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Abstract

Large language models (LLMs) have achieved
promising results in tabular data generation.
However, inherent historical biases in tabular
datasets often cause LLMs to exacerbate fair-
ness issues, particularly when multiple advan-
taged and protected features are involved. In
this work, we introduce a universal debiasing
framework that minimizes group-level depen-
dencies by simultaneously reducing the mutual
information between advantaged and protected
attributes. By leveraging the autoregressive
structure and analytic sampling distributions
of LLM-based tabular data generators, our ap-
proach efficiently computes mutual informa-
tion, reducing the need for cumbersome numer-
ical estimations. Building on this foundation,
we propose two complementary methods: a di-
rect preference optimization (DPO)-based strat-
egy, namely UDF-DPO, that integrates seam-
lessly with existing models, and a targeted
debiasing technique, namely UDF-MIX, that
achieves debiasing without tuning the parame-
ters of LLMs. Extensive experiments demon-
strate that our framework effectively balances
fairness and utility, offering a scalable and prac-
tical solution for debiasing in high-stakes appli-
cations.

1 Introduction

Large Language Models (LLMs) (Lewis, 2019;
Brown et al., 2020; Kojima et al., 2022; Achiam
et al., 2023) demonstrate extraordinary ability to
understand (Jiang et al., 2020), reason (Chang et al.,
2024), and generate text (Ji et al., 2023). These ad-
vancements have pushed new boundaries across
a wide range of domains (Yin et al., 2023; Yang
et al., 2024). As one of the most common data
forms (Borisov et al., 2022), there has been a grow-
ing trend to leverage LL.Ms for tabular data tasks,
such as understanding (Sui et al., 2024), predic-
tion (Ruan et al., 2024), and generation (Borisov
et al., 2023; Zhao et al., 2023; Gulati and Roysdon,
2024).

Despite their powerful capabilities, LLMs suf-
fer from fairness issues when acting on tabular
data, i.e., advantaged features (e.g., income) are
often correlated with protected attributes (e.g., gen-
der). Such biases widely exist in tabular data due
to historical reasons (Mehrabi et al., 2021). Conse-
quently, when LLMs are trained on this data, they
will inherit existing biases (Schick et al., 2021).
Moreover, because the generated data is often used
to train downstream prediction tasks for high-stakes
domains such as job applications, the inherited bias
raises fairness concerns for the downstream models
as well (Borisov et al., 2022).

To address fairness concerns in LLMs, one ap-
proach is to adapt debiasing methods from non-
LLM tabular data generators to ensure fairness
in LLM-based generation. However, these exist-
ing methods only target bias between one advan-
tage feature-protected attribute pair (e.g., income-
gender pair) that adheres to only one downstream
task (Calmon et al., 2017; Xu et al., 2018; Wang
et al., 2021; Van Breugel et al., 2021; Abroshan
et al., 2024). That is to say, only the bias in gender
when predicting income is guaranteed eliminated
when using the generated dataset. When users want
to work on other downstream tasks such as pre-
dicting education level, fairness guarantee requires
retraining the data generator again.

Yet, tabular datasets typically contain multiple
advantaged features (e.g., income, education, occu-
pation) and protected attributes (e.g., age, gender,
race), making retraining for every possible pair
computationally prohibitive. Another approach is
to adapt for debiasing LLMs in text generation.
Most existing methods focus on debiasing a single
protected attribute (Liu et al., 2021a; Yang et al.,
2023; Liu et al., 2024a). Therefore, these methods
still cannot address settings with multiple protected
attributes.

Rather than relying on pairwise debiasing meth-
ods, we propose a group-wise debiasing approach
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that eliminates all dependencies between advan-
taged features and protected attributes. Thus, our
formulation partitions features into advantaged fea-
tures (e.g., income, education, occupation), pro-
tected attributes (e.g., race, gender), and remaining
features, and minimizes the group-level Mutual
Information (MI) between the advantaged and pro-
tected features. Notably, pairwise debiasing is a
special case of this broader framework, where the
protected attribute and advantaged feature groups
each contain only one feature. Additionally, the
minimization of group-level MI also aligns with
the principle of intersectional fairness (Gohar and
Cheng, 2023) in the sense that, when mutual infor-
mation is zero, every advantaged feature is guar-
anteed to be independent of any combination of
protected features. While the minimization of MI
provides fairness guarantees, breaking these depen-
dencies inherently alters the learned distribution,
potentially causing the generated data to deviate
from the original. To prevent excessive distortion
while still reducing bias, we impose an additional
constraint that balances fairness against data util-
ity during optimization. This universal debiasing
framework for tabular data generation is our first
key contribution.

However, MI lacks a closed-form expression,
making its computation challenging, let alone min-
imization for debiasing. This difficulty is exac-
erbated in high-dimensional spaces, where tabu-
lar data often lie in complex manifold (Liu et al.,
2024b). While this challenge cannot be solved in
general, the unique auto-regressive nature of LLM-
based tabular data generators allows us to derive ef-
ficient solutions for them. Specifically, LLMs gen-
erate different features of a tabular-typed sample
one by one in a sequential manner, and each feature
is drawn from an analytic-form distribution. Taking
advantage of these analytic sampling distributions
that are accessible, we propose a fine-tuning based
solution for debiasing that eliminates the need for
numerical estimation of MI. This solution can be
readily implemented with direct preference opti-
mization (DPO) (Rafailov et al., 2024), making our
debiasing task no more difficult than standard fine-
tuning. In addition, the debiased model maintains
all applicability of the base LLM and can seam-
lessly replace the latter in all cases — Notably, the
fairness guarantee generalizes to diverse scenarios
beyond data generation, such as data imputation.
This strong one-for-all guarantee makes our solu-
tion highly valuable. We refer to this DPO-based

debiasing method as UDF-DPO.

Built upon UDF-DPO, we derive UDF-MIX, a
more efficient debiasing solution specialized for
data generation. UDF-MIX not only leverages the
analytic sampling distribution, but also exploits
the sequential nature of the generation process.
Specifically, UDF-MIX identifies a few generation
steps that cause the bias, and precisely alters these
steps without changing others. This design leads
to two remarkable efficiency improvements. First,
as UDF-MIX only needs to debias a few genera-
tion steps, it relies on far fewer parameters, thereby
achieving much better parameter efficiency. Sec-
ond, through an innovative parametrization, we
incorporate the fairness and utility balancing fac-
tor, which is usually treated as a hyper-parameter
to tune, directly into UDF-MIX training. Conse-
quently, UDF-MIX by design can handle the bal-
ance of conflicting fairness and utility without re-
training, thereby substantially reducing the human
burden and computation costs for tuning hyper-
parameters for different tasks. These two effective
and efficient debiasing methods are also key contri-
butions of our work.

Our paper is organized as follows. Sec 2 and
3 introduce preliminary and limitations of current
methods. Sec 4 details our new universal debias-
ing framework and two effective solutions. Sec 5
presents extensive experiments to demonstrate the
effectiveness of our methods. In the remaining part
of this paper, we review related works in Sec 6, and
conclude the paper in Sec 7.

2 Preliminary

Tabular Data. Tabular data is structured in a table
format, where each row corresponds to a sample
and each column represents a feature, which can be
of mixed types (Fang et al., 2024; Borisov et al.,
2022). Mathematically, a tabular dataset can be
expressed as D = {d}Y  , where each sample

d is a K -dimensional array. Each feature d,(j) can
be continuous, discrete, or unstructured, such as
text descriptions'. Modeling tabular data is partic-
ularly challenging due to its heterogeneous feature
types (Sahakyan et al., 2021; Wang et al., 2024a;
Fang et al., 2024). Traditional deep learning mod-
els are typically designed for a single data type,
such as continuous-valued images or discrete tex-
tual data, and thus struggle to effectively handle

'For brevity, the sample index i will be ignored unless
explicitly mentioned from now on.
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tabular datasets (Gorishniy et al., 2021; Borisov
et al., 2022; Grinsztajn et al., 2022; Chen et al.,
2023).

Textual encoding of tabular data. Recent works
(Borisov et al., 2023; Zhang et al., 2023) have
demonstrated that the ability of LLMs to process
diverse data types opens new avenues for model-
ing tabular data through the technique of rextual
encoding. Specifically, given a feature dj, with the
name fy, it can be represented as a short text in
the form of “f is di” (e.g., “age is 20”). By con-
catenating all these texts into a single paragraph,
a tabular dataset can be transformed into a textual
representation, enabling standard LLMs to model
it effectively. For simplicity, we refer to such text-
encoded data as D.

3 Bias in Tabular Data and Limitations of
Pairwise Debiasing

Real-world tabular data often contains social bias
from historical sources. For example, in credit
application datasets, advantaged features such as
income and occupation are often associated with
genders (Caton and Haas, 2024). As a result, ma-
chine learning-based decision-makers trained on
such biased datasets tend to discriminate female
applicants by predicting them as low income, lead-
ing to fairness concerns (Zemel et al., 2013; Hardt
et al., 2016; Liu et al., 2023). In response, existing
works have proposed imposing some independence
between ML methods’ action on the so-called ad-
vantaged feature (income in our example), and the
demographic group gender as a protected attribute
(Caton and Haas, 2024). Representative indepen-
dence formulation (requirements) include Demo-
graphic Disparity (DP) (Zemel et al., 2013) and
Equalized Odds (EO) (Hardt et al., 2016).

Recent works showed that when generative mod-
els such as LLMs trained on biased datasets repro-
duce or even amplify such bias (Sui et al., 2024).
Consequently, when sharing such a data genera-
tor, the bias will be spread as well. This raises
serious concerns for tabular data in high-stakes do-
mains such as job applications, banking, and so on
(Dastin, 2018). To prevent the bias in the gener-
ated data from propagating to downstream tasks,
previous works impose fairness constraints when
training the generative model. These constraints
are specific to the advantaged feature (e.g., income)
and protected attribute (e.g., gender) that will be
used for downstream tasks.

However, if a downstream user is interested in a
different pair of advantaged features and protected
attributes (e.g., occupation and race) other than the
ones used during training the generative model, the
model must be retrained to address that new com-
bination. Therefore, we refer to such methods as
Pairwise debiasing to highlight that their fairness
can only be guaranteed on a specific pair of advan-
taged features and protected attributes. However,
the tabular data contains multiple advantaged fea-
tures (e.g., income and occupation) and protected
attributes (e.g., race and gender). Such retraining
for every possible pair of advantaged features and
protected attributes is computationally infeasible
for LLMs.

4 Proposed Method

4.1 A Universal Debiasing Formulation

Given that existing debiasing methods for tabular
data generation are constrained by their specialized
pairwise debiasing design, it is necessary to em-
ploy a groupwise debiasing approach in the sense
that simultaneously debiases all advantaged fea-
tures and protected attributes. In this light, we refer
to such debiasing as universal debiasing. Our for-
mulation starts with a key common sense based
on the practical meaning of social bias: Given the
interpretable nature of tabular datasets, the advan-
taged features and protected attributes are easy to
identify.

Based on this common sense, we split K features
di.x into three groups. First, s is the collection of
all protected features (e.g., gender and race). Sec-
ond, d,s is the collection of features that cannot be
associated with s, and will raise fairness concerns
otherwise (e.g., income level, education level, job
eligibility). Finally, ds denotes the remaining fea-
tures that can freely vary across different s. Note
that our categorization is a generalization of ex-
isting works, and reduces to the latter if d,s and
s consist of only one feature respectively, where
the single d,s instantiates a label to predict in a
downstream task to be debiased.

Given tuple (s, dgs, ds), we define a group-level
mutual information-based debiasing formulation.
Suppose py is a pre-trained data generator (such as
an LLM), we quantify the bias carried by py as

Po(s, das) } ?

Ip(s,dys) = E [lo
9( ) bo & PG(S)PG (das)

and propose to cast it into a fairer generator g, by
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solving:
min¢ I¢(S,das> +BDKL(pGHQ¢)' (1

Intuitively speaking, enforcing the first term (i.e.,
minimizing the MI) breaks the dependencies be-
tween two groups. Specifically, the benefits of
using MI lie in two folds. First, mutual infor-
mation as a bias measure is closely connected to
the existing fairness notion demographic parity
(DP) (Zemel et al., 2013), and implies the latter
when I4(s,dqs) = 0. Second, Eq (1) extends de-
biasing from a single feature-level to a feature set-
level, thereby imposing a stronger fairness guaran-
tee for downstream applications. Specifically, any
possible label y € d,s will be fair with respect to
every protected feature a € s thanks to the data
processing inequality (Cover, 1999)

I(s,dgs) > I(s,y) > I(a,y).

The second term KL penalty restricts g to stay
close to base py, so that the data generated by gy
has high quality (Kingma, 2013). Hyper-parameter
[ balances the two terms and controls the fairness-
utility trade-off.

Eq (1) provides a general debiasing framework
that can be imposed on any data generators. How-
ever, this optimization is nontrivial to solve, due
to the lack of a closed-form expression for mutual
information that involves the high dimensional dis-
tribution q.

However, the auto-regressive nature of LLM al-
lows one to freely control the feature generating
orders. This flexibility offers us more effective
ways to reduce the computational complexity of
debiasing, as detailed below.

4.2 Debiasing Through Finetuning

As mentioned above, the special generating pro-
cess from LLMs enables effective debiasing. This
section details a finetuning-based formulation and
its solution.

Specifically, we reformulate the bias as a (neg-
ative) reward that the LLM should minimize, and
cast debiasing from Eq (1) into a preference op-
timization problem, so that direct preference op-
timization (DPO) and its variants with different
parameter-efficient fine-tuning strategies can be ap-
plied (Ethayarajh et al., 2024; Azar et al., 2024;
Guo et al., 2024; Hu et al., 2021; Wang et al.,
2024b; Zhong et al., 2025; Chen et al., 2024; Liu

et al., 2025). Mathematically speaking, we have

qd)(sadaS) ]
q6(8)qp(das)
_ o qg(das | 5)
= oo {1 & q¢(das) ]

£ Eq,[—r(s, das))]. ()

Here the negative reward —7(s, d,s) measures fo
what extent knowing protected features s helps pre-
dict dgs. A high reward indicates that s and dgs
are essentially independent, thus the generated data
are fair. Built upon this, Eq (1) can be written as
a standard preference optimization objective with
forward KL 2

maxXe E%[T(S,das)] - BDKL(pGHC]d))a 3)

This objective can be optimized in either an on-
policy or off-policy way, and we conduct an approx-
imately on-policy learning with DPO. Specifically,
after several DPO fine-tuning steps, we recollect a
new dataset from current g4. Next, we compute a
reward for each sample based on Eq (2). Finally,
we randomly construct pairs of samples whose re-
ward gap exceeds a pre-specified threshold. The
sample that achieves a higher reward is treated as
the preferred one. The next round of DPO fine-
tuning is conducted on the new dataset. We dub
our method UDF-DPQO. The complete algorithm is
summarized in Algorithm 2.

We conclude this section with two remarks. First,
dqs and s are symmetric in Iy (s, dqs); therefore,
one can also define the reward as the log ratio be-
tween q4(s | dqs) and g4(s) without violating the
validity of our framework. Second, the key flexibil-
ity that auto-regressive LLMs offers is that we can
directly compute all required probabilities (and the
reward) analytically. In contrast, for other genera-
tors, these quantities have to be estimated numeri-
cally.

Is(s,das) = Eq, {log

4.3 Adaptive-Inference Time Debiasing

Computing Eq. (3) analytically offers an additional
benefit: it preserves the flexibility of the LLM by
maintaining the free control of feature generating
orders. However, this flexibility is mostly benefi-
cial to tasks beyond generation tasks such as data
imputation.

In this section, we show that by sacrificing some
of this flexibility, we can further reduce the com-
putational complexity in two means. First, we can

Note that we flip the minimization to maximization.
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further reduce the complexity in computing the de-
biasing object by focusing on an intermediate part
of the generation process. Second, we can enhance
the LLM’s generation process with a lightweight
module that adapts to different hyperparameter set-
tings for S without requiring retraining, thus achiev-
ing inference-time debiasing.

Specifically, an autoregressive LLM allows us to
generate data according to the decomposed order?

pe(S, dys, ds) = pB(S)pB(daS ’ 5)p0(ds ’ S, das)~

Note that only the second term py(d,s | s) affects
the fairness, and ds by definition can be generated
freely. Therefore, instead of altering the complete
generating process of LLM pyg, we solve Eq (1) by
only replacing the intermediate py(d,s | s) with
one that minimizes the debiasing objective. This
leads to

m1n¢ I¢(5,das) +ﬁDKL(p09Hq¢)
st qs(s,das, ds) < po(s)x
QQS(das | S) p@(ds ‘ Sadas)- (4)
——

learnable

Training a gy (dqs | s) from scratch can be expen-
sive especially when d,s and s are of high dimen-
sions. To avoid this computational burden, we pro-
pose a reparameterized form based on the following
proposition, with its proof deferred to App A.

Proposition 4.1. Consider the optimization prob-
lem given in Eq (5). Then pg(das) and pg(das | $)
achieve the optimal utility under strict or no fair-
ness constraints, respectively. Specifically, we have

po(das) = argming, (q,,1s) {Dxrlpellas]}
s.t. Ig(s,dqs) =0,

and

Po(das | s) = argming, Dr1.[ppllgs]-

Given the optimal solutions from Prop 4.1, it
is viable to strike a balance between fairness
and utility at efficiency by combining them lin-
early (Chuang and Mroueh, 2021; Zhou et al.,
2024). To this end, we parameterize g, in Eq (4)
as a convex combination of them

qp(das | 5) = A(s, B)po(das)+
(1 =A(s, 8))po(das | 5),  (5)

3We abuse the notation a bit by expressing different distri-
butions as the function of the same parameters.

and learn the mixing weight A(s, 8) € [0, 1] only,
which is a function of both s and 8. Notably, its
dependency on s allows different level of debias-
ing strength for each different values of the pro-
tected attribute s. The larger values of A will be
assigned to groups exhibiting stronger bias and
vice versa. Such a targeted mixing strategy allows
a fine-grained control over the fairness and util-
ity tradeoff. At the same time, A as a function
of hyper-parameter 3 essentially enhances overall
computation efficiency by avoiding multiple rounds
of retraining when adjusting 5. In practice, we pa-
rameterize \(-, -) with a lightweight MLP. The ob-
jective is again trained with DPO loss as presented
before. The complete algorithm is summarized in
Algorithm 1.

While the fairness-utility trade-off is widely ob-
served in general, our mixing-typed solution strikes
an effective balance as revealed by the following
theorem. See its proof in Appendix A.

Theorem 4.2. When using Eq (5), the fairness-
utility total loss is upper bounded. Specifically

I¢(s,das) + DKL(pOHQqS) < Ie(das,8)~

Notably, Thm 4.2 shows that while increasing
fairness may lead to a drop in utility and vice versa,
this trade-off is efficient in the sense that their total
degradation is bounded.

S Experiments

We evaluate our methods on two practical use
cases with generated data from three diverse tabu-
lar datasets, each featuring different protected at-
tributes and advantaged features. Our methods
achieve debiasing between multiple potential target
variables and protected attributes while preserving
high data utility.

5.1 Experiment Setup

Backbone Tabular Data Generator. We use
GReaT (Borisov et al., 2023) as the backbone tabu-
lar generator. We follow the choice of using GPT-
2 (Radford et al., 2019) as the base LLM.

Baselines and Implementation Details. For tab-
ular data generation, we compare our debiasing
methods with four baselines: GReaT (the back-
bone generator), DECAF-DP, a variant of DE-
CAF (Van Breugel et al., 2021) focusing on de-
mographic disparity, and two GAN-based gener-
ators, TabFairGAN (Rajabi and Garibay, 2022)
and FairGAN (Xu et al., 2018). We refer to the
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downstream model trained on real data as “Origi-
nal”. All the experiments are run on RTX A6000
GPUs. More details are given in the Appendix.
Datasets. We evaluate our model using three
diverse datasets. The Adult dataset (Becker and
Kohavi, 1996) contains 11 attributes. We choose
race and gender as potential protected attributes
s, and income and education as d,s. The Credit
Approval dataset (Quinlan, 1987) contains 15 fea-
tures. The potential protected attributes s include
gender and race. For potential target variables,
we include approval and employment status as d.
The Student Performance dataset contains 30 at-
tributes. We choose the s as Mother’s Job (MJ),
Father’s Job (FJ), Age, and Gender. The d,s are
First Period (1*') Grade and Second Period (2"%)
Grade.

Scalability of Datset Size. Notably, our debias-
ing methods are not constrained by the size of the
datasets. Instead, the scalability lies in the pre-
trained models in the sense that our framework is
trained using the generated data, not the real data.
Tabular Tasks and Evaluations. Based on the
practical usage of the generated data, we consider
the two tasks, evaluated from two dimensions: fair-
ness and data utility. We further evaluate the effi-
ciency of our methods.

* Tabular Data Generation for Predictive
Downstream Tasks: We establish the down-
stream task by pairing chosen variables from
dgs as target variables and s as protected at-
tributes. For each of these pairings, we train
a MLP as the prediction model on the gener-
ated dataset to predict the target variables and
evaluate data utility via accuracy (Acc.) and
AUROC. Fairness is evaluated in three ways:
estimated Mutual Information (MI) between
the protected attributes and the model’s pre-
diction on target variables. Demographic Par-
ity (DP), quantified as the total variation dis-
tance between prediction distributions across
groups (Van Breugel et al., 2021); and Equal-
ized Odds (EQO), calculated by the maximum
disparity in true positive and false positive
rates among all groups (Hardt et al., 2016).

e Tabular Data Missing Value Imputation:
Since the LLLM-based generator can generate
features based on observed features, it is used
for filling missing values in the tabular dataset.
We follow the Missing Completely At Ran-
dom (MCAR) (Little, 1988) setting, where

each feature has a certain probability of being
marked as missing. We set the missing prob-
ability to 0.4. For fairness, we estimate the
MI between d,s and s in the generated data.
For data utility, we measure averaged RMSE
over all missing continuous features and av-
eraged Accuracy over all categorical features.
However, in some rows, d,s and s might not
be marked as missing, which means the bias
already exists and cannot be reduced.

* Efficiency: We further evaluate the Efficiency
of our methods by the time of measuring train-
ing and generation (in seconds) for different
generation sizes.

5.2 Performance on Tabular Data Generation
for Predictive Downstream Tasks.

Table 1 presents results for the Adult and Student
Performance datasets. For the Adult dataset, Task
1 predicts whether income exceeds 50K with gen-
der as the protected attribute, while Task 2 predicts
whether education level exceeds high school with
race as the protected attribute. For the Student
Performance dataset, we use the same protected at-
tributes, Age, MJ, FJ, and Gender—for both tasks;
Task 1 targets first-period grade, and Task 2 tar-
gets second-period grade. Additional results on
the Credit Approval are provided in the appendix.
Only Task 1 is revealed for training task-specific
baselines, whereas our methods can simultaneously
debias across all possible downstream tasks.

Debiasing and Utility trade-off. In all down-
stream tasks in Table 1, our methods achieve
bias reduction while maintaining high data util-
ity when compared to GReaT. Specifically, for
UDF-MIX debiasing method, when 8 = 0.1, it re-
duces the bias significantly compared with GReaT
while maintaining similar predictive performance.
For UDF-DPO debiasing, similar phenomenon is
achieved when 8 = 1. However, when compared
with task-specific debiasing methods, task-specific
baselines like DECAF-DP achieve generally sat-
isfying data utility compared with similar debias-
ing scores. This is because the task-specific base-
lines are given the specific information that the
downstream task will predict; for example, income
and the corresponding protected attribute is gen-
der. However, the task-specific baselines cannot
guarantee fairness performance when the generated
data is used for other prediction tasks by observing
the performance decay in task 1 and task 2. We
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Utility 1 Bias | Utility 1 Bias |
Acc. AUROC MI DP Acc. AUROC MI DP EO
Task 1: Gender-Income Task 2: Race-Education Level

Real Data 84.120_22 90.460_7] 2.520_]9 19.781_7] 1 1.170_59 69.791_21 76.87]_26 0.930_29 7.310_39 6.170_6]

GReaT 84.32g515 89.37p30 7.01p12 17.29183 19.763.44 67.630.04 74.14009 0.60008 7.12068  9.030.71

DECAF-DP 7595010 86.799.32 0.04142 1.12403 2.400 51 5747055 5850108 0.80091 934190 10.937194

TabFairGAN 80.590_30 83.440_26 0.010_01 4.22]_03 19.281_56 68.400_23 75.030_20 1.600_07 8.140_9] 7.571_2]

FairGAN  75.70177 7437189 0.02001 6.28302 10.277.59 4439085 4834357 1.12032 2291392 25.02456
UDF-DPO

8=0.1 764402 81.69933 0.30003 1.39928 2.649s7 66.349.14 68.19942 0.29911 197931 314049

ﬁ =1 81.71lg3s 86.04943 1.209.03 9.021 96 5.739.13 6533053 71.82062 0.430.06 5.389.63 6.275.40

B =10 82.0lp30 87.01p19 145007 921103 5.780.97 6643075 73.831.72 054007 825056  8.330.64
UDFE-MIX

5=0.1 82.08p235 863937 0.02002 599120 11.84494 66.290.46 72.29035 0.37002 335170 4.460.93

B=1 8196041 8635017 0.10003 5.54108 10.90254 65.679.29 72.100.19 0.38001 799144  7.49139

B=10 81940947 86.95031 029909 748253 7.569.32 66.63024 7231916 0.40004 3.47251 6.041 33

Task 1: Age, MJ, FJ, Gender — 1% Grade Task 2: Age, MJ, FJ, Gender — 2 Grade

Real Data 87.320‘29 90.270,14 6.240.04 8.931.21 9. 140‘29 96. 140.61 98.320'16 8.410,38 9.430415 9~020.61

GReaT 85.23387 88.47948 541192 7.02124  8.191 40 9431351 96.72148 451141 824004 94117

DECAF-DP 62.19529 6592422 098001 3.01;25 2.21;98 7219419 7841148 2.01g47 581105  6.14 45

TabFairGAN 78.422‘19 82.453,19 3.811.91 5.891.29 6.791‘92 88.323.12 92.411'33 6.291,49 8.411429 9.121.44

FaitGAN 7642315 8423300 248120 628199 7.29; 3 89.19,19 9033161 571120 8798 942173
UDF-DPO

B=01 8270315 874625 2.39%.27 6.5lgo2 7.140.92 9041514 94.03249 226061 6.11105  6.781.26

B=1 7882157 8591153 127939 5.071.71 6.491 12 9021131 94.72182 2.12p49 6.2115; 741125

B=10 7836197 8598224 13956 528129 6.832.54 9095179 9520064 2.26084 753172 T9li7o
UDF-MIX

B8=0.1 7831219 85.13397 1.12918 526028 6.419.29 89.01397 9431281 2.04071 5.73ps1 6.217 14

ﬂ =1 7938246 86.02481 1.53¢.23 6.191 02 6.821 97 9032981 94.47192 2.42053 6.141 96 7.311.69

B=10 79.52518 86.82261 1.62042 597116 6.091.92 91.21198 9521127 3.04013 732184 771124

Table 1: Performance on the Adult (upperhalf) and Student Performance (lowerhalf) datasets for two downstream
tasks each. Only Task 1’s target and protected features are revealed to task-specific baselines during training,
whereas our methods debias all potential downstream tasks simultaneously. Best results are in bold and second-best
results are underlined. Baseline methods trained to debias Task 1 remain unfair on Task 2.

further perform a detailed trade-off analysis in the
apendix.

Universal Debiasing performance. By compar-
ing Task 1 and Task 2 in Table 1, our methods
demonstrate universal debiasing across multiple
downstream tasks. Specifically, when 5 = 0.1, the
UDF-MIX method achieves significant bias reduc-
tion on both tasks, and UDF-DPO attains similar
performance when 5 = 1. In contrast, task-specific
benchmarks fail to guarantee fairness or data utility
when applied to different downstream tasks. For
example, DECAF-DP—despite achieving the best
DP score in Task 1—performs poorly in Task 2, be-
cause it focuses solely on bias between income and
gender in the Adult dataset and does not eliminate
bias between education level and race.

Bias in the original dataset. As shown in Table 1,
when the downstream model is trained on the orig-
inal dataset, it often produces the most biased yet
most accurate predictions. Specifically, the model
trained on real data attains the highest DP score,

indicating greater bias than all other benchmarks,
while also achieving the highest AUROC.

Bias in the LLM-based tabular generator. Both
sections of Table 1 show that data generated by
GReaT exhibits similar or greater bias than the
real data. Specifically, the estimated MI in GReaT-
generated data is nearly three times higher than in
the real data (Task 1). This likely explains why the
EO of the downstream model trained on GReaT
data exceeds the EO of the model trained on real
data.

5.3 Data Imputation

In the data imputation task, we impute missing
values five times with different random seeds and
report the mean and standard deviation in Table 2.
Table 2 shows that, under a similar 3, our debias-
ing methods outperform GReaT at comparable fair-
ness levels. Specifically, estimated MI, a measure
of dataset bias, is lower for both UDF-DPO and
UDF-MIX than for GReaT, indicating they main-
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Utility 1 Bias |
Acc. RMSE MI
Original — — 2391
GReaT 60.08 =042 15.124+0.08 18.56 +0.40
UDF-DPO T
B=01 5645+028 16.67+0.13 1544 +0.61
B=1 6263+060 1641+0.07 1531+1.01
=10 6150+032 1694+022 1530+0.70
UDF-MIX
B=01 4744+022 39.87+£41.29 1538+0.70
B=1 47284065 1591+0.09 14.89+0.64
B=10 47.68+0.16 16.08+0.13 1533 +0.58

Table 2: Data imputation performance on Adult dataset.

tain debiasing when filling in missing values.

5.4 Overall Performance Comparison
between UDF-MIX and UDF-DPO

One possible reason that the UDF-DPO generally
performs better than UDF-MIX is that UDF-DPO
is more flexible during debiasing than UDF-MIX,
as it offers more modification options during the
generation process. According to Eq. 2, UDF-DPO
can reduce the mutual information by modifying
46(das | 5), g(das), or g4(s). Modifying the latter
two introduces fewer disruptions to the correlations
between features, while still lowering the mutual
information. In contrast, UDF-MIX is designed to
modify only the intermediate gy (dqas | ).

5.5 Efficiency

We measure both training and generation efficiency
(in seconds) for each method in Table 3 and Fig-
ure 1. Since 8 in UDF-DPO does not affect effi-
ciency, we fix 8 = 1 and train for five epochs—its
typical convergence point. For UDF-MIX, we sam-
ple 1,000 3 values to train only the lightweight
MLP adapter, yielding faster training (Table 3). In
generation, however, UDF-MIX is slightly slower
than UDF-DPO and GReaT due to its extra layer
of randomness (Figure 1). UDF-DPO and GReaT
share the same generation process and thus exhibit
similar generation efficiency.

UDF-DPO
399.56 + 3.85

UDF-MIX
65.32 £1.72

Time

Table 3: Finetuning time (s) of our methods.

6 Related Work

LLM-based Tabular data Generation. Besides
GReaT (Borisov et al., 2023), Zhao et al. (2023)
further shortens the textual encoding in the GReaT.
Zhang et al. (2023) fine-tunes the LLM from tabu-
lar data generation to classification. Alternatively,

| —#— GReaT
—#— UFT-MIX
| —&— UFD-DPO

2500 5000 7500 1000012500150001750020000
Num Samples

Figure 1: Running time of base and debiased models.
Our methods add marginal computation overhead to
data generation.

Wang et al. (2024¢) combines the tabular data with
clustering algorithms. However, all these LLM-
based tabular data generators share the same fair-
ness concern when generating tabular data.
Debiasing for Tabular data Generation. Gen-
erative Adversarial Networks (GAN) (Goodfellow
et al., 2020) are a popular choice for generating fair
tabular data. Xu et al. (2018) propose that, after
training the GAN for tabular data generation, the
generator can be further trained for fairness. Ra-
jabi and Garibay (2022); Abroshan et al. (2024)
further utilize the discriminator to add the fairness
constraint. Van Breugel et al. (2021) propose an in-
ference time debiasing method. However, all these
methods are formulated and designed to debias for
specific protected attributes and target variables.

Debiasing for Text Generation in LLMs.
Decoding-time debiasing approaches, as proposed
by Liu et al. (2021b); Yang et al. (2023), are closely
related to tabular data generation. Liu et al. (2024a)
proposes a debiasing method that targets balancing
the trade-off between fluency and bias mitigation.
Li et al. (2023) uses a prompt-based method to
guide the LLMs.

7 Conclusion

We propose a universal debiasing framework for
LLM-based tabular data that balances the fairness-
utility trade-off for multiple advantaged features
and protected attributes. Our DPO-based method,
UDE-DPO, and the efficient adaptive approach,
UDF-MIX, mitigate bias while preserving high
data quality. Mathematical insights and experi-
ments confirm that our approach outperforms exist-
ing pairwise methods, offering robust and scalable
debiasing for high-stakes applications.
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Limitations

Our method UDF-Mix has additional computa-
tional overhead by requiring multiple 3 values to
be sampled and fit. However, our experiments show
that restricting 3 to the range [0, 50] is sufficient to
achieve universal debiasing, which helps mitigate
the impact of this overhead. Another limitation is
that, for each dataset and each tabular data genera-
tor, our methods need to be re-trained. One future
direction is achieving the debiasing with training
across multiple datasets.
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A Omitted Proof

In this section we present the proof of theorems omitted in the main body.

Proposition A.1. Consider the optimization problem given in Eq (5). pg(d,s) achieves the optimal
fairness, and pg(d,s | ) achieves the optimal utility. Specifically, we have

pe(das) = arg minq¢(das|s) {DKL[p9(87 da57 ds)”Qqﬁ(S, da$7 ds)] : I¢($7 das) - 0} 3 (6)
and
p@(das ‘ 3) = arg minq(;/) DKL[p0(37 da57 ds) H%(S, das: ds)] (7)
Proof. Eq (7) can be verified directly by definition. To prove Eq (6), first note that when
Q¢(37 das) = /Q(57 das, ds) dd;
= /pH(S)pG(das)pG(ds | Sydas) dds
= Pe(S)Pa(das) /p@(ds | Sadas) dds

= p@(s)pH (das)'

Namely, we have that s and d, are independent, therefore, I, ¢(s, dqs) = 0. In addition, for any fair 4>

Dict(pollas) = Ey, 1og(

po(das)po(s | das)>:|

B ! ( 4o (das)po(s)
= s (3 ) s (M)
()] b (")
s).

= D r(Po(das)|45(das)) + To(das,

=E,, |log

2

©-

—
IS

Step (a) holds from the strict fairness constraint, i.e., /4(dqs, s) = 0, which makes q¢(das | 5) = qg(das)-
In addition, the second term Iy(d,s, s) is constant under pg. Therefore, Dy 1, (po(das)||ge(das)), is
minimized when ¢4 (das) = Po(das). This completes our proof.

U

Theorem A.2. When using Eq (5), the fairness-utility total loss is upper bounded. Specifically
I4(s,das) + Drr(pollae) < Ig(das, 5).
Proof. For brevity, we denote A = A(s, 3). By definition

46(8, das, ds) = po(s) (APG(daS) + (1 = A)pa(das | 5))p9(ds | das, s),
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we have

Drr(pollgs) = Ep, :log <m>}
- o (e e o)
=E,, log ( Ei) ] + Ep, [l ()\pe p9((1@j L\(;i?e(das | 3)” "

ds | d
E 1 9( ass S
o o ()

=Dxr (po(das | 5)|Apo(das) + (1 — A)po(das | 5))

(a)

< ADkr (po(das | 5)|po(das))

— )\Ie<dasv )
Step (a) holds from the convexity of KL divergence (Cover, 1999). On the other hand,

Is(s,das) = Dk r(qg(das | $) [po(das))
= DKL(APB(das) + (1 - )‘)pG(das | S)HP@(das))

© ADir(poldas) [p6(das)) + (1 — N)Dicr(po(das | 5)po(das))
= ( - )‘)DKL(pG( as | S)HPQ(daS))
:( )‘)19(da87 )7

where step (a) again applies the convexity. Put together,

DKL(p9||Q¢) + Iqu(daS’ S) < Ipe(dasa S)'

This completes our proof.
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Algorithm 1 Adaptive Inference-Time Debiasing

Require: Pre-trained LLM py; lightweight MLP A(-, -); number of iterations 7T'; a set of different
hyperparameter {[3; }]J\/il
I: fort=1,...,7T do
2:  For each 3;, compute

Q¢(das ‘ ‘9) = A(ﬁja 5) p9(das) + (1 - )‘(ﬁjvs)) p9(das | 5)'

3:  Evaluate the debiasing objective in Eq. (1) for each f3;, average the resulting objectives over all
Bj’s, and update using the averaged objective.

4: end for

5: return Trained A(-,-).

Utility 1 Bias | Utility 1 Bias |
Acc. AUROC MI DP EO Acc. AUROC MI DP EO
Task 1: Approval-Race Task 2: Employment Status—Gender
Original 86.13p31 88.931.18 5.03 2590155 50.90435 96.790.47 96.87¢.57 3.93 3031106 06.173.14
Great 8737936 87.05062 3.860.47 2337161 42.164.80 95.960.36 97.900.29 2.650.07 28.98051 64.537.56
DECAF-DP 8591193 87.51108 0.089.91 2.241 99 4.93; 94 83.790.01 7096001 1.70109 1537474 21.779.90
FairTabGAN 82.31294 84.23156 0.140.07 4.231.54 20.48375 83.65109 73.681‘47 1.58187 18.32497 20.671‘48
FairGAN 84.232_34 88.421_29 0.230_24 3~421.28 32.61 73.571_37 63-492.68 0.924_21 19.571_70 22.121_24
UDF-MIX
B8=0.1 888250 8954066 1.12905 17.69141 47.703.90 89.23p39 91.60p30 0.42012 1297115 34983511
B=1 8196041 8635017 0.10003 5.54108 10.90254 71.140520 8429926 0.68005 7.88pss  8.44; o3
B=10 8194947 8695031 02909 7482535 7.56232 89.23p60 91.21p41 0.820.10 17.65164 32.75539
UDF-DPO
[3 =0.1 70.441_29 78.780_77 0.120_03 5~472.38 26.935.02 85.160_14 71.210_98 0.010.01 8.520_31 19.150_49
B=1 80.05177 8624127 020006 17.06332 26.43,497 8536088 83.99069 0.050.06 940099 11.18499
B=10 73.19985 8195111 0.17011 10.29233 28.11489 80.17237 84.83p25 0.540.07 14.78198 14.74124

Table 4: Performance on the Credit dataset for two downstream tasks that involve different advantaged—protected
feature pairs. Best results are in bold and second-best results are underlined. Baseline methods trained to debias
Task 1 remain unfair on Task 2.

Utility Bias |
Accuracy RMSE MI
Original - — 18.56
GReaT 60.08 +0.42 15124008 18.56 4 0.40
UDF-DPO
B=0.1 5645+028 16.67+0.13 15.44+0.61
B=1 6263+060 16414+0.07 1531+1.01
B=10 61.50+032 1694+022 15.30+£0.70
UDF-MIX
B=0.1 47444022 39.87+41.29 15.38+0.70
=1 4728+0.65 1591+0.09 14.89+0.64
B=10 47.68+0.16 16.08+0.13 1529+ 0.58

Table 5: Data imputation performance on Credit Approval dataset.
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Algorithm 2 Universal Debiasing Framework with DPO (UDF-DPO)

Require: Pre-trained LLM py (initialized as g4); number of DPO epochs T'; reward gap threshold §;

number of samples per epoch N

1: fort=1,...,T do

2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:

Step 1: Score each sample
Generate a dataset Dgep = {di}fil from the current model g4. For each sample d; =
(Sia das,ia ds,i) € Dgen
Compute reward
ri = lo (M)(das,i ’ 51)’
Q¢(das,z)

where higher reward indicates less bias.
Step 2: Construct preference pairs
Initialize an empty preference dataset Dy = (. For two randomly picked samples d; =
(8iy das,i, ds,i) and dj = (55, das j, ds j),
if ‘7’,‘ — Tj| > ¢ then

ifr; > Tj then

Add preference pair (y,, = d;, y; = d;) t0 Dprer.
else
Add preference pair (y,, = dj, y1 = d;) t0 Dpret.

end if
end if
Step 3: DPO update
Update model parameters ¢ using the DPO loss on the preference dataset Dpyes.
(Optional) Step 4: Refreshing the samples is implicitly handled by regenerating at the start of the
next epoch.

end for

22: return Trained debiased model gy.
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Utility Bias Utility Bias
Acc. AUROC MI DP EO Acc. AUROC MI DP EO

Task 1: Gender—Income Task 2: Race-Education Level

UDF-DPO (3 = 0.1)
DECAF-DP 049} 510, 026/ 027, 024] 887t  9.697 0517 737t 779t
TabFairGAN  4.15)  1.75)  0.29] 28317 16.647 206, 684 1317 617t 443t
FairGAN 0747 7.32t 028) 4.897 7.631  21.95¢ 19.85¢ 0.831 20.941 21.88¢

UDF-MIX (3 = 0.1)
DECAF-DP 613t  0.40] 0.021 4.87) 9.44] 8.821 13797 0437 599t 647t
TabFairGAN 1491  295¢ 001} 177/ 7.441 2110 2740 1237 479t 311t
FairGAN  6.387  12.021 000 0297 157 21901 23.95% 0.75¢ 19.567 20.561

Task 1: Age, MJ, FJ, Gender — 1% Grade Task 2: Age, MJ, FJ, Gender — 2nd Grade

UDF-DPO (3 = 0.1)
DECAF-DP 20511 21.54t 1.41] 350, 4.93) 18221 15621 025, 030} 0.64)
TabFairGAN  4.281 5011 1421 062 035]) 2097 1627  4.037 2301 2341
FairGAN  6.287 3231 0.9t 023 0.15¢ 122t 3701 3451 2681 2.641

UDF-MIX (3 = 0.1)
DECAF-DP 1612t 19211 0.14] 225] 4.20] 16.821 15907 0.03, 0.08F 0.07)
TabFairGAN  0.11)  2.68t 2.697 0.637 0.381 0.697 1907 4257 2.68F 2911
FairGAN  1.897 0907 1367 1.027 0.881 0.18)  3.987 3.67F 3.061 3211

Task 1: Approval-Race Task 2: Employment Status—Gender

UDF-DPO (3 = 0.1)
DECAF-DP 2911 203t 1.04] 1545 4277, 5441 20.647 1281 2401 13.21)
TabFairGAN 6517 5311 098] 1346 27.22) 558t 17.92t 116} 535¢ 1431
FairGAN  4.597 1127 089 1427, 1509  15.667 28117 0507 6.607 12.86]

UDF-MIX (3 = 0.1)
DECAF-DP 1547) 8.73] 0.04] 323 22.00) 137t 0251 1697 6857 2.621
TabFairGAN 11.87) 545 0021 124 645] L5114 247 157t 9.801 1.521
FairGAN 13.79]  9.64] 0111 2.05/ 5.681 1159t 7721 0911 11.051 297t

Table 6: Each row represents the improvements of our methods with 5 = 1.0 over the baselines on the Adult
dataset (upper), Student Performance (middle), and Credit dataset (lower). The MI is calculated as the absolute
difference because its values are small, while the other metrics are calculated in terms of percentage. Improvements
are highlighted in bold with an upward arrow. Note that only Task 1’s target and protected features are revealed to
task-specific baselines during training, whereas our methods debias all potential downstream tasks simultaneously.
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B Additional Experiment Results and Details

Hardware and Implmentation packages. We
use NVIDIA RTX A6000 for all the experiments
and utilize the TRL - Transformer Reinforcement
Learning to implement DPO.

Convergence. UDF-DPO and UDF-MIX are
trained with 5 and 8 epochs, which are typical con-
vergence points.

Additional results on diverse datasets. The ta-
ble 4 additional experiments on the credit dataset
for downstream tasks, and table 5 contains results
for data imputation results. The experiments on
the Credit dataset further validate our universal
debiasing framework, with Task 1 targeting Ap-
proval-Race and Task 2 targeting Employment Sta-
tus—Gender. While models trained on the original
data and the backbone generator, GReaT, show sig-
nificant bias, our proposed methods, UDF-DPO
and UDF-MIX, demonstrate strong universal per-
formance by reducing bias across both tasks si-
multaneously. In contrast, task-specific baselines
like DECAF-DP, which are trained only on Task 1,
remain unfair when evaluated on Task 2, highlight-
ing the limitations of pairwise debiasing that our
framework overcomes. Furthermore, our methods
extend their effectiveness to data imputation tasks,
as shown in the results from Table 5. In this set-
ting, both UDF-DPO and UDF-MIX achieve lower
Mutual Information, which indicates a more fair
generation.

Trade-off analysis. In Table 6, our universal
debiasing methods demonstrate a better balance be-
tween the data utility and fairness on Task 2 across
datasets, achieving utility gains of up to 21.95 Acc
and 23.95 AUROC (Adult), and as high as 28.11
AUROC (Credit), while simultaneously improv-
ing fairness by as much as 1.31 MI, 20.94 DP, and
21.88 EO. In contrast, on Task I our gains are gener-
ally modest, often within 6.4 Acc and 12.0 AUROC
on Adult, reflecting the expected trade-off when
baselines are specialized for the pairwise debiasing.
The pattern supports our universal debiasing ob-
jective: unlike pairwise baselines that only debias
a single advantaged-protected pair, our methods
focus on group-wise independence that achieves
debiasing to unseen pairs (Task 2).
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