Self-Correcting Code Generation Using Small Language Models

Jeonghun Cho!, Deokhyung Kang', Hyounghun Kim'?, Gary Geunbae Lee"

2

!Graduate School of Artificial Intelligence, POSTECH
’Department of Computer Science and Engineering, POSTECH
{jeonghuncho, deokhk, h.kim, gblee}@postech.ac.kr

Abstract

Self-correction has demonstrated potential in
code generation by allowing language models
to revise and improve their outputs through
successive refinement. Recent studies have
explored prompting-based strategies that in-
corporate verification or feedback loops using
proprietary models, as well as training-based
methods that leverage their strong reasoning
capabilities. However, whether smaller models
possess the capacity to effectively guide their
outputs through self-reflection remains unex-
plored. Our findings reveal that smaller models
struggle to exhibit reflective revision behavior
across both self-correction paradigms. In re-
sponse, we introduce COCOS, an approach
designed to enhance the ability of small lan-
guage models for multi-turn code correction.
Specifically, we propose an online reinforce-
ment learning objective that trains the model to
confidently maintain correct outputs while pro-
gressively correcting incorrect outputs as turns
proceed. Our approach features an accumulated
reward function that aggregates rewards across
the entire trajectory and a fine-grained reward
better suited to multi-turn correction scenarios.
This facilitates the model in enhancing initial
response quality while achieving substantial
improvements through self-correction. With
1B-scale models, COCOS achieves improve-
ments of 35.8% on the MBPP and 27.7% on
HumanEval compared to the baselines.'

1 Introduction

Despite the progress in large language models
(LLMs), generating the correct code snippets in
a single attempt remains a challenging task across
many programming scenarios. In response, re-
cent studies have explored the use of external
supervision, typically provided by a more capa-
ble teacher model, to guide the correction pro-
cess (Welleck et al., 2023; Yang et al., 2025).

'Our implementation can be accessed at https://github.
com/jeonghun3572/CoCoS

These approaches typically leverage teacher mod-
els, which either guide student models through iter-
ative self-correction via feedback or perform both
generation and correction in a self-directed manner
without external models (Kamoi et al., 2024).

Given the dependence on powerful guid-
ance, most of the successful results have been
achieved using strong proprietary models such
as Gemini (Team et al., 2023, 2024) and GPT-
series (Brown et al., 2020; OpenAl, 2025), which
are only available through external APIs (Chen
et al., 2024, 2025). Considering the reliance on
costly proprietary models in previous studies, it
remains uncertain whether smaller, open-source
language models (SLMs) can effectively guide
their outputs through self-reflection (Huang et al.,
2024; Han et al., 2024). To investigate this, we ex-
plore whether SLMs can achieve meaningful self-
correction without proprietary systems. Our find-
ings show that smaller models struggle to exhibit re-
flective revision behavior when they rely solely on
prompting (§4.3). Building on these observations,
we aim to explore training-based self-correction
for code generation. However, we find that such
methods are not directly applicable to SLMs, likely
due to their assumption of sufficient self-correction
capability (§5.2).

To tackle these limitations, we introduce CO-
CoS (Self-Correcting Code generation using
Small LMs), a reinforcement learning (RL) frame-
work designed to support intrinsic self-correction
in small LMs. Our approach leverages an accu-
mulated reward function that considers previous
responses and outputs a scalar reward that cap-
tures the cumulative effect of multiple turns. This
function encourages both successful self-correction
and improved initial response quality by rewarding
the entire response trajectory. Additionally, our
method adopts a progressive reward that evaluates
incremental improvements in code quality by tailor-
ing the setting to a multi-turn scenario, which offers

2345

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 2345-2368
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/jeonghun3572/CoCoS
https://github.com/jeonghun3572/CoCoS

a more fine-grained assessment than binary rewards
based solely on code correctness. We validate our
approach on 1B-scale models across various code
generation tasks and observe robust generalization
in unseen settings.

Our contributions are as follows: (1) We empir-
ically demonstrate that previous prompting-based
and training-based self-correction methods strug-
gle to generalize to small language models. (2)
We introduce a reinforcement learning reward func-
tion tailored for the multi-turn code generation set-
ting, leveraging accumulated rewards with a dis-
count factor and fine-grained assessments to en-
courage effective self-correction. (3) We validate
our approach across diverse Python code genera-
tion datasets and show consistent improvements
over baselines, including in unseen settings.

2 Related Work

Prompting-based correction guidance. Several
recent studies on self-correction have leveraged
the advanced reasoning capabilities of LLMs to
improve the accuracy of their initial responses (Ze-
likman et al., 2022; Renze and Guven, 2024). In
coding tasks that require complex reasoning, self-
correction often involves reviewing generated code
snippets to identify and fix errors with the model’s
own judgment. However, prior works suggest that
naive prompting for self-correction may reduce
performance (Huang et al., 2024; Qu et al., 2024).
As a result, SETS (Chen et al., 2025) combines
sampling, self-verification, and self-correction into
a unified framework that facilitates LLMs to im-
prove their own outputs. Self-Refine (Madaan et al.,
2023) conducts iterative evaluation and correction
of the initial responses using few-shot prompting
without any additional fine-tuning. However, these
methods rely on the assumption that the model is
already capable of revising its outputs.

Training-based correction guidance. In addi-
tion to the above methods, fine-tuning has been
explored to endow models with intrinsic self-
correction. Self-Corrector (Welleck et al., 2023)
employs a separate correction model that shares
the same backbone as the initial response generator.
Zhang et al. (2024) introduces a distinct verifier
model to guide the revision process. Yang et al.
(2025) propose a teacher-guided framework where
a stronger model supervises both the intermediate
reasoning steps and the final prediction of an SLM.
However, all of these methods depend on training

separate corrector or verifier models, which require
additional computational resources.

Self-correction without external guidance. Re-
VISE (Lee et al., 2025) implements internal self-
correction by generating special tokens that deter-
mine whether to revise or terminate the current out-
put. SCoRe (Kumar et al., 2025) adopts a two-stage
RL framework that provides rewards to both the
previous and current responses to guide learning.
While both methods have demonstrated improved
code generation, ReVISE has limited generaliza-
tion beyond the training turns due to its reliance on
supervised fine-tuning (SFT) (Chu et al., 2025).
SCoRe is the first work to alleviate this limita-
tion through online learning with self-generated
data. While both SCoRe and our approach lever-
age online-RL, SCoRe remains constrained to pro-
prietary models, whereas COCOS demonstrates
effectiveness even for SLMs that struggle with self-
correction.

3 Problem Description

In this work, we focus on code generation tasks and
study a small-scale LLM to investigate its intrinsic
ability to improve its outputs over subsequent trials.
Suppose D = {(x,y,u)} consists of data points,
each represented as a tuple (x,y, u), where x is a
problem, y is the canonical code snippet, and u is
the unit test cases. We define the SLM as 7y and
aim to generate correct ¢j; through the conditional
distribution 7y (4¢|z, 1:4—1, P1:4—1), Where g1.4—1
represents the history of SLM’s previous trials, and
p1:+—1 denotes auxiliary instructions for revising
the previous responses. Note that the subscripts
indicate turn indices within the multi-turn setting.
Since we do not consider external feedback (e.g.,
compiler outcomes, other LMs’ feedback), p1.;—1
is fixed for each turn.

4 Preliminary Study: Prompting-based
Self-Correction

Prompting-based self-correction typically involves
incorporating feedback into the prompt in the form
of the auxiliary instruction sequence p;.;—1 (Kamoi
et al., 2024). This feedback can be either provided
by a separate teacher model or generated by the
model itself. In this section, we examine both
settings to assess whether prompting-based self-
correction is effective for small language models.

2346

Accuracy@tl Accuracy@t2 AI7C(t1, t2) ASTi(t1, 2)]

AAC(t], t2)

Method

Simple-prompting 43.8% 44.6%
Self-Refine 43.8% 38.2%
External-Refine 43.8% 41.8%
SETS 39.3% 38.8%
External-SETS 39.3% 49.8 %

1.4% 0.6% 0.8%
2.8% 8.4% —5.6%
7.0% 9.0% —2.0%

Table 1: Performance comparison of prompting-based methods.

4.1 Maetrics

To evaluate self-correction, we follow the metrics
used in Kumar et al. (2025). An output ¥; is consid-
ered correct if it passes all test cases and is incor-
rect otherwise. Accuracy @tl and Accuracy @t2
denote the accuracy at the first and second turns,
respectively. AI~¢(tl, t2) denotes the fraction
of problems that change from incorrect to correct
between the first and second turns, and Ai(t1,
t2) vice versa. Finally, AAC(t1, t2) measures the
change in accuracy between the first and second
turns.

4.2 Setup

We experiment with two prompting-based self-
correction methods, Self-Refine (Madaan et al.,
2023) and SETS (Chen et al., 2025)—both demon-
strated exclusively on proprietary LLMs in their
original work. To verify the effectiveness of SLMs,
all experiments are conducted using the pre-trained
Qwen2.5-1.5B (Yang et al., 2024). Self-Refine
uses 3-shot prompting, whereas SETS relies on
test-time scaling. Since SETS does not generate
a fixed initial response, we estimate Accuracy @tl
by averaging the accuracy of 20 sampled initial
outputs. Accuracy @t2 is similarly computed af-
ter all correction steps. However, because SETS
verifies each sample and only applies correction to
those deemed correct, A improvements between
initial and final responses cannot be consistently
measured. Instead, we report feedback accuracy in
Appendix A.

We further investigate the influence of exter-
nal feedback by employing strong teacher mod-
els,2 which we refer to as External-Refine and
External-SETS. For comparison, we also intro-
duce a simple correction prompting method that
first generates an initial response with a 3-shot
prompt, then prompts for correction without dis-

2We use gpt-4.1-2025-04-14 (OpenAl, 2025) for teacher
model.

closing the correctness of the initial output. Addi-
tional details including prompts and hyperparame-
ters are provided in Appendix G.

4.3 Results

In conclusion, SLMs struggle to revise their re-
sponses using prompting alone, as shown in Table 1.
Although simple prompting yields a marginal per-
formance gain (A of 0.8), it fails to enable mean-
ingful revisions. Both prior works, when used with-
out an external LLM for self-verification, underper-
form compared to simple prompting and frequently
modify responses that were initially correct. Effec-
tive self-correction becomes only possible when a
strong external LLM provides feedback (External-
SETS; 10.5% gain in Accuracy@tl). However,
this setup assumes access to a powerful external
model ? and requires calling it alongside the SLM
during inference, which is impractical in real-world
scenarios.

S Proposed Methodology

Based on the observations in §4, SLMs struggle to
demonstrate reflective revision behavior when rely-
ing solely on prompting, without access to external
LLMs. In this section, we introduce a training-
based method designed to enable effective self-
correction.

5.1 Multi-turn MDP

As outlined in §3, our goal is to enhance model
outputs across multiple turns by leveraging the
response history. Since the model’s own gener-
ated history ¢;.;—1 naturally defines a sequential
decision process, we formulate the process of self-
correction as a multi-turn Markov decision pro-
cess (Qu et al., 2024), where the policy is defined
as
7o(Ut | T, U1:0-1,P1:0-1)

In this formulation, the state at each turn ¢ is de-
noted as s; = (&, ¥1.¢—1, P1:¢t—1), Which consists

2347

Dii (o (-]x1) || Mrer(|Xx1))

Dy (o] | MTrer)

r(yzr};Z)

150 0.8
150
061
100
v 100
]
2 0.4
>
501 504
0.21
01 01 M 0.0 f/“\

0 100 200 300 400 500 O 100 200

Training Step

—e— 3-shot(B, =0.25) —e— 3-shot(B,=0.1)

300 400 500 0 100 200 300 400 500

3-shot(8,;=0) —e— SFT-Qwen(B, = 0.25)

Figure 1: Learning curves for SCoRe based on experiments with Qwen2.5-1.5B. (1) KL-regularization for the first
turn, (2) Default KL-divergence penalty for the policy gradient training, and (3) Reward for the second response.
The KL-regularization for the first turn becomes excessively high as the training step increases so that the
training collapses. We also observe collapse in another small model, which we analyze in Appendix E.

Qwen2.5-1.5B Gemini-1.5-Flash 100 SFT-Qwen2.5-1.5B

CDF (%)
S
5
R
5
-
5

0
1.0 00 0.5 1.0
Edit Distance Ratio

0
1.0 0.0 0.5
Edit Distance Ratio

0
0.0 0.5
Edit Distance Ratio

Figure 2: Cumulative distribution functions (CDFs)
of edit distance ratios between the first and second re-
sponses, evaluated on Qwen2.5-1.5B and Gemini-1.5-
Flash under the 3-shot setting.

of the input x, the model’s prior outputs ¢i.;—1,
and the prompt history p;.4—1. The action a; cor-
responds to generating a revised output ¢;. This
action is then appended to form the next prompt
p; for the subsequent turn. Accordingly, the pol-
icy can be rewritten as mg(a; | s;). We evaluate
the correctness of the generated code ¢; using unit
test execution u(¢;), which assesses the functional
correctness of the code against the given unit tests.
The test outcome is used as the reward:

(Yt Ut) = u(Pe)

where 7(y;, 9) denotes the reward for ;.

Under this formulation, the learning objective is
to optimize a policy 7y that maximizes the expected
cumulative reward over a refinement trajectory:

max By y)~D, § ~mo [Z 7(Yt, Ut)
=1

— Bk (wo(- | 56) || Ares (- | 50))]

~+

where 3 > 0 is the Kullback-Leibler (KL) coef-
ficient that controls the strength of regularization
against the reference policy 7, .

5.2 Observed limitations

Previous training-based studies have used super-
vised learning to pair incorrect responses with cor-
rections, enabling the model to revise incorrect
outputs for multi-turn self-correction (Zelikman
et al., 2022; Welleck et al., 2023). However, in
an ideal scenario, LLMs also should aim to com-
plete the given task on the first attempt, minimiz-
ing the need for correction. In other words, the
goal of self-correction learning is to maximize not
only Accuracy @t2 but also Accuracy @tl1. To this
end, SCoRe (Kumar et al., 2025) proposed a two-
stage approach to optimize both turns. Specifically,
in the first stage, training aims to maximize the
reward of the second turn while applying strong
KL-regularization to the first turn to preserve the
distribution of the initial response. In the second
stage, the model jointly optimizes both responses.
This approach is the first to achieve positive intrin-
sic self-correction. The training formulation in the
first stage is as follows:

2
r(y2,92) = B Drr(mo(- | s0) | (- | 51))
t=1
— BoDrer (mo (i1 | 51) || Tref (Yres | 51))

ey

where 7(y2, §2) is a binary reward, taking a value
of 1 for all-pass and 0 for fail. The second KL-
divergence term represents the regularization, and
B < (2. However, we find that introducing the
second KL-divergence term (32 > 0) leads to train-
ing collapse for SLMs, as shown in Figure 1 where
the reward converges to zero.

We hypothesize that training collapse arises from
the limited self-correction ability of SLMs. In the

2348

simple-prompting baseline (Table 1), the low val-
ues of A7¢ and A°1 suggest that the model rarely
revises its initial response, often producing near-
identical outputs across turns (j; = ¢2). This is fur-
ther supported by Figure 2, where Qwen2.5-1.5B
shows minimal changes (edit distance < 0.05) in
93% of cases when the second response is incorrect,
compared to only 32% for Gemini.

This lack of revision becomes problematic when
optimizing the reward objective in Equation 1.
While the reward term encourages updates to yo,
the strong overlap with y; causes the KL regulariza-
tion—applied to y;—to inadvertently constrain ys,
thereby destabilizing training and limiting reward-
driven updates.

To further investigate our hypothesis, we con-
struct an SFT-Qwen model that is intentionally fine-
tuned to produce outputs where y; # yo. The edit
distance between y; and y5 can be observed in the
right histogram in Figure 2. To this end, we create
training data by mixing ¢j; and g2 generated from
Pre-trained Qwen and Gemini, respectively, and
deliberately overfit the model to MBPP to instill
correction capability. Figure 1 illustrates the impact
of KL-regularization on Pre-trained Qwen and SFT-
Qwen. We observe that first-turn KL-regularization
explodes during training. This leads to instability in
the learning process, driving the reward toward zero
and ultimately resulting in training collapse. In con-
trast, disabling this regularization (i.e., 82 = 0) or
using SFT-Qwen prevents such instability. Interest-
ingly, SFT-Qwen does not exhibit training collapse,
even when trained with a KL-regularization co-
efficient (82 = 0.25)—a large value that reflects
SCoRe’s intention—thus supporting our hypothe-
sis about the conditions that give rise to instability.
Building on this experiment, we propose a method
to enhance intrinsic self-correction even in SLMs.

5.3 CoCoS

To enable self-correction, it is crucial to capture the
difference between the initial and subsequent re-
sponses. A straightforward approach—maximizing
only the difference of rewards at each turn by
subtracting r(y1,91) from r(yz, J2)—may lead
to reward hacking, where the model intention-
ally degrades r(y1,91) to inflate the reward dif-
ference (Skalse et al., 2022). Therefore, SCoORE
introduced the KL-regularization to prevent this
collapse; however, SLMs struggle with this strat-
egy (§5.2). To address this, we introduce COCOS,
an RL-based method that uses a discount factor

to accumulate rewards from prior responses, pre-
venting the collapse of the initial response while
also providing fine-grained assessments through
progressive reward that capture incremental im-
provements between turns.

Since our setting is also formulated as a multi-
turn MDP, we adopt a REINFORCE-style policy
gradient method (Ahmadian et al., 2024) to opti-
mize the policy, which is widely used in single-turn
RLHF (v = 0). In order to adapt to a multi-turn
setting, we introduce two key modifications to the
reward function. First, we introduce an accumu-
lated reward function that incorporates a discount
factor v to encourage the model to consider the as-
sessment of the previous turn; in the case of SCoRe,
~ = 0 since it computes the reward independently
at each turn. Unlike conventional RL, where ~
discounts future rewards, we adapt its usage to am-
plify the contribution of the most recent turn. The
accumulated reward function R(g.7) is defined as
follows (with T' = 2 in our setup):

T

R(jnr) =7"""ri+ > A" =) (@)
t=2

where r; denotes the reward at the ¢-th turn. When
7 < 1, the function focuses more on recent changes
in reward, whereas v > 1, in principle, places
greater emphasis on earlier responses. Based on
empirical observations, we set v = 0.5 in our ex-
periments. The impact of varying +y is discussed in
§8.1.

In multi-turn settings, capturing the model’s
progress over successive turns is important. How-
ever, prior work has typically used a binary re-
ward that reflects whether all test cases pass, which
makes it difficult to account for gradual improve-
ments during the refinement process (Zheng et al.,
2025). To address this, we introduce a progressive
reward based on the pass ratio. We assume that
each code is paired with K unit test cases to assess
semantic correctness, and the progressive reward
is computed as follows:

K
1
"= ; I{ug(9t) passes} 3)

The effectiveness of the progressive reward com-
pared to the binary scheme is presented in §8.2.
Accordingly, our training objective is defined as

2349

Method Accuracy @t1 Accuracy @t2
Pre-Trained (3-shot)

Qwen2.5-1.5B 43.8% 44.6%
Llama-3.2-1B 27.6% 27.6%
deepseek-coder-1.3B 46.4% 46.0%

Boost model (0-shot)
Qwen2.5-1.5B
Llama-3.2-1B
deepseek-coder-1.3B

9.0% (34.8%))
10.4% (17.2%1)
16.6% (29.8%.)

10.2% (34.4%1)
11.0% (16.6%1)
20.2% (25.8%))

Table 2: Performance comparison between pre-trained
and boost models on the MBPP dataset. Pre-Trained
models are evaluated using 3-shot prompting. The re-
sults suggest that using boost models as the backbone
in our experiments has minimal impact.

follows:

max By, j ~ry | R(1.7)

T

— B Dicr(mol- | 51) || Trer(- | 50)) |
t=1
“4)

where 3 denotes the KL coefficient. Further exper-
imental details can be found in Appendix C.

6 Experimental Settings

As prior studies are insufficient for enabling in-
trinsic self-correction (§4), we compare COCOS
against fine-tuning approaches. To support this
comparison, we introduce the experimental set-
tings, including descriptions of the models (§6.1),
datasets (§6.2), and baselines (§6.3) used in our
experiments.

6.1 Models

We use Qwen2.5-1.5B (Yang et al., 2024), Llama-
3.2-1B (Grattafiori et al., 2024), and DeepSeek-
Coder-1.3B-Base (Guo et al., 2024) as base mod-
els and fine-tune them for each method. During
inference, we use greedy decoding to ensure re-
producibility. Further implementation details are
provided in Appendix C.

6.2 Datasets

All models are trained on MBPP (Austin et al.,
2021) and evaluated on MBPP, HumanEval (Chen
et al., 2021), and ODEX (Wang et al., 2023) to
assess generalization to unseen data. For MBPP,
we follow the data split provided in Austin et al.
(2021), which defines train, validation, test, and
few-shot sets. We do not use the validation set for

model selection; instead, we select the checkpoint
that achieves the highest reward during training.
Also, few-shot data is excluded.

While supervised fine-tuning (SFT) allows mod-
els to learn proper code formatting through input-
output pairs, online-RL lacks such structural guid-
ance. Therefore, we perform SFT on the Kod-
Code (Xu et al., 2025) dataset to produce parseable
code so that RL training can be conducted with unit
test execution. KodCode is curated to exclude data
from MBPP, HumanEval, and ODEX. We mea-
sure the model’s accuracy on MBPP at both the
pre-SFT and post-SFT, which we denote as the
Pre-trained and Boost model, respectively, and
report the results in Table 2. As shown in Table 2,
we emphasize that the purpose of SFT on KodCode
is not to enhance performance on the target dataset.
The Boost model is the backbone for both CoC0oS
and all baseline comparisons.

6.3 Baselines

We compare COCOS with two training-based meth-
ods: Self-Corrector, which adopts a separate cor-
rector model, and ReVISE, which follows an in-
trinsic self-correction approach. Since ReVISE is
trained on a fixed two-turn dataset, it is constrained
to generate a terminate token within two turns. This
poses a limitation in terms of turn scalability. To
enable multi-turn correction beyond two turns, we
train our own SFT baseline, Turn-SFT, using fixed
1-turn and 2-turn examples. Turn-SFT can gener-
alize beyond two turns by following the trained
data format during inference, offering better turn
scalability than ReVISE and making it suitable for
analyzing self-correction beyond two turns.

However, such SFT-based methods still rely on
the distribution of the training dataset, which high-
lights the need for RL-based approaches with bet-
ter generalization. To compare with an RL-based
approach, we also train Turn-RL, where the first
response is fixed and the second turn is optimized
according to Equation 4. In other words, Turn-RL
constrains the optimization of the initial response in
contrast to COCOS. Further details on the baselines
are provided in Appendix B.

7 Main Results

As shown in Table 3, COCOS demonstrates the
highest correction performance across all turns. Al-
though the baselines are trained to actively revise
prior responses, the A~ metric indicates that they

2350

Method Accuracy@tl Accuracy@t2 A7t t2) AT, £2)] AAC(t, t2)
Boost model 9.0% 10.2% 1.2% 0.0% 1.2%
Turn-SFT 44.2% 44 4% 1.4% 1.2% 0.2%
Self-Corrector 43.8% 48.8% 11.2% 6.2% 5.0%
ReVISE 34.6% 41.2% 11.3% 4.9% 6.4%
Turn-RL 46.4% 48.6% 4.0% 1.8% 2.2%
CoCoS 45.0% 54.2% 11.0% 1.8% 9.2%

Table 3: Main results of Qwen2.5-1.5B on the MBPP dataset. The highest accuracy values are highlighted in bold.
CoCoS has the highest selective correction rate, correcting incorrect responses without changing correct ones. It
also demonstrates strong generalization, achieving high correction success rates even on unseen data.

Method Accuracy@tl Accuracy@t2 AAC(tl, t2)
MBPP
Boost model 10.4/16.6 11.0/20.2 06/3.6
Turn-SFT 23.2/45.0 23.6/46.0 04/1.0
Self-Corrector 27.6/46.4 25.8/47.0 —1.8/0.6
ReVISE 29.0/48.6 30.8/47.6 08/—-12
Turn-RL 16.6 /36.4 16.4/55.4 -0.2/19.0
CoCoS 57.2/48.2 59.4/60.4 2217122
HumanEval
Boost model 152/21.3 15.2/21.3 0.0/0.0
Turn-SFT 14.6/19.5 12.8/22.0 —-19/25
Self-Corrector 11.0/20.1 12.8/22.6 1.9/24
ReVISE 13.4/23.8 11.9/19.0 —-1.9/-43
Turn-RL 8.5/23.2 8.5/25.6 00/24
CoCoS 34.1/22.6 39.6/25.0 55/24
ODEX
Boost model 13.2/27.3 12.8/27.6 —0.5/-0.3
Turn-SFT 15.7/29.8 15.3/28.7 —-04/-1.1
Self-Corrector 13.2/27.3 14.4/28.0 1.1/0.7
ReVISE 9.6/21.2 11.4/22.8 1.8/1.6
Turn-RL 19.8/23.6 21.9/730.5 2.1/6.9
CoCoS 23.2/26.2 25.1/314 1.8/52

Table 4: Accuracy comparison across different models.
Results are reported as Llama-3.2-1B / deepseek-coder-
1.3B. Percentage units (%) are omitted from the table.
The full results are provided in Appendix D.

frequently make unnecessary revisions to already
correct outputs. COCOS, on the other hand, cor-
rects selectively: it achieves a low A~ rate of
1.8%, avoiding unnecessary changes, while main-
taining a high AI™° rate of 11%. This results in a
AA of 9.2%, the highest among all baselines.

7.1 Evaluation in broader scenarios

To evaluate the generalization of our approach, we
report additional results on alternative models and
unseen datasets in Table 4. COCOS outperforms
other baselines even when using SLMs other than
Qwen as the backbone. For instance, using Llama

First Attempt Second Attempt
0.81 y=0 — y=2 P
— y=1 — y=05 P oo e
o6 ,,/“’fyw‘w"
- ' WM) MMM\MPM WMMWW 4}4 N A O]
©
£ 049 W , /
o< |
« /\, M { J”\ ,)JMMA IWN "
024 | 11
| y=0 —— y=2
0.01 o v=l T y=05

900 1200 1500 O 300 600 900 1200 1500

Training Step

0 300 600

Figure 3: Learning curves under varying values of dis-
count factor .

as the backbone, it achieves the highest correc-
tion rate on MBPP, with a A2 of 12.2%. Addi-
tionally, The SFT-based baselines (Turn-SFT, Self-
Corrector, and ReVISE) often fail to generalize be-
yond their training distribution (Chu et al., 2025),
as evidenced by the comparable performance to
their backbones. On the MBPP, SFT-based base-
lines show up to a 2x improvement over the back-
bone in Accuracy @t2. However, in unseen settings,
their correction performance is comparable to that
of the Boost model or even degrades. In contrast,
CoCoS consistently yields positive values on the
AAC metric, demonstrating stable improvement
across turns.

8 Analyses

In this section, we analyze the discount factor in the
accumulated reward function (§8.1), compare pro-
gressive and binary reward schemes (§8.2), exam-
ine multi-turn correction beyond two turns (§8.3),
evaluate the model’s robustness to varied correction
instructions during inference (§8.4), and conduct
case studies on representative examples (§8.5).

2351

Turn1l = Turn 2 Turn 2 = Turn 3

11.0% 1.2%

43.2%
44.6%
% 53.8%

44.0%
1.8% 0.4%

A=y, t) A7t q, t) A (b1, t)

Turn 3 = Turn 4

Accuracy@tk — Accuracy@tl

10.0 Jo-4
._9'2/" -8 CoCos
0.4% @ Self-Corrector
—@— Turn-RL
-@— Turn-SFT
T) 4.8 PN E—
0.0% 2,2 2,2 2,2
0.2 0.2 0.2
r—t—i
T T T
A (te-1, t) k=2 3 4

Figure 4: Turn-wise metric changes on MBPP using the Qwen model. The pie charts represent the distribution
of transition types: A€, A1 A7 and A°7¢ across successive turns. The line plot on the right shows the
Accuracy @tk — Accuracy@t1 as the number of turns increases.

Dataset Accuracy@tl Accuracy@t2 Al¢ AGH
Binary / Progressive

MBPP 45.0/45.0 51.2/54.2 10.5/11.9 34/19

HumanEval 24.4/29.3 2747323 9.6/47 50/3.1

ODEX 23.0/23.0 25.7/28.9 9.8/342 39/0.0

Table 5: Comparison of progressive vs. binary reward
schemes. Qwen2.5-1.5B models are trained under each
reward setting and evaluated on MBPP.

8.1 Discount factor

As shown in Equation 2, when T' = 2, the reward
function is formulated as R(g1.2) = (re —71) +7 -
r1. We investigate the effect of varying the discount
factor ~y on training behavior, with learning curves
shown in Figure 3. When ~ = 0, training focuses
on maximizing the reward difference ro — r1, often
by deliberately decreasing r;. When v = 1, the
reward depends only on the second response, disre-
garding the first turn. As a result, responses across
turns become tightly coupled, leading to poor cov-
erage in subsequent iterations (Kumar et al., 2025).
Under this setting, the model fails to develop the
ability to self-correct.

Additionally, setting v = 2 to jointly optimize
both responses causes instability during training.
In this case, it becomes unclear which of the two
responses contributed positively to the total reward.
This situation is called the credit assignment prob-
lem in MDPs (Pignatelli et al., 2024). This is be-
yond the scope of the current research and is not
further addressed in this work. Consequently, we
set v = 0.5 to balance the quality of the initial re-
sponse and the refinement achieved in the second.

8.2 Progressive reward

We compare the progressive reward (as defined in
Equation 3) with a binary assessment scheme. To
enable fine-grained evaluation, we assess the re-

sult of each unit test case individually. Specifically,
Afl;l’tl measures how many test cases drop from
passing to failing between turns. Under the pro-
gressive reward, a transition from 2 passes to 1 is
penalized for discouraging such behavior, whereas
the binary reward assigns O in both cases, failing to

capture the distinction.

Table 5 presents the results of models trained
with the two reward schemes. The progressive
reward demonstrates the strong preservation of cor-
rect unit test cases. For instance, on the ODEX,
34% of test cases show improvement, with a 100%
preservation rate. In comparison, the binary reward
causes around 40% of previously passed test cases
to fail in subsequent turns. These results highlight
the importance of fine-grained assessment, which
has been overlooked in the multi-turn scenario.

8.3 Turn-wise changes

We analyze how COCOS affects the distribution
of correct and incorrect responses over multiple
turns. Figure 4 presents the distribution and trend
of changes in response correctness. First, the pie
charts show that the proportion of A°~¢ gradually
increases with each turn. This indicates that once a
correct response is generated, the model maintains
increasing consistency in subsequent turns.

Second, the proportion of A°! remains consis-
tently small, and it continues to decrease over suc-
cessive turns. This suggests that COCOS enables
a model to refine its code iteratively, maintaining
confidence in correct responses while effectively
reducing errors over time. Finally, the line plot il-
lustrates the cumulative net gain in AA°. CoCoS
achieves steady gains over the baseline across turns,
even though it starts from a high Accuracy @tl.

2352

Model Accuracy@t2 AA(t1, 12)
Template / Fixed

Qwen2.5-1.5B 52.8/54.2 7.2/9.2

Llama-3.2-1B 58.6/59.4 1.4/2.2

deepseek-coder-1.3B 60.2/60.4 12.0/12.2

Table 6: Evaluation results with varied instruction
rephrasings on the MBPP dataset.

8.4 Auxiliary instruction

To evaluate the generalization ability of our method
across different prompts, we intentionally use a dif-
ferent instruction prompt at test time than the one
used during training (as defined in Appendix G.1).
Instead of the fixed training prompt, we manually
rephrase it into five alternative versions for the cor-
rection task. The results are shown in Table 6,
and the rephrased instructions are provided in Ap-
pendix H. While the fixed prompt used during train-
ing yields slightly better overall performance, the
model exhibits no substantial degradation under in-
struction variation. The average performance drop
at the second attempt is only 0.8%, indicating ro-
bustness to diverse prompt variations.

8.5 Case Study

To analyze the types of mistakes that CoCoOS
makes and how it corrects them, we conduct three
case studies. The observed error types include:
(1) naming errors, (2) complex logic errors, and
(3) incorrect usage of code libraries. In the main
text, we focus on the first category, while detailed
discussions of the latter two are provided in the
Appendix F.

Test case

assert test_duplicate(([1,2,3,4,5]))==False
assert test_duplicate(([1,2,3,4, 41))==True
assert test_duplicate([1,1,2,2,3,3,4,4,5])==True

Initial response
wrong function name; won't match the test case
def contains_duplicate(nums):

return len(nums)!= len(set(nums))

Corrected response
def test_duplicate(arr):
return len(arr)!= len(set(arr))

Code 1: Example of correcting a misnamed function

Code 1 highlights an issue related to function name
generation. Given the test cases, the model is ex-
pected to generate a function name that allows the
code to execute correctly. However, in some in-
stances, the model fails to produce the appropriate
function name. In such cases, even if the core logic
is correctly implemented, the test cases cannot be

executed, and the result is considered a generation
failure. In the following turn, when prompted to
correct the previous error, the model is able to pre-
serve the correct logic and revise only the function
name, thereby resolving the issue.

9 Conclusion

In this paper, we investigated self-correction meth-
ods for enabling SLMs to revise their own gen-
erated code. Our findings show that, despite
their effectiveness in proprietary models, exist-
ing prompting- and training-based approaches fall
short when applied to SLMs. To address these
shortcomings, we propose COCOS, which intro-
duces an RL reward scheme tailored to the multi-
turn code generation setting. By incorporating
fine-grained assessment and an accumulated re-
ward function, COCOS demonstrates both success-
ful self-correction and improved initial response
quality through trajectory-level optimization across
diverse SLMs and previously unseen scenarios.

Acknowledgments

This work was supported by the IITP(Institute of
Information & Coummunications Technology Plan-
ning & Evaluation)-ITRC(Information Technology
Research Center) grant funded by the Korea gov-
ernment(Ministry of Science and ICT)(IITP-2025-
RS-2024-00437866, 47.5%). This work was sup-
ported by Smart HealthCare Program funded by the
Korean National Police Agency(KNPA) (No. RS-
2022-PT000186, 47.5%). This work was supported
by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No.RS-
2019-11191906, Artificial Intelligence Graduate
School Program(POSTECH), 5%).

Limitations

Online reinforcement learning incurs a cost at every
action step, as the model learns by interacting with
the environment in real-time. Due to infrastructural
constraints, we limited COCOS training to only two
turns. In the turn-wise analysis section, COCOS
consistently demonstrated accuracy gains as the
number of turns increased. These results suggest
that increasing the number of training turns has the
potential to yield further improvements. Therefore,
future work should extend our approach to support
multi-turn training beyond two turns, potentially

2353

incorporating more cost-efficient strategies such as
offline reinforcement learning.

For the same reason, our experiments were con-
ducted only on a 1B-scale small language model.
While we demonstrated that our methodologies are
effective on small models, our approach is not lim-
ited to this setting. Moreover, evaluating its scala-
bility to models larger than 1B parameters remains
an interesting aspect to observe in future work.

Ethical Considerations

In our research, we use datasets such as Kod-
Code (Xu et al., 2025), MBPP (Austin et al., 2021),
HumanEval (Chen et al., 2021), and ODEX (Wang
et al., 2023), which are licensed under CC BY-
NC 4.0, CC BY 4.0, MIT, and CC BY-SA 4.0,
respectively. The models GPT-4.1 (OpenAl, 2025),
Qwen2.5-1.5B (Yang et al., 2024), Llama-3.2-
1B (Grattafiori et al., 2024), and deepseek-coder-
1.3B (Guo et al., 2024) are licensed under OpenAl,
Apache-2.0, Llama 3.2 Community, and deepseek-
license, respectively. All models were used strictly
for research purposes, and no artifacts were utilized
beyond the scope of the study.

References

Arash Ahmadian, Chris Cremer, Matthias Gallé,
Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ah-
met Ustiin, and Sara Hooker. 2024. Back to basics:
Revisiting REINFORCE-style optimization for learn-
ing from human feedback in LLMs. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12248-12267, Bangkok, Thailand. Association
for Computational Linguistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901.
Curran Associates, Inc.

Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang,
Ruoxi Sun, and Sercan O Arik. 2025. Sets: Leverag-
ing self-verification and self-correction for improved
test-time scaling. arXiv preprint arXiv:2501.19306.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2024. Teaching large language models
to self-debug. In The Twelfth International Confer-
ence on Learning Representations.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Sheng-
bang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. 2025. Sft mem-
orizes, rl generalizes: A comparative study of
foundation model post-training. arXiv preprint
arXiv:2501.17161.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, and 1 others. 2024. Deepseek-
coder: When the large language model meets
programming—the rise of code intelligence. arXiv
preprint arXiv:2401.14196.

Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and
Yanghua Xiao. 2024. Small language model can
self-correct. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(16):18162—-18170.

Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and
Dacheng Tao. 2024. On transforming reinforcement
learning with transformers: The development trajec-

tory. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(12):8580-8599.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Arnav Kumar Jain, Gonzalo Gonzalez-Pumariega,
Wayne Chen, Alexander M Rush, Wenting Zhao, and
Sanjiban Choudhury. 2025. Multi-turn code gener-
ation through single-step rewards. In Forty-second
International Conference on Machine Learning.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han,
and Rui Zhang. 2024. When can LLMs actually
correct their own mistakes? a critical survey of self-
correction of LLMs. Transactions of the Association
for Computational Linguistics, 12:1417-1440.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Igbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang,
Kay McKinney, Disha Shrivastava, Cosmin Paduraru,

2354

https://doi.org/10.18653/v1/2024.acl-long.662
https://doi.org/10.18653/v1/2024.acl-long.662
https://doi.org/10.18653/v1/2024.acl-long.662
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.1609/aaai.v38i16.29774
https://doi.org/10.1609/aaai.v38i16.29774
https://doi.org/10.1109/TPAMI.2024.3408271
https://doi.org/10.1109/TPAMI.2024.3408271
https://doi.org/10.1109/TPAMI.2024.3408271
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=aJeLhLcsh0
https://openreview.net/forum?id=aJeLhLcsh0
https://doi.org/10.1162/tacl_a_00713
https://doi.org/10.1162/tacl_a_00713
https://doi.org/10.1162/tacl_a_00713

George Tucker, Doina Precup, Feryal Behbahani, and
Aleksandra Faust. 2025. Training language models to
self-correct via reinforcement learning. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyon-
dong Oh. 2022. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1-22.

Hyunseok Lee, Seunghyuk Oh, Jaechyung Kim, Jinwoo
Shin, and Jihoon Tack. 2025. Revise: Learning to
refine at test-time via intrinsic self-verification. arXiv
preprint arXiv:2502.14565.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534-46594. Curran Associates, Inc.

Viktor Moskvoretskii, Chris Biemann, and Irina Nik-
ishina. 2025. Self-taught self-correction for small
language models. Preprint, arXiv:2503.08681.

OpenAl. 2025. Introducing gpt-4.1 in the api.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist,
Thomas Mesnard, Hado van Hasselt, and Laura Toni.
2024. A survey of temporal credit assignment in
deep reinforcement learning. Transactions on Ma-
chine Learning Research. Survey Certification.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2024. Recursive introspection: Teaching
language model agents how to self-improve. In Ad-
vances in Neural Information Processing Systems,
volume 37, pages 55249-55285. Curran Associates,
Inc.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682.

Maxime Robeyns, Martin Szummer, and Laurence
Aitchison. 2025. A self-improving coding agent.
Preprint, arXiv:2504.15228.

Amrith Setlur, Katie Kang, Aviral Kumar, Feryal Behba-
hani, Roberta Raileanu, and Rishabh Agarwal. 2024.
Self-improving foundation models without human
supervision. In ICLR 2025 Workshop Proposals.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krashenin-
nikov, and David Krueger. 2022. Defining and char-
acterizing reward hacking. In Proceedings of the
36th International Conference on Neural Informa-
tion Processing Systems, NIPS *22, Red Hook, NY,
USA. Curran Associates Inc.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-
lican, and 1 others. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, and 1
others. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-
ham Neubig. 2023. Execution-based evaluation for
open-domain code generation. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 1271-1290, Singapore. Association for
Computational Linguistics.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2023. Generating sequences by learning to
self-correct. In The Eleventh International Confer-
ence on Learning Representations.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou,
and Radha Poovendran. 2025. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for cod-
ing. arXiv preprint arXiv:2503.02951.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu,
Joseph E. Gonzalez, Bin CUI, and Shuicheng YAN.
2025. Supercorrect: Advancing small LLM rea-
soning with thought template distillation and self-
correction. In The Thirteenth International Confer-
ence on Learning Representations.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. STar: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Lo-
geswaran, Jaeckyeom Kim, Moontae Lee, Honglak
Lee, and Lu Wang. 2024. Small language models
need strong verifiers to self-correct reasoning. In

2355

https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=CjwERcAU7w
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://arxiv.org/abs/2503.08681
https://arxiv.org/abs/2503.08681
https://openai.com/index/gpt-4-1/
https://openreview.net/forum?id=bNtr6SLgZf
https://openreview.net/forum?id=bNtr6SLgZf
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2504.15228
https://openreview.net/forum?id=rFYeBznwop
https://openreview.net/forum?id=rFYeBznwop
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=PyjZO7oSw2
https://openreview.net/forum?id=PyjZO7oSw2
https://openreview.net/forum?id=PyjZO7oSw2
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://doi.org/10.18653/v1/2024.findings-acl.924
https://doi.org/10.18653/v1/2024.findings-acl.924

Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 15637-15653, Bangkok,
Thailand. Association for Computational Linguistics.

Kunhao Zheng, Juliette Decugis, Jonas Gehring, Taco
Cohen, benjamin negrevergne, and Gabriel Synnaeve.
2025. What makes large language models reason in
(multi-turn) code generation? In The Thirteenth In-
ternational Conference on Learning Representations.

2356

https://openreview.net/forum?id=Zk9guOl9NS
https://openreview.net/forum?id=Zk9guOl9NS

A Additional Experiment on SETS

Verifier H True Positive False Positive True Negative False Negative
Qwen2.5-1.5B 35.1% 54.1% 7.2% 3.6%
GPT-4.1 27.6% 22.2% 43.1% 7.1%

Table 7: Verification accuracy based on different verifiers. The Qwen verifier shows near-random performance,
while the teacher verifier reaches 70% accuracy.

To assess the accuracy of the verifier module, we directly compare the verification results from SETS
with the test case pass rate. Specifically, we use the test cases as the ground-truth labels and the verifier as
the predictor and report the confusion matrix in Table 7. The Qwen verifier achieves an accuracy of 42%,
which is close to random performance in distinguishing correct and incorrect responses. This indicates that
small-scale Qwen fails to provide effective feedback, thereby harming rather than improving the initial
response. In contrast, the teacher verifier reaches a higher verification accuracy of 70%. However, despite
employing a costly verifier with relatively high accuracy, the results in Table 1 show only a marginal 5%
gain over simple prompting.

B Baseline Details

In this section, we provide a detailed overview of the baseline used in our experimental evaluations. To
implement the baseline, we constructed the training datasets, and to illustrate this process, we provide the
1-turn and 2-turn data samples. The examples are as follows:

Data Sample B.1: 1-Turn Example

You are an expert Python programmer, and here is your task: problem Your code should pass these tests:
{{test cases}}
[BEGIN]

{{correct code}}
[DONE]

J

Data Sample B.2: 2-Turn Example

You are an expert Python programmer, and here is your task: problem Your code should pass these tests:

test cases

[BEGIN]
{{incorrect code}}
[DONE]

There might be an error in the code above because of a lack of understanding of the question.
Please correct the error, if any, and rewrite the solution. Only output the final correct Python
program!

[CORRECT]
{{correct code}}
[DONE]

J

Turn-SFT. We generate training data using pre-trained models according to the format specified in §G.1.
For each problem, we sample 10 candidate code solutions and determine their correctness based on the
results of corresponding unit test cases. We then organize this data into two separate datasets: 1-turn and
2-turn. We combine the 1-turn and 2-turn datasets in a 1:1 ratio to match the data scale of other baseline
methods, allowing the model to optimize initial code generation and correction capabilities.

2357

Self-Corrector (Welleck et al., 2023). Self-Corrector acts as a specialized plug-in designed exclusively
for the correction task. It trains as a separate component from the initial response model and generates only
corrected outputs. For training data, we only use 2-turn data, which removes the initial code generation
phase and focuses entirely on correction. We use the same LLLM for both the response and correction
LLM, but we freeze the response LLM during training while updating the correction LLM.

ReVISE (Lee et al., 2025). ReVISE uses a dedicated [refine] token to trigger the correction phase
explicitly. The model generates either a [refine] token or an [eos] token. When the [refine] token is
produced, the model enters the correction phase and continues generating outputs until it produces the
[eos] token, which signals the end of the correction process. This design allows the model to complete
self-correction in a single pass without intermediate user inputs, which eliminates the need for multiple
generation stages. We generate data through sampling-based decoding and train the model by applying
SFT loss and Direct Preference Optimization (Rafailov et al., 2023) loss during the backward pass.

Turn-RL. Turn-RL is trained to generate the correct code following the [CORRECT] token in 2-turn
data, while the 1-turn data is pre-sampled and remains fixed during training. The training objective and
reward function are shared with CoCoS.

C Experimental Details

C.1 Policy Optimization

We adopt the policy gradient method using the REINFORCE Leave-One-Out (RLOO) estimator (Ah-
madian et al., 2024). RLOO provides a simple and efficient baseline, and can further reduce variance
when multiple online samples are available by using each sample’s reward as a baseline for others and
averaging gradient estimates. We extend this approach to the multi-turn setting to train COC0S. Our
training objective, as defined in Equation 4, is as follows:

T

J(0) = Bay)p, g oy [RCG11) = B3 Dicr(mol- | 50) || mre (- | 50))]
t=1

We then optimize the expected return using policy gradients with the RLOO estimator:

T T
VoJ(0) = Egyynp, g oy [B (1:7) Y Vologmo(Ge | s1)] — B> VeDrcr(mo(- | 50) || Tres(- | 50))
t=1 t=1

Here, R/(41.7) denotes the leave-one-out baseline-adjusted reward computed over the entire trajectory.

For a sampled trajectory gjg 2[the trajectory-level reward is defined as:

R(ygl?r) T 1 (_'_Z,YT t Ttl)1>

where rf) is the scalar reward associated with the model’s response 3),@ at turn ¢. Given k such sampled

trajectories, we define the leave-one-out adjusted reward as:
(i (i 1 (i
R (i) = RGy) = = > RGr'r)
J#i
This estimator leverages the rewards of the other £ — 1 samples as a baseline, reducing variance while
maintaining unbiasedness. Accordingly, the full policy gradient is computed as:

k

" VQJ(G) = E(m,y)ND |:]1 Z (ZV@ log 7T9 | St)

=1

- /32%@;@(@(- [57) | Trer (- sff')))ﬂ

t=1
2358

C.2 Hyperparameter

We trained the model via the Transforming Reinforcement Learning (Hu et al., 2024). For both baselines
and COCoOS training, we used 4 NVIDIA A100-SXM4-80GB. For inference, all experiments were
conducted on a single NVIDIA RTX 6000 Ada Generation. The hyperparameters used in our experiments
are listed in Table 8. Rather than conducting an extensive hyperparameter search, we trained all models
with a unified set of hyperparameters for COCOS, regardless of the backbone model.

Hyperparameters Boost model CoCoS
Dataset KodCode MBPP
Global batch size 256 128
Optmizer AdamW Adam
Weight decay 0.1 -
Learning rate 2e-5 le-5
LR scheduler cosine cosine
Training steps 1000 1500
Sampling temperature - 0.9
KL coefficient (5) - 0.01
RLOO samples (k) - 2

Table 8: Hyperparameters used in our experiments.

C.3 Dataset

KodCode MBPP HumanEval | ODEX
Train Validation | Train Validation Test Few-shot Test Test
144,068 36,018 | 374 90 500 10 | 164 | 439

Table 9: Dataset sizes used in our experiments.

We report all the datasets used in our experiments in Table 9. The KodCode (Xu et al., 2025) dataset
was used for training the boost model, and we preprocessed the data to extract only samples that can be
converted into our 2-turn format. As a result, out of 484k samples, only 180k were used for training.
These samples were then randomly split into an 8:2 train/validation set. In MBPP (Austin et al., 2021),
given that our boost models were already pre-trained, we excluded few-shot data. Instead of using separate
validation data, we selected the final model checkpoint based on the highest reward achieved during
training.

2359

D Detailed Results

D.1 MBPP
Method Accuracy@tl Accuracy@t2 AI7C(t1, t2) ATt £2)] AAC(t, t2)
Qwen2.5-1.5B
Boost model 9.0% 10.2% 1.2% 0.0% 1.2%
Turn-SFT 44.2% 44.4% 1.4% 1.2% 0.2%
Self-Corrector 43.8% 48.8% 11.2% 6.2% 5.0%
ReVISE 34.6% 41.2% 16.1% 4.9% 6.4%
Turn-RL 46.4% 48.6% 4.0% 1.8% 2.2%
CoCoS 45.0% 54.2% 11.0% 1.8% 9.2%
Llama-3.2-1B
Boost model 10.4% 11.0% 0.6% 0.0% 0.6%
Turn-SFT 23.2% 23.6% 1.2% 0.8% 0.4%
Self-Corrector 27.6% 25.8% 5.8% 7.6% —1.8%
ReVISE 29.0% 30.8% 5.8% 5.0% 0.8%
Turn-RL 16.6% 16.4% 0.2% 0.4% —0.2%
CoCoS 57.2% 59.4% 3.6% 1.4% 2.2%
deepseek-coder-1.3B

Boost model 16.6% 20.2% 3.6% 0.0% 3.6%
Turn-SFT 45.0% 46.0% 4.0% 3.0% 1.0%
Self-Corrector 46.4% 47.0% 9.4% 8.8% 0.6%
ReVISE 48.6% 47.6% 3.2% 4.4% —1.2%
Turn-RL 36.4% 55.4% 19.8% 0.8% 19.0%
CoCoS 48.2% 60.4% 13.0% 0.8% 12.2%

Table 10: Results on the MBPP dataset.

2360

D.2 HumanEval

Method Accuracy@tl Accuracy@t2 A7(t1,t2) ASTi(t1,t2)] AAC(tl, t2)
Qwen2.5-1.5B
Boost model 24.4% 25.5% 1.1% 0.0% 1.1%
Turn-SFT 18.9% 20.1% 5.5% 4.3% 1.2%
Self-Corrector 23.2% 25.6% 6.1% 3.7% 2.4%
ReVISE 18.3% 15.9% 3.2% 4.5% —1.3%
Turn-RL 27.4% 28.7% 1.8% 0.6% 1.2%
CoCoS 29.3% 32.3% 3.0% 0.0% 3.0%
Llama-3.2-1B
Boost model 15.2% 15.2% 0.6% 0.6% 0.0%
Turn-SFT 14.6% 12.8% 1.8% 3.7% —1.9%
Self-Corrector 11.0% 12.8% 4.9% 3.0% 1.9%
ReVISE 13.4% 11.9% 3.7% 5.6% —1.9%
Turn-RL 8.5% 8.5% 0.0% 0.0% 0.0%
CoCoS 34.1% 39.6% 6.1% 0.6% 5.5%
deepseek-coder-1.3B

Boost model 21.3% 21.3% 0.0% 0.0% 0.0%
Turn-SFT 19.5% 22.0% 5.5% 3.0% 2.5%
Self-Corrector 20.1% 22.6% 7.9% 5.5% 2.4%
ReVISE 23.8% 19.0% 3.1% 7.4% —4.3%
Turn-RL 23.2% 25.6% 3.0% 0.6% 2.4%
CoCoS 22.6% 25.0% 3.0% 0.6% 2.4%

Table 11: Results on the HumanEval dataset.

2361

D.3 ODEX

Method Accuracy@tl Accuracy@t2 A7(t1,t2) ASTi(t1,t2)] AAC(tl, t2)
Qwen2.5-1.5B
Boost model 21.2% 20.5% 0.0% 0.7% —0.7%
Turn-SFT 25.5% 25.7% 0.5% 0.2% 0.3%
Self-Corrector 21.2% 27.1% 7.5% 1.6% 5.9%
ReVISE 18.5% 19.0% 8.7% 6.0% 0.5%
Turn-RL 10.9% 24.6% 14.1% 0.5% 13.6%
CoCoS 23.0% 28.9% 5.9% 0.0% 5.9%
Llama-3.2-1B
Boost model 13.2% 12.8% 0.2% 0.7% —0.5%
Turn-SFT 15.7% 15.3% 0.7% 1.1% —0.4%
Self-Corrector 13.2% 14.4% 5.9% 4.8% 1.1%
ReVISE 9.6% 11.4% 4.8% 3.0% 1.8%
Turn-RL 19.8% 21.9% 2.1% 0.0% 2.1%
CoCoS 23.2% 25.1% 2.3% 0.5% 1.8%
deepseek-coder-1.3B

Boost model 27.3% 27.6% 0.5% 0.2% —-0.3%
Turn-SFT 29.8% 28.7% 0.0% 1.1% —1.1%
Self-Corrector 27.3% 28.0% 3.9% 3.2% 0.7%
ReVISE 21.2% 22.8% 8.1% 4.8% 1.6%
Turn-RL 23.6% 30.5% 6.9% 0.0% 6.9%
CoCoS 26.2% 31.4% 5.9% 0.7% 5.2%

Table 12: Results on the ODEX dataset.

2362

E Additional SCoRe Experiment on Another Model

Qwen2.5-1.5B 100 Llama-3.2-1B

} 0 T
0.05 0.10 0.00 0.05 0.10
Edit Distance Ratio Edit Distance Ratio

=
o
o

Frequency (%)
w
o

oo
=)
o

Figure 5: Edit distance ratio distributions between first and second responses for Qwen2.5-1.5B and Llama-3.2-1B
in the 3-shot setting.

We further analyze the training trajectory of SCoRe using a small-scale Llama model in addition to the
Qwen model. Prior to this, we measured the edit distance ratio. Following the same procedure as in §5.2,
we compute the edit distance ratio for samples where the second response is incorrect. The results are
shown in Figure 5. Remarkably, the Llama model exhibits an extreme tendency to make no changes to its
responses, with a no-edit rate of 99%. We then compare the SCoRe training trajectories of Qwen and
Llama in Figure 6. As Qwen has already been described in §5.2, we omit further discussion here. In the
case of Llama, applying KL-regularization leads to a rapid convergence of the reward to zero, similar to
what was observed with Qwen. Even without KL regularization, the Llama model eventually collapses.
We speculate that this shows a limitation of training SLMs with binary rewards. When the policy is trained
with binary rewards, the model receives only a pass or fail signal for (y2, §2), which severely limits the
space the policy can explore during training. As a result, in the case of SLMs that receive persistently low
rewards, the policy ultimately collapses, failing to explore diverse solutions or improve over time. This is
consistent with prior observations that sparse rewards make it challenging for RL to associate actions with
rewards (Ladosz et al., 2022).

In contrast, COCOS employs the same RLOO training algorithm (Ahmadian et al., 2024) as SCoRe
but benefits from a progressive reward scheme. Under this setting, correctly solving even one more test
case in a subsequent turn produces a positive reward, whereas making additional mistakes leads to a
negative reward. This dynamic feedback encourages the expansion of the exploration space during training,
enabling a more stable learning process. This progressive reward scheme encourages the expansion of the
exploration space during training, enabling a more stable learning process.

150 P (Mol |x1)[|Mrer*|X1)) Dy (o] [rer) r(y2,y2)
150 04
Qwen2.5-1.5B
100 03
v 100
= 0.2
£ 50
50 0.1 [//\\
0 01~ 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
D (Mo (- | x1) || Mrer(*|X1)) Dy (o] |TTrer) r(y2, ¥2)
150 80
Llama-3.2-1B 0.2
60 :
o 100
]
o
> 40
50 01
20 &‘
0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Training Step Training Step Training Step
—e— 3-shot(B,=0.25) —e— 3-shot(B,=0.1) 3-shot(B, =0)

Figure 6: Learning curves for SCoRe, including additional results for the small-scale Llama model.

2363

F Additional Case Studies

We present two additional case studies that illustrate distinct types of errors: (2) complex logic errors
and (3) incorrect usage of code libraries. These additional cases serve to complement the discussion in
the main text by illustrating error types that extend beyond naming issues. They underscore COCOS’s
capacity to detect and remediate a diverse set of programming errors.

Initial response
def amicable_numbers_sum(n):
sum = @
for i in range(1, n+1):
just adds divisor sums
sum += sum_of_divisors(i)
return sum

def sum_of_divisors(num):
divisors = [1]
for i in range(2, int(num*x@.5) + 1):
if num % i == @:
divisors.append(i)
if il= num // i:
divisors.append(num // i)
return sum(divisors)

Corrected response
def sum_of_divisors(n):
divisors = [1]
for i in range(2, int(n**@.5) + 1):

ifn%i==
divisors.append(i)
if il=n // i:

divisors.append(n // i)
return sum(divisors)

def amicable_numbers_sum(n):

sum = @

for i in range(1, n+1):
div_sum = sum_of_divisors(i)
check if i and div_sum form an amicable pair
if div_sum != i and sum_of_divisors(div_sum) == i

sum += i
return sum

Code 2: Example of resolving a multi-function interaction error

Code 2 illustrates an error involving the coordination of multiple functions. The model initially fails
to implement the correct interaction logic across functions, resulting in an incorrect solution. In the
subsequent turn, it is able to revise the necessary parts while preserving the correct subcomponents,
effectively resolving the issue.

Initial response
def remove_dirty_chars(s1, s2):
Invalid in Python 3
return s1.translate(None, s2)

Corrected response
def remove_dirty_chars(s1, s2):
result = ""
for char in si1:
if char not in s2:
result += char
return result

Code 3: Example of using a non-existent method

Lastly, Code 3 demonstrates a misuse of a Python method. The model generates an invalid call to
str.translate() that is not supported in the current version of Python. In the subsequent turn, it
corrects the implementation by replacing the unsupported method with a valid character filtering loop.

2364

G Prompts

In this section, we present the prompts used for prompt-based approaches and for COCOS training and
evaluation. The prompts for implementing prompting-based approaches are described in §G.2 and §G.3.
Finally, the prompts used for COCOS training and evaluation are reported in §G.1.

G.1 Main experiments

We present the instructions for evaluating the MBPP, HumanEval, and datasets. Tokens such as [BEGIN],
[DONE], and [CORRECT] were used to delimit model outputs, and the prompts were created from Kumar
et al. (2025).

Prompt G.1: Prompt used for generating initial code responses in the first turn

You are an expert Python programmer, and here is your task: {{problem}} Your code should pass these
tests:

{{test cases}}

[BEGIN]

Prompt G.2: Prompt used for generating self-corrected responses

You are an expert Python programmer, and here is your task: {{problem}} Your code should pass these
tests:

{{test cases}}

[BEGIN]
{{initial code}}
[DONE]

There might be an error in the code above because of a lack of understanding of the question. Please
correct the error, if any, and rewrite the solution. Only output the final correct Python program!

[CORRECT]

2365

G.2 Self-Refine

The prompts were designed and implemented based on the manuscript, with Self-Refine (Madaan et al.,
2023) using a 3-shot prompting for both feedback generation and correction. Additionally, as the
implementation was conducted without further fine-tuning, backticks such as ~~ ~python and ~~~ were
used to delimit model outputs.

Prompt G.3: Prompt used for generating feedback in Self-Refine

I have some code. Can you give one suggestion to improve the solution to the problem. Don’t fix the
code, just give one suggestion.

Problem:
{{problem}}

Code:
* T Tpython
{{initial code}}

Feedback:

Prompt G.4: Prompt used for self-correction in Self-Refine

I have some code. Can you give one suggestion to improve the solution to the problem. Don’t fix the
code, just give one suggestion.

Problem:
{{problem}}

Code:
T T python
{{initial code}?}

Feedback:
{{feedback}}

Now fix the code.

Fixed Code:
T Tpython

&

2366

G.3 SETS

SETS (Chen et al., 2025) employs test-time scaling laws (Snell et al., 2025) for self-correction, which
precludes direct evaluation of Accuracy@tl in §4. Accordingly, we approximate it by reporting the
average accuracy of the sampled initial responses. We use a sampling temperature of 0.7 and set the
number of generation to 20. To distinguish Python code from instructions, we used backticks, while the
remaining instructions were created based on the manuscript.

Prompt G.5: Prompt used for verifier in SETS

You are an expert in solving coding problems. You are given a PROBLEM and a PROPOSED CODE. Your job
is to:

1. Transform the PROPOSED CODE into a statement given the PROBLEM and identify all constraints in
the PROBLEM for verifying the statement.

2. Think step by step to verify if the statement satisfies each of the constraints.

3. Write a line of the form "The statement is correct” or "The statement is incorrect” at the end
of your response based on your analysis.

PROBLEM:
{{problem}}

PROPOSED CODE:
T “python
{{initial code}}

ANALYSIS:
\

Prompt G.6: Prompt used for self-correction in SETS

You are an expert in solving coding problems. You are given a PROBLEM and a set of CODE-ANALYSIS
pairs. Your job is to generate a correct answer.

\

PROBLEM:
{{problem}}

CODE:
T Tpython
{{initial code}?}

ANALYSIS:
{{analysis}}

CORRECTED CODE:
T Tpython

r
\

2367

H Auxiliary instruction

Prompt H.1: Templates for the five rephrased instruction prompts.

Original:
There might be an error in the code above because of a lack of understanding of the question. Please
correct the error, if any, and rewrite the solution. Only output the final correct Python program!

Insturction 1:
There might be an error in the code above because of a lack of understanding of the question. Please
correct the error, if any, and rewrite the solution. Only output the final correct Python program!

Instruction 2:
If the solution above contains any mistakes due to a misunderstanding of the problem, fix them and
rewrite the code. Only return the corrected Python program.

Instruction 3:
Check the code for potential errors caused by misinterpreting the task. Correct any issues and
output just the final Python solution.

Instruction 4:
Review the code for possible bugs or logic errors. If needed, fix them and provide only the updated
Python code as your answer.

Instruction 5:
Make sure the code fully matches the problem description. If any part is incorrect, fix it and return
just the corrected Python code.

\ J

2368

