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Abstract

Oversensitivity occurs when language models
defensively reject prompts that are actually be-
nign. This behavior not only disrupts user inter-
actions but also obscures the boundary between
harmful and harmless content. Existing bench-
marks rely on static datasets that degrade over
time as models evolve, leading to data contam-
ination and diminished evaluative power. To
address this, we develop a framework that dy-
namically generates model-specific challenging
datasets, capturing emerging defensive patterns
and aligning with each model’s unique behav-
ior. Building on this approach, we construct
OVERBENCH, a benchmark that aggregates
these datasets across diverse LLM families, en-
compassing 450,000 samples from 25 models.
OVERBENCH provides a dynamic and evolv-
ing perspective on oversensitivity, allowing for
continuous monitoring of defensive triggers as
models advance, highlighting vulnerabilities
that static datasets overlook. 1

1 Introduction

As Large Language Models (LLMs) become more
aligned for safety, a critical issue has surfaced:
models can defensively reject seemingly harmful
but actually harmless prompts (An et al., 2024;
Röttger et al., 2024; Cui et al., 2024; Xie et al.,
2025). This phenomenon, called oversensitivity,
not only undermines model utility but also obscures
the detection of genuinely harmful content.

Existing evaluation methods for oversensitivity
predominantly rely on static datasets that capture
predefined trigger patterns (Röttger et al., 2024;
An et al., 2024; Cui et al., 2024). However, as
LLMs evolve, these fixed datasets risk becoming
outdated, unable to effectively reveal emerging de-
fensive patterns in newer models. Moreover, data
contamination is a pressing concern: as models are

1Dataset available at https://github.com/SophiaPx/
Oversensitivity.

further trained or fine-tuned on existing datasets,
the effectiveness of static benchmarks diminishes,
leading to inflated or misleading evaluations (Zhu
et al., 2024a,b).

To address these limitations, we propose a novel
framework for dynamic evaluation of oversensi-
tivity in LLMs, adaptively generating challenging
prompts tailored to specific models. Our method
leverages a proxy model, referred to as the detector,
trained to mimic the defensive behavior of a tar-
get LLM. The detector employs feature attribution
analysis to pinpoint key trigger features responsi-
ble for the defensive responses. These identified
features are then modified to generate new, benign
yet potentially defensiveness-inducing samples.

Our framework operates as a dynamic evalua-
tion framework not only through continuous model
alignment but also through its iterative data genera-
tion strategy. As adversarial samples are generated,
they serve dual purposes — as training data to re-
fine the detector model and as new prompts to be
further modified, facilitating the creation of even
more challenging samples. This feedback loop en-
ables it to maintain relevance as model behaviors
evolve, capturing newly emerging trigger patterns
while systematically expanding the feature space.

Additionally, we introduce the OVER-
BENCH dataset, current version comprising
450,000 samples across 25 models, each contain-
ing tailored prompts designed to induce defensive
responses under specific model settings. By
systematically expanding the feature space and
maintaining alignment with model upgrades,
OVERBENCH serves as an evolving benchmark
for detecting oversensitivity in LLMs, providing
valuable insights into model vulnerabilities and
defensive strategies.

2337

https://github.com/SophiaPx/Oversensitivity
https://github.com/SophiaPx/Oversensitivity


Instruction: Generate a benign query with the specific feature, given {{query}} and {{feature}} …
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Figure 1: An overview of our dynamic OVERBENCH construction framework.

2 Problem Formalization

Let M be a language model, and Q a set of input
prompts. Let Qbenign denote the set of prompts
whose semantic intent is harmless (independent of
M ’s behavior). We further define:

• Qr
M : Prompts rejected by M (may include

both harmful and benign ones).

• Qa
M : Prompts accepted by M .

We define oversensitivity as the event where M
incorrectly refuses to answer a harmless query q:

Oversensitivity(q) =

{
1 if q ∈ Qbenign ∧ q ∈ Qr

M

0 otherwise.
(1)

The overall Oversensitivity Rate (OSR) of M
is then:

OSR(M) =
|Qbenign ∩Qr

M |
|Qbenign| (2)

For instance, a prompt like “How can I kill time
on a long flight?” may be misclassified due to lexi-
cal triggers like “kill”, despite its benign intent.

Static benchmarks fall short in capturing such
nuanced refusals, especially as models evolve. Our
goal is to dynamically evaluate and expose these
false refusals via adaptive prompt generation.

3 Methodology

In this section we show our new method of dynam-
ically generating samples which are, on one hand,
benign by nature, but can trigger specific model’s
defending behavior.

As shown in Figure 1, our framework evaluates
the oversensitivity of a target LLM M . We first

train a proxy model of the target LLM (Step 1).
Given an initial set of samples S, the pipeline fil-
ters samples that might be refused by M with the
proxy model. Then, influential features f are identi-
fied through frequency adjusted attribution scoring
(Step 2). Finally, we adopt an LLM to generate new
adversarial samples A while maintaining benign
semantics given the query and identified features
(Step 3). We summarize the full adversarial gener-
ation procedure in Algorithm 1.

Algorithm 1 Dataset Generation Framework
Require: Initial dataset S, detection model DM , generation

model GM , feature pool F
Ensure: Adversarial dataset A and updated feature pool F

1: for each query q ∈ S do
2: if DM (q) = reject then
3: features← ExtractFeatures(q,DM )
4: for each feature f ∈ features do
5: if F [f ] < max_features then
6: new_s← GenerateSample(f,GM )
7: if DM (new_s) = reject then
8: Append new_s to S
9: Update F [f ] = F.get(f, 0) + 1

10: end if
11: end if
12: end for
13: end if
14: end for
15: return S, F

3.1 Proxy Modeling

The proxy modeling phase establishes a lightweight
classification model DM that approximates the tar-
get LLM M ’s defending behavior. This offers com-
putational efficiency and avoids repeated queries to
the model. Concretely, we train DeBERTa-v3-base
(He et al., 2021) as DM . The proxy serves only as
a cost-effective filter, while all oversensitivity rates
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Figure 2: Oversensitivity rates of various LLMs evaluated on OVERBENCH and OverBench-Hard.

are computed using the target LLM itself. Note
that we train and test DM in a separate set from
other steps.

As shown in Step 1 of Figure 1, we first construct
QM

r and QM
a (Section 2) from existing datasets by

checking whether M rejects or accepts the prompt,
which is split into train, validation and test subsets.
Then, we train the proxy detector DM w.r.t., the
target M as a distilled version of M ’s decision
boundary:

DM = argmin
pmθ

Eq∼QM [L(pmθ(q), y
M (q))],

where pmθ is an encoder-based proxy model with
parameters θ that predicts whether M rejects query,
QM = QM

r ∪QM
a is the combined query set, and

yM (q) is M ’s rejection decision (1 for reject, 0
for accept) for query q, L measures the difference
between pmθ and whether M rejects query.

3.2 Feature Attribution
The objective of feature attribution is to identify
the features that significantly contribute to M ’s de-
fending decisions. We employ Integrated Gradients
(Sundararajan et al., 2017) to quantify the contribu-
tion of each token to M ’s output probability. Given
an input x, a baseline input x′, and a model F ,
the integrated gradient of the i-th input feature is
defined as:

IGi(x) = (xi−x′i)·
∫ 1

α=0

∂F (x′ + α · (x− x′))
∂xi

dα

(3)
To downweight generic or frequently occurring to-
kens, we apply a frequency-adjusted variant of In-

tegrated Gradients. Specifically, for each token xi,
we compute the adjusted importance score as:

AdjIGi(x) = IGi(x) ·
1

freq(xi)β
, (4)

where IGi(x) is the original Integrated Gradients
attribution score for token xi, freq(xi) denotes the
unigram frequency of the token in English, and β
is a smoothing coefficient (we use β = 1 in our
experiments). This adjustment penalizes highly
frequent tokens and better surfaces content words
that are more likely to trigger defensiveness.

3.3 Adversarial Generation

To promote diversity in the generated prompts, we
maintain a global feature pool that records the fre-
quency of each extracted feature used across past
generations. To avoid over-relying on a small set
of features and generating redundant or semanti-
cally similar prompts, we apply a frequency-based
filtering mechanism: before each generation round,
we exclude any feature whose usage count exceeds
a pre-defined threshold T . Formally, let Fpool de-
note the global pool and c(f) the usage count of
feature f ∈ Fpool, we discard any feature f such
that c(f) > T from being selected in the current
iteration.

The goal of adversarial generation is to construct
prompts that embed influential features f ∈ Fpool
while remaining semantically benign. To this end,
we prompt an LLM to synthesize new queries qnew
based on a feature f and a seed query qold, as shown
in Equation 5.
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qnew ∼ Pgen(q | qold, f) (5)

Note that qold may originate from harmful or re-
jected prompts, but our generation strategy explic-
itly enforces that the output qnew remains benign.

In practice, we use GPT-4o-mini as the genera-
tor with temperature=1.0 and top-p=0.8. For each
seed query, we condition on the top-3 attribution
tokens to ensure that the new query naturally em-
beds model-specific triggers. To avoid overusing a
small set of strong triggers, we impose a frequency
cap of T = 50 per feature.

4 OVERBENCH

4.1 Dataset Construction

We apply our dynamic generation method to 25
LLMs from different families. For each model, we
build a set of prompts that are likely to trigger de-
fensive responses. These prompts are selected and
modified using a proxy classifier and feature attri-
bution. We describe the full list of models, training
hyperparameters, and data filtering strategies in
Appendix A.

4.2 Prompt Categorization

To better understand the nature of oversensitive
prompts, we categorize samples into high-level
risk types (e.g., illegal activity, privacy invasion).
These categories help reveal semantic patterns in
over-refusal behavior. Detailed definitions, exam-
ple prompts, and distribution statistics are provided
in Appendix B.

4.3 Benchmark Aggregation and Evaluation

We combine the model-specific datasets to form
OVERBENCH, comprising 450,000 challenging
prompts in total. To reduce evaluation cost, we
derive a distilled subset, OverBench-Hard, con-
taining 30,000 prompts that were rejected by at
least five models.

We evaluate model behavior on both OVER-
BENCH and OverBench-Hard. As shown in Fig-
ure 2, Gemma models display the most severe over-
sensitivity, followed closely by Phi. In contrast, the
two Llama-70B models show the least tendency to
reject harmless prompts. Interestingly, increasing
model size does not consistently reduce oversen-
sitivity. While Llama models exhibit a decreas-
ing trend in false refusals from 1B to 70B, the
Gemma and Qwen families demonstrate the op-
posite. Across all families, models of the same

version but different sizes tend to produce similar
oversensitivity rates, hinting at shared alignment
strategies. We further explore this hypothesis in the
next subsection.

4.4 Feature Attribution Analysis
To understand what linguistic signals contribute
to false refusals, we analyze salient features using
feature attribution. Figure 3 shows a heatmap of
the top 20 global features, ranked by within-model
percentile.

We observe that models from the same family
often exhibit similar feature distributions. For in-
stance, both Qwen and Gemma models frequently
react to certain trigger tokens such as sneak and
ians, suggesting inherited alignment artifacts. In
contrast, Llama models show a more diverse dis-
tribution, indicating a less feature-specific defense
pattern.

Certain features consistently rank highly across
different model families, such as tokens related to
theft or insults. These may represent universal over-
sensitivity triggers learned during alignment. This
cross-model consistency highlights the existence of
broadly shared defensive heuristics, beyond family-
specific quirks.

5 Related Work

We present here the most closely related studies;
a more complete discussion of related work is in-
cluded in Appendix C.

Static Benchmarks. Early studies of oversensi-
tivity rely on static test sets of seemingly harmful
but benign prompts. XSTest (Röttger et al., 2024)
introduced 250 pseudo-harmful templates, while
PHTest (An et al., 2024) and OR-Bench (Cui et al.,
2024) expanded the scale using automated rewrit-
ing. Although valuable for diagnosis, such static
benchmarks quickly become outdated as models
are retrained or fine-tuned, and are vulnerable to
data contamination.

Diagnostic Analyses. Other work investigates re-
fusal mechanisms directly. OverKill (Shi et al.,
2024) identifies lexical triggers via attribution,
while Single Vector Ablation (Wang et al., 2025)
manipulates latent representations to suppress re-
fusals. Si et al. (2025) leverage reasoning ratio-
nales to improve refusal accuracy. These methods
provide insights into refusal triggers but focus nar-
rowly on mitigation, rather than building scalable
evaluation resources.
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Figure 3: Percentile-based heatmap of the top 20 global features across models. Darker colors indicate more
frequent triggering features relative to others within the same model.

6 Conclusion

In this work, we introduce OVERBENCH, a large-
scale benchmark designed to evaluate oversensitiv-
ity in LLMs. By dynamically generating model-
specific challenging datasets and aggregating them
into a unified corpus of 450,000 prompts, we pro-
vide a comprehensive testbed for understanding
and comparing defensive behaviors across diverse
LLMs.

Limitations

This work primarily targets false refusals—cases
where the model unnecessarily rejects harmless
prompts. However, we do not explicitly distinguish
or analyze true positive refusals (i.e., justified rejec-
tions), which may be essential for a more holistic
understanding of safety behaviors.

Ethics Statement

This work aims to evaluate and mitigate oversen-
sitivity in LLMs by constructing a benchmark of
harmless prompts that trigger unnecessary refusals.
All data are either publicly available or syntheti-
cally generated, and we use a detector to filter out
harmful content. Our benchmark is intended solely
for research use, with the goal of improving the
safety and utility of language models. We do not

support or encourage the misuse of our methods to
circumvent model safety mechanisms. The datasets
used in this work, i.e. HH-RLHF (Bai et al., 2022)
and ToxiGen (Hartvigsen et al., 2022), are pub-
licly available and released under open licenses
(MIT and CC BY 4.0, respectively). Our generated
benchmark, OverBench, will be released under an
open license upon acceptance.

While adversarial prompts are designed to be
semantically benign, some may contain sensitive
tokens (e.g., “kill”, “drug”, etc). We explicitly con-
strain generation to enforce harmless usage and ver-
ified this with both automatic and manual checks.
Another potential risk is misinterpreting our results
as justification for relaxing model safeguards. We
emphasize that OverBench only measures oversen-
sitivity and should be considered alongside evalua-
tions of true-positive refusals to provide a balanced
view of safety.
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A Model and Training Setup

We include 25 models spanning major LLM fami-
lies, including:

• GPT family: gpt-4o-mini, gpt-3.5-turbo

• Qwen family: Qwen-7B-Chat,
Qwen-14B-Chat, Qwen-72B-Chat,
Qwen3-0.6B, Qwen3-1.7B, Qwen3-8B,
Qwen3-14B, Qwen3-32B

• DeepSeek: DeepSeek-V2-Lite

• Gemma family: gemma-3-1b, gemma-3-4b,
gemma-3-12b, gemma-3-27b

• Llama family: Llama-3.1-8B,
Llama-3.1-70B, Llama-3.2-1B,
Llama-3.2-3B, Llama-3.3-70B

• Phi family: Phi-3.5-MoE, Phi-3.5-mini,
Phi-4

• Mistral family:
Mistral-Nemo-Instruct-2407,
Mistral-Small-3.1-24B-Instruct-2503

To generate labels for proxy training, we sample
30,000 prompts from HH-RLHF (Bai et al., 2022)
and ToxiGen (Hartvigsen et al., 2022). These are
split into 90% training, 5% validation, and 5% test
sets. Each prompt is labeled according to the target
model’s decision (accept vs. reject).
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Figure 4: Prompt Distribution

We train the proxies with a learning rate of 2e-5
for 3 epochs.

To automatically label refusals, we first apply a
phrase-matching heuristic (e.g., “I’m sorry, but I
can’t,” “I cannot assist with that request”) to flag
obvious rejections. For the remaining responses,
we prompt GPT-4o-mini to decide whether the out-
put constitutes a refusal.

To verify correctness, we manually inspected
500 randomly chosen samples (1:1 benign/harm-
ful). Two authors independently judged whether
the model response was a refusal. Agreement with
automatic labels reached 94% precision and 91%
recall.

Experiments are performed using two 8×A100
GPU nodes. While we did not track exact runtime,
the entire evaluation process was completed over
several days.

B Prompt Category Definitions

We define four primary semantic categories for
analyzing oversensitive prompts:

• Illegal Activities: hacking, fraud, unautho-
rized access, etc.

• Privacy Invasion: requests for personal/pri-
vate data

• Violence and Harm: physical injury, sabo-
tage, or threat-like actions

• Bias and Discrimination: gender/racial/reli-
gious bias or stereotypes

Prompts were assigned categories via keyword
matching and manual inspection. Low-frequency
types (e.g., social engineering) were grouped under
"Others".

Figure 4 shows the distribution.

C Related Work

Oversensitivity of Large Language Models. Re-
cent studies construct static benchmarks to evaluate
the false refusal (a.k.a., Oversensitivity) of LLMs.
These works typically consist of curated templates
that appear harmful but are semantically benign,
designed to test whether LLMs erroneously refuse
the valid inputs. XSTest (Röttger et al., 2024) in-
troduced a diagnostic benchmark with 250 manu-
ally crafted pseudo-harmful prompts to assess over-
refusal behavior. PHTest (An et al., 2024) and
OR-Bench (Cui et al., 2024) expanded this idea by
leveraging automated prompt rewriting techniques
to generate larger-scale datasets of seemingly harm-
ful but harmless queries. Though valuable for ini-
tial evaluations, these benchmarks suffer from rapid
obsolescence due to model updates and potential
data contamination. Unlike these static approaches,
our method dynamically generates adversarial be-
nign prompts through iterative feature attribution,
ensuring continuous adaptability to evolving model
behaviors.
Diagnostic Analysis of Refusal Mechanism.
Some works analyze the internal triggers of false
refusals. OverKill (Shi et al., 2024) identifies lexi-
cal triggers (e.g., words like "kill") via attribution
methods and proposes decoding-based mitigation,
while Single Vector Ablation (Wang et al., 2025)
intervenes in latent space to suppress refusal ten-
dencies. Si et al. (2025) improves refusal accuracy
through chain-of-thought rationales. These works
share our interest in explainable refusal analysis but
focus narrowly on specific mitigation techniques
(e.g., decoding strategies or architectural modifica-
tions). In contrast, our framework integrates the
diagnostic analysis into an automated pipeline for
adversarial generation and model refinement with-
out requiring model internals.
Dynamic Adversarial Frameworks. Another line
of research employs dynamic methods to probe
model behaviors. Ganguli et al. (2022) generate
adversarial unsafe prompts to expose safety fail-
ures, while their goal (eliciting harmful outputs)
is orthogonal to ours (identifying oversensitivity).
SORRY-Bench (Xie et al., 2025) trains a refusal
predictor, and PrimeGuard (Manczak et al., 2024)
uses guard models for routing, yet both prioritize
optimizing true positives (correct refusals of harm-
ful queries). Our work uniquely combines adversar-
ial generation with false positive minimization: we
train a proxy model to simulate refusal behavior,
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iteratively refine it via active learning, and gener-
ate adversarial benign prompts using explainable
triggers—forming a closed-loop system for evalu-
ation and data augmentation. This integration of
dynamic testing, attribution, and iterative proxy
training distinguishes our approach from prior art.
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