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Abstract

Deep learning models trained on extensive
Electronic Health Records (EHR) data have
achieved high accuracy in diagnosis predic-
tion, offering the potential to assist clini-
cians in decision-making and treatment plan-
ning. However, these models lack two cru-
cial features that clinicians highly value: in-
terpretability and interactivity. The “black-
box” nature of these models makes it diffi-
cult for clinicians to understand the reason-
ing behind predictions, limiting their ability
to make informed decisions. Additionally,
the absence of interactive mechanisms pre-
vents clinicians from incorporating their own
knowledge and experience into the decision-
making process. To address these limitations,
we propose II-KEA, a knowledge-enhanced
agent-driven causal discovery framework that
integrates personalized knowledge databases
and agentic LLMs. II-KEA enhances in-
terpretability through explicit reasoning and
causal analysis, while also improving inter-
activity by allowing clinicians to inject their
knowledge and experience through customized
knowledge bases and prompts. II-KEA is
evaluated on both MIMIC-III and MIMIC-
IV, demonstrating superior performance along
with enhanced interpretability and interactiv-
ity, as evidenced by its strong results from
extensive case studies. Our code is avail-
able at https://github.com/hanxiaoxuel 14/II-
KEA_HealthcareAgent.

1 Introduction

Accurate diagnosis prediction is crucial for improv-
ing clinical outcomes by enabling timely interven-
tions and optimizing treatment planning. In recent
years, the growing availability of Electronic Health
Records (EHR) (e.g., MIMIC datasets (Johnson
et al., 2016, 2023)) has provided valuable real-
world data, allowing researchers to develop more
advanced and complex deep learning models (Lu
et al., 2021, 2022; Poulain and Beheshti, 2024,
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Figure 1: Comparison between deep learning ap-
proaches and our approach.

Jiang et al., 2024; Hu et al., 2024) to uncover pre-
dictive patterns from a data science perspective.
These models often integrate domain knowledge of
medical concepts to identify intricate correlations
in disease progression and comorbidities, demon-
strating promising predictive performance. Despite
their success in prediction accuracy, these methods
have two key limitations:

* Lack of interpretability: deep learning models
inherently function as “black boxes”, offering
little transparency into the clinical reasoning be-
hind their predictions.

* Lack of interactivity: most models operate in
an end-to-end manner, limiting practitioner inter-
action with the system. This prevents users from
asking follow-up questions, customizing predic-
tion goals, or incorporating their own knowledge
and experience to refine predictions.

The lack of both interpretability and interactiv-
ity undermines trust and acceptance among health-
care professionals who depend on these predictions
for informed decision-making. In recent years,
Large Language Models (LLMs) have demon-
strated extensive knowledge, strong instruction-
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following capabilities, and impressive reasoning
abilities, offering promising solutions to address
these limitations. The development of agentic
LLMs (Wang et al., 2024; Kim et al., 2024; Zuo
et al., 2024) has further enhanced their flexibility
and capabilities through dynamic interactions with
the environment, tool utilization, and inter-agent
collaboration. These advancements hold great po-
tential for enabling clinicians to engage more ef-
fectively with predictive models, fostering greater
adaptability and user-driven refinement.

Inspired by these advancements, we propose
II-KEA, a knowledge-enhanced Agentic Causal
Discovery framework designed for Interpretable
and Interactive Diagnosis Prediction. II-KEA is a
multi-agent system comprising three LLM agents
namely Knowledge Synthesis Agent, Casual Dis-
covery Agent, and Decision-Making Agent collabo-
ratively, and is powered by both clinical dataset and
domain knowledge. Similar to other deep learning
approaches, II-KEA predicts medical diagnoses
by addressing the question: “What diseases is a pa-
tient likely to be diagnosed with given their past
diagnosis history?" However, unlike purely data-
driven methods, II-KEA approaches the problem
from a causal perspective, delving deeper into the
underlying mechanisms to answer: “What diseases
are likely to be caused by the conditions a patient
has already been diagnosed with?"—thus refram-
ing the task as a causal discovery problem. Recent
advances in Large Language Models (LLMs) have
demonstrated promising performance in causal dis-
covery, alleviating the need for complex, data-
centric, and resource-intensive traditional methods.
However, LLLMs often generate incorrect answers
when domain knowledge is insufficient. To address
this limitation, we enhance the causal discovery
process by integrating both knowledge-driven rea-
soning through Retrieval Augmented Generation
(RAG) and data-grounded inference, ensuring a
deeper contextual understanding and better align-
ment with real-world observations.

To this end, we emphasize that II-KEA is
clinician-friendly framework that ensures both in-
terpretability and interactivity.

e II-KEA is interpretable. The LLM agents
make II-KEA inherently interpretable by en-
abling the decision-making agent to provide de-
tailed explanations and reasoning behind its pre-
dictions. Additionally, II-KEA gains an extra
layer of interpretability through causal analy-
sis. The causal graph generated by the causal

discovery agent offers an intuitive and compre-

hensive representation of the causal mechanisms

between diseases, making it easier for users to
understand the underlying relationships.

* II-KEA is interactive. Clinicians can inter-
act with and customize the prediction process
through two pathways. First, the RAG feature of
II-KEA enables generalization by incorporating
external knowledge, allowing clinicians to conve-
niently provide the knowledge sources their own
or selected knowledge sources as the knowledge
database. Second, clinicians can interact with
the decision-making agent by specifying their
personal preferences, ensuring that predictions
are tailored to their specific needs.

We evaluate II-KEA on EHR datasets, including
MIMIC-HI and MIMIC-1V, demonstrating superior
performance along with enhanced interpretability
and interactivity, supported by extensive ablation
and case studies.

2 Methodology

We propose, II-KEA, a multi-agent system consist-
ing of three LLM-based agents working collabo-
ratively and is powered by both clinical datasets
and domain knowledge. II-KEA aims to uncover
causal relationships between diseases and predict
future medical diagnoses. In this section, we intro-
duce each LLM agent and knowledge module and
provide a summary of the overall framework.

2.1 Knowledge databases
2.1.1 Clinical datasets

We construct a clinical dataset using training
data from Electronic Health Records (EHR). Each
record contains diagnosis information for individ-
ual patients across multiple visits. This database
comprises two data frames: a Disease Transition
Probability Matrix and a Diagnosis Matrix.

Let D denote the complete set of diseases, and
‘P. denote the patient set from training data. The
Disease Transition Probability Matrix, denoted as
Ap e RIPIXIPI captures the probability of dis-
ease j occurring after disease ¢. The underlying
intuition is that temporal precedence is a necessary
but not sufficient condition for causality. Identify-
ing diseases that frequently follow a target disease
helps narrow down potential causal candidates. By
pre-selecting frequently co-occurring diseases, we
provide the LLLM agent with a shortlist of candi-
dates, reducing its workload when assessing causal
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Figure 2: An overview of II-KEA framework. It consists of three LLM-based agents working collaboratively and
is powered by both clinical datasets and domain knowledge. During inference, a patient’s diagnosis history is
processed to identify possible diseases. A Knowledge Synthesis Agent retrieves and summarizes relevant documents.
Then, a Causal Discovery Agent uncovers causal relationships using both external knowledge and observational
data, forming a causal graph. Finally, a Decision-Making Agent integrates all this information—along with optional
clinician input—to predict the diagnosis and provide explanations.

relationships, as we will discuss later. In construct-
ing this matrix, for each visit, we define disease B
as a successor of disease A if:

* Disease B appears in a patient’s next visit after

the visit in which disease A is diagnosed.

* Disease B appears in the same visit as disease A.
The second condition accounts for the fact that
patients may not visit clinicians frequently, mean-
ing that a succession disease and the target disease
could be diagnosed simultaneously.

Na b
Arla, b = - (1)
ZpEP Z ' H[a € ’Dl]
where
e 2 . . .
Nap =33 TlacDinb e Di'vbe DY),
pEPy =1
2)

and I[-] is the indicator function. Ar[a,b] is an
entry of A, representing the transition probability
between disease a and disease b. Py, denotes the
set of all patients in the training set, and D; rep-
resents the set of diseases diagnosed for patient p
during their i-th visit. Note that A 7 is not necessar-
ily symmetric, meaning that Ar[a,b] # Ar[b,a]

in general. The diagnosis matrix Ap € RIPer | Dl
records the occurrence of each disease for all pa-
tients. We consider the occurrence of disease a for
a patient to be 1 if the patient is has been diagnosed
with the disease in any revisits:

Aplp.al=1(ac | D)),

1€my

3)

we calculate the fitting score between the diagno-
sis matrix and the output causal graph to provide
feedback to the causal discovery agent, as we will
discuss in section 2.2.

2.1.2 Domain knowledge database

We construct a vector database powered by Chro-
maDB! as the source of external knowledge for
the Retrieval-Augmented Generation (RAG) of the
knowledge synthesis agent, as discussed in Section
2.2. The database can contain any domain knowl-
edge from different sources such as web pages, pub-
lished papers, or clinical notes. In this paper, we
scrape text from Wikipedia pages corresponding to
each disease listed in ICD-9. Each Wikipedia page
is segmented into sections such as “Overview”,
“Signs and Symptoms”, “Causes”, “Diagnosis”,

"https://pypi.org/project/chromadb/
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“Prevention”, “Treatment”, “Epidemiology”,
“History”, “Terminology”, and “Society and
Culture”. When creating the vector database, each
section is treated as an individual document, and
its key vector is generated by embedding the doc-
ument text using the pre-trained Sentence-BERT
model al1-MPNet-base-v2, which exhibits excep-
tional performance in capturing semantic similari-

ties between sentences.

2.2 Multi-agent Framework

The goal of II-KEA is to predict a patient’s fu-
ture diagnoses by conducting causal discovery on
their diagnosis history and identifying diseases that
are most likely caused by past conditions. How-
ever, directly asking an LLM agent to perform this
task across thousands of diseases would be com-
putationally expensive. Instead, we leverage a Dis-
ease Transition Probability Matrix, denoted as A7,
to select candidate diseases, acknowledging that
temporal precedence is a necessary condition for
causality. For a patient p, let DP denote the set
of diseases they have been diagnosed with in the
past. The set of candidate diseases S? that could
be caused by DP? is then obtained as:
SP ={b| Mla,b] > €, Yae D,} (4
We then provide both the diagnosis history
set D, and the candidate disease set C), to the
agents to determine which diseases are causally
linked. To ensure that the causal discovery pro-
cess is grounded in sufficient domain knowledge,
a straightforward approach would be to query a
vector database separately for each disease in D,
and C), and send the retrieved text to the causal
discovery agent. However, this approach has two
major drawbacks: 1) Independently querying each
disease focuses on individual diseases rather than
the relationships between them, failing to retrieve
information most relevant to causal links. 2) The
retrieved documents may contain redundant infor-
mation, be excessively long, and exceed the pro-
cessing capacity of LLMs. To address these issues,
we develop a Knowledge Synthesis Agent.
Knowledge Synthesis Agent, Aypowledge- The
role of Aynowledge is to generate high-quality contex-
tual information for the causal discovery process.
Its generation process consists of two steps. In the
first step, the agent is provided with the database
metadata, the patient’s diagnosis history D), and
the candidate disease set C),. It is responsible for

generating a query text to retrieve relevant infor-

mation from the database. This query text should

effectively summarize D, and C}, while being tai-
lored to the specific database based on its meta-
data, which defines its characteristics and content.

We then encode the query text using the same pre-

trained Sentence-BERT model and retrieve the &

most relevant documents. In the second step, A

performs reasoning-in-documents, refining the re-

trieved information by removing redundancies and
generating a concise summary. These summarized
documents are then stored for use by the causal
discovery agent, enabling a Retrieval-Augmented

Generalization (RAG) approach. We summarize

the workflow of the Ayjowledge in Algorithm 1.
Causal Discovery Agent, Acausal- The role of

Acausal 18 to identify potential causal relationships

among a set of diseases. We provide it with the

patient’s diagnosis history set D), and the candidate
disease set C), as a whole, along with the summa-
rized external knowledge generated by Ayqowledge-

We then adapt the iterative causal discovery pro-

cedure proposed in (Abdulaal et al., 2024):

1. Hypothesis generation. Given the summarized
external knowledge and the empty graph G,
which consists of all entities in D), and C), with
no initial relations, the A¢aysa LLM generates an
initial causal graph as a directed acyclic graph
(DAG), Gi_,.

2. Model fitting. At each iteration ¢, we fit the
causal model using a data-driven approach with
real-world observations. Specifically, we mea-
sure the fitting score as the log-likelihood, [,
of the diagnosis matrix A p under the current
model G;.

=Y Y logP(X}|{X}|bePa(a)})
pG'Ptr a€D

)

where Pa(a) denotes the parent diseases of a in
G;,and X7 € {0,1} represents the observation
of disease a in patient p.

3. Post-processing. We update the memory M; to
store the causal graph and the fitting score from
the previous and current time steps, including
My, M;_1, 1, and ;1. This memory is retained
for the next step.

4. Hypothesis amendment. The LLM refines the
causal model based on the stored memory to
enhance its accuracy and better capture causal
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relationships. It then outputs the updated causal

graph as G, ;.

Steps 2 to 4 are repeated iteratively until a stop-
ping criterion is met, (when the change in G/ falls
below a predefined threshold or the number of itera-
tions exceeds a limit). We summarize the workflow
of the Causal Discovery Agent in Algorithm 2.

Decision-Making Agent, Aqn. The role of Agm
is to integrate and evaluate all available informa-
tion, including diagnosis history sets, summarized
knowledge, and the causal graph, to make the final
prediction on a patient’s diagnosis. Additionally,
clinicians or users can provide their preferences,
comments, or experiences to customize the pre-
diction. For example, they may indicate that they
are particularly concerned about kidney-related dis-
eases. The agent is then tasked with producing
the diagnosis list in a structured format along with
an explanation of the reasoning behind its deci-
sion. We summarize the workflow of the Decision-
Making Agent in Algorithm 3.

2.3 II-KEA Inference

II-KEA does not involve any training process but
requires data preprocessing. First, the EHR train-
ing dataset is processed to construct the Disease
Transition Probability Matrix A1 and the Diag-
nosis Matrix A p, as described in Section 2.1.1.
Additionally, a knowledge vector database I is pre-
pared following Section 2.1.2. Both matrices and
the database are stored for later inference. During
inference, for each patient, we collect their diag-
nosis history D), and apply the preprocessing steps
outlined in Section 2.1.1 to determine the candidate
disease set S,. The Knowledge Synthesis Agent
Alxnowledge then retrieves relevant documents from
' and summarizes them into T, Next, the
Causal Discovery Agent Acayusq iteratively uncov-
ers causal relationships within the expanded dis-
ease set D, U S, leveraging both external knowl-
edge from I',"""*"¥ and observational data from
A p. This process results in a causal graph G°. Fi-
nally, the Decision-Making Agent A4y, integrates
all available information, including the diagnosis
history D), candidate diseases S,, summarized
documents I'p,“""*"Y causal graph G*, and an op-
tional clinician-provided comment C. Using this
information, the model predicts the patient’s diag-
nosis and provides explanations for the decision.
We provide the overview of II-KEA in Figure 2,
the prompt details in Appendix C. The workflow
of its inference process is shown in Algorithm 4.

3 Experiments & Setup

3.1 Datasets

We utilize both the MIMIC-III (Johnson et al.,
2016) and MIMIC-IV (Johnson et al., 2023)
datasets for our experiments. MIMIC-III contains
7,493 patients with multiple visits (7' > 2) between
2001 and 2012, while MIMIC-IV includes 85,155
patients with multiple visits spanning from 2008 to
2019. Due to the overlapping time period between
the two datasets, we randomly sample 10,000 pa-
tients from MIMIC-IV between 2013 and 2019 to
ensure minimal redundancy. For the diagnosis pre-
diction task, the objective is to predict the medical
codes appearing in the subsequent admission.

To verify the efficiency of the proposed model,
MIMIC-III is split into training (6,000 patients),
validation (1,900 patients), and test (1,000 patients)
sets. Similarly, MIMIC-1V is divided into 8,000,
1,000, and 1,000 patients accordingly. The last
recorded visit of each patient serves as the predic-
tion target, while the preceding visits are used as
input features. Different from typical predictive
models, we feed II-KEA by admission records
of those patients in the training data for getting
co-occurrence matrix, and examine predictive per-
formance upon 500 patient cohort.

3.2 Tasks & Evaluation Metrics

Our experiments focus on the task of Diagnosis
Prediction, which aims to predict all medical codes
that will appear in a patient’s next admission. This
task is formulated as a multilabel classification
problem. To evaluate model performance, we use
weighted F; score (w-F1) and top-k recall (R@Fk)
as metrics, following prior work (Choi et al., 2016a;
Bai et al., 2018). The w-F} score is a weighted
sum of the F score across all classes, providing an
overall assessment of prediction quality. The R@k
metric represents the proportion of true-positive in-
stances among the top-k predictions relative to the
total number of positive samples, reflecting model
effectiveness in capturing relevant medical codes.

3.3 Baselines

To assess the performance of II-KEA, we compare
it against 8 machine learning (ML)-based EHR
models originally designed for diagnostic predic-
tion: (i) RNN/CNN-based models: RETAIN (Choi
et al., 2016b), Dipole (Ma et al., 2017), and Time-
line (Bai et al., 2018). (ii) Graph-based models:
Chet (Lu et al., 2022) and SeqCare (Xu et al., 2023).
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(ii1) Transformer-based models: G-BERT (Shang
et al., 2019a), BEHRT (Li et al., 2020), and GT-
BEHRT (Poulain and Beheshti, 2024).

Moreover, we compare 3 most recent base-
lines that combine language models with ma-
chine learning-based predictors (LM+ML): Graph-
Care (Jiang et al., 2024), RAM-EHR (Xu et al.,
2024), and DualMAR (Hu et al., 2024). To ensure
a fair comparison, we use condition codes as the
sole input feature (e.g., excluding procedures and
medications used in GraphCare), and we recon-
struct the knowledge base using ICD-9-CM codes
instead of CCS codes. Other agentic baselines like
ColaCare (Wang et al., 2024) are excluded from
the comparison due to its extensive input require-
ments, which lead to unstable predictions when
only condition codes are provided.

3.4 Implementation Details

We implement II-KEA using Python 3.10. For
all agents, we utilize ChatGPT-40 mini (OpenAl
et al., 2024), accessed via the Azure OpenAl,
as our LLM. To build the vector database,
we employ ChromaDB, where document embed-
dings are generated using a pre-trained Sentence-
BERT all-MPNet-base-v2 model provided by the
Sentence Transformers. We report the average
performance (%) and standard deviation of each
baseline over 5 runs, and we set the temperature
value in II-KEA as 0. When evaluating the predic-
tion performance of II-KEA we set the optional
clinical comment to be empty.

3.5 Main Results

Table 1 presents the performance comparison,
demonstrating that the proposed model, II-
KEA, achieves state-of-the-art results across both
datasets. Specifically, II-KEA outperforms GT-
BEHRT by 2.44% in w-F1, 0.73% in R@10, and
1.06% in R@20 on MIMIC-1IV, with similar perfor-
mance gains observed on MIMIC-III. The results
further indicate that graph-based and transformer-
based models consistently outperform RNN- and
CNN-based approaches. Notably, knowledge-
based models such as DualMAR leverage knowl-
edge graphs to enhance learning, yielding a 9%
improvement in R@20 on MIMIC-III. Similarly,
transformer-based models like GT-BEHRT im-
prove w-F; by approximately 8% on MIMIC-IV.
While GT-BEHRT and DualMAR achieve compet-
itive performance in certain metrics, II-KEA con-
sistently surpasses both across the majority of eval-

MIMIC-III MIMIC-IV
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Figure 3: Comparison between different version of II-
KEA. F1 scores on MIMIC-IIT and MIMIC-1V are re-
ported.

uation criteria. Overall, these findings underscore
the effectiveness of II-KEA in diagnosis predic-
tion and highlight the potential of a unified agentic
framework for advancing predictive healthcare.

3.6 Ablation Study

We conduct ablation studies to evaluate the effec-
tiveness of components in II-KEA. Specifically, we
aim to understand how causal analysis and external
knowledge contribute to prediction performance.
The Knowledge Synthesis Agent and the Causal
Discovery Agent are separately removed from the
prediction workflow and weighted F1 scores are
reported in Figure 3. We denote the version with-
out the Causal Discovery Agent as II-KEA-causal
and the version without the Knowledge Synthesis
Agent as II-KEA-knowledge. The results show
that II-KEA-causal experiences a more significant
performance drop than the full model, highlight-
ing the crucial role of causal analysis in improving
prediction accuracy. In contrast, removing external
knowledge (II-KEA-knowledge) results in only a
marginal decline, suggesting a lesser impact in its
current form. We hypothesize that this is because
our knowledge database is sourced from Wikipedia,
which primarily serves as a demonstration of ex-
ternal knowledge integration but may offer lim-
ited domain-specific medical insights. However,
this also underscores the potential for improvement
by incorporating curated databases or clinician-
maintained knowledge sources.

3.7 Case Study

We conduct a case study to analyze how different
agents within II-KEA function and collaborate dur-
ing the decision-making process. We randomly se-
lect a patient from the MIMIC-III dataset and report
the output of each agent during inference, as shown
in Figure 4. The Causal Discovery Agent identifies
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Table 1: Prediction Results on MIMIC-III and MIMIC-1V for Diagnosis Prediction. The best results for each
metric are bold, and the second bests results are highlighted in gray.

MIMIC-IIT MIMIC-IV

Type Models w-F1 R@10 R@20 w-F R@10 R@20
RETAIN 18.37(0.78)  32.12(0.79)  32.54 (0.63) 23.11(0.78) 37.32(0.79) 40.15(0.63)
Dipole 14.66 (0.21)  28.73(0.22) 29.44 (0.21) 22.16 (0.21) 36.21(0.22) 38.74 (0.21)
Timeline 20.46 (0.22) 30.73(0.12) 34.83 (0.10) 24.76 (0.22)  39.89 (0.12) 44.87 (0.10)
ML Chet 22.63 (0.22) 33.64 (0.32) 37.87(0.22) 25.74(0.22) 39.23(0.32) 42.67(0.22)
SeqCare 2436 (0.12)  37.47(0.11)  40.53 (0.12) 26.12 (0.12) 4291 (0.11) 46.25(0.12)
G-BERT 22.28 (0.32) 35.62(0.21) 36.46 (0.22) 25.12(0.32) 41.91(0.21) 46.25(0.22)
BEHRT 23.15(0.21) 34.68 (0.32) 35.97 (0.11) 24.53(0.21) 38.42(0.32) 44.89(0.11)
GT-BEHRT 2521 (0.18) 36.15(0.23) 40.97 (0.41) 30.17 (0.18) 44.93 (0.23) 50.67 (0.41)
GraphCare  25.16 (0.31) 36.74 (0.28) 41.89 (0.36) 27.59 (0.31) 42.07 (0.28) 48.19(0.36)
LM+ML RAM-EHR 23.27(0.24) 34.66 (0.18) 38.49 (0.25) 26.97 (0.29) 41.17 (0.30) 46.23 (0.21)
DualMAR 25.37(0.17) 38.24 (0.26) 41.86 (0.24) 27.97(0.17) 44.07 (0.26) 48.19(0.24)
Agent II-KEA 28.61 (0.00)  38.52 (0.00) 43.86 (0.00) 29.87 (0.00) 45.66 (0.00) 51.73 (0.00)

a causal graph, visualized in the figure, which helps
illustrate the underlying mechanisms connecting
different diseases. For the Decision-Making Agent,
we provide outputs both with and without clinician
input. In the first query, no specific guidance is
given, leading to a more general prediction that
considers all possible diseases. In contrast, in the
second query, the clinician provides additional in-
put, specifying a focus on kidney-related diseases.
Consequently, the model prioritizes kidney-related
predictions. It is important to note that the per-
formance of these two versions cannot be directly
compared; rather, the key advantage is that clin-
icians can incorporate their expertise and prefer-
ences to tailor predictions to their specific needs
(e.g., a nephrologist may prioritize kidney-related
diseases). We also observe that both versions of the
predictions not only provide disease codes but also
offer detailed explanations, enhancing interpretabil-
ity and helping clinicians in making informed deci-
sions and determining next-step treatment plans.

4 Related Work

We categorize prior work into clinical prediction
(section 4.1), agentic approaches (section 4.2), and
causal inference (section 4.3).

4.1 Predictive Healthcare in EHR

Predictive modeling in healthcare has advanced sig-
nificantly with the adoption of deep learning tech-
niques (Badawy et al., 2023; Zhang et al., 2023)
applied to EHR data. Existing neural network-
based models, including RNN/Attention-based ap-
proaches (Choi et al., 2016a, 2017; Ma et al.,
2020), graph-based models (Choi et al., 2017; Ma

et al., 2018; Lu et al., 2021), and Transformer-
based architectures (Shang et al., 2019b; Luo et al.,
2020; Poulain and Beheshti, 2024), have demon-
strated effectiveness in capturing temporal patterns
and interactions among medical concepts. Recent
work (Jiang et al., 2024) has explored leveraging
external knowledge sources beyond hierarchical
structures such as ICD-9-CM by integrating Large
Language Models (LLMs) to enhance medical pre-
dictions.

Still, most models remain black boxes (Zhang
et al., 2024), offering limited interpretability and re-
stricting healthcare professionals from interacting
with the system to refine or adjust predictions. In
clinical applications, predictive models must pro-
vide faithful explanations, such as causal pathways,
and allow interactive refinement based on expert
guidance.

4.2 LLM Agents for Healthcare Al

More recently, LLMs have demonstrated agen-
tic capabilities in clinical applications through
multi-agent frameworks. EHRAgent (Shi et al.,
2024) utilizes multiple agents for multi-tabular
retrieval, integrating external tools and long-
term memory to handle complex clinical queries.
KG4Diagnosis (Zuo et al., 2024) enhances diag-
nostic reasoning through hierarchical agent collab-
oration and knowledge graph construction guided
by semantic understanding. ColaCare (Wang
et al., 2024) improves EHR-based report gener-
ation and treatment planning by facilitating col-
laboration between DoctorAgents and MetaAgent
using retrieval-augmented generation (RAG) tech-
niques. MDAgents (Kim et al., 2024) and Agent-
Clinic (Schmidgall et al., 2024) simulate clinical in-
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Diagnosis history

Thrombocytopenia, unspecified, latrogenic pneumothorax, Pneumonia, organism
unspecified, Lung involvement in other diseases classified elsewhere, Acute kidney
failure, unspecified, Coronary atherosclerosis of native coronary artery, Congestive
heartfailure, unspecified, Acute posthemorrhagic anemia, Atrial fibrillation,
Abdominal aneurysm without mention of rupture......

Knowledge retrieval agent Causal discovery agent

Generate a search query to retrieve the most
relevant information from the knowledge
using {Diagnosis history}, {C i
diseases}.

Output in JSON form.

C Search query: "Retrieve disease summaries
and ICD-9 classifications for conditions related to
nausea, anemia, fever, asthma, and pulmonary
embolism. Emphasize connections to acute
respiratory failure, kidney failure, pneumonia,
hyperlipidemia, acidosis, and anticoagulant
therapy. Focus on disease descriptions, common
symptoms, pathophysiology, ICD-9
categorizations, and known comorbidities.
Extract insights on disease progression,
treatment guidelines, and historical cases where
available. Prioritize cross-references between @
these condlt\orlar\d relevantmedical literature.

% % % Retrieved
Documents

Reasoning in document

Output a new valid JSON.

DAG.json

Thombacytapenia

Remove redundant information from the
document that is irrelevant to the patient’s
{diagnosis history} and{candidate diseases}.
Generate a concise summary.

Summery: Pulmonary hypertension (PH) is
classified into five groups. Group | (PAH) is caused
by narrowed lung arteries, often idiopathic,
heritable, or drug-induced, and linked to
conditions like connective tissue disease and HIV.
Group Il results from left heartdisease, Group I1I
from lung diseases like COPD, Group IV from

Produce a DAGto representthe
causality between the set of disease
names. Asummary of the patient and all
disease is provided as {summaries}.

Are there links you’d like to add?
Any you think should be removed?
Any directions should be reversed?

Candidate diseases

Sarcoidosis, Unspecified essential hypertension, Severe sepsis, Acute respiratory
failure, Other and unspecified hyperlipidemia, Infection and inflammatory reaction
due to other vasculardevice, implant, and graft, Septic shock, Old myocardial
infarction, Percutaneous transluminal coronary angioplasty status, Diabetes mellitus
without mention of complication......

Decision-making agent

A summary of the patientand all disease is provided as {summary}, a DAGto
represent the causality between the set of disease names is given as {DAG.json}.
Predicta listof diseases the patient may be diagnosed in the future.

{clinical comment} can be provided optionally.

Without clinical comment
Prediction: Forthis second patient, | will predict possible future diagnoses
based on their current and past medical history, causal disease relationships,
and medical knowledge:
1.End-Stage Renal Disease (ESRD) - 585.6
The patient has chronic kidney disease, hypertensive chronic kidney disease, and
acute kidney failure, making ESRD a high-risk progression.
2. Recurrent Myocardial Infarction-410.1
A history of coronary atherosclerosis and old myocardial infarction suggests a
high probability of another heart attack.
3. Ischemic Stroke -434.91
The presence of atrial fibrillation, hypertension, and coronary disease increases
the risk of stroke due to embolism......

Clinical comment: @
I'm particularly concemed about kidney-related diseases.

With clinical comment
Prediction: Given the patient's history of chronic kidne: ease (CKD), acute

kidney failure, hypertensive chronic kidney disease, diabetes mellitus, acidosis,
amyloidosis, and long-term use of anticoagulants, the following kidney-related
conditions are likely to develop in the future:

1. End-Stage Renal Disease (ESRD) - 585.6

The patient already has chronic kidney disease stageV and a history of
hypertensive kidney disease. Progression to ESRD, requiring dialysis or kidney
transplantation, is highly probable.

2. Nephrotic Syndrome -581.9

The presence of amyloidosis increases the likelihood of protein leakage in urine,
leading to nephrotic syndrome, which worsens kidney function.

3. Diabetic Nephropathy - 250.4x

Given the history of diabetes mellitus, the kidneys are likely to suffer further

chronic arterial obstruction (e.g., CTEPH), and
Group Vfrom unclear mechanisms, including @

systemic and metabolic disorders.

damage from diabetes-related microvascular complications, leadingto @
proteinuria and worsening renal function......

Figure 4: A case study on a patient from MIMIC-III.

teractions using multi-agent systems, where agents
collaborate to support multi-modal reasoning and
communication benchmarking. These studies high-
light an emerging trend in agentic Al for clinical ap-
plications, where LLMs leverage in-context learn-
ing and dynamically retrieve medical knowledge
to provide personalized and adaptive responses.
Still, the integration of LLM agents for sequen-
tial diagnostic prediction remains underexplored,
presenting an opportunity to develop interactive
and explainable models for medical diagnosis.

4.3 Causality Inference on LLM

Causal inference is a cornerstone of medical re-
search, enabling the discovery of relationships be-
tween clinical factors. LLMs, equipped with exten-
sive domain knowledge, have the potential to assist
in causal graph generation and infer causal relation-
ships from unstructured data. Consequently, recent
studies have started exploring LLM-driven causal
discovery frameworks (Liu et al., 2024). Several
works (Le et al., 2024; Shen et al., 2024; Choi
et al., 2022; Kiciman et al., 2024; Long et al.,
2023; Jiralerspong et al., 2024) have employed
LLMs for causal relation inference and graph gen-
eration, yet their application to EHR-based pre-

dictive tasks remains limited. Most existing ap-
proaches focus on general causal reasoning tasks
or static datasets, without fully leveraging the inter-
active and adaptive capabilities of LLM agents for
healthcare-specific causal discovery.

However, causal discovery is essential for di-
agnosis prediction, as it provides a structured
explanation of disease co-occurrences, facilitat-
ing more transparent and interpretable decision-
making. Bridging this gap is crucial for achiev-
ing explainable Al in clinical practice by enabling
collaborative causal reasoning among Al agents.
Furthermore, integrating interactive causal discov-
ery mechanisms allows healthcare professionals
to refine insights and better understand disease re-
lationships, ultimately improving diagnosis and
treatment planning.

5 Computation Cost

We evaluated the cost of performing one prediction
loop with II-KEA using a sample of 10 patients.
On average, each patient required 7,803 tokens
(4,871 input tokens and 2,932 output tokens), result-
ing in an estimated cost of approximately 0.00263
USD per patient when using GPT-40 Mini (at rates
of 0.0003 USD per 1,000 input tokens and 0.0004
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USD per 1,000 output tokens). The average pro-
cessing time was 87 seconds per patient.

6 Privacy and Ethical Statement

Our work involves the analysis of EHR data, which
contains sensitive personal medical information.
In compliance with the PhysioNet Credentialed
Health Data Use Agreement 1.5.0%, we conducted
all interactions between the language models and
the EHR data through Azure OpenAl Service,
which adheres to enterprise-grade security and com-
pliance standards. We also submitted the opt-out
form* to decline human review in terms of the
responsible use guidelines specified for MIMIC
datasets available at Responsible Use of MIMIC
Data with online services’, which outlines proper
handling of EHR data when used with generative
models. This ensured that the capabilities of large
language models were applied without compro-
mising the privacy and confidentiality of patient
information. Furthermore, we continuously and
carefully monitor our compliance with these guide-
lines and relevant privacy regulations to uphold the
ethical use of data in our research and operations.

7 Conclusion

In this paper, we introduce II-KEA, a knowledge-
enhanced Agentic Causal Discovery framework
designed for interpretable and interactive diagnosis
prediction. II-KEA consists of three LLM-based
agents working collaboratively and is powered by
both clinical datasets and domain knowledge. We
evaluate II-KEA on the MIMIC-III and MIMIC-
IV datasets and conduct both ablation and case
studies to demonstrate its effectiveness. The ethical
consideration can be checked in Appendix 6.

8 Limitation and Future Work

II-KEA showcases a promising paradigm for in-
terpretable and interactive diagnosis prediction by
leveraging LLM agents. While II-KEA focuses on
diagnosis prediction, future research will explore
to solve a broader range of medical challenges tai-
lored to clinicians’ needs, such as treatment plan-

“https://physionet.org/about/licenses/physionet-
credentialed-health-data-license-150/
*https://azure.microsoft.com/en-us/products/ai-
services/openai-service/
“https://azure.microsoft.com/en-us/products/cognitive-
services/openai-service/
>https://physionet.org/news/post/gpt-responsible-use

ning and personalized medical recommendations.

Future work includes:

¢ Enhancing external domain knowledge: In
this work, we use the Wikipedia database as a
proof of concept. In future work, we aim to
integrate more domain-specific external knowl-
edge sources to enhance diagnosis prediction in
fine-grained target domains.

» Expanding task diversity: While this work fo-
cuses on diagnosis prediction, future research
will explore additional tasks tailored to clini-
cians’ needs, such as treatment planning and
personalized medical recommendations.

* Incorporating multiple stakeholders: The cur-
rent version of II-KEA facilitates interactions
only with clinicians. Future iterations will ex-
plore collaborative decision-making involving
multiple stakeholders to enhance holistic and
patient-centered care.
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Appendix
A Potential Risk of Al clinical prediction

There are three kinds of potential risks by using
agentic Al for predictive healthcare:

(1) Clinical Safety Risks. Al clinical predic-
tion systems pose significant clinical safety risks
including diagnostic errors from overreliance on
black-box models, perpetuation of healthcare bi-
ases present in training data, and poor generaliza-
tion to populations underrepresented in datasets.
These issues can lead to differential prediction ac-
curacy across demographic groups and unreliable
performance in real-world clinical scenarios.

(2) Ethical & Legal Risks. Ethical and legal
concerns arise from the lack of interpretability in
traditional Al systems, creating accountability chal-
lenges when predictions contribute to adverse out-
comes. Additionally, opaque Al decision-making
may compromise informed consent and patient au-
tonomy, while large-scale EHR data requirements
raise privacy and security concerns regarding unau-
thorized access to sensitive medical information.

(3) Operational Risks. Operational challenges
include disruption of established clinical work-
flows, potential skill atrophy among healthcare pro-
fessionals who become overly dependent on Al
recommendations, and false confidence generated
by systems that provide predictions without un-
certainty quantification. These issues particularly
affect trainees and may lead to inadequate consid-
eration of alternative diagnoses.

The II-KEA framework mitigates these risks
through explicit causal reasoning and detailed ex-
planations that enable clinician evaluation of Al rec-
ommendations, reducing overreliance and support-
ing accountability. Its interactive design requires
active clinician participation, preserving clinical
judgment while allowing healthcare professionals
to inject domain knowledge and maintain diagnos-
tic control. The multi-agent architecture provides
validation layers, external knowledge integration
reduces bias, and transparent reasoning supports
both audit trails and informed consent processes.

B Pseudocodes

The pseudocodes of three agents in II-KEA are
demonstrated in Algorithms 1 to 3, and the Algo-
rithm 4 shows the overall process of II-KEA.

Algorithm 1 Knowledge Synthesis
Aknowledge-

Agent,

Input: Diagnosis history D,,, Candidate dis-
eases S, Knowledge vector database I' with
meta data Cr.
/I Generate search query
Gsearch = L L Msearch (Dpa Sp7 ICF)
/I Retrieve k most relevant documents from
database "
Fq = query(%earch, F)
for each document v € I'%:

/I Reasoning in document

A~y = LLMreason-in—doc (77 Dpu Sp)

end for
Output: Summarized document set
" =a, |y el

Algorithm 2 Causal Discovery Agent, Acausal-

Input: Empty graph G consists of entities
from D, U S,,, Candidate diseases , Summa-
rized document set T'),"" ", diagnosis matrix
Ap
t=0
/I Hypothesis generation
gtszo - LLMhypo—gen (g®7 F}s)ummary)
While 1:

/I Model fitting

Iy =log likelihood (G}, Ap)

/I Post-processing

M= {gfv gfflv i, lt—l}

/l Hypothesis amendment

ngrl = LLMhypo—amend (M)

if stopping criteria is meet: G° = G 1

break

t=t+1

Output: Final causal graph G*

Algorithm 3 Decision-Making Agent, Agp,.

Input: Diagnosis history D,,, Candidate dis-
eases S, Summarized document set F;ummary,
Causal graph G*, Optional clinician comment
C

/I Make diagnosis prediction with explanations
Dpreda & = LLMgecison (Sp7 F;ummary) gs’ C)
Output: Predicted diagnosis Dpeq and expla-
nations £
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Algorithm 4 II-KEA inference.

Require: Pretrained LLM model, EHR training
data D, | p € Py, Knowledge vector database
I" with meta data Cr.
/I Data processing
Calculate A7 and A p with Egs. 1 and 3.
/I Inference
For p € Piesi:
Input: Diagnosis history D,
Obtain candidate disease S, with Eq. 4.
/I Knowledge Synthesis Agent
P;‘)ummary = Aknowledge(Dpa Sp; KP)
/Il Causal Discovery Agent
gs = Acausal (Dp7 Sp7 Fzs)ummary’ AD)
/I Decision-Making Agent
Dypred, € = Adm(DpSp, " Gs.0)
Output: Final causal graph G, predicted
diagnosis Dpreq and explanations €.

C Prompt Details

In this section, we provide the prompt templates for
knowledge retrieval agent, causal discovery agent,
and decision-making agent, separately.

Knowledge retrieval agent - Prompt

# Knowledge retrieval:

Generate a search query to retrieve
the most relevant information from the
knowledge database using  {Diagnosis
history} and {Candidate diseases}. The
generated search query should take
into account the characteristics of the
knowledge database, as described by the
provided {Meta-data}.

# Reasoning in document:

Summarize the {Document i}. The output
summary should satisfy the following
requirements:

Relevance: Include only information
related to the patient’s {Diagnosis
history} and {Candidate diseases}.

Conciseness: Remove redundant  and
unnecessary details while maintaining key
insights.

Clarity: Ensure the summary is

well-structured and easy to understand.
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Causal discovery agent - Prompt

# Hypothesis Generation:

Generate a Directed Acyclic Graph (DAG)
to represent the causal relationships
between the given set of {Disease names}.
Use the provided {Summary}, along with
contextual knowledge and reasoning, to
infer causality. The output should be in
JSON format.

# Hypothesis Amendment:

Adjust the causal graph based on the current
and previous versions stored in {Memory},
along with their fitting scores. Consider
the following questions:

Are there any links that should be added?
Should any existing links be removed?
Should any directions be reversed?
Generate a revised causal graph and output
it in a valid JSON format.

Decision-making agent - Prompt

Predict a list of diseases the patient may
be diagnosed with in the future based on:
Patient summary and disease information:
{Summary}

Causal DAG of disease relationships:
{DAG. json}

Optional clinician comment: {Clinician
comment}

Output format:

A JSON list of predicted ICD-9 codes.

A detailed explanation of the reasoning
process.

Separate the two parts using the special
token <SEP>.



