HomoGraphAdapter: A Homogeneous Graph Neural Network as an
Effective Adapter for Vision-Language Models

Chuan He? Zhuozhao Li'f

Song Guo®'

Xiaocheng Lu® Jinxiang Lai®

'Southern University of Science and Technology, Shenzhen, China
2The Hong Kong Polytechnic University, Hong Kong SAR, China
3Hong Kong University of Science and Technology (HKUST), Hong Kong SAR, China
chuan.he@connect.polyu.hk

Abstract

Vision-Language Models (VLMs), such as
CLIP, have exhibited significant advancements
in recognizing visual concepts through nat-
ural language guidance. However, adapting
these models to downstream tasks remains
challenging. Existing adaptation methods ei-
ther overlook the structural knowledge be-
tween the text and image modalities or cre-
ate overly complex graphs containing redun-
dant information for alignment, leading to
suboptimal classification performance and in-
creased computational overhead. This paper
proposes a novel adapter-tuning methodology
named Homogeneous Graph Adapter (Homo-
GraphAdapter), which transforms diverse tex-
tual and visual descriptions into a unified set of
node representations and establishes edges be-
tween nodes for inter-modal and cross-modal
semantic alignment. We leverage a straight-
forward homogeneous Graph Neural Network
(GNN) to adapt positive and negative classi-
fiers across text and image modalities. The
classifiers comprehensively enhance the per-
formance for few-shot classification and OOD
generalization. Compared with the SOTA ap-
proach HeGraphAdapter, HomoGraphAdapter
improves classification accuracy by an average
of 1.51% for 1-shot and 0.74% for 16-shot on
11 datasets, while also reducing both precom-
putation time and training time.

1 Introduction

Pre-trained Vision-Language Models (VLMs), es-
pecially CLIP (Radford et al., 2021) and its vari-
ants (Jia et al., 2021; Zhang et al., 2025), have
opened a new chapter for various computer vision
tasks. To efficiently adapt the CLIP model to down-
stream tasks, researchers typically employ one of
two main strategies: prompt-tuning or adapter-
tuning.

TCorresponding authors.

Prompt-tuning (Zhou et al., 2022b,a; Khattak
et al., 2023) methods freeze CLIP’s backbone en-
coders and introduce learnable vectors (referred
to as soft prompts) that are fine-tuned using task-
specific labeled data. For instance, CoOp (Zhou
et al., 2022b) introduces a learnable prompt for the
text encoder, while CoCoOp (Zhou et al., 2022a)
designs a lightweight meta-network to generate
text prompts for each image. While prompt-tuning
methods are both parameter-efficient and com-
putationally lightweight, they face several chal-
lenges, including overfitting to the learned prompts,
high sensitivity to prompt initialization, and re-
duced robustness when encountering domain shifts.
Adapter-tuning methods (Gao et al., 2024; Zhang
et al., 2022; Huang et al., 2022) focus on fine-
tuning output textual or visual features by intro-
ducing lightweight adapters as additional learn-
able components within the network. For instance,
TaskRes (Huang et al., 2022) introduces residual
vectors with textual features to learn task-specific
classifiers. CLIP-Adapter (Gao et al., 2024) in-
troduces an MLP-based adapter module that can
be applied to textual or visual features. However,
these adapters can still suffer from overfitting on
small datasets and often lack the capacity to handle
datasets with a large number of classes.

GraphAdapter (Li et al., 2024b) takes an ini-
tial step toward integrating knowledge graphs into
CLIP-based models by using Graph Neural Net-
works (GNNs) to refine textual and visual fea-
tures. It builds a separate knowledge subgraph
for each modality and then applies two distinct
GNNs to adjust the corresponding node features.
However, since these two subgraphs do not interact,
GraphAdapter overlooks crucial cross-modal struc-
tural information. HeGraphAdapter (Zhao et al.,
2024) addresses this gap by introducing Hetero-
geneous Graph Learning for CLIP. It proposes a
Heterogeneous Graph Adapter that fully exploits
cross-modal information by building a single het-

23400

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 23400-23414
November 4-9, 2025 ©2025 Association for Computational Linguistics

EI)%P

/ . //
_¥_Positive Textual
ﬁ’ /77 Nodes
Textual 5
SubGraph % HeGraphAdapter =)
GraphAdapter : VAN
N2 :

Visual (’CN Positive Visual erm

SubGraph Nodes

/

v—v
e

N

textual embedding(node) fij positive textual embedding(node) positive visual embedding(node)
of each class - f 3 different classes (] of 3 different classes

of 3 different classes

HGCN | :
. g

' n Negative Textual

Nodes
Subset 3

Nodes
Subset 1

Nodes

Nodes
Subset 4

negative textual i f:j

of 3 different classes

Figure 1: This figure illustrates the difference among the 3 existing graph-based adapter-tuning methods for
CLIP. GraphAdapter constructs two separate subgraphs and adapts text features of CLIP with dual sub-graphs.
HeGraphAdapter constructs a heterogeneous graph involving different nodes and edges with edge features through
HGCN. Our HomoGraphAdapter constructs a unified homogeneous graph with only node features and edge
connections by index. Different colors in the graph represent nodes corresponding to different classes.

erogeneous graph. While this approach preserves
cross-modal dependencies, it may also introduce
redundant information by creating edges between
nodes from different classes and assigning poten-
tially unnecessary edge attributes—factors that do
not necessarily improve alignment between tex-
tual and visual embeddings. Therefore, existing
graph-adapter methods either overlook cross-modal
structural knowledge or adopt graph designs that
become overly complex and include superfluous
details.

To address these problems, we propose Homo-
GraphAdapter as an effective adapter for CLIP
in data-limited scenarios. HomoGraphAdapter re-
gards the textual or visual embedding of a specific
class as a node in a homogeneous graph and builds
edges only between nodes that exhibit semantic
alignment. In this homogeneous graph, all nodes
in this graph represent the same type, and all edges
define a single type of relationship. Homogeneous
graph learning not only significantly enhances fea-
ture alignment but also improves adaptation effi-
ciency.

The contributions of this paper are summarized
as follows:

* HomoGraphAdapter proposes Homoge-
neous Graph Learning for CLIP by encapsu-
lating diverse textual or visual embeddings
as nodes of the same type in a homoge-
neous graph and adjusting node features with
graph’s structure knowledge during few-shot
adaptation.

* HomoGraphAdapter effectively transfers

the knowledge of the CLIP model into positive
and negative classifiers across dual modalities
through homogeneous graph learning.

* HomoGraphAdapter achieves superior per-
formance in terms of top-1 accuracy and
demonstrates higher training efficiency com-
pared to existing graph-based adapter-tuning
methods.

2 Related Work

Textual classifier and Prompt-tuning methods
for CLIP. The CLIP model (Radford et al., 2021)
computes the cosine similarity between image em-
beddings and textual embeddings, assigning the
predicted class to the text with the highest similar-
ity score. In this setup, textual embeddings for all
classes, generated by inputting positive prompts
like “a photo of a ...” into CLIP’s text encoder,
can be interpreted as a positive textual classifier.
Conversely, as suggested by prior studies (Wang
et al., 2023; Tian et al., 2023; Nie et al., 2024; Li
et al., 2024a), negative prompts such as “a photo
of no..”, “a photo without ...”, and “a photo not
containlng .7 yield a negatlve classifier, where
the class corresponding to the text with the lowest
similarity score is identified as the predicted class.
In a similar vein, prompt-tuning methods (Zhou
et al., 2022b,a; Khattak et al., 2023) enhance hard
prompts by integrating a learnable vector as a soft
prompt to CLIP’s text encoder. These methods
adapt the textual embeddings of CLIP to enhance
alignment with visual embeddings, enabling more
flexible and task-specific adaptations.

23401

General Desciptions of Classes

A photo of a [Class]
. . Zt(g) ,"/,\ Ztg 7“.
Detailed Desciptions of Classes) N
‘A photo of a [Class], which...}—» Text | Zt(g)

Encoder ‘ NS

A photo of no [Class] ZL(O)
n \

Negative Desciptions of Classes

Few-shot Support Images
p—
Image |

e >
Encoder

HomoGraphAdapter

Query Image
test —»
Images Encoder

Negative Cache

Figure 2: Overall framework of HomoGraphAdapter. First, multiple sets of textual and visual embeddings
with diversified semantic meanings are generated with CLIP’s two backbone encoders. Through the process of
Homogeneous Graph Learning, they are adapted and form multiple classifiers in dual modality. The logits of the
classifiers are calculated and then combined for the final label prediction.

Adapter-tuning methods and Visual classifier
for CLIP. Most adapter-tuning approaches (Gao
et al., 2024; Zhu et al., 2023; Udandarao et al.,
2023; Tang et al.,, 2024) focus on developing
lightweight adapters to adjust the image embed-
dings of CLIP. TaskRes (Huang et al., 2022)
presents task-specific residual modules for ad-
justing visual embeddings. Meanwhile, CLIP-
Adapter (Gao et al., 2024) introduces an MLP-
based module designed to adapt visual features to
textual features. Tip-Adapter (Zhang et al., 2022)
is the first to complement the original textual clas-
sifier with an additional visual classifier, construct-
ing a key-value (KV) cache of few-shot visual fea-
tures as keys and their corresponding one-hot labels
as values. The visual classifier assesses image-
to-image similarities between the test image and
representative images of each class. While the orig-
inal Tip-Adapter operates as a training-free method,
Tip-Adapter-F enhances this approach by adding
an extra weight parameter for the keys in the cache
model. However, the above methods generally
struggle to capture cross-modal and intra-modal
feature relationships and dependencies, limiting
the understanding of few-shot data.

Graph Learning for CLIP: Graph learning
captures the inherent structural relationships be-
tween textual and visual features by representing
them within a graph. This integration of visual
and language modalities facilitates the extraction
of task-specific semantic knowledge, thereby en-
hancing cross-modal and intra-modal understand-

ing. GraphAdapter (Li et al., 2024b) pioneers
this direction by constructing separate knowledge
subgraphs—one for each modality—and employ-
ing two distinct GNNs to adapt textual features.
With the extensive study on heterogeneous graph
learning in recommendation systems (Ying et al.,
2018) and computer vision (Cao et al., 2022),
HeGraphAdapter (Zhao et al., 2024) is the first
to introduce it for the few-shot adaptation of CLIP.
It formalizes the structural knowledge among vari-
ous types of nodes and their relationships within a
unified graph.

However, the core challenge of graph learning
for the few-shot adaptation of CLIP lies in con-
structing a graph that captures the structural infor-
mation most essential for feature alignment and
classification. This involves carefully integrating
node features and edge connections to reflect the
task-relevant relationships. While heterogeneous
graphs excel at modeling complex relationships
among various entities, CLIP inherently deals with
only two modalities—text and image—where the
potential for highly intricate interrelations is lim-
ited. Consequently, HeGraphAdapter may be less
than optimal in scenarios emphasizing task-specific
learning efficiency with limited data.

3 Methodology

In this section, we introduce the methodology of
HomoGraphAdapter, which establishes and learns
class-specific structural knowledge in a unified
homogeneous graph. Figure 1 contrasts our ap-
proach with two existing graph adapter meth-

23402

ods. The key advantage of HomoGraphAdapter
is its ability to leverage diversified feature rep-
resentations from natural language and few-shot
images, effectively learning discriminative clas-
sifiers using a unified homogeneous GNN. Un-
like HeGraphAdapter (Zhao et al., 2024), which
pre-computes edge features between every pair of
neighboring nodes, HomoGraphAdapter only re-
tains edge connections (i.e., index pairs of nodes).
By eliminating redundant edge information, Homo-
GraphAdapter effectively encodes graph structure
to learn higher-quality classifiers for downstream
classification tasks.

3.1 Opverall Framework

The entire framework of HomoGraphAdapter is
illustrated in Figure 2, encompassing feature gen-
eration, cache construction, homogeneous graph
learning, logit calculation, and label prediction. In
the forward process of HomoGraphAdapter, we
start by encoding three sets of textual descriptions—
general, detailed, and negative—to obtain corre-
sponding textual embeddings. Few-shot support
images are then used to generate positive and neg-
ative visual embeddings. These textual and visual
embeddings form the nodes of a homogeneous
graph, which is subsequently processed by a one-
layer homogeneous GCN to adapt node features
and update the classifiers. Finally, for each test
image, we compute logits by evaluating image-text
and image-image similarities and combine them to
produce the final label prediction.

3.2 Homogeneous Graph Data

To extract structural knowledge, we construct a
homogeneous graph G = (V, £). In this represen-
tation, each node feature corresponds to the textual
or visual embedding of a specific class. Edge con-
nections represent the structural knowledge that
facilitates both intra-modal and cross-modal fea-
ture alignment and classification.

Subsets of Nodes. To illustrate the graph learn-
ing process, we divide)V into five subsets
{Z, Zia, Zin, Xvp, Xin}, as shown in Figure 3.
Each subset of nodes is a set of representations
that describe C different categories, where C'is the
category number in the downstream task.

Nodes Zi; from positive general text descrip-
tions of categories. CLIP can make zero-shot
predictions using a general template such as ‘A
photo of a [category]’. For a C-way downstream

General Text Detailed Text Negative Text Positive Visual Negative Visual
Descriptions Descriptions Descriptions Representatives Representatives

Input

Graph Nodes
Z, Z, Z, X X
Subsets tg td tn vp vn
Learning Positive Textual Negative Textual Postive Visual Negative Visual
Objectives Classifier Classifier Cache Cache

Figure 3: This figure briefly illustrates the flow of the
proposed HomoGraphAdapter. Multiple text descrip-
tions and images are transformed into subsets of node
features, which are then adapted to create more effective
classifiers.

dataset, we insert each of the C' category names
into this template to form C' textual inputs, which
are then tokenized and encoded by CLIP’s text en-
coder f;. The resulting embeddings represent the

initial Zt(go) in the graph.

Zt(go) = {z:}$_,, where

2, = f+(‘A photo of a [category];’)

Nodes Ziq from positive detailed text descrip-
tions of categories. Previous studies (Goswami
et al., 2024; Roy and Etemad, 2023) suggest that
utilizing a pre-trained Large Language Model
(LLM) such as GPT (Floridi and Chiriatti, 2020) to
generate lengthy, detailed text descriptions for each
class can get more discriminative textual classifiers.
However, lengthy text may not always reflect the
exact visual concepts in the corresponding images.
Our approach balances this by integrating general
and detailed textual descriptions through a unified
graph adapter, thereby producing a more robust
classifier. Similarly, the output embeddings corre-
spond to the initial Zt(do) in the graph.

Zt(do) = {zk}kczl, where

zi = fi (‘A photo of a [category]y, which ...")

Nodes Zi;, from negative text descriptions of cat-
egories. Although CLIP does not natively sup-
port negative learning (Radenovic et al., 2023),
recent work (Zhao et al., 2024) demonstrates
that incorporating a negative textual classifier
can enhance performance. Accordingly, Homo-
GraphAdapter learns such a classifier through ho-
mogeneous graph learning. Specifically, we gen-
erate negative text prompts for each class (e.g., ‘A
photo of no [category]’) and encode them using
CLIP’s text encoder. The resulting embeddings

23403

represent the initial Zt(r?) in the graph.

Zt(nO) = {Zk}kczl, where

z, = f+(‘A photo of no [category],’)

Nodes Xy, from positive visual representatives.
As introduced by Tip-Adapter (Zhang et al., 2022),
we maintain a visual cache where representative
images act as keys and their corresponding one-hot
labels serve as values. The visual cache measures
image-image similarities between test image fea-
tures Ties and keys Xyey using an affinity function:

A =exp (—,8 (1 - mtestXll},)) .

Similarly, we precompute a positive visual cache
X:;Che. In the initial cache, the keys are the C-way
K-shot image features, and the values are the one-

hot labels £ of image features correspondingly:

[fe(x1) fi(a?) < fe(@)
N fr(vs) fe(v3) < fe(v3)
Koy = : :
Lfi(vE) fi(vE) fr(vE)
ro 0 1
0 1 0
L= :
L1 0 0

Nodes Xv(g) are initially set to the mean of X]:gy for

each class. The updated node features Xv(rl,) will be

added to X/ .

Nodes X, from negative visual representives.
As suggested in previous work (Wang et al., 2023;
Sun et al., 2022; Huang et al., 2024; Kim et al.,
2019), negative learning can enhance classifier per-
formance. In the visual domain, we also maintain a
negative cache to enhance the classification perfor-
mance of CLIP. In the negative cache, the higher
the similarity to the keys, the lower the probability
that the image is classified to that class. Similarly,
we precompute a negative visual representation for
each class.

Specifically, for each class, we select top k dis-
similar classes (based on cosine similarity) from
the remaining (C — 1) classes. The average of the
representative features from the k classes gener-
ates the negative visual representation for a specific
class. All the visual representations serve as keys
of the negative visual cache Xk_ey € REE*d The
values of the negative visual cache are the one-hot

labels £ € REK*C of image features correspond-

(0)

ingly. Similarly, the negative visual nodes X VS are
initialized using the mean of Xk_ey for each class.
The learned node features are then added to update
the keys in the negative cache.

Edge Connections. To align nodes and
learn more discriminative classifiers, we es-
tablish directed edges among different node
subsets, allowing feature adaptation across the
graph. We define six subsets of edge indices
gtg—>td7 gtd—>tg’ gtg—Wp, (c/’td—wp, gtn—wn’ gvp—vn
Each provides connections from a source subset
to a target subset, as shown in Figure 1. The first
five subsets of edges contain C-way intra-class
connections from the source node subset to the
target node subset, linking nodes that belong to
the same class. The final subset of edges contains
kC-way inter-class connections, linking nodes that
belong to different classes.

£'e=t and £192 connect positive textual nodes
Zig and Zy to learn a more robust positive classifier
than the original ones. £97"P and £'7"P denote
the cross-modal linking edges from text to image.
Due to the limited availability of image data, the
initial visual features generated may lack sufficient
representativeness. These edges aim to leverage
natural language guidance to adjust the visual fea-
tures. Similarly, £7v" denotes the cross-modal
edges from the negative textual subset Z;, to the
negative visual subset X,y.

EVP7M denotes the cross-linking edges from
one class positive visual nodes Xy, to another class
in negative visual nodes Xy, to learn better negative
visual representatives. As mentioned in §3.2, we
select the top k dissimilar classes for each class.
Here, we connect the top k classes from X, to the
corresponding class in Xy,. The hyperparameter k
is positively correlated with the number of classes
C in the dataset.

3.3 Homogeneous Graph Learning

We have constructed a homogeneous graph where
both the initial node features and their edge con-
nections are encapsulated. In this subsection, we
apply a one-layer homogeneous Graph Convolu-
tional Network(GCN) (Kipf and Welling, 2016) to
refine the node features and adapt the classifiers
for the downstream task. During graph learning,
we first add self-loops to the adjacency matrix and
then perform neighborhood aggregation.

23404

:vz(l) = (WT ~x§.0>) +b

1
jeN(zZ)u{j} V deg(i) "V deg(j)
Given any single node i with node feature xgo) from
the whole node set V, its neighboring node features

are denoted as 1:5-0) where j € N(i) U {j}. The
GCN network aggregates messages from neighbor-
ing nodes by first transforming each neighbor’s
feature with a weight matrix W, normalized by the
degree of the nodes , and then summing the results.
A bias vector b is added to the aggregated output.
Notably, we only apply the bias vector on nodes

Z,; and disable the bias term on other nodes.

3.4 Adapted Classifiers and Logits

After graph learning, node features are updated
into 257, 24, 8, X&), X\ This section in-
troduces how multiple classifiers are formed and

how logits are calculated and combined.

Positive Textual Classifier Z,". Z," is the
weighted combination of positive classifiers de-
rived from the long and short text descriptions of
classes. For Z;", we fuse the updated node features
with the original node features via the weighted
sum fusion strategy. In this way, the original fea-
tures are modulated for classification in a residual
way. Given some test images [, we calculate Z;r
and corresponding logits:

Zg=(1—-a)- 2 +a- 7z
Za=01-b)-20 +b- 2"
7, = Normalize (¢ - Zg + (1 — ¢) - Zu)
. T
logits; = 100 - f (Iest) - Z¢")

Here, a, b, and c represent the three hyperparame-
ters used as fusion weights. In experiments, a and
b are set to a value between 0.0 and 0.2, while c is
set to 0.45.

Negative Textual Classifier Z,". Z, is derived
from the negative text descriptions. Because the
model learns a bias vector for these nodes, we skip
the residual fusion strategy to avoid interference
from the original features. Instead, we normalize
the updated embeddings and compute logits by
measuring how dissimilar they are to the visual
features f,(Liest)-

Z; = Normalize(Zél))
logits, =100 - (1 — fo(Tew) - Zi ') @)

oy . + +
Positive Visual Cache X ... For X . the
keys are enhanced by incorporating the learned
positive visual features as bias. Given images [ies
to be classified, we calculate its image-image affini-

ties and obtain the logits:

X5, + Normalize(X,}, + X{),
logits;‘; = A(fo(Leest) - thyT) - L, where
A(z) =exp(—B(1—2)). 3)

Negative Visual Cache X, ;.. Similarly, for
X ache> W€ update the keys by incorporating the
learned negative visual features. Analogous to
Equation 3, we compute the negative affinities to

obtain the classification logits:

Xy, < Normalize(X, + X)),
logits, = A’ (1 — fo(Liest) - Xk;yT) - L, where
Al(z) =exp (=" (1 - 1)) .)

The final logits for label prediction are the weighted
combination of the above 4 logits:

logits ; =0 - logitsj + 02 - logits, + 05 - logitsj—&—
04 - logits, 5)

where 01,05, 03,04, 3 and 3’ are hyper-parameters.
In experiments, #; is set to 1, and 65 is set to a
value between 0 and 0.5. The initial values for 63,
64, B and (3 are set to certain values during training.
During testing, the optimal values are determined
through a search for the best results.

4 Experiments

In this section, we evaluate HomoGraphAdapter on
few-shot classification tasks across 11 benchmark
datasets, including ImageNet (Deng et al., 2009),
StandfordCars (Krause et al., 2013), UCF101
(Soomro, 2012), Caltech101 (Fei-Fei et al., 2004),
Flowers102 (Nilsback and Zisserman, 2008),
SUN397 (Xiao et al., 2010), DTD (Cimpoi et al.,
2014), EuroSAT (Helber et al., 2019), FGVCAIir-
craft (Maji et al., 2013), OxfordPets (Parkhi et al.,
2012), and Food101 (Bossard et al., 2014). These
datasets include vision tasks such as remote sensing
classification, action recognition, texture classifi-
cation, and fine-grained classification. We com-
pare HomoGraphAdapter with two state-of-the-
art graph adapter methods: GraphAdapter (Li
et al., 2024b) and HeGraphAdapter (Zhao et al.,
2024), as well as three typical adapter methods

23405

EuroSAT

StanfordCars

Average Over 11 Datasets 90 SUN397
77.5 = 85 75 — 72 ;i
75.0 70 !
.80 70
<725 g g <68
L>’\70-0 ours 375 Ours 365 Ours oy o
¢ urs
£67.5 HeGraphAdapter g 70 HeGraphAdapter g HeGraphAdapter | S 66
3 hAdapt: 8 —— GraphAdapter 8 8 HeGraphAdapter
é 65.0 Grapl apter 2 p Pt £ 60 GraphAdapter 264 —+— GraphAdapter
625/ —— TaskRes 65 174 —— TaskRes TaskRes —— TaskRes
60.0 —— Tip-Adapter-F 60 — Tip-Adapter-F 55174 —— Tip-Adapter-F 62 —~— Tip-Adapter-F
: —— CLIP-Adapter I —— CLIP-Adapter —— CLIP-Adapter 60 —— CLIP-Adapter
57.5
i2 4 8 6 12 4 8 6 91z 4 8 16 iz 4 8 16
Number of Support Images per Class Number of Support Images per Class Number of Support Images per Class Number of Support Images per Class
Caltech101 ImageNet DTD Food101
94 70 80
)
921 — 65 n
= e Ours % urs 60 -~ g r —=— Ours
290 // = HeGraphAdapter ® HeGraphAdapter 8 Ours §) HeGraphAdapter
3 /e —— GraphAdapter 360 —— GraphAdapter 355 ///// HeGraphAdapter 374 / —+— GraphAdapter
<] 2] 2 —— GraphAdapter 3
<88 —— TaskRes < 58 — TaskRes /4% TaskRes < —— TaskRes
—— Tip-Adapter-F —— Tip-Adapter-F 50/ Tip-AdapterF 72 —— Tip-Adapter-F
86 —— CLIP-Adapter 56 —— CLIP-Adapter —— CLIP-Adapter —— CLIP-Adapter
45
12 4 8 16 12 4 8 16 12 4 8 16 70 12 4 8 16
Number of Support Images per Class Number of Support Images per Class Number of Support Images per Class Number of Support Images per Class
FGVCAircraft
" OxfordPets 100 Elower102 UCF101
90 =
35 95
- _88 _)
K30 t S 8 90 f —— 0
3 —— Ours > —— Ours = Ours /) urs
) 386 3 4
g 25 HeGraphadapter | € HeGraphAdapter | §& 85 HeGraphAdapter | 8 65 4 HeGraphAdapter
5 R
§ 20 —+— GraphAdapter 884 ——— GraphAdapter & ol ¥ —— GraphAdapter § { GraphAdapter
—— TaskRes < —— TaskRes < 1/ —— TaskRes <60 — TaskRes
15 —— Tip-Adapter-F 82 —— Tip-Adapter-F 75|/ —— Tip-Adapter-F 55 —— Tip-Adapter-F
10 —— CLIP-Adapter —<— CLIP-Adapter 1 —— CLIP-Adapter —— CLIP-Adapter
16 80 12 4 8 16 70 12 4 8 16 50 12 4 8 16

12 4 8
Number of Support Images per Class Number of Support Images per Class

Number of Support Images per Class Number of Support Images per Class

Figure 4: Performance illustration of HomoGraphAdapter with comparison of the state-of-the-art methods on the
1/2/4/8/16-shot adaptation for 11 image classification benchmark datasets.

for CLIP: CLIP-Adapter (Gao et al., 2024), Tip-
Adapter (Zhang et al., 2022), and TaskRes (Yu
et al., 2023).

Implementation Details. ResNet-50 (He et al.,
2016) is used as the default backbone of the CLIP
model. We fine-tune HomoGraphAdapter with few-
shot labeled data sampled from the downstream
dataset. We use AdamW optimizer (Kingma, 2014)
with a cosine scheduler. The training epochs are set
to 20 for most datasets, with the following excep-
tions: EuroSAT is set to 100 epochs, FGVCAircraft
to 30 epochs, and OxfordFlowers to 70 epochs. For
building the visual cache and training, the batch
size is set to 256; for testing, it is set to 64. The
learning rate is set to 5 x 10~*. Because tasks differ
in complexity, certain hyperparameters vary across
datasets. Further details on the hyperparameters
are provided in the Appendix. All experiments are
conducted on a single NVIDIA A100 GPU.

4.1 Few-shot Classification

For few-shot classification, the model is trained
using sampled few-shot data from the training set
and is directly tested on the testing set of the same
dataset. We conduct experiments with 1-shot, 2-
shot, 4-shot, 8-shot, and 16-shot settings, and the

comparison metric is the Top-1 classification accu-
racy. The performance on all few-shot settings is
illustrated in Figure 4. The 16-shot performance
results on the 11 datasets are displayed in Table 1.

Overall, HomoGraphAdapter outperforms all
baselines in average accuracy across 11 datasets for
every few-shot settings. The results outperform the
second-best method by an average of 1.51% in the
1-shot setting and 0.74% in the 16-shot setting. No-
tably, the performance improvement is more signifi-
cant in the 1-shot settings for EuroSAT and Oxford-
Pets, while for FGVCAircraft and DTD, it is more
pronounced in the 16-shot setting. Moreover, for
datasets with many classes, HomoGraphAdapter
achieves 66.58% on ImageNet (1,000 classes) and
72.81% on SUN397 (397 classes). On datasets with
a few classes, HomoGraphAdapter demonstrates
leading performance with 87.20% on EuroSAT (10
classes).

4.2 Efficiency Comparison

In Table 2, we report the pre-computation time,
training time, epochs, and the number of trainable
parameters for HomoGraphAdapter on the Ima-
geNet dataset in a 16-shot setting. With just 2.07
million trainable parameters, HomoGraphAdapter

23406

Table 1: Performance in top-1 accuracy of different methods on 11 image classification datasets under the 16-shot

setting.
> } c}& @ &

K\ob @55‘\ > %?6 ACFS\ c*%g 6@\ > & &86 c@&o "‘9(\ \Q\ &

& A L S o $ S o S &S
w ¢ A < < < & S S S S
Zero-shot CLIP 8452 4033 41.80 16.98 6546 7731 6033 8551 5426 5856 6l44 | 5877
CoOp 91.61 63.11 8236 31.01 9439 7380 6295 8730 7251 69.11 7570 | 73.07
CoCoOp 9090 5753 7077 22.40 79.14 7968 6271 89.93 6222 6721 7081 | 6848
CLIP-Adapter 9244 66.14 8276 31.83 9391 7821 6359 8791 7412 6959 76.80 | 7430
Tip-Adapter-F 9293 6733 83.80 35.50 9501 7950 6551 89.71 7550 7131 7801 | 7583
TaskRes 9343 67.13 84.03 3630 96.03 7760 6573 871.83 7683 7067 77.97 | 75.78
GraphAdapter 9337 6790 8555 36.93 96.13 78.67 6572 88.59 7620 7130 7867 | 76.25
HeGraphAdapter 93.96 69.15 8675 38.49 96.39 7973 66.18 90.24 71.30 7228 79.73 | 71.30
HomoGraphAdapter| 9420 71.34 87.20 40.80 9720 7997 6658 90.50 7748 7281 8041 | 78.04
(Ours) (+024) (+#2.19) (+045) (+231) (+0.81) (+024) (+0.40) (+0.26) (+0.18) (+0.53) (+0.68) | (+0.74)

Table 2: Efficiency comparison with other methods on
16-shot ImageNet. The metrics include training time,
number of training epochs, and number of trainable
parameters.

Method Pre-Computation Training Training | Params | Accuracy
Time (One Epoch) | Epochs ™M) (%)
CLIP - - - 60.33
CLIP-Adapter - 15.1 sec 200 0.52 63.59
Tip-Adapter-F 2.9 min 12.3 sec 20 16.38 65.51
GraphAdapter 6.7 min 15.9 sec 20 4.15 65.70
HeGraphAdapter 16 min 14.1 sec 30 10.37 66.18
HomoGraphAdapter 3.2 min 12.6 sec 20 2.07 66.58

ranks as the second smallest among adapter-tuning
methods. HomoGraphAdapter requires only 12.6
seconds to train per epoch, totaling 20 epochs, mak-
ing it the second fastest among methods involv-
ing precomputation. Among graph-based meth-
ods, it achieves the shortest pre-computation time.
GraphAdapter and HeGraphAdapter both require
pairwise cosine similarity calculations to generate
edge features, whereas HomoGraphAdapter relies
only on edge indices without edge features. Con-
sequently, HomoGraphAdapter only needs to com-
pute positive and negative visual caches, reducing
pre-computation overhead.

Overall, compared with existing graph-based
methods GraphAdapter and HeGraphAdapter, Ho-
moGraphAdapter requires less pre-computation
time and training time while achieving better clas-
sification accuracy, highlighting its effectiveness
and efficiency.

4.3 Ablation Studies

In this section, we perform ablation studies to
evaluate the effectiveness of the four classifiers
used in HomoGraphAdapter. We assess the 16-
shot performance across four variations of Homo-
GraphAdapter on ImageNet. The graph nodes
are comprised of five distinct subsets of nodes:

Zig, Zids Zin, Xvp, Xyn. In the first variant Zg Zyq,
we remove the remaining nodes Zy, Xyp Xy, and
their corresponding edges. Other variants are im-
plemented in a similar fashion. As shown in Ta-
ble 3, each subset of nodes and classifiers con-
tributes positively to the final performance, con-
firming the importance of all components in Homo-
GraphAdapter.

Table 3: Ablation studies on the graph nodes of Homo-
GraphAdapter. We implement four variants and report
the performances of the 16-shot adaptation for Ima-
geNet.

‘ Textual Classifiers ‘ Visual Caches ‘

Graph Nodes ‘ Positive ‘ Negative ‘ Positive ‘ Negative ‘ 16-shot Acc
ZgZha v 64.11
Zig Zra Xvp v v 65.68
ZigZaZin Xvp v v v 66.47
ZgZ1a Zin Xvp Xvn v v v v 66.58

Additional ablation studies are detailed in the
Appendix.

5 Conclusions

This paper proposes a homogeneous graph learn-
ing approach to tune CLIP in the data-limited con-
ditions. We introduce a unified, single-layer ho-
mogeneous GNN that encapsulates diverse natural
language and visual embeddings within a homoge-
neous graph comprising only one node type and
one edge type. This design jointly enhances pos-
itive learning and negative learning across both
modalities. Extensive experiments validate the ef-
fectiveness and efficiency of our method. In the
future, we plan to explore how graph learning can
be extended to fine-tune other pre-trained multi-
modality models.

23407

Limitations

Two key limitations are identified in Homo-
GraphAdapter:

Performance Limitations with CLIP: We con-
duct all experiments using the pre-trained CLIP
model, which inherently constrains the potential
performance enhancement from negative classifiers.
This limitation stems from the fact that the CLIP
model was trained without negative descriptions,
resulting in its inability to effectively differentiate
between relevant and irrelevant inputs. As a conse-
quence, the absence of negative examples during
the training phase may significantly impede the
model’s overall capacity to enhance its classifica-
tion accuracy and robustness in real-world applica-
tions. This could lead to suboptimal performance
when the model encounters ambiguous or similar
data points that require a clear distinction.

Task-Specific Adaptation Challenges: Sim-
ilar to most adapter-tuning methods, the model
fine-tuned by HomoGraphAdapter on a specific
downstream task cannot be directly applied to an-
other task without undergoing additional adapta-
tion. This limitation highlights the necessity for tai-
lored tuning processes that cater to the unique char-
acteristics of each task, which can be both resource-
intensive and time-consuming. Such processes of-
ten require substantial computational resources and
expert intervention, reducing the efficiency of de-
ploying models across varying tasks.

Looking ahead, future efforts should focus on
fully exploring the potential of integrating nega-
tive learning with positive learning. This approach
could yield more nuanced representations and sig-
nificantly improve model performance across a
wider array of tasks. By incorporating negative
examples into the training process, we can enhance
the model’s ability to distinguish between similar
classes, thereby refining its decision-making capa-
bilities and overall effectiveness.

Furthermore, improving the robustness of
adapter-tuning approaches is essential for ensur-
ing that models consistently perform well under
diverse conditions, such as noisy data or shifts in
domain. This could involve the development of
more versatile adapter architectures or the imple-
mentation of techniques that facilitate rapid adapta-
tion to new tasks. Ultimately, such advancements
would increase the efficiency and applicability of
these models in real-world scenarios, making them
more versatile and reliable in various applications.

Acknowledgements

This work was supported in part by the Na-
tional Natural Science Foundation of China
(Grant No. 62202216), the Guangdong Ba-
sic and Applied Basic Research Foundation
(Grant No. 2023A1515010244), the Shenzhen
Science and Technology Program (Grant No.
20231121101752002), and the Center for Com-
putational Science and Engineering at Southern
University of Science and Technology. This re-
search was also supported by the Hong Kong RGC
General Research Fund (152244/21E, 152169/22E,
152228/23E, 162161/24E), the Research Impact
Fund (No. R5011-23F, No. R5060-19), the Col-
laborative Research Fund (No. C1042-23GF), the
NSFC/RGC Collaborative Research Scheme (No.
CRS_HKUST602/24), the Areas of Excellence
Scheme (No. AoE/E-601/22-R), and InnoHK (HK-
GAD.

References

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
2014. Food-101-mining discriminative components
with random forests. In Computer vision—-ECCV
2014: 13th European conference, zurich, Switzer-
land, September 6-12, 2014, proceedings, part VI 13,
pages 446—461. Springer.

Pingping Cao, Zeqi Zhu, Ziyuan Wang, Yanping Zhu,
and Qiang Niu. 2022. Applications of graph convo-
lutional networks in computer vision. Neural com-
puting and applications, 34(16):13387-13405.

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos,
Sammy Mohamed, and Andrea Vedaldi. 2014. De-
scribing textures in the wild. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 3606-3613.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages

248-255. Teee.

Alexey Dosovitskiy. 2020. An image is worth 16x16
words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learn-
ing generative visual models from few training ex-
amples: An incremental bayesian approach tested on
101 object categories. In 2004 conference on com-

puter vision and pattern recognition workshop, pages
178-178. IEEE.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681-694.

23408

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma,
Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and
Yu Qiao. 2024. Clip-adapter: Better vision-language
models with feature adapters. International Journal
of Computer Vision, 132(2):581-595.

Koustava Goswami, Srikrishna Karanam, Prateksha Ud-
hayanan, KJ Joseph, and Balaji Vasan Srinivasan.
2024. Copl: Contextual prompt learning for vision-
language understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 18090-18098.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—
778.

Patrick Helber, Benjamin Bischke, Andreas Dengel,
and Damian Borth. 2019. Eurosat: A novel dataset
and deep learning benchmark for land use and land
cover classification. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing,
12(7):2217-2226.

Shiyuan Huang, Jiawei Ma, Guangxing Han, and Shih-
Fu Chang. 2022. Task-adaptive negative envision
for few-shot open-set recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7171-7180.

Zhenyu Huang, Mouxing Yang, Xinyan Xiao, Peng Hu,
and Xi Peng. 2024. Noise-robust vision-language
pre-training with positive-negative learning. /[EEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and
vision-language representation learning with noisy

text supervision. In International conference on ma-
chine learning, pages 4904-4916. PMLR.

Muhammad Uzair Khattak, Hanoona Rasheed, Muham-
mad Maaz, Salman Khan, and Fahad Shahbaz Khan.
2023. Maple: Multi-modal prompt learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19113-19122.

Youngdong Kim, Junho Yim, Juseung Yun, and Junmo
Kim. 2019. NiInl: Negative learning for noisy la-
bels. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 101-110.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-
Fei. 2013. 3d object representations for fine-grained

categorization. In Proceedings of the IEEE inter-

national conference on computer vision workshops,
pages 554-561.

Tianqi Li, Guansong Pang, Xiao Bai, Wenjun Miao, and
Jin Zheng. 2024a. Learning transferable negative
prompts for out-of-distribution detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 17584-17594.

Xin Li, Dongze Lian, Zhihe Lu, Jiawang Bai, Zhibo
Chen, and Xinchao Wang. 2024b. Graphadapter:
Tuning vision-language models with dual knowledge
graph. Advances in Neural Information Processing
Systems, 36.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. 2013. Fine-grained
visual classification of aircraft. arXiv preprint
arXiv:1306.5151.

Jun Nie, Yonggang Zhang, Zhen Fang, Tongliang Liu,
Bo Han, and Xinmei Tian. 2024. Out-of-distribution
detection with negative prompts. In The Twelfth In-
ternational Conference on Learning Representations.

Maria-Elena Nilsback and Andrew Zisserman. 2008.
Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on com-
puter vision, graphics & image processing, pages

722-729. IEEE.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
and CV Jawahar. 2012. Cats and dogs. In 2012
IEEE conference on computer vision and pattern
recognition, pages 3498-3505. IEEE.

Filip Radenovic, Abhimanyu Dubey, Abhishek Kadian,
Todor Mihaylov, Simon Vandenhende, Yash Patel,
Yi Wen, Vignesh Ramanathan, and Dhruv Mahajan.
2023. Filtering, distillation, and hard negatives for
vision-language pre-training. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 6967-6977.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? In International conference
on machine learning, pages 5389-5400. PMLR.

Shuvendu Roy and Ali Etemad. 2023. Consistency-
guided prompt learning for vision-language models.
arXiv preprint arXiv:2306.01195.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. 2017. Grad-cam: Visual explanations
from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference
on computer vision, pages 618—626.

23409

K Soomro. 2012. Ucf101: A dataset of 101 human ac-
tions classes from videos in the wild. arXiv preprint
arXiv:1212.0402.

Ximeng Sun, Ping Hu, and Kate Saenko. 2022. Dual-
coop: Fast adaptation to multi-label recognition with
limited annotations. Advances in Neural Information
Processing Systems, 35:30569-30582.

Yuwei Tang, Zhenyi Lin, Qilong Wang, Pengfei Zhu,
and Qinghua Hu. 2024. Amu-tuning: Effective logit
bias for clip-based few-shot learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 23323-23333.

Yumin Tian, Yuanbo Li, Di Wang, Xiao Liang, Ronghua
Zhang, and Bo Wan. 2023. Enhancing clip-based
text-person retrieval by leveraging negative samples.
In Chinese Conference on Pattern Recognition and
Computer Vision (PRCV), pages 271-283. Springer.

Vishaal Udandarao, Ankush Gupta, and Samuel Al-
banie. 2023. Sus-x: Training-free name-only transfer
of vision-language models. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 2725-2736.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. 2019. Learning robust global representations
by penalizing local predictive power. Advances in
Neural Information Processing Systems, 32.

Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li.
2023. Clipn for zero-shot ood detection: Teaching
clip to say no. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
1802-1812.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude
Oliva, and Antonio Torralba. 2010. Sun database:
Large-scale scene recognition from abbey to zoo. In
2010 IEEE computer society conference on computer
vision and pattern recognition, pages 3485-3492.
IEEE.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L Hamilton, and Jure Leskovec. 2018.
Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 974-983.

Tao Yu, Zhihe Lu, Xin Jin, Zhibo Chen, and Xin-
chao Wang. 2023. Task residual for tuning vision-
language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 10899-10909.

Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang,
and Jiaqi Wang. 2025. Long-clip: Unlocking the
long-text capability of clip. In European Conference
on Computer Vision, pages 310-325. Springer.

Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng
Li. 2022. Tip-adapter: Training-free adaption of clip

for few-shot classification. In European conference
on computer vision, pages 493-510. Springer.

Yumiao Zhao, Bo Jiang, Xiao Wang, Qin Xu, and Jin
Tang. 2024. Hegraphadapter: Tuning multi-modal
vision-language models with heterogeneous graph
adapter. arXiv preprint arXiv:2410.07854.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022a. Conditional prompt learning
for vision-language models. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 16816—16825.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022b. Learning to prompt for vision-
language models. International Journal of Computer
Vision, 130(9):2337-2348.

Xiangyang Zhu, Renrui Zhang, Bowei He, Aojun Zhou,
Dong Wang, Bin Zhao, and Peng Gao. 2023. Not
all features matter: Enhancing few-shot clip with
adaptive prior refinement. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 2605-2615.

23410

HomoGraphAdapter: A Homogeneous Graph Neural Network as an
Effective Adapter for Vision-Language Models

Supplementary Material

In the appendix, we provide additional imple-
mentation details and experiment results of our
HomoGraphAdapter.

A Hyperparameter Values and Sensitivity
Analysis

Table A.4 summarizes the values of all the
hyperparameters—¥k, a, b, ¢, 02, 03, 64, 3 and /3’ for
each dataset. We also present a sensitivity analysis
of these hyperparameters. As shown in Figure A.S,
we adjust one hyperparameter while keeping the
others constant. The model’s performance initially
increases with higher hyperparameter values, but
eventually declines after reaching a peak. The re-
sults indicate that all parameters contribute effec-
tively. Moreover, HomoGraphAdapter maintains
stable performance when adjusting individual hy-
perparameters, as it incorporates multiple classi-
fiers from both textual and visual modalities. For
example, when adjusting parameter k from 16 to
128, the performance increases from 66.48 to 66.58.
When £ is increased from 128 to 512, the perfor-
mance drops from 66.58 to 66.53. The influence is
limited because parameter k only affects the nega-
tive visual classifier.

B Experiment Results Across Different
Backbones

We also implement HomoGraphAdapter and con-
duct experiments under various CLIP encoder back-
bones, including ResNet-101 (He et al., 2016), ViT-
B/32 (Dosovitskiy, 2020), and ViT-B/16 (Dosovit-
skiy, 2020). Specifically, we trained our model
on the 16-shot ImageNet dataset and assessed its
performance on ImageNet and Out-Of-Distribution
(OOD) ImageNet datasets, including ImageNet-V?2
(Recht et al., 2019) and ImageNet-Sketch (Wang
et al., 2019).

As shown in Table B.5, HomoGraphAdapter con-
sistently achieves superior performance compared
with the baselines across all backbones. Compared
with the second-best method HeGraphAdapter, Ho-
moGraphAdapter attains an average performance
gain of 1.2% on Source and 1.3% on Target across
4 different backbones. The results indicate that

HomoGraphAdapter consistently improves classi-
fication accuracy for the downstream task across
different CLIP backbones and varying distribution
conditions.

C Visualizations of HomoGraphAdapter

In this section, we present visualizations of the
positive and negative textual and visual classifiers
in HomoGraphAdapter to validate our findings and
offer a clearer perspective on our research. For the
EuroSAT dataset, t-SNE visualization of positive
and negative visual representatives in cache models
is presented in Figure C.6. For the Food101 dataset,
the Grad-CAM visualization of learned positive
and negative textual embeddings for the ground-
truth class is demonstrated in Figure C.7.

D Details of Multiple Text Prompts

The use of multiple text prompts, including both
positive and negative ones, has gained signifi-
cant traction in the community for prompt-tuning
and adapter-tuning methods. To save on pre-
computation time, we do not generate the sentences
on the fly. For positive general text descriptions and
negative text descriptions of categories mentioned
in §3 of the main text, we utilize multiple pre-
defined prompt templates to generate them. The
pre-defined prompt templates for each dataset are
shown in Table D.6. We fill these templates with
the class names from the dataset to generate text
prompts, which are then used as input to the text
encoder, and we average their embeddings.

For the positive detailed descriptions mentioned
in §3 of the main text, we directly use the JSON
files for each category in the dataset, generated by
GPT-3 in (Roy and Etemad, 2023). Due to their
length, we showcase the generated sentences for
one class in Eurosat in Table D.7.

23411

Table A.4: Values of hyperparameters that achieve peak performance during fine-tuning on the 11 datasets.

Dataset Caltech FGVC Eurosat DTD Cars Flowers102 Pets UCF101 Foodl101 SUN397 ImageNet
k 12 16 2 10 16 4 8 4 24 64 128
a 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.05
b 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.05
c 0.45 0.45 0.45 045 045 0.45 0.45 0.45 0.45 0.45 0.45
01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
02 0.1 0.3 0.3 0.15 025 0.25 0.2 0.25 0.25 0.1 0.25
03 1.0 4.5 1.5 1.8 2.0 1.5 1.5 1.5 0.8 1.5 1.2
B 1.5 2.5 1.0 2.8 2.5 2 1.5 1.5 0.8 1.5 1.8
04 0.3 0.6 0.1 0.3 0.6 0.5 0.25 0.3 0.25 0.3 0.3
B 1.0 1.5 0.4 1.0 2.0 1.5 0.8 1.0 0.8 1.0 1.8

66.58 /’\\ - k 66.58 c 66.58 a
66.56 1 ‘/’ . 66.56 1 66.56
66.54 i R e 6654
! e 66.54
6521 ," 66.52
66.50 I,l so50. 66.52
66.48 1, . i i i i i [| [[| 66.50 i i i i i i i :
0 100 200 300 400 500 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
o %6587 PanN Y 66.575 4 & -®- 6, 66.575 S S -®- 6;
x RS LN T Sy
g 66.550 S N 66.550 o (8
> 66561 - e R 66.525 hd >
% ¢ -l eesz] e \b 66.500 / \
S 66.54 4 “‘q\ 66.500 1 @ 5 i ,/ .
8 N coars] N 66.475 / »
T = \ s | N)
% 66.50 1 o 66.425 7 \‘o 66.400 ‘/
§ 0025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0150 0.175 0.200 0.225 0250 0.275 0.300 0.325 0.350 04 06 08 10 12 14 16 18 20
66.575 == _o\ P 66.58 - B 66.58 ,O\\ .- p
66.550 . 66.57 - Te.
- N 66.56 e e
665251 - S 66.56 1 -
s6.500 | @ \.\\ 66.55 1 66.54 > 7
66.475 AN J
66.450 b 06541 66.52 7
66.425 4 AN 66.53 /I
664001 — ‘ — ‘ \f 6652 ‘ ‘ ‘ ‘ ‘ ‘ 66.50 ?/ ‘ ‘ ‘ ‘ ‘ ‘
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Valllljeslozf H;Aperéﬁa ra nlqﬂetelag 22 1.0 12 14 16 18 2.0 2.2

Figure A.5: Ablation studies on the sensitivity of hyperparameters are conducted while fine-tuning on the 16-shot
ImageNet dataset. Each individual hyperparameter is adjusted while keeping the others constant to observe changes

in accuracy.

Figure C.6: t-SNE visualizations of positive and negative visual representatives in cache models of HomoGraphAdapter. Dots
in different colors represent embeddings of different categories. From top left to right, distributions indicate the variation of keys
in the positive cache during fine-tuning on EuroSAT dataset. From bottom left to right, distributions indicate the variation of

keys in the negative visual cache during fine-tuning on EuroSAT dataset.

Initial Negative Visual Representatives

Adapted Negative Visual Representatives

Initial Positive Visual Adapted Positive Visual
o -
R I3
ERS
R
4:.; "
1 “
3 b
L5
3.t
) i
it (Y <
. 5 R
% s -
- N
~
, X
@ :

23412

Table B.5: The generalization experiments across various CLIP backbones. The model is optimized on the ImageNet
dataset (denoted as ‘Source’) with a 16-shot setting and tested on OOD datasets (denoted as ‘Target’). The best
performance is marked in bold, while the second best is underlined.

Method Backbone Source | Target
ImageNet | ImageNet-V2 ImageNet-Sketch

Zero-shot CLIP 60.33 53.27 35.44
Linear Probe CLIP 56.13 45.61 19.13
CoOp 62.95 55.40 34.67
TaskRes ResNet-50 64.75 56.47 35.83
GraphAdapter 65.70 56.58 35.89
HeGraphAdapter 66.06 56.99 35.24
HomoGraphAdapter 66.58 57.89 36.40
Zero-shot CLIP 61.62 54.81 38.71
Linear Probe CLIP 59.75 50.05 26.80
CoOp 66.60 58.66 39.08
TaskRes ResNet-101 67.70 59.50 41.70
GraphAdapter 68.23 59.60 40.83
HeGraphAdapter 68.60 59.82 41.88
HomoGraphAdapter 69.65 60.52 42.18
Zero-shot CLIP 66.73 60.83 46.15
Linear Probe CLIP 65.85 56.26 34.77
CoOp 71.92 64.18 46.71
TaskRes ViT-B/16 73.07 65.30 49.13
GraphAdapter 73.68 65.57 48.57
HeGraphAdapter 73.82 65.39 49.31
HomoGraphAdapter 74.70 66.24 49.88
Zero-shot CLIP 62.05 54.79 40.82
Linear Probe CLIP 59.58 49.73 28.06
CoOp 66.85 58.08 40.44
TaskRes ViT-B/32 68.20 59.20 42.50
GraphAdapter 68.80 59.00 41.70
HeGraphAdapter 68.85 59.62 42.77
HomoGraphAdapter 69.85 59.85 43.35

Figure C.7: Grad-CAM (Selvaraju et al., 2017) visualizes similarity heatmaps using the learned positive and negative textual
embeddings for the ground-truth class in the Food101 dataset. From left to right, the images display the input image, the positive
heatmap, and the negative heatmap.

23413

Table D.6: Pre-defined positive and negative prompt templates designed for each dataset.

Dataset Classes | Positive Prompt Templates Negative Prompt Templates
Caltech101 101 ‘A photo of a [Category].’ ‘A photo of no [Category].’
EuroSAT 10 ‘A centered satellite photo of [Category]’ ‘A centered satellite photo of no [Category]’
FGVCAircraft 100 ‘A photo with [Category] aircraft.’ ‘A photo without [Category] aircraft.’
SUN397 397 ‘A photo of a [Category].’ ‘A photo of no [Category].’
StanfordCars 196 ‘A photo of a [Category].’ ‘A photo of no [Category].’
UCF101 101 ‘A photo of a person doing [Category].’ ‘A photo of a person not doing [Category].’
Flowers102 102 ‘A photo of a [Category], a type of flowers.” | ‘A photo of no [Category], a type of flowers.’
Food101 101 ‘A photo of a [Category], a type of food.’ ‘A photo of no [Category], a type of food.”
DTD 47 ‘[Category] texture.’ ‘not [Category] texture.’
OxfordPets 37 ‘A photo of a [Category], a type of pets.’ ‘A photo of no [Category], a type of pets.’
‘Itap of a [Category].’, ‘Itap without any [Category].’,
‘A bad photo of the [Category].’, ‘A bad photo with no [Category] in it.’,
‘A origami [Category].’, ‘A origami piece that isn’t a [Category].’,
‘A photo of the large [Category].’, ‘A photo with no large [Category].’,
‘A [Category] in a video game.’, ‘A video game scene without a [Category].’,
ImageNet ‘Art of the [Category].’, ‘Art that doesn’t include a [Category].’,
ImageNet-V2 1000 ‘A photo of the small [Category].’, ‘A photo with no small [Category].’,
ImageNet-Sketch ‘An image of a [Category] with ‘A landscape devoid of any [Category].,
bright and natural lighting.’ ‘An image completely lacking a [Category].’,
‘A scene with no trace of [Category].’,
‘An empty space without any [Category].’,
‘A picture where [Category] is
conspicuously absent.’,
‘A setting that is free from any [Category].’

Table D.7: Descriptive sentences for the class "Pasture Land" in Eurosat generated by GPT-3.

Dataset | Classes

Long detailed text descriptions

Eurosat 10

‘A centered satellite photo of Pasture Land would look like large green fields with animals grazing on them.’

‘A centered satellite photo of Pasture Land would look like a large green field with some areas of brown or bare earth in between.’
‘A centered satellite photo of Pasture Land would look like a large green field broken up by areas of trees, bushes, or other foliage.’
‘A centered satellite photo of Pasture Land would look like large green fields with small areas of brown or bare earth in between.’
‘A centered satellite photo of Pasture Land would look like a large green field with small patches of brown or bare earth in between.’

‘A centered satellite photo of Pasture Land would look like a large green or tan field with small patches of brown or bare earth in between.’
‘A centered satellite photo of Pasture Land would look like a large green or brown field with small patches of different colors in between.’

‘A centered satellite photo of Pasture Land would look like a large field of green with small brown or black spots (cows).”
‘A centered satellite photo of Pasture Land would look like large green fields with some areas of brown or bare earth in between.’
‘A centered satellite photo of Pasture Land would look like large green fields with small patches of brown or bare earth in between.’

23414

