Representation

Similar as gender disparity, we observe consistent
regional disparities in recognition (Figure 5) aross

Figure 5: Marginal effects of regional affiliation on
recognition across LLMs, controlling for scholarly im-
pact and career stage.

LLMs. Even after controlling for impact and ca-
reer stage, researchers affiliated with institutions
in North America, Oceania, and Western Europe
are significantly more likely to be recognized than
those based in Asia, South America, and Africa.
These effects are robust across models, highlight-
ing how LLMs may reproduce or amplify existing
global inequalities in scientific visibility.

4.4 Training Data Provenance

To examine the impact of data provenance on recog-
nition disparities, we conducted two complemen-
tary analyses:

Observational analysis: Figure 7 and Table 1
show that scientists with Wikipedia profiles are sig-
nificantly more likely to be recognized by all LLMs,
after controlling for impact and career stage.

Natural experiment (training cutoff): We ana-
lyzed 53 physicists whose Wikipedia pages were
created between the training cutoffs of Claude 3
(Oct 2023) and Claude 3.5 (Apr 2024), along with
matched peers. As shown in Table 2, the estimated
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LLMs ME SE 95% CI p-value
Claude 0.097 0.006 [0.085, 0.109] < 0.0001
Gemini 0.109 0.009 [0.092, 0.126] < 0.0001
GPT 0.072 0.006 [0.061, 0.083] < 0.0001

Table 1: Marginal effect of Wikipedia presence on LLM
recognition probability, with standard errors, 95% confi-
dence intervals, and p-values.

ATET SE CI Lower CI Upper
Estimate 0.2700 0.0535 0.1652 0.3748

Table 2: IPW estimate of ATET for Wikipedia page
creation on Claude recognition, with standard error and
95% confidence interval.

average treatment effect on the treated (ATET) is
0.2700, indicating a 27% increase in recognition
probability due to Wikipedia exposure.

These results highlight the significant role of
training data provenance, particularly the causal
evidence of Wikipedia in shaping LLM recognition,
underscoring the need for more transparent and
inclusive data practices.

5 Conclusion

Our study presents a systematic evaluation of sci-
entific recognition in LLMs, revealing how repre-
sentation varies across models, demographics, and
data provenance. While recognition correlates with
scholarly impact, we uncover persistent dispari-
ties by gender and region, with LLMs amplifying
underrepresentation relative to external baselines
like Wikipedia. Our causal evidence further high-
lights the critical role of training data provenance,
showing that exposure to public knowledge sources
significantly boosts recognition.

Limitations

Several factors may limit the generalizability of our
findings. First, our focus on physicists, a histori-
cally male-dominated field (Berry and Mordijck,
2024) may influence the observed gender dispari-
ties. Such disparities are well-documented across
science (Huang et al., 2020; Wagner et al., 2015;
Zheng et al., 2023; Ross et al., 2022). To enhance
robustness of our findings, we ran supplementary
experiments in a small set of disciplines (health sci-
ences, social science, education) chosen since their
gender composition differ greatly from physics. A
systematic, cross-disciplinary evaluation is an im-
portant next step.

Second, we treat OpenAlex as our baseline

record of scientists, and use Wikipedia/Wikidata
as a human-curated reference point. Both sources
might contain some coverage biases, though they
provide transparent, auditable comparators for
LLM outputs. Future work should extend these
baselines to publicly documented pre-training cor-
pora (e.g., those released with OLMo-2 (OLMo
et al., 2025) and Pythia (Biderman et al., 2023))
to directly relate corpus exposure to recognition
behavior.

Third, our study focuses on observational repre-
sentation gaps rather than model internals. Poten-
tial latent factors driving recognition biases, such
as internal model representations or training dy-
namics, remain outside the scope. It could be im-
portant directions for interpretability research as
well, particularly in the context of open-weight
and publicly available pre-training models. With
accessible corpora, researchers can estimate per-
entity exposure (e.g., document frequency, co-
occurrence, context diversity), run targeted data
ablations/augmentations, and test whether shifts
in coverage causally change recognition. Com-
bined with tracing/patching methods (Meng et al.,
2023a,b; Ghandeharioun et al., 2024; Hernandez
et al., 2024), this program can distinguish “missing
knowledge” due to data coverage from representa-
tion geometry or decision-time heuristics.

Ethics Statement

In this study, we analyze public data (OpenAlex,
Wikipedia) and model outputs from commercially
available and open-weight LLMs, complying with
terms of service and releasing only aggregate re-
sults to protect privacy. Sensitive attributes (e.g.,
gender, region) are used solely for group-level au-
diting; we avoid individual-level claims, do not
infer attributes from names or images, and docu-
ment uncertainty.
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A Appendix

A.1 Fact-Checked Recognition Rates Across
Models

To ensure that model outputs correspond to the cor-
rect scientist, we applied a two-step verification
protocol: (i) rule-based matching requiring exact
agreement on gender and region, and (ii) fuzzy
string matching (token-sort ratio ≥ 90) to align
names, collaborators, and publications. Only out-
puts that passed both steps were retained; all oth-
ers were excluded to prevent false positives. This
procedure guarantees that recognition rates reflect
factually grounded matches.

Across the dataset of 100,000 physicists, the ver-
ification yielded a match rate between 3% to 14%
among the output towards the baseline (Claude:
14.40%, Gemini: 10.37%, GPT: 3.04%), provid-
ing a quantitative check on model reliability. For
comparison, we also include Wikipedia as a base-
line reference point, which illustrates the relative
magnitude of disparities across models.

A.2 LLM Biases: Marginal effect of Gender

In this section, Table 3, 4, 5 provide detailed pre-
dicted probability and confidence intervals through
logistic regression for different genders.

LLMs Male Prob. 95% CI
Claude 0 0.00797 [0.00696, 0.00897]

1 0.02794 [0.02674, 0.02915]
Gemini 0 0.00448 [0.00373, 0.00524]

1 0.01267 [0.01185, 0.01349]
GPT 0 0.00238 [0.00182, 0.00293]

1 0.00827 [0.00761, 0.00894]
Wikipedia 0 0.00636 [0.00546, 0.00726]

1 0.01258 [0.01177, 0.01340]

Table 3: Estimated probability of recognition under
different genders (0 = female, 1 = male) across LLMs,
with 95% confidence intervals (no controls).

LLMs Male Prob. 95% CI
Claude 0 0.01441 [0.01269, 0.01614]

1 0.02366 [0.02269, 0.02463]
Gemini 0 0.00545 [0.00452, 0.00637]

1 0.01181 [0.01104, 0.01258]
GPT 0 0.00394 [0.00302, 0.00485]

1 0.00711 [0.00655, 0.00768]
Wikipedia 0 0.00993 [0.00854, 0.01133]

1 0.01095 [0.01025, 0.01165]

Table 4: Estimated probability of recognition under
different genders (0 = female, 1 = male) across LLMs,
with 95% confidence intervals (controlled for impact:
citations and publications).

LLMs Male Prob. 95% CI
Claude 0 0.0152 [0.0134, 0.0171]

1 0.0234 [0.0224, 0.0244]
Gemini 0 0.0059 [0.0049, 0.0068]

1 0.0116 [0.0108, 0.0123]
GPT 0 0.0045 [0.0034, 0.0055]

1 0.0069 [0.0064, 0.0075]
Wikipedia 0 0.0112 [0.0096, 0.0127]

1 0.0107 [0.0100, 0.0114]

Table 5: Estimated probability of recognition under
different genders (0 = female, 1 = male) across LLMs,
with 95% confidence intervals (controlled for career
stage and impact).

A.3 LLM Biases: Marginal Effect of Regions

In this section, Table 6 provides detailed predicted
probability and confidence intervals through logis-
tic regression for different regions.

A.4 Average Treatment Effect (ATET)

The ATET quantifies the causal effect of a binary
treatment among the subset of individuals who ac-
tually received the treatment. In the IPW frame-
work, ATET is estimated by reweighting the control
group to resemble the treated group based on their
covariates (Robins et al., 2000).

IPW estimator for ATET is given by:

ÂTET =
1

NT

∑

i:Ti=1

[
Yi −

p̂(Xi)

1− p̂(Xi)
Yi

]

Where:

• Ti ∈ {0, 1} denote the treatment indicator for
unit i

• Yi denote the observed outcome

• p̂(Xi) = Pr(Ti = 1 | Xi) be the estimated
propensity score given covariates Xi

• NT =
∑

i 1(Ti = 1) be the number of treated
units

This estimator adjusts for confounding by giving
more weight to control units that are similar (in
terms of propensity scores) to the treated units, thus
allowing estimation of the counterfactual outcome
for the treated group.

In this study we used IPW estimation to evaluate
the ATET of Wikipedia page on Claude recogni-
tion during training cutoff dates, compared to their
matched peers.
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Figure 6: LLMs tokenization and Venn plots. Which Venn plots show both random samples and high-impact
scientists.

LLMs Region Prob. 95% CI
Claude Africa 0.0090 [0.0041, 0.0140]

Asia 0.0078 [0.0066, 0.0090]
Eastern Europe 0.0204 [0.0178, 0.0229]
Latin America 0.0121 [0.0088, 0.0155]
North America 0.0328 [0.0309, 0.0347]

Oceania 0.0230 [0.0166, 0.0295]
Western Europe 0.0230 [0.0214, 0.0245]

Gemini Africa 0.0060 [0.0026, 0.0094]
Asia 0.0065 [0.0055, 0.0075]

Eastern Europe 0.0083 [0.0067, 0.0100]
Latin America 0.0041 [0.0026, 0.0055]
North America 0.0164 [0.0148, 0.0180]

Oceania 0.0126 [0.0067, 0.0186]
Western Europe 0.0109 [0.0096, 0.0123]

GPT Africa 0.0037 [0.0005, 0.0069]
Asia 0.0031 [0.0024, 0.0039]

Eastern Europe 0.0058 [0.0043, 0.0073]
Latin America 0.0026 [0.0010, 0.0041]
North America 0.0102 [0.0091, 0.0113]

Oceania 0.0059 [0.0024, 0.0093]
Western Europe 0.0058 [0.0049, 0.0066]

Wikipedia Africa 0.0055 [0.0017, 0.0093]
Asia 0.0060 [0.0049, 0.0070]

Eastern Europe 0.0069 [0.0053, 0.0084]
Latin America 0.0053 [0.0032, 0.0074]
North America 0.0163 [0.0149, 0.0178]

Oceania 0.0142 [0.0088, 0.0197]
Western Europe 0.0106 [0.0095, 0.0118]

Table 6: Estimated probability of recognition across
world regions by LLMs, with 95% confidence intervals
(controlled for career stage and impact).

A.5 Gender Disparity in Multiple Fields

When we focused on high-impact authors (cita-
tions ≥ 10k), then the differences between gen-
der remains significantly different though the gap
shrinks as in Table 7 for GPT, Gemini, Claude and
DeepSeek-V3.

Here as in Table 8, we additionally included gen-
der representation of several fields beyond physics,
which are usually considered in early research to
have more women scientists. Below we included re-
sults using GPT-4o, for high-impact authors which
citations≥ 10k.

Model Gender Prob. 95% CI
DeepSeek-V3 Male 0.81 [0.80, 0.83]

Female 0.70 [0.67, 0.74]
Claude Male 0.71 [0.69, 0.73]

Female 0.57 [0.55, 0.60]
Gemini Male 0.45 [0.43, 0.47]

Female 0.36 [0.34, 0.39]
GPT Male 0.52 [0.50, 0.55]

Female 0.41 [0.38, 0.43]

Table 7: Predicted recognition probabilities by gender
across LLMs, with 95% confidence intervals.

Field Gender Prob. 95% CI
Education Women 0.317 [0.152, 0.483]

Men 0.469 [0.351, 0.588]
Social Science Women 0.475 [0.395, 0.554]

Men 0.571 [0.428, 0.715]
Health Sciences Women 0.430 [0.405, 0.455]

Men 0.459 [0.426, 0.491]

Table 8: Estimated predicted probabilities by field and
gender, with 95% confidence intervals.

A.6 Data Provenance: Margins of Wikipedia
Profile

Figure 7 provides detailed predicted probability
and confidence intervals through logistic regression
for having Wikipedia profiles.

A.7 Reversal Curse Experiments
Additionally we incorporated prompt designs to
probe how recognition depends on evidence and
context. Beyond the main scientist profile prompt-
ing, we experimented with next-token prediction
formats and a step-wise reversal setup, where the
model received progressively richer factual details
(e.g., field, affiliations, publications) to infer a sci-
entist’s identity as in Table 9. Although these re-
sults were not the primary focus, they provide addi-
tional insight into how models encode and express
knowledge about scientists. It shows that simple
design of step-wise reversal experiment with con-
secutively given more factual information.
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Figure 7: Predicted probability recognized by LLMs,
given of whether or not having Wikipedia profiles. All
LLMs show a higher coverage for scientists that already
have Wikipedia pages.

Reversal Test: Scientist Name Retrieval

Instruction:
Given the following structured profile, identify the
full name of the scientist:
Profile:
• Research Areas: [Field or topics]
• Affiliations: [Institutions or labs]
• Key Collaborators: [Known co-authors or col-

leagues]
• Major Publications: [Representative paper titles]
Expected Output: The full name of the scientist. If
unknown, reply with: Unknown

Figure 8: Reverse prompt used to evaluate whether
language models can retrieve the correct scientist name
from a structured profile.

Step Description Female Prob. Male Prob.
1 Field + Affiliations 0.26 [0.15, 0.37] 0.27 [0.24, 0.30]
2 Field + Affiliations + Collaborators 0.41 [0.29, 0.53] 0.33 [0.30, 0.36]
3 Field + Affiliations + Publications 0.47 [0.35, 0.59] 0.42 [0.39, 0.45]

Table 9: Predicted recognition probabilities by gen-
der across stepwise inclusion of contextual information,
with 95% confidence intervals.

Stepwise Reverse Prompt Design

Instruction:
Given the following partial or complete structured
profile, identify the full name of the scientist. The
information is revealed in incremental steps:
Profile:
• Step 1: Research Areas
• Step 2: Research Areas + Affiliations
• Step 3: Step 2 + Key Collaborators
• Step 4: Step 3 + Major Publications
Expected Output: The full name of the scientist at
each step. If uncertain, respond with: Unknown

Figure 9: Layered prompting strategy used to evaluate
whether language models can recover a scientist’s name
from increasingly detailed profile information.
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