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Abstract

The embodiment of emotional reactions from
body parts contains rich information about
our affective experiences. We propose a
framework that utilizes state-of-the-art large
vision-language models (LVLMs) to gener-
ate Embodied LVLM Emotion Narratives
(ELENA). These are well-defined, multi-
layered text outputs, primarily comprising de-
scriptions that focus on the salient body parts in-
volved in emotional reactions. We also employ
attention maps and observe that contemporary
models exhibit a persistent bias towards the fa-
cial region. Despite this limitation, we observe
that our employed framework can effectively
recognize embodied emotions in face-masked
images, outperforming baselines without any
fine-tuning. ELENA opens a new trajectory for
embodied emotion analysis across the modality
of vision and enriches modeling in an affect-
aware setting.

1 Introduction

Emotion recognition has been widely studied in
both natural language processing and computer
vision, with applications ranging from sentiment
analysis to human-robot interaction. While facial
expressions are often considered the primary chan-
nel for conveying emotion, they are not always
reliable—for example, when faces are distant, ob-
scured, or deliberately masked. In such cases, the
body (torso and limbs) frequently communicates
emotion more clearly than the face. For instance,
observers often struggle to distinguish between pos-
itive and negative feelings from isolated facial ex-
pressions, but can do so accurately from bodily
cues (Aviezer et al., 2012). These findings high-
light that bodily reactions are central to how emo-
tions are expressed and perceived (Fuchs and Koch,
2014); yet, this important dimension remains un-
derexplored in much of the current emotion recog-
nition research.

Figure 1: Illustration of embodied emotion for multi-
modal analysis.

The concept of Embodied Emotion provides a
richer framework for understanding the affective
states and making holistic use of all bodily parts
for emotion recognition. Rooted in psychology
and cognitive science (Niedenthal, 2007; Barsalou,
2008), embodiment theories argue that emotions
are not purely mental phenomena but are deeply
intertwined with bodily experience and physical re-
sponse. In parallel, computational work has shown
that embodied signals are also crucial for inter-
preting emotions in text, where bodily actions and
sensations often convey affect beyond lexical sen-
timent (Zhuang et al., 2024; Duong et al., 2025).
Together, these insights suggest that posture, ges-
ture, and physiological change are integral to emo-
tional meaning (Barsalou and Wiemer-Hastings,
2005; Niedenthal et al., 2014). Empirical stud-
ies further show systematic correlation between
specific posture and mood—for example, an up-
right stance can indicate elevated mood, whereas
a slumped shoulder correlates with depression and
low arousal (Wilkes et al., 2017).

In this work, we propose to bridge the gap of
embodied emotions research with vision modality
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by utilizing prevalent Large Vision-Language Mod-
els (LVLMs) and their capabilities. While prior
approaches to the task of emotion recognition have
often relied on models trained and fine-tuned on
a variety of features (Tzirakis et al., 2017; Luna-
Jiménez et al., 2021), our work utilizes LVLMs in
a zero-shot setting to output multi-layered textual
descriptions for embodied emotions, as shown in
Figure 1. These models do not receive any task-
specific training, but are guided by carefully crafted
instructions that elicit the underlying emotional
manifestations in images. As far as we are con-
cerned, this is the first work in the area of multi-
modal analysis for embodied emotions. We release
the code and outputs of ELENA publicly.1 We
highlight our contributions as below:

1. We introduce ELENA, a novel framework that
utilizes structured prompting to guide LVLMs
in generating multi-layered narratives of em-
bodied emotion. Our approach moves beyond
simple classification to a more explanatory
form of affective analysis, and serves as a
novel tool for qualitatively probing a model’s
emotional reasoning.

2. Through systematic face-masking methodol-
ogy and attention analysis, we provide the em-
pirical evidence that LVLMs exhibit a critical
attention adaptation failure when recognizing
embodied emotion—they do not redirect vi-
sual focus to informative bodily regions when
facial details are masked, exposing a funda-
mental vulnerability in visual reasoning.

3. We show that the framework can effectively
overcome limitations of LVLMs, achieving
credible performance improvements. It sug-
gests that while the model’s autonomous vi-
sual systems are brittle, their latent knowledge
of non-facial emotional signals can be effec-
tively elicited with targeted guidance.

2 Related Work

Emotion understanding is a long-standing task in
NLP, rooted in the field of affective computing re-
search (Firdaus et al., 2020; Zhuang et al., 2020;
Deng and Ren, 2021; Zheng et al., 2023). Psychol-
ogy and neuroscience theories have long argued
that bodily states (e.g., posture and physiological re-

1https://github.com/cincynlp/ELENA

actions) are integral to emotions (Niedenthal, 2007;
Barsalou, 2008; Li et al., 2021).

Prior NLP work has begun to consider the phys-
ical expressions of emotion in text. Kim and
Klinger (2019) analyzed how authors depict charac-
ters’ body movements and sensations (e.g., frown-
ing and heart pounding) to imply emotion, and
Casel et al. (2021) identified emotion-related com-
ponents based on a cognitive model. The rise of
large language models (LLMs) has prompted a
re-examination of emotion understanding in NLP
(Liu et al., 2024b; Sabour et al., 2024). However,
purely text-based models may overlook nonverbal
signals that are critical to emotional expressions
(Lian et al., 2025).

Vision-Language Models (VLMs) extend emo-
tion understanding with visual context and com-
monsense reasoning (Zhang et al.; Xenos et al.,
2024), yet evaluations on evoked emotions reveal
biases towards specific categories and prompt sen-
sitivity (Bhattacharyya and Wang, 2025). Visual
affective computing remains dominated by facial
cues (Wang et al., 2024b). In parallel, body-centric
approaches model affect via posture and gesture
features (Noroozi et al., 2018) and skeleton-based
relations among body parts (Shen et al., 2019; Wu
et al., 2024; Lu et al., 2025), but progress is lim-
ited by scarce, richly annotated datasets. Departing
from these facial and skeleton-centric pipelines, we
address embodied emotion in images by instructing
LVLMs to generate structured, body-part-grounded
narratives alongside an Ekman emotion label, and
we explicitly disentangle facial versus non-facial
evidence via face masking and attention-map diag-
nostics.

The recently introduced CHEER dataset
(Zhuang et al., 2024) represents a first step in this
direction—it contains 7,300 instances of body part
mentions in narratives, labeled for whether they sig-
nal an underlying emotion, e.g., “her hands trem-
bled with fear.” This work was carried forward
by Duong et al. (2025), who converted the previ-
ous binary task to Ekman’s six emotion categories,
along with improved metrics compared to super-
vised methods using best-worst scaling. However,
the task of embodied recognition remains under-
studied in vision-language models, as well as the
evaluation of the influence of facial parts of the
body on emotional expression. Inferring affect
purely from bodily posture, movements, and physi-
ological state in images remains an open challenge,
which motivates the focus of our study.
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Figure 2: ELENA framework architecture for embodied emotion analysis. The system utilizes LVLMs in zero-shot
settings to process structured prompts with images (masked or unmasked), generating all outputs in a single forward
pass: emotion labels, explicit descriptions, implicit descriptions, and body parts. Narratives are formed by combining
explicit and implicit descriptions, with the right panel illustrating the anatomization of a narrative into its embodied
components.

3 Methodology

We propose a zero-shot structured prompting ap-
proach that utilizes large vision-language models
to systematically interpret emotions through bodily
expressions. Our methodology includes detailed
prompt design, face-masking experiments, atten-
tion analysis, and comparative evaluations to ro-
bustly assess the models’ capability in recognizing
embodied emotions.

3.1 Datasets and Usage Scheme

We perform our task on three image datasets:
BESST (Bochum Emotional Stimulus

Set) (Thoma et al., 2013) consists of 1,129 (565
frontal-body + 564 averted-body) high-quality
images collected in a lab-controlled environment.
An example is shown in Appendix B (Figure
13). Participants for this research were instructed
to enact a specific emotion by posing as if they
were experiencing it, producing explicit bodily
expressions. Each person has their face masked
and photographed in both frontal and averted
views. BESST includes annotations aligned with
Ekman’s six basic emotions (Ekman, 1992), along
with an additional Neutral category.

HECO (Human Emotions in Context) (Yang
et al., 2022) dataset contains 9,385 images with
19,781 annotated agents depicting people in natural
settings. Emotions are labeled using the six Ek-
man categories, plus two additional positive states:
Peace and Excitement. For consistency, we remap
Peace to Neutral and Excitement to Happiness,

aligning HECO with the seven-category taxonomy
used in BESST.

EMOTIC (Kosti et al., 2019) dataset includes
23,571 images with 34,320 annotated people in ev-
eryday scenarios, annotated with multi-label emo-
tion tags drawn from a fine-grained set of 26 cate-
gories. To enable consistent, cross-dataset compar-
isons, we map EMOTIC’s labels to the same seven-
category Ekman-based scheme used for BESST
and HECO. This normalization ensures a more eq-
uitable, “apples-to-apples” evaluation of LVLM
performance across datasets. The mapping de-
tails and justification are provided in Table 5, Ap-
pendix D. For our experiments, we further simplify
the evaluation by selecting the dominant emotion
per instance, determined by matching gold body
bounding boxes and masked face coordinates with
high confidence overlap.

3.2 Framework Overview

The ELENA framework is illustrated in Figure 2.
The pipeline begins with an input image (either
masked or unmasked) that an LVLM processes
with a text input grounded in the definition of em-
bodied emotion. The input comprises a request for
a set of varied features related to the person’s emo-
tional state and body parts, for the output (Table
1). In this study, we focus on a salient person—
the most notable individual in each image. The
model predicts a single label, thereby maintaining
uniformity across all images. However, the frame-
work can be modified for multi-label output. The

23482



complete response structure is presented in Table
1. Our framework can be formalized as:

ELENA : I → (L,Ee, Ei, N,B) (1)

where I represents the input image, L ∈ {Hap-
piness, Sadness, Anger, Fear, Disgust, Surprise,
Neutral} is the predicted emotion label following
Ekman’s taxonomy, Ee denotes embodied descrip-
tions focusing on visible body parts, Ei represents
implicit descriptions capturing internal sensations,
and B contains the set of extracted body parts. N is
the narrative that we instruct the model to produce,
weaving these embodied cues with scene context.

Output Description

Label L Single emotion (Ekman’s six
labels + Neutral).

Explicit Ee Visible body parts and their
emotional expression.

Implicit Ei Internal sensations and body
parts which are not visible.

Narrative N Description necessarily con-
taining the body part influenc-
ing the emotion. Involves an
emotional undertone and scene
setting.

Body Parts B Identifiable body parts in-
volved in emotion expression.

Table 1: Components of structured textual output from
LVLMs.

We evaluated a suite of proprietary and open-
source models, notably Gemini 2.5 Flash (Gemini
Team, 2025) and Gemma-3-12B (Gemma Team,
2025) and Llama-3.2-11B/90B (Grattafiori et al.,
2024) respectively. Due to computational con-
straints, we only tested Llama’s 90B version on
the smaller dataset (BESST, Appendix C). Each
narrative follows the definitions in Table 1, with
models free to use varied vocabulary within the
structural constraints.

For each image, we also query the model to out-
put one of the six corresponding Ekman emotions
that match the embodied emotion displayed. If the
image does not elicit a clear display of emotion,
the model will predict the Neutral label. For nar-
ratives, more emphasis was placed on describing
body-related expressions without explicitly men-
tioning the emotion to steer the model away from

Figure 3: Example of ELENA compared to generic
emotion response. Green highlights correctly predicted
labels, while red indicates an incorrect prediction. The
red box represents the coordinates of the person’s body;
the green bounding box is generated using YuNet. The
sample is from the EMOTIC dataset.

simply restating the emotion. Figure 3 shows an
example response from the ELENA compared to a
naive prompt. While the generic prompt captures
the broad context of the image, it fails to isolate
the fine-grained embodied expressions and lacks
specificity in its description.

In the narrative response, for the context, we
use words like “scene” or “story” to encourage a
portrayal-style explanation, allowing the model to
come up with the reasoning as to what event and
bodily reaction occurred that made the person de-
pict the emotion expressed in the images. Finally,
we explicitly request a list of physical features or
body parts; this ensures that even if the descrip-
tions and narrative already contain them, the model
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isolates them for downstream analysis. Doing this
helps us in reliably extracting which body parts the
model focuses on for extended statistical compar-
isons. As a final note, ELENA employs a single,
unified prompt that generates emotion labels, de-
scriptions, and narratives simultaneously in one
forward pass, ensuring a coherent and jointly rea-
soned output. The general template for the prompts
is available in Appendix B.

3.3 Face Masking

It is essential to consider other bodily expressions
than the facial region as stimuli for emotion recog-
nition, which is also the central belief of this paper.
Furthermore, in many real-world situations, facial
expressions may not be fully visible or recogniz-
able, making it challenging to interpret emotions.
Therefore, we implement a face masking approach
to evaluate whether LVLMs can effectively identify
emotions from bodily expressions and to assess the
robustness of our pipeline.

The masking procedure is formalized as:

Im(x, y) =

{
M, if (x, y) ∈ ⋃

f∈F Rf

Io(x, y), otherwise

The above equation depicts our facial masking
procedure, where Im(x, y) represents the pixel
value at coordinates (x, y) in the masked image,
Io(x, y) represents the original pixel value before
masking, and M is the mask color. The set F con-
tains all faces detected by YuNet (Wu et al., 2023),
while Rf denotes the region of the facial area. For
more details on the masking framework, refer to
Appendix E. We opted for complete rather than
partial face masking to create a more rigorous test
of embodied emotion recognition, ensuring models
cannot rely on any residual facial cues. Further-
more, partial masking of specific features, such as
the eyes or mouth, is often unreliable in datasets
like HECO and EMOTIC, which feature many non-
frontal views and distant shots.

3.4 Attention Visualization

To investigate which regions of input images the
LVLMs prioritize when processing emotion-related
queries, we conducted an attention analysis using
Llama-3.2-11B-Vision. We selected this model due
to its open-weight architecture, computational ef-
ficiency, and widespread adoption in the research
community, which promotes reproducibility. We
used a bare-bone prompt (“What is the emotion

displayed in the image?”) and ran a forward pass
through the model to extract attention patterns from
the cross-attention layers. We then computed atten-
tion heatmaps by averaging attention scores across
all tokens within each cross-attention layer. To
ensure computational tractability and avoid image
tiling artifacts, we resized all images to the en-
coder’s default resolution of 560×560 pixels. From
each layer, we extract the first 1,600 visual tokens
corresponding to the first image tile, where each
token represented a 14×14 pixel patch of the input
image. We then generated layer-specific attention
heatmaps by computing the average attention score
across all attention heads. These scores are finally
mapped back to their corresponding spatial loca-
tions in the original image to create interpretable
visualizations of the model’s attention patterns.

4 Results and Analysis

With our methodology in place for eliciting embod-
ied emotional indicators from LVLMs, we move
to the experimental analysis and results. We eval-
uate ELENA’s performance through two key com-
parisons: first, we assess how our framework per-
forms against baseline naive prompts across differ-
ent models and datasets, and second, we examine
how face masking affects the model behavior and
attention patterns in embodied emotion recognition
tasks. We conclude with attention visualization
analysis, breakdowns of emotion-specific perfor-
mance and comparison to a modular baseline.

4.1 ELENA vs. Naive Prompt Performance

We compare ELENA’s structured prompting ap-
proach against a baseline naive prompt to assess
whether explicitly incorporating embodied emo-
tion definitions enhances model recognition capa-
bilities. Table 2 presents the performance results
across three datasets for multiple LVLMs. ELENA
consistently outperforms naive prompts in twelve
out of fifteen experimental configurations, with the
remaining three showing only narrow performance
gaps. Among the evaluated models, Gemini 2.5
Flash achieves the highest F1 scores across most
datasets and conditions, demonstrating robust over-
all performance. The Gemma and Llama models
follow closely, yielding comparable results. Fur-
ther analysis on the BESST dataset (Appendix C)
confirms that Gemini 2.5 Flash surpasses even the
larger Llama-3.2-90B model.

The performance improvements vary depending
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Dataset Model Naive Prompt ELENA

Precision Recall F1 Precision Recall F1

HECONormal

Gemini 2.5 Flash 38.4 30.8 30.6 45.8 31.7 34.5↑3.9
Llama-3.2-11B 33.2 26.6 26.2 37.1 29.3 29.5↑3.3
Gemma-3-12B 37.0 31.7 30.6 38.4 30.1 30.1↓0.5

HECOMasked

Gemini 2.5 Flash 27.4 19.2 16.9 33.6 34.7 31.5↑14.6
Llama-3.2-11B 26.5 17.7 14.4 30.9 24.9 22.5↑8.1
Gemma-3-12B 29.2 18.2 14.3 32.1 26.2 23.6 ↑9.3

EMOTICNormal

Gemini 2.5 Flash 43.9 25.1 28.6 42.8 22.6 27.7↓0.9
Llama-3.2-11B 44.2 20.0 23.3 33.0 21.0 21.5↓1.8
Gemma-3-12B 45.7 23.4 26.5 41.3 22.2 28.0 ↑1.5

EMOTICMasked

Gemini 2.5 Flash 28.0 15.9 15.6 41.1 20.2 26.0↑10.4
Llama-3.2-11B 35.9 16.1 17.1 32.6 17.5 20.7↑3.6
Gemma-3-12B 39.3 17.8 17.2 39.1 19.7 24.8↑7.6

BESSTMasked

Gemini 2.5 Flash 64.2 55.7 51.9 64.8 58.0 52.7↑0.8
Llama-3.2-11B 36.8 30.2 22.2 48.3 44.9 37.8↑15.6
Gemma-3-12B 63.6 39.0 32.3 55.5 46.9 41.6↑9.3

Table 2: Performance comparison across datasets and prompt types. Values are presented as macro-averaged (%).
Subscripts denote image types: Normal for unmasked images and Masked for images with faces masked. ↑ indicates
absolute F1 performance increase with EE prompt compared to Naive prompt, while ↓ indicates absolute decrease.

on the characteristics of the dataset. On HECO,
ELENA shows consistent gains ranging from 3.3
to 14.6 F1 points depending on the model and
masking condition. For EMOTIC, results are more
mixed, with slight performance drops in some
unmasked scenarios, which we attribute to the
dataset’s rich contextual cues and multiple-person
scenarios that can interfere with focused embod-
ied emotion analysis. On BESST, improvements
are substantial, with ELENA providing up to 15.6
F1 point gains. These results demonstrate that
structured prompting effectively guides LVLMs
toward embodied emotion recognition by direct-
ing attention to bodily expressions rather than re-
lying solely on facial features or contextual cues.
The framework’s effectiveness varies with dataset
quality and image complexity, but it consistently
provides meaningful improvements over generic
emotion recognition approaches.
Takeaway: ELENA consistently outperforms
naive emotion recognition prompts across multi-
ple models and datasets, with performance gains
ranging from modest (3-4 F1 points) to substantial
(15+ F1 points).

4.2 Impact of Face Masking on Embodied
Emotion Recognition

To evaluate ELENA’s ability to recognize emotions
from bodily expressions independent of facial indi-

cators, we implemented a systematic face masking
technique using the YuNet detection model, fol-
lowed by complete occlusion of facial regions. This
analysis reveals how models adapt when they rely
exclusively on embodied indicators. We essentially
duplicate the experiment for each model, with the
only change being that the input image now has the
face region obscured. We ensure that the prompt
remains the same, except that it specifies not to
focus on the facial area or the masked region.

We report that performance improvements un-
der masking conditions are most pronounced, with
ELENA achieving up to 15.6 F1-point gains over
naive prompts (indicated by blue up arrows in the
masked sections in Table 2). This suggests that
while LVLMs struggle with autonomous attention
redirection when faces are masked, structured guid-
ance can effectively compensate for this limitation.
From analyzing the performance on masked im-
ages, we identify two key insights. First, ELENA
succeeds in shifting focus to mention body parts
apart from the facial region. Table 3 depicts a
substantial shift in highlighting body parts from
various anatomical areas of the body. The model’s
description shifts to focus on the body’s limbs, with
a primary concentration on the hands, arms, shoul-
ders, and legs. It also sees a percentage increase
in the body’s torso. Although not in the top ten,
narratives still mention facial parts, suggesting that
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Normal Images % Face-Masked Images %

eye 14.45 hand 21.82
mouth 9.66 arm 18.62
heart 9.29 shoulder 11.76
hand 9.15 heart 5.87
chest 5.60 chest 4.79
arm 3.95 torso 4.49
shoulder 3.92 leg 4.24
face 3.36 finger 4.16
lip 2.98 body 3.60
head 2.98 head 1.80

Anatomical Regions

Head/Face 40.63 Limbs 50.18
Limbs 17.14 Torso 22.98
Internal/Conceptual 13.88 Other 14.07
Torso 13.21 Internal/Conceptual 8.05
Other 15.13 Head/Face 4.71

Table 3: Top ten body part mentions (%) by ELENA
on face masked versus unmasked images. The lower
section categorizes all mentions of body parts. The
distribution is based on the HECO image dataset. Bold
highlights dramatic shifts.

models are biased in concentrating on facial fea-
tures. Other reasons, discovered through manual
inspection, included issues with the YuNet model,
specifically the failure to mask faces when a scene
is filled with a crowd with averted bodies. Another
observation is that with the faces masked, models
lean towards more fine-grained details surrounding
the context.
Second, multiple images are not left with ample
context after masking. This can be directly at-
tributed to the images in the dataset, particularly
those from the EMOTIC and HECO datasets. Im-
ages might be captured in such a way that the fa-
cial region is the center of interpretation for the
model. Other body parts were rarely visible for
the ELENA framework to be effective. Once the
face is masked, the image produces very ambigu-
ous and non-coherent narratives, which in turn lead
to incorrect label predictions. This highlights a ma-
jor issue in prevalent emotion-recognition image
datasets and further underscores the need for a new,
qualitatively filtered dataset. Further arguments on
this result are discussed in Appendix D.
Takeaway: Face masking reveals that ELENA suc-
cessfully redirects model attention from facial fea-
tures to alternative body parts, thus achieving better
performance than baselines.

4.3 Attention Map Analysis

Through analysis of the attention maps obtained,
we identified distinct patterns in Llama-3.2-11B-

Figure 4: Visualization of Llama-3.2-11B’s cross-
attention layer 13 for HECO images.
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Figure 5: Per-Category Analysis of each Emotion Label.
Results are from the Gemini-2.5-Flash Model on the
HECO dataset.

Vision’s behavior during emotion recognition tasks.
The model exhibits a pronounced bias toward facial
features, particularly the mouth region, in cross-
attention layers 13-28 when processing unmasked
images. When presented with masked faces, the
model demonstrates two problematic response pat-
terns, neither of which constitutes effective adap-
tation. As illustrated in Figure 4, the model either
continues to direct attention toward the masked fa-
cial region and its immediate surroundings, essen-
tially attempting to extract information from areas
that no longer provide meaningful emotional cues,
or it diverts attention away from the face entirely
without increasing focus on alternative emotional
indicators such as body language. Crucially, the
model’s attention to non-facial regions remains at
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Figure 6: Failure cases of predicting the label Disgust
in both unmasked and masked conditions. Examples are
from the HECO dataset.

baseline levels, comparable to those in unmasked
scenarios, indicating a failure to recognize and com-
pensate for the loss of facial information. This be-
havior could explain the performance degradation
observed in masked images, as shown in Table 2.

The findings indicate a fundamental bias in the
employed model’s attention mechanism: the model
does not redirect its focus to non-facial emotional
indicators when primary facial indicators are un-
available. Rather than attending to alternative infor-
mation sources such as body posture or gesture, the
model exhibits erratic attention patterns that com-
promise its effectiveness in masked scenarios. This
limitation warrants further investigation, as emo-
tion is fundamentally grounded in the whole body
through embodied emotion, extending beyond fa-
cial expressions alone. Models that rely predomi-
nantly on facial features may demonstrate only a
superficial understanding of human emotional ex-
pression, suggesting a critical gap in current vision-
language model architectures that future research
should address to achieve more robust emotion
recognition capabilities.
Takeaway: The employed LVLM (Llama-3.2-11B)
exhibits fundamental attention adaptation failure,
maintaining facial bias even when faces are masked,
and failing to compensate by increasing focus on in-
formative body regions, revealing an architectural
limitation that explains the performance degrada-
tion in embodied emotion recognition.

4.4 Emotion-Specific Performance Analysis

Figure 5 shows the model’s performance for each
emotion category and identifies substantial dis-
parities between them. Happiness achieves near-
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Figure 7: Heatmap visualization of true versus predicted
labels of the BESST dataset. Results are from Gemini-
2.5-Flash.

ceiling scores, reaching approximately 90% for the
best model on the HECO dataset. This high accu-
racy can be attributed primarily to the distinctive vi-
sual cues associated with Happiness—particularly
smiling faces and highly expressive body language.

In contrast, the recognition of Disgust remains
notably problematic, with frequent misclassifica-
tions. An example is shown in Figure 6. Most
of the labels get majorly misclassified into three
other labels: Fear, Sadness, and Surprise, along
with the Neutral tag, as evident in Figure 7. The
difficulty arises due to definitional ambiguity and
subtlety in visual representation, making disgust
inherently challenging for models to identify reli-
ably. Another occurrence we came across was the
model’s refusal to provide an answer to the input
query where the gold annotation for the image was
the Disgust label. We can attribute this partially to
the nature of the image; however, it could also be
due to the sensitivity of the emotion, which triggers
the safety measures of LVLMs. Therefore, this is-
sue is more likely due to the strictness of content
filtering rather than a problem with the model’s un-
derstanding or inappropriate images. Furthermore,
this emotion is significantly underrepresented in the
datasets, which exacerbates the difficulty in classi-
fication by providing insufficient training examples
for equitable learning.

Additionally, face masking notably increases the
prediction frequency of the Neutral category. This
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Method Precision Recall F1

LLaVA + Fine-tuned BERT 22.4 21.5 20.8
ELENA 45.8 31.7 34.5

Table 4: Performance comparison of the image-
captioning-plus-classifier (LLaVA + BERT) baseline
to Gemini 2.5 Flash on the HECO dataset.

phenomenon occurs when substantial information
loss results from the obscuring of informative facial
expressions, leaving the models dependent solely
on body posture cues. Given that body postures are
typically less distinctive and more ambiguous, the
models default to predicting Neutral in uncertain
cases, thus reducing recall for expressive emotional
categories. The predicted emotion labels are also
scrutinized using a dimensional valence-arousal-
dominance (VAD) model. The analysis regarding
the VAD scores is shown in Appendix A.
Takeaway: Our analysis reveals significant perfor-
mance disparities across emotions; models excel
at identifying specific labels, e.g., Happiness, but
consistently misclassify others, notably, Disgust,
due to its visual subtlety in the bodily cues and the
nature of definitional ambiguity in images.

4.5 Comparison with Modular Baselines

To further contextualize ELENA’s performance,
we compare it with a supervised modular design.
We first apply a widely-used image captioning
model, LLaVA-1.5-7b (Liu et al., 2024a), to get the
caption of an image, then fine-tune a BERT-base
model (Devlin et al., 2019) to predict the emotion
label. Here we experiment on the HECO dataset.
The choice of this dataset stems from our manual
inspection, as it provides a better representation of
’emotion-centric’ images in a natural setting. This
experiment was designed to assess whether stan-
dard captioning can retain the subtle, context-rich
bodily expressions central to our task.

Our framework shows substantial improvement
compared to the LLaVA with a fine-tuned BERT
model. The performance gap reveals that embod-
ied emotion information is not sufficiently captured
while captioning. For instance, while LLaVA might
generate a generic caption like “A person standing
alone in a field, lost in thought”, ELENA’s frame-
work would further capture specific embodied indi-
cators, such as “shoulders slumped with head tilted
down, suggesting dejection.” This analysis reveals
that standard image captions often fail to convey
the subtle bodily expressions that are crucial to the

embodied emotion task for affective experiences.

5 Conclusion

In this work, we introduced ELENA, a framework
that employs LVLMs in a zero-shot setting to gener-
ate structured narratives that anatomize embodied
emotions. Our experiments reveal that ELENA
yields credible improvements over naive prompts,
demonstrating the models’ ability to adapt in both
unmasked and masked settings despite information
loss. Our experiments showed that the Gemini 2.5
Flash model generally outperformed other models
across most datasets. However, labels like Disgust
proved particularly challenging to identify from
bodily expressions. The attention analysis provides
a diagnosis by documenting persistent facial bias.
It establishes an essential empirical foundation that
enables the community to develop targeted solu-
tions, such as fine-tuning with redirected attention
mechanisms, for accurate anatomical understand-
ing of embodied emotions.

Limitations

The proposed work recognizes some of the barri-
ers it encounters in its formation. First, masking
the face leaves little to no information in the im-
age, primarily due to the nature of the image. In
such cases, the model is forced to output Neutral
as a response, and this issue extends to the cur-
rent image datasets, which may not elicit a clear
emotional reaction from the person(s) involved,
subsequently leading to incorrect analysis, even in
human annotations. Second, a direct comparison
between ELENA narratives and the CHEER dataset
(Zhuang et al., 2024; Duong et al., 2025) would
be valuable. However, differences in style make
alignment difficult: ELENA outputs are longer and
encompass multiple body parts, incorporating a
significant amount of context, whereas CHEER
sentences are more concise. Therefore, individual
descriptions from ELENA need to be broken down
into aspect categories to facilitate further analy-
sis of their impact. Third, we believe ELENA-
generated narratives could benefit downstream ap-
plications such as emotion recognition, conversa-
tional agents, or human-robot interaction. We view
this as an important direction for future work.
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A VAD Score Interpretation

Apart from narrative description and emotion la-
bels, we also asked the model to provide us with
the valence, arousal, and dominance scores. These
scores are typically part of many emotion recogni-
tion analyses and, therefore, are further explored in
detail. Figure 5 reveals distinctive patterns across
the seven basic emotions. The Happiness label
emerges as the highest Valence score emotion (M
= 8.51; where M is the mean value of this label),
exhibiting substantially higher ratings than all other
emotions, which cluster below the midpoint except
for surprise (M = 5.22) and neutral states (M =
5.04). Regarding arousal, Fear, Anger, and Sur-
prise demonstrate the highest activation levels (M
= 7.38 and 7.32, respectively), whereas neutral ex-
pressions predictably show reduced arousal (M =
3.51). This makes sense because the Neutral la-
bel typically applies to images where there is no
body enactment or emotion-intensive activity. In
dominance scores, Happiness maintains a relatively
high dominance (M = 6.28), while Fear exhibits
markedly low dominance (M = 3.08), reflecting the
characteristic vulnerability of the label.
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Figure 8: Valence, Arousal, and Dominance score rep-
resentation associated with each emotion label. Results
are from the HECO dataset.

B Prompts Usage

We employed two prompting strategies in our ex-
periments. First, a naive prompt (Figure 9) asks
the models to classify the emotion displayed in
the image using a fixed label set, with minimal
guidance and no multi-perspective interpretation.

Figure 9: Naive prompt for masked images.

Figure 10: System prompt.

Importantly, it instructed the model to ignore any
person whose face was not masked and to output
only a single emotion label in JSON format. This
setting reflects a constrained classification setup
that lacks deeper narrative or reasoning compo-
nents. In contrast, our primary prompt template
employed a structured prompting scheme, combin-
ing a system message with a detailed user prompt
(see Figures 10 and 11). The system prompt de-
fines the task as embodied emotion recognition and
frames the model as an expert in this domain, em-
phasizing bodily movements as primary indicators
of emotion.

The user prompt specifies the expected out-
put format and fields, guiding the model to pro-
duce a multi-perspective emotional interpretation
grounded in bodily expression. Responses were
constrained to strict JSON format, enabling con-
sistent parsing and analysis. All prompts were ap-
plied uniformly across images and models without
post-hoc adjustment. This ensured comparability
between outputs and minimized linguistic variance
introduced by prompt phrasing. The prompt design
plays a central role in eliciting structured, inter-
pretable outputs from vision-language models in
our study.

B.1 Emotion Mapping and Reasoning
Analysis

We adopt the six basic Ekman emotions—
Happiness, Sadness, Anger, Fear, Disgust, and
Surprise—along with a Neutral category, as our
primary label set. This choice strikes a balance
between interpretability and coverage, enabling
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Figure 11: User prompt.

standardized evaluation while remaining expres-
sive enough to capture a wide range of embodied
affect.

This unified 7-category taxonomy was essential
for enabling a consistent cross-dataset analysis, as
our other datasets were natively annotated with sim-
ilar categories. Consequently, a direct comparison
using mean Average Precision (mAP) against prior
EMOTIC benchmarks would be incongruous, as
our framework evaluates a fundamentally differ-
ent task grounded in embodied theory rather than
multi-label classification on the 26 categories.

To justify this abstraction, we map each basic
emotion to a broader set of fine-grained emotion
categories from the EMOTIC dataset (Table 5). For
example, the Sadness category includes not only
sadness itself but also states such as fatigue, suffer-
ing, and yearning. Similarly, Happiness subsumes
affective expressions like affection, engagement,
and pleasure.

This mapping serves two key purposes:

• It enables aggregation of subtle and diverse
affective cues under a shared emotional um-
brella, facilitating more robust analysis of
model predictions.

• It provides a reasoning structure for validat-
ing model outputs against grounded emotional
expressions.

While models often use varied language to de-
scribe emotion, our mapping enables alignment
between expressive counterparts and a more sim-
plified label assignment.

EMOTIC Emotions Ekman Emotion
Affection Happiness
Engagement
Excitement
Happiness
Pleasure
Disconnection Sadness
Embarrassment
Fatigue
Pain
Sadness
Sensitivity
Suffering
Yearning
Aversion Disgust
Disapproval
Disquietment Fear
Fear
Anger Anger
Annoyance
Anticipation Neutral
Confidence
Doubt/Confusion
Esteem
Peace
Surprise Surprise

Table 5: Mapping of EMOTIC emotions to Ekman’s six
with a Neutral category.

B.2 Dataset Quality Challenges for Embodied
Emotion Recognition

While existing emotion recognition datasets, such
as EMOTIC, provide bounding box annotations for
people in images, many instances present signif-
icant challenges for embodied emotion analysis,
as illustrated in Figure 12. Our manual analysis
reveals that a substantial proportion of images in
current emotion recognition datasets are inherently
unsuitable for embodied emotion recognition tasks,
and sometimes for general emotion recognition too,
despite containing valid emotion annotations for
general affective computing applications.

The fundamental issue stems from the concep-
tual difference between contextual emotion recog-
nition and embodied emotion analysis. Embodied
emotion recognition specifically requires clear, ob-
servable bodily expressions such as posture, ges-
ture, limb positioning, and torso orientation. Many
images in datasets contain subjects where these
crucial embodied indicators are either absent, ob-
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Figure 12: Representative examples from the EMOTIC dataset illustrating challenges for embodied emotion
recognition. Many images contain crowded places, distant subjects, ambiguous emotional contexts, or insufficient
visibility of bodily expressions, making reliable analysis difficult, even with provided bounding box annotations.

scured, or ambiguous, making reliable analysis
difficult even with sophisticated prompting frame-
works like ELENA.

Consider the common scenario where multiple
individuals appear in a single image, each with
varying emotional states. While bounding box
annotations attempt to isolate the target subject,
the presence of other individuals with potentially
conflicting emotional expressions creates visual
noise that can mislead the LVLMs. This problem
is particularly acute in crowded scenes or social
gatherings where the emotional dynamics are com-
plex and the target person’s individual embodied
expression becomes difficult to distinguish from
the collective group behavior. Distance and view-
ing angle present additional complications. Many
images capture subjects at distances where fine-
grained bodily details necessary for embodied emo-
tion recognition, such as hand positioning, shoulder
tension, or subtle postural shifts, are not visible at
sufficient resolution. Similarly, non-frontal views,
while valuable for general emotion recognition, of-
ten obscure key body parts that serve as primary
indicators in embodied emotion analysis. As our
experiments demonstrate, these limitations become
more pronounced when faces are masked, since the
model must rely entirely on these often-inadequate
bodily cues.

Perhaps most critically, we observe a systematic
bias toward contextually inferred emotions rather
than expressions grounded in observable bodily
manifestations. For instance, an image might show
a person labeled as Sad based on the situational
context (e.g., standing alone in the rain), yet their
actual body posture may not exhibit the character-
istic embodied markers of sadness. This discon-
nect between contextual emotion labels and embod-
ied emotional expressions creates a fundamental

training-evaluation mismatch for models designed
to recognize emotions through bodily cues.

The implications extend beyond dataset quality
to model evaluation. When a significant portion of
the evaluation data contains ambiguous or unsuit-
able examples, performance metrics become unre-
liable indicators of the actual model’s capability.
Models may appear to perform poorly on embod-
ied emotion recognition, not due to architectural
limitations, but because the evaluation framework
includes many instances where even human anno-
tators would struggle to identify clear embodied
emotional indicators. This challenge necessitates
either more stringent data filtering protocols or the
development of specialized datasets explicitly de-
signed for recognizing embodied emotions.

C Interpreting LVLM Emotion
Predictions on BESST

BESST consists of staged emotional expressions
in controlled visual contexts, with each emotion
category enacted in both frontal and averted views
(Figure 13). To analyze how vision-language mod-
els interpret embodied emotion, we employ addi-
tional models, namely Llama-90B-Vision, Janus-
7B (Chen et al., 2025), and Qwen 2.5 (Wang et al.,
2024a), to compare their performance with the pre-
vious best results by Gemini-2.5-Flash Preview on
the BESST dataset. We also tested several other
LVLMs on BESST. Despite identical prompting
structures, the models diverged in their calibration
of embodied emotion. As shown in Table 6, Gem-
ini 2.5 Flash outperforms all other models tested
on BESST, achieving the highest F1 score (52.7),
followed by Llama-90B (49.3). These differences
are consistent with qualitative trends in prediction
diversity, suggesting that Gemini’s more extensive
pretraining and model capacity may support greater
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Figure 13: Example from the Bochum Emotional Stim-
ulus Set (BESST), which depicts enactment of defined
emotions in full frontal and averted view.
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Figure 14: Radar plot of each emotion label predicted
by Llama-90B and Gemini 2.5 Flash Preview model on
the BESST dataset.

emotion generalization in embodied contexts. Fig-
ure 14 visualizes the distribution of predicted emo-
tion labels across the best two models. Both models
heavily favored neutral and sadness-related predic-
tions, with notably lower frequencies for anger,
disgust, and fear. This may indicate a model-level
tendency to downplay high-arousal or negative va-
lence expressions, particularly when bodily cues
are ambiguous. Notably, Gemini 2.5 Flash showed
a broader emotional spread, selecting anger and sur-
prise more frequently than Llama-90B, suggesting
heightened sensitivity to expressive gestures.

Model Acc Prec Rec F1

Gemma-3-12B 46.9 55.5 46.9 41.6
Llama-3.2-11B 44.8 48.3 44.9 37.8
Llama-3.2-90B 53.4 65.81 53.5 49.3
Gemini-2.5-Flash 57.9 64.8 58.0 52.7
Qwen2.5-VL-7B 42.7 41.2 42.7 42.4
Janus-Pro-7B 28.3 53.7 28.2 28.7

Table 6: Performance comparison of large vision-
language models on the BESST dataset. Scores are
macro-averaged.

D Appendix: Emotion Mapping and
Dataset Quality Analysis

We also implement a two-stage pipeline, i.e., de-
scription generation followed by emotion parsing.
We do so by first generating the narrative descrip-
tions based on the exact definition, without any
interpretation of the image involved. In the second
step, we feed the narratives as input to perform the
emotion classification based solely on the text de-
scriptions. This approach separates the perceptual
description task from the emotion understanding
task. As BESST contains images of posed emo-
tions in a controlled, lab-based environment with
faces already masked, it provides an ideal setting
for a clean, controlled test. This allowed us to
isolate the core cognitive task of interpreting un-
ambiguous bodily cues, testing the hypothesis of
whether unified or sequential processing is more
effective without the confounding variables of com-
plex backgrounds or “in-the-wild” ambiguity in
static images.
As seen in Table 7, ELENA achieves notably higher
prediction metrics than the two-stage pipeline, al-
though the latter suffers less from rare classes being
less predicted. However, the results demonstrate
that unified structured generation outperforms se-
quential processing. We believe this is because
the single-prompt approach enables the creation
of more coherent predictions, as the model jointly
considers embodied emotion definitions while gen-
erating both narrative descriptions and emotion la-
bels.

E Appendix: YuNet Face-Masking
Experiment Setup

For this task, we utilize the quantized version of
YuNet (Wu et al., 2023) to automate face mask-
ing in images. YuNet is a fast and accurate
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Method Precision Recall F1

Two-Step Baseline 54.2 55.1 51.0
ELENA 64.8 58.0 52.7

Table 7: Performance comparison with the two-
step (description-then-parsing) baseline on the BESST
dataset. All metrics are macro-averaged (%).

deep learning-based face detector available for use
through OpenCV. We used the block-quantized ver-
sion in int-8 precision, as it has nearly the same per-
formance as its standard release. It outputs bound-
ing box coordinates and confidence scores for the
detected faces. We then extract the bounding boxes
and subsequently replace the pixel data within the
region with a uniform mask color, which conceals
the detected faces. We set the parameters to detect
up to 20 faces, although such images occur rarely.
The confidence threshold is taken to be balanced
with a value of 0.5.

In short, we duplicate the dataset that masks out
every person’s face. We conducted this study to
investigate the following LVLM characteristic: a
model that relies heavily on facial features may
exhibit a significant drop in metrics and produce
less confident or shorter descriptions when the face
is masked. On the other hand, a model that is
more body-aware might observe a smaller drop in
performance.
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