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Abstract
Many applications that modern large language
models (LLMs) are deployed on are retrieval
tasks: the answer can be recovered from con-
text and success is a matter of learning gener-
alizable features from data. However, this is
easier said than done. Overparametrized mod-
els trained on cross-entropy loss can overfit on
noise. We argue that such overfitting is prone
to happen when the model can identify mech-
anisms that rapidly drive down the loss of cer-
tain tokens early on in training. Fitting some
tokens early reduce gradient signals in later it-
erations, as such, remaining tokens are more
vulnerable to noise overfitting. We dub this phe-
nomenon unequal learning and show that LLMs
with longer contexts or larger embedding sizes
are prone to this failure mode. In this work, we
argue that learning training samples at an equal
rate helps counter such biases. We highlight
two mechanisms that promote equal learning:
(i) loss functions that regularize uniform mar-
gins across training samples, (ii) small learn-
ing rates (e.g. by warming up) at the start of
training. We demonstrate these approaches on
various synthetic and natural language datasets.

1 Introduction
If it looks like a duck, swims like a duck, and quacks
like a duck, the maximum likelihood principle tells us
we should expect — in all likelihood — a duck. This
same principle underpins modern large language models
(LLMs), which are largely transformer-based (Vaswani,
2017) neural networks pθ trained to carry out next-token
prediction by minimizing cross-entropy loss

L(θ) = Ex1:T∼ptrain

[∑

t

log pθ(xt|x<t)
]
. (1)

One key task that these models are often deployed on is
retrieval from context. Question answering (Rajpurkar,
2016; Yang et al., 2018), summarization (Nallapati et al.,
2016; Narayan et al., 2018), and sentiment analysis
(Maas et al., 2011; Socher et al., 2013) are amongst
the many downstream language tasks whose success
relies on the model’s ability to retrieve and output the
correct piece of information from context when given
the appropriate prompt.

When is a duck not a duck? In this work, we crys-
tallize the insight that retrieval is not a corollary of
doing language modeling well. LLMs that can achieve
zero loss on the training objective do not necessarily
learn generalizable features. Accordingly, a well-trained
transformer can fail to retrieve the correct information
from context even when evaluated on samples drawn
from the same distribution. Let us briefly survey how
such failure modes might arise.

LLMs are overparametrized models and can learn
multiple solutions from finite data. The solution (local
optimum) that the model lands on depends on induc-
tive biases arising from the complex interplay between
factors such as model architecture, loss function, and
optimization hyperparameters (Li et al., 2018; Bietti
et al., 2024). These biases can cause the model to over-
fit, learning erroneous solutions that achieve zero loss
on training samples but do not generalize at test time.

Recent work highlights one such bias: the ubiqui-
tous cross-entropy loss. Linear models trained on cross-
entropy learn a maximum-margin solution. To arrive at
such a solution, the model provably exploits imperfect
predictors (“shortcuts”) to correctly classify some train-
ing samples — as long as enough noisy features exist to
overfit the remaining samples (Puli et al., 2023).

We show that LLMs are susceptible to the same pitfall.
Modern LLM design increasingly favors long context
lengths (Lee et al., 2024; Achiam et al., 2023; Team
et al., 2024). However, when trained on cross-entropy,
a transformer’s ability to retrieve the correct content
quickly erodes as context length increases. We observe
that simply reducing batch size by squeezing samples
into the same context window (thus keeping the over-
all number of samples per batch constant) can cause
the model to overfit by increasing the amount of noisy
features available.

Biases can arise from other design choices. For exam-
ple, LLMs are commonly trained via next-token predic-
tion, i.e. teacher-forcing. This process can itself induce
bias (Bachmann and Nagarajan, 2024). If earlier to-
kens in the response reveal information about the latter
tokens in the sequence, a next-token predictor will in-
evitably leverage this correlation. This creates failure on
“lookahead” tasks where the correct predictor requires
planning later tokens ahead of earlier tokens.

How, then, do we encourage our models to learn gen-
eralizable features for retrieval? In this work, we argue
that an useful auxiliary objective is equal learning of
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the individual conditional distributions ptrain(xt|x<t) in
(1). In the failure modes identified above, the model
exploits correlations between tokens to quickly drive
down the loss — that is, it learns to model certain parts
of the sequence (or certain samples altogether) faster
than others. This differential in learning is precisely
how the model quickly learns a shortcut mechanism for
part of the sequence. Once those terms have been fitted,
they no longer contribute to the batch gradient signal, al-
lowing the model to more easily fit the remaining terms
with noise. To combat this tendency, we argue that en-
forcing uniform learning is a useful inductive bias for
learning generalizable features — in other words, all
tokens should be learnt at an equal rate.

How do we teach the model to learn all terms uni-
formly? We propose explicit regularization, by design-
ing a family of loss functions that regularize for small
margins. As the regularization term contradicts the
cross-entropy term (which prefers maximizing margins),
optimizing the overall objective requires the model to
learn a fixed value for the margin and prevents it from
fitting selective tokens too early on in training. Further-
more, we recommend warming up the learning rate
schedule. Keeping learning rates small at the start of
optimization dampens the model’s ability to rapidly fit
certain parts of the sequence. This allows all terms in the
sequence to contribute to the gradient signal for more
iterations, preventing the model from noise overfitting.

We show that our approach can learn generalizable
features on a number of diverse tasks that a standard
cross-entropy-trained transformer fails on.

We summarize our contributions as the following:

1. We design a synthetic retrieval task and train a
transformer using the standard cross-entropy loss.
We demonstrate empirically that the transformer
fails to learn generalizable features despite mod-
eling training data perfectly. We show that this
failure mode is especially acute with longer con-
text window lengths and larger embedding sizes.

2. We argue that these failure modes can be prevented
by enforcing an additional objective, which is the
equal learning of all tokens in the batch.

3. We identify an approach — explicit regularization,
in conjunction with learning rate warmup — that
is effective at enforcing equal learning, and demon-
strate its efficacy on a number of retrieval tasks.

2 Related Work
Inductive Biases in Neural Networks Understanding
how various inductive biases influence learning in deep
neural networks is a well-explored subject, and existing
literature has explored phenomena such as spectral bias
(Yang and Salman, 2019; Ronen et al., 2019; Rahaman
et al., 2019; Cao et al., 2019; Xu et al., 2019), simplicity
bias (Jo and Bengio, 2017; Baker et al., 2018; Shah et al.,
2020; Vasudeva et al., 2024), and the role of gradient

dynamics in learning (Gidel et al., 2019; Advani et al.,
2020; Nagarajan et al., 2021; Puli et al., 2023).

Feature Learning and Biases in Transformers As
the core architecture underpinning modern LLMs, un-
derstanding how transformers (Vaswani, 2017) learn is a
key research topic and much existing work has sought to
precisely identify and describe the internal mechanisms
that govern feature learning (Elhage et al., 2021; Nanda
et al., 2023; Power et al., 2022; Hanna et al., 2024).
More specifically, recent work has also studied biases
that occur in transformers (Bhattamishra et al., 2022;
Vasudeva et al., 2024; Bachmann and Nagarajan, 2024).
Our work broadly falls in this category, however, we
specifically focus on improving feature learning for re-
trieval tasks where the correct mechanism can be learnt
from context. We discuss a few closely-related papers
below and how our approach differs from theirs:

Bachmann and Nagarajan (2024) show that next-
token prediction itself is a paradigm that can learn to
learning features that do not generalize. More specif-
ically, teacher-forcing can fail on “lookahead tasks”,
which are tasks that require the model to compute fu-
ture tokens ahead of earlier ones in order. They demon-
strate this insight on a constructed graph search problem,
where the prefixes of the response are strongly corre-
lated to the rest of response. As such, a model trained
via teacher-forcing can achieve zero training loss simply
by conditioning on earlier tokens, but will fail to gener-
alize at test time. This work’s chief contribution lies in
identifying the problem; the authors provide a bespoke
solution to the graph problem that relies on prior knowl-
edge of the true solution. Instead, we propose black-box
solutions that do not require domain knowledge.

Focusing on shortcut learning, Nagarajan et al. (2021)
and Puli et al. (2023) study a similar setting where the
label is a deterministic function of the inputs, however, a
shortcut mechanism exists that is strongly correlated to
the label under the training distribution only. They show
that empirical risk minimization (ERM) with the cross-
entropy loss will prefer to learn the shortcut — provably
so in the case of linear classifiers. Both works attribute
this phenomenon to the ERM’s bias towards learning
a maximum-margin solution (Soudry et al., 2018), and
as a fix Puli et al. (2023) propose losses to control the
margin for binary classification. Our work extends their
findings to the transformer architecture, showing that
the same phenomenon can be observed in transformers
under aggravating conditions such as long contexts. We
relate the max-margin bias to unequal token learning
and implement a set of solutions that operate over multi-
class discrete sequences.

3 Failure Modes on Retrieval Tasks
In this section, we probe the conditions under which
transformers fail to learn generalizable features when
deployed on retrieval tasks. Under specific model and
data conditions, we show that training on the standard
cross-entropy loss creates learning dynamics that can
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lead to high generalization error. As such, the cross-
entropy loss can provide poor inductive biases.

We first formalize the problem setting. We assume
that there is a mechanism (function) that deterministi-
cally maps a context to the correct output tokens. For-
mally, letting x,y denote the context and the output
tokens, the conditional distribution of the output given
context is a delta function:

ptrain(y | x) = δf(x) (2)

where f is the correct mechanism and f(x) the answer.
On infinite data, the only global minimum of cross-

entropy loss over output token prediction is the mapping
f . However, on finite data, many other solutions can
achieve low or zero loss. A model with sufficient capac-
ity can, of course, trivially fit all training samples with
noise (Yun et al., 2019). Depending on the task, there
can be other mechanisms that predict output tokens cor-
rectly most of the time. For example, it is well-known
that question answering (QA) datasets can be biased
towards having answers in specific positions, e.g. the
subject of the first sentence (Ko et al., 2020). A QA
model can easily reach a local minimum by learning a
mechanism that relies on positional cues.

3.1 When do transformers fail to generalize?
Between multiple low-loss solutions, can we character-
ize the optimization path that the transformer prefers?
To shed some light on this question, we construct a
running example throughout Sections 3 and 4.

Padded-Shifted Copy Task We consider a retrieval
task as follows: the training distribution consists of
strings of the form “[seq][padding]<CLS>[seq]”.
[seq] is a substring of length Lc, with each character
uniformly and independently sampled from the English
alphabet: [seq]p ∼ Unif({a, . . . , z}). [padding] is a
substring of length Lp. With probability ps = 0.8, the
padding consists of a rightward Caesar shift of [seq]
(e.g. gravity → hsbwjuz) repeated Lp

Lc
times. With

probability 1−ps, the padding consists of Lp characters
uniformly and independently sampled. Foreshadowing
the subsequent results, we call the 80% easy strings and
the 20% hard strings. The test distribution is identical
to the training distribution. The attention mask is 1 only
for the Lc tokens following <CLS>.1

The goal is to copy [seq] from the start of the string
to the end, i.e. the model is evaluated on its output
of the Lc tokens following <CLS>. We measure exact
match accuracy (EM) to [seq] as well as character-
level accuracy (CL), i.e. fraction of the Lc tokens that
match the corresponding position in [seq]. The dataset
is generated once and fixed for all experiments.

We train a 4-layer GPT-NeoX (Andonian et al., 2023)
with 4-head attention. For each experimental setting, we

1We ablate for having an attention mask on all tokens, find-
ing no difference in results; we choose to keep the restricted
attention mask for ease of learning.

(a) Accuracy across train/test splits for both easy and hard
groups. Across all context lengths, training accuracy is

perfect for all samples, as is test accuracy on easy
sequences. However, test accuracy on hard sequences
degrade as context window increases, despite the total

number of samples staying constant.

(b) For each context length in (a), we plot the test accuracy
on the hard sequences while varying embedding size. On
average, we see a slight decrease in the mean accuracy as

embedding size increases. Variance (across runs) also
increases markedly, with the worst run on

context_length = 440, embed_size = 3072 or
4096 performing no better than random (1/26).

Figure 1: Evaluation plots for Lc = 1 on the copy task.

report results across 10 different random initializations.
We report these two metrics on both the train and test
sets, and on the easy and hard subsets separately. Further
details can be found in Appendix B.

In this section, we consider the Lc = 1 case (single-
token retrieval) and Lp = 50. Figure 1 shows accuracy
plots against various context lengths and embedding
sizes. Note that exact-match (EM) and character-level
(CL) accuracies are identical here since Lc = 1, hence
we will simply refer to both as “accuracy” below.

In Figure 1a, we set the embedding size to 1024 and
vary the context length. Crucially, we also modify batch
size such that the total number of strings per batch
remains constant for all experiments, i.e. a batch with
fewer samples contain longer samples (more strings
packed into each context). As such, the model receives
the same information (i.e. same strings) every batch.
Training accuracy is perfect on all strings across all
experiments, proving that the model has optimized cor-
rectly. However, we see a divergence in test accuracy —
the model is perfect on all easy test strings, however, its
performance on hard test strings deteriorates as context
length increases.
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In Figure 1b, we consider the same context lengths,
but this time, we increase the model embedding size
to multiples of 1024. Once again, accuracy on all train
strings and easy test strings are perfect. However, as
embedding size increases, we observe a slight drop in
the test accuracy of the hard strings. Furthermore, the
variance in accuracy has also inflated — for the largest
embedding sizes and the longest context windows, the
worst performing runs have an accuracy of ∼1/26 on
hard strings, i.e. no better than random.

Learning an Imperfect Mechanism On the surface,
it is clear where the model went wrong. The correct
mechanism f is simply to copy the first token follow-
ing the <BOS> token, which a 4-layer transformer can
provably learn (Elhage et al., 2021). However, the diver-
gence in train and test accuracy indicates that the model
has overfitted. Furthermore, the divergence in easy and
hard test strings indicates that the model overfitted only
on the hard strings. Since the easy and hard strings
differ only on the padding, it is clear that the model has
learnt a suboptimal mechanism g, where it retrieves a
padding token and learns to reverse the Caesar shift.

3.2 Why do transformers fail to generalize?
This explanation, however, does not fully resolve our
questions. On a noiseless dataset, the model can achieve
zero loss by learning the true mechanism f : a sim-
ple task for a 4-layer transformer considering that the
true token is always in the same relative position. What
prompts it to learn g instead, which additionally requires
the model to learn the Caesar shift function? Further-
more, why does increasing context length or embedding
size lead to worse performance? The dataset and batch-
ing are identical across all experiments and the model
receives the same information every iteration.

To understand this failure, we begin by examining the
loss curves, as shown in Figure 2. We see a significant
discrepancy between easy and hard strings. Whereas
all easy strings are immediately optimized and reach
zero loss within a single epoch (the first 50 iterations),
the loss of hard strings decrease slowly, with a long
tail. This phenomenon becomes more pronounced with
increased context length or embedding size.

From Figure 2, we hypothesize that there are three
separate regimes of training occurring:

• Stratification: At the start of training, batch gra-
dients are dominated by the easy strings, which
comprise the majority of samples in any given
batch. Within a few steps of optimization, the
model quickly learns the imperfect mechanism g,
which is sufficient to reduce loss of all easy strings
to zero.

At this point, only hard strings have non-zero loss
and contribute to the gradient signal for the rest of
the training process.

• Memorization or Rectification: The model needs
to reduce loss on the hard strings without forgetting

Figure 2: Training loss for three different settings of
conte xt length and embedding size trained across 400
epochs. In all settings, easy sequences are optimized al-
most immediately. The loss of hard sequences decreases
more gradually, especially with longer context length or
embedding size.

the easy strings. As such, it has two choices: it can
either overfit to the remaining hard strings by sim-
ply memorizing each individual sequence (Carlini
et al., 2021), or it can recover from the suboptimal
mechanism and instead learn the correct one. The
two regimes are mutually exclusive because train-
ing loss goes to zero once memorization happens,
preventing the model from rectifying.

What we see is that larger embedding sizes and con-
text lengths lead the model towards memorization rather
than rectification, resulting in a gradual descent in loss
as shown in the bottom two plots of Figure 2. In contrast,
the top plot shows the rectification process, whereby
learning the correct mechanism quickly reduces the loss
of the remaining hard strings.

Let us consider how these stages of training arise. In
any given batch, more easy strings exist than hard ones.
For an easy string, attending to any padding token in
the sequence (or any combination of padding tokens) is
sufficient for retrieval. Since there are many padding
tokens and only a single correct token, and since there
are many more easy strings than hard strings, the model
is far more likely to attend to a padding token than
the correct token. As such, the model is predisposed
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towards learning an imperfect mechanism g within the
first few gradient steps.

Having learnt g, how does the model decide whether
to memorize or rectify? The key factor here is the early
stratification. Because easy strings were learnt and op-
timized to zero loss at the onset of training, they con-
tribute little gradient signal for the rest of the process.
As such, easy strings no longer provide a contrasting
signal against noise overfitting in the latter phases, and it
becomes far easier for the model, with enough capacity,
to memorize the hard strings.

This process is exacerbated by longer context win-
dows — individual strings drawn from the training dis-
tribution are uncorrelated, as such, packing more strings
into the same window provide more sources of noise.
Similarly, it is exacerbated by larger embedding sizes
as the model simply has more capacity to memorize
training data. The signal-to-noise ratio (relative lengths
of [seq] and [padding]) as well as the ratio of hard
and easy strings are also factors that affect how likely
the model is to learn the incorrect mechanism g and
stratify at the start of training.

3.3 The Pitfall of Unequal Learning
We crystallize the failure mode outlined above as the
consequence of unequal learning. Formally, consider
the objective (1) of the likelihood-maximizing autore-
gressive transformer. In a given batch {x1:T }Bi=1, we
can decompose the loss L(θ) into individual conditional
distributions for each of the B × T tokens

B∑

i=1

T∑

j=1

log pθ(xi,j | xi,<j).

Unequal learning refers to the failure mode where the
model learns these tokens at different rates. Some terms
are optimized faster than others, and as individual terms’
losses go down to zero, they stop contributing to the
gradient signal. As training progresses, the transformer
receives fewer and fewer signals. Accordingly, it is far
more likely to memorize and overfit the later tokens
than rectify and learn a generalizable mechanism that
would fit all B × T distributions correctly.

As exemplified by the copy task, unequal learning is
a consequence of gradient-based learning. All B × T
tokens are equally weighted in the objective and con-
tribute equally to the gradient. The direction of steepest
descent (i.e. the negative gradient, with respect to the
ℓ2-norm) is simply the one that increases the overall
likelihood of all tokens the most within a given ℓ2-norm
budget. This leads to stratification if suboptimal mech-
anisms exist that can quickly drive down the loss of a
majority of tokens early on in training. In the case of
the copy task, terms pθ(xi,j | xi,<j) corresponding to
easy samples dominate the batch gradient signal.

Unequal learning at the start of training makes later
rectification harder. The fewer terms remain in the gra-
dient signal, the more likely these tokens are memorized
by the model, especially with exacerbating factors such

Figure 3: Graph problem from Bachmann and Nagara-
jan (2024). The task is to output a sequence to the start
node to the goal node. The start node is the center node
and the goal node is randomly chosen from the set of
leaf nodes. The model is given the adjacency list of the
graph representation and the start and goal nodes.

as sufficient noisy features (long context windows) or
sufficient model capacity (large embedding sizes), as
demonstrated in Figure 1.

The presence of strong correlations between output
and context tokens, as exemplified by the copy task,
is one way unequal learning can arise. We highlight
another setting that can give rise to this failure mode:

Example: Teacher-Forcing Bachmann and
Nagarajan (2024) considers shortcut mecha-
nisms that arise naturally from doing next-
token prediction. Specifically, an autoregressive
model trained via teacher-forcing learns strong
correlations between earlier and later tokens of
the model’s output. This can lead to a subop-
timal mechanism if the model fails to model
earlier tokens correctly, as it guarantees that the
rest of the output sequence is incorrect. They
demonstrate this pitfall using a graph search
problem (Figure 3). The directed graph is a star,
as such, every non-start node is connected only
to one other node. A model that outputs the first
node wrongly will also output the rest of the
sequence incorrectly.
Unlike the copy task, the model fails on all sam-
ples equally — there is no distinction between
easy or hard samples. So where is the unequal
learning taking place?
In our synthetic copy task, the model learns
tokens of different samples unequally. Here, the
model is learning tokens at different positions
unequally. Specifically, for all samples i, the
first token log pθ(xi,1 | xi,0) is being learnt far
slower than later ones. This is because the start
node is the only node with a degree greater than
one. For tokens later in the sequence, the model
only sees a single answer in the context, as such,
they are easier distributions to model and are
learnt faster. This discrepancy is the source
of the failure mode described in the original
paper; here, we show that it is also an example
of unequal learning.
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Figure 4: Evaluation plots (training loss, training accuracy, test accuracy) for Nc = 5 for different loss functions,
showing metrics for easy and hard samples separately. We plot both exact-match and character-level accuracy. (Top
row) Cross-entropy loss. (Bottom row) E2 loss with λ = 10 and 1000 warmup steps.

3.4 A way out?

Unequal learning stems from a data-generating process
whereby optimizing a subset of tokens coincides with
the likelihood-maximizing direction at the onset of train-
ing. Gradient descent ensures that the model then learns
a suboptimal mechanism that drives the loss of certain
tokens to zero faster than others.

For a retrieval task, unequal learning would not hap-
pen if the model had learnt the true mechanism instead.
The true mechanism is equally correct on all samples
and tokens, as such, a model in the process of learn-
ing correct features should expect the loss of all terms
log pθ(xi,j | xi,j) to decrease at equal rates. This intu-
ition provides us a way out of the quagmire — at training
time, we additionally bias all tokens to be learnt at the
same rate. Doing so explicitly prevents the model from
imperfect mechanisms, and hopefully tilts the model
towards learning generalizable features.

4 Equal Learning

How can we promote the equal learning of terms in
(1) during training? The idea is to constrain the model
from learning specific terms too fast, especially during
the early iterations of training. Intuitively, we want to
ensure that all tokens contribute to gradient signals for
as long as possible during training, which makes noise
overfitting harder since the model would need to overfit
more tokens. Our approach intervenes on the training
loss by regularizing for this additional objective.

4.1 Explicit Regularization

Recall that a flexible model trained on cross-entropy
loss is biased towards maximizing margins between
the correct token and the wrong ones. For a given token
x := xt with label k := xt+1, we see that

Lce(θ,x, k) = − log
efk

∑V
c=1 e

fc

= g
(
fc∗ − fk + log

[∑

c ̸=k

efc−fc∗
])

(3)

where fc := fθ(x)c is the output logit of class c, c∗ is
the non-label class with the largest logit, and g(z) =
log(1 + ez) is a monotonically increasing function.

In the process of minimizing the cross-entropy loss,
the model will learn to quickly maximize margins — in
so doing, it can overfit specific tokens even in the early
stages of training. As such, the question we pose be-
comes: how can we avoid learning a maximum-margin
solution while still modeling the text correctly?

One alternative is to target a specific but positive
margin by implementing an additive regularization term.
We combine a term that wants arbitrarily large margins
(the cross-entropy term) with one that wants to shrink
the margin (the regularization term). As these two terms
will compete, the model will need to learn a bounded,
positive value of the margin in order to minimize the
sum of both loss terms.

Whereas a model trained on cross-entropy alone can
rapidly minimize loss by learning large margins, a
model trained on the sum of both terms will find it harder
to learn the correct solution, as taking gradient steps in
either direction of the intended margin will cause loss
to increase. To this end, we introduce a family of losses,
termed E-LOSSES:

• E1: We penalize the mean-squared average margin
between the correct class k and all other classes c.

LE1(θ,x, k) = Lce(θ,x, k)+ (4)

λ · log
(
1 +

1

V − 1

∑

c ̸=k

(fk − fc)
2
)
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where λ is a hyperparameter and V is the number
of classes, i.e. the vocabulary size.

• E2: We penalize variance of the margin:

LE1(θ,x, k) = Lce(θ,x, k) + λ · Varc(fk − fc)
(5)

• E3: Unlike E1and E2, we penalize mean-squared
error of each output logit individually instead of
penalizing the log-likelihood. This loss function
implicitly combines both the cross-entropy and
regularization objective into a single term:

L(f, y) = ∥f − v∥2 (6)

where v =
[
−b, . . . , b, . . .

]
is the vector that is −b

everywhere except at the position corresponding
to k, where it is b. b is a hyperparameter, as such,
E3 trades off one kind of optimization difficulty
(choosing λ) for another (choosing b).

All E-LOSSES work by introducing two competing in-
centives at training time: the cross-entropy term pushes
the model towards maximizing margins whereas the reg-
ularization term penalizes the model for having large
margins. Unlike the cross-entropy loss alone, where
taking large gradient steps at the start of training allows
the model to rapidly increase margins, our losses require
the model to achieve specific margin values to achieve
zero loss on any given token.

Which loss to use? We primarily use E1 in our experi-
ments, which scales well to larger model and vocabulary
sizes. We design E2 to show that there are other choice
of regularization terms that can work so long as they
shrink margins. On the other hand, E3 represents a
vastly different design choice that targets a hard value
for the margin rather than allow the model to learn a
specific margin via soft regularization. This tradeoff
makes E3 more effective on smaller vocabulary sizes,
however, it is less effective as |V| increases since the −b
terms dominate the loss.

Connections to Uniform Margins Our choice to reg-
ularize margins was motivated by existing work in the
field of out-of-distribution generalization. Notably, Puli
et al. (2023) show that linear classifiers provably learn
a shortcut mechanism assuming that enough noisy fea-
tures exist and the scaling factor on the shortcut feature
is large enough. They prove that enforcing uniform
margins on all samples prevent shortcut learning from
happening and demonstrate empirical results on the over-
parametrized setting (ResNet-50s with vision datasets).

Learning Rate Warmup In addition to using the E-
LOSSES, we find empirically that limiting the learning
rate at the start of training (i.e. setting a warmup sched-
ule) is a simple but effective intervention. We hypothe-
size that smaller gradient steps prevent the model from
reducing the loss of certain tokens to zero too early

(stratification). Since all terms contribute to the gra-
dient signal for more training iterations, the model is
more likely to come across future batches of data that
allows it to recover from the suboptimal mechanism
(rectification).

We observe that controlling the learning rate alone
is less effective than the E-LOSSES since the model is
still biased towards learning the suboptimal mechanism
— a smaller learning rate only affords the model more
chances at rectification. As such, merely having a learn-
ing rate schedule is insufficient. However, E-LOSSES
and learning rate warmup are not mutually exclusive in-
terventions. On all our experiments below, our approach
use an E-LOSS with learning rate warmup.

4.2 Empirical Validation on the Copy Task

We validate E-LEARN on the same copy task introduced
in Section 3. Here we consider a more difficult setting,
where Lc = 5 and Lp = 2000 (a signal-to-noise ratio of
400). The context length is 2013 (the length of a single
string) and the embedding size is 1024. Figure 4 shows
loss and accuracy plots for the standard cross-entropy
loss as well as our E2 loss with 1000 warm-up steps.
Due to space constraints, we show the other E-LOSSES
in Appendix A.

Figure 4 show that while both losses achieve perfect
exact-match (EM) and character-level (CL) accuracies
on all training samples, only the E2 loss achieve perfect
EM and CL accuracy on test samples at the end of train-
ing. As such, the key takeaway here is that E-LEARN
has learnt the correct copy mechanism instead of
overfitting to training samples. The training loss plots
validate the conclusion that equal learning has taken
place, as the E2 plot shows a far smaller gap between
loss curves for the easy and hard samples. For the E2
loss, note also that the training accuracy of easy sam-
ples rises at a far slower rate in the first 1000 iterations,
showing that the smaller learning rates has prevented
the model from learning the easy samples too early.

Notably, the baseline cross-entropy model fails to
generalize perfectly on even the easy test strings. Ob-
serve that the test CL accuracy is only ∼0.3 (average
across 10 runs), in other words, the baseline model fails
to learn even the wrong mechanism perfectly with this
limited amount of data. However, E-LEARN general-
izes perfectly on the same amount of data, showing that
equal learning is more sample-efficient.

Ablations In considering how our approach can scale
to real-life datasets and tasks, we ablate for two key
factors. We summarize these findings below, and report
them in greater detail in Appendix A:

• Vocabulary size: E1 and E2 scale up well to larger
vocabulary sizes.

• Separating the effect of E-LOSSES and learn-
ing rate warmup: E-LOSSES are robust without
needing warmup (with only a slight dip in perfor-
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mance), however, warmup alone only provides a
slight boost to performance.

Hyperparameter Selection E1 and E2 introduce an
additional hyperparameter. We note that selecting this
hyperparameter is not costly. For the synthetic task in
Section 4.2, we set this hyperparameter through cross-
validation by searching over powers of 2. For larger
experiments in Section 5, we tried the value of 1, which
generally works well in practice. Furthermore, it is
pretty easy to see that the value of λ is wrong early in
optimization by picking the largest value of λ where
the negative log-likelihood term improves. We provide
ablations for hyperparameters in Appendix A.

5 Experimental Results
In this section, we demonstrate the validity of our ap-
proach on two large-scale datasets: (i) the path-star
graph task originally introduced in Bachmann and Na-
garajan (2024), and (ii) two natural language texts on
which we devise copy tasks susceptible to the same pit-
falls introduced in Section 3. Experimental details can
be found in Appendix B.

5.1 Path-Star Graph Problem
We consider the same graph task as Bachmann and Na-
garajan (2024), which we described earlier in Section 3.
We consider various graphs Gd,l where d is the degree
of the starting node (i.e. number of possible goal nodes)
and l is the length og each path. Similar to the origi-
nal authors, we train a GPT-Mini (Radford et al., 2019)
from scratch. For each experiment, we report results
across 5 different random initializations. We evaluate
accuracy in predicting the goal node correctly. We do
not compare to the methods (teacherless training and
reverse-encoding) used in the original paper — we note
that the solutions that Bachmann and Nagarajan (2024)
propose are bespoke to the path-star graph problem
and require knowing what the true solution is (namely,
lookahead to the goal node). In contrast, E-LEARN are
black-box loss functions that can be applied to any au-
toregressive task without knowing what the imperfect
or true mechanisms are.

Table 1 displays the results. We can see that E-
LEARN performs significantly better than the base-
line model trained on cross-entropy loss. Notably,
on G2,3, the best-performing run of the cross-entropy
model still performs worse than the worst-performing
run of the E1 loss.

5.2 Natural Language Datasets
We devise a copy task on two natural language texts.
Each train or test sample consists of a single sentence
of the text, modified as follows: For each sentence,
we assign a “label”, which is a single word, related to
the sentence (e.g. the title of the book that sentence
originates from), that is injected into the sentence at
two possible places: (1) the start of each sentence, and
(2) in the middle of a sentence. The task is to output

Accuracy
G2,3

Cross-Entropy 0.289 (0.123, 0.472)
E1 Loss with LR warm-up 0.655 (0.486, 0.976)

G5,3

Cross-Entropy 0.001 (0.000, 0.005)
E1 Loss with LR warm-up 0.117 (0.094, 0.139)

Table 1: Results on the path-star graph search problem.
We report both the mean accuracy (across 5 independent
runs) as well as the maximum and minimum accuracy
(in brackets).

Accuracy
King James Bible

Cross-Entropy 0.863
E1 Loss with LR warm-up 0.981

Complete Works of Shakespeare
Cross-Entropy 0.703
E1 Loss with LR warm-up 0.766

Table 2: Results of a copy task on two natural language
texts: the King James Bible and the Complete Works of
Shakespeare.

this label at the end of the sentence. Easy samples
correspond to those containing this word both at the start
and the middle of the sentence, whereas hard samples
correspond to those without the word at the start.

Table 2 displays the results on pretrained GPT-2. In
both datasets, the E1 loss function outperforms standard
cross-entropy. These results highlight that our approach
is not only viable on natural language text, but also
that it is useful for fine-tuning on a model already
pretrained on natural language. In particular, we
note that both texts that we use are part of multiple
language corpora and highly likely to be in GPT-2’s
training dataset (Radford et al., 2019).

6 Discussion

As LLMs gain widespread traction and usage in society,
understanding how and when they can fail is crucial
to safe and robust performance. We believe that our
work: (i) identifies an important pitfall that modern
transformer-based LLMs are susceptible to — namely,
overfitting due to unequal learning, (ii) provides em-
pirical evidence for this problem, and (iii) proposes a
working solution in the form of new loss functions.

Limitations

The key limitation of our approach is that our loss func-
tions are more challenging to optimize well. Adding a
regularization term involves a hyperparameter sweep on
a heldout set in order to find the correct values of λ and
b. It is also more computationally intensive because we
need to compute an additional term in the loss function,

23207



although the margin is relatively cheap to compute.

Potential Risks We do not believe there are any no-
table risks associated with our work besides risks that
are associated with LLMs in general and their potential
for misuse.
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A Additional Results
A.1 Copy Task in Section 4
Figure 5 extends Figure 4 of Section 4 and show the training plots for the E1 and E3 losses. Similar to the E2 loss
reported in the main paper, both of these loss functions generalize well on test samples, achieving high accuracy
(on average, across 10 initialization runs) on test hard samples. The loss curves also show that both of these losses
achieve equal learning across all samples.

Figure 5: Evaluation plots (training loss, training accuracy, test accuracy) for Nc = 5 for different loss functions,
showing metrics for easy and hard samples separately. We plot both exact-match and character-level accuracy. (Top
row) E1 loss with 1000 warm-up steps. (Bottom row) E2 loss with 500 warmup steps.

A.2 Ablations in Section 4
Table 3 shows the results of the copy task in Section 4 as we ablate for various factors. We report only CL accuracy
on the easy test samples (averge of 10 random initializations) since the model performance on this subset is the key
indicator of generalization.

CL Accuracy on Easy Test Samples
E1 Loss with no LR warm-up and λ = 2 0.08
E1 Loss with no LR warm-up and λ = 4 0.593
E1 Loss with LR warm-up and λ = 4 0.780
E1 Loss with LR warm-up and λ = 1 and V = 500 1.00
E1 Loss with LR warm-up and λ = 8 0.693
Only LR warm-up 0.246

Table 3: Hyperparameter sweep for the different E-LOSSES on the copy task.

Hyperparameter Sensitivity For the E1 loss, we can see that a minimum value of λ is generally desired to ensure
that the regularization term is strong enough.

Vocabulary Size Our approach E-LEARN is generally robust as we scale up the vocabulary size. For example, the
E1 achieves perfect accuracy as we increase V = 26 to V = 500. However, we note that we need to scale training
data as well. From V = 26 to V = 500, we also increased data by twice as much.

Separating E-LOSSES and learning rate warm-up We see that E1 is generally robust without needing learning
rate warm-up, even though performance degrades slightly. Having a learning rate schedule alone, without the
regularization, is only slightly effective.

23210



B Experimental Details
B.1 Padded-Shifted Copy Task
We train a 4-layer GPT-NeoX from scratch with 4-head attention. For each experimental setting, we report results
across 10 different random initializations. We report these two metrics on both the train and test sets, and on the
easy and hard subsets separately. The training size is 400 and the test size is 1000.

B.2 Path-Star Graph Problem
We train a GPT-Mini from scratch. For each experimental setting, we report results across 5 different random
initializations. The training size is 200000 and the test size is 20000, similar to the original paper.
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