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Abstract

Visual metaphors are a complex vi-
sion–language phenomenon that requires
both perceptual and conceptual reasoning to
understand. They provide a valuable test of a
model’s ability to interpret visual input and
reason about it with creativity and coherence.
We introduce ImageMet, a visual metaphor
dataset, featuring 2177 synthetic and 350
human-annotated images. We benchmark
several SOTA VLMs on two tasks: Visual
Metaphor Captioning (VMC) and Visual
Metaphor VQA (VM-VQA). We establish
strong baselines by fine-tuning on ImageMet,
which yields substantial performance gains
in VMC (+4.67% SBERT-Similarity, +4.84%
task-specific metric) and VM-VQA (+9.3%
Accuracy on average). Additionally, we intro-
duce a task-specific CoT prompting strategy
that outperforms standard few-shot baselines
(+1.99% in VMC, +5.21% in VM-VQA).
We observe that despite strong performance
on the VMC task, VLMs still significantly
lag behind humans in understanding visual
metaphors, indicating that their success often
relies on learned associations rather than
genuine analytical reasoning. We note that this
gap is often obscured in metaphor captioning
tasks where the automatic metrics correlate
only moderately at best with human judgment
(Pearson r < 0.6), highlighting the need
for careful, holistic evaluation of the visual
metaphor understanding of the models.

1 Introduction

Visual metaphors are figurative pictorial compar-
isons in which one entity (primary concept or tar-
get domain) is represented in terms of another
(secondary concept or source domain). They are
monomodal in nature, i.e. both the target and
source domains rely entirely on visual cues to con-
vey metaphorical meaning. Due to their visual
appeal and cognitive impact, visual metaphors are
widespread in advertising (Mick and Mcquarrie,

1999), political cartoons, and contemporary art,
making them a vital component of nonverbal com-
munication and cultural expression. In this work,
we focus exclusively on visual metaphors, leav-
ing out multimodal metaphors (where textual and
visual clues jointly construct the metaphor’s mean-
ing). This restriction allows us to isolate and focus
on the challenges posed by visual metaphors, stem-
ming from their monomodal nature and the diffi-
culty of interpreting meaning solely from visual
cues. For more on metaphors, see Appendix A.

Visual metaphor understanding involves two
key challenges (Forceville, 2008). First, visual
metaphors lack the syntactic structure of language,
making it harder to identify source and target ele-
ments. Viewers must rely solely on visual cues like
composition, emphasis, and familiarity to interpret
the mapping. Second, to analyze visual metaphors
conceptually, the visual relation must be translated
into a verbal “A IS B” format. This translation is
interpretive and often ambiguous, as different ver-
balizations can emphasize distinct aspects of the
concepts, which may alter the metaphor’s overall
meaning. Visual metaphor understanding requires
perceptual reasoning to infer target-source map-
pings and conceptual reasoning to translate them
into a verbal “A IS B” format.

Thus, visual metaphor understanding offers an
interesting probe into the multimodal reasoning
abilities of Vision-Language Models (VLMs).
While prior work in visual metaphors (Yosef et al.,
2023; Chakrabarty et al., 2023) has addressed
visual metaphor detection, retrieval, and gener-
ation, metaphor understanding remains largely
unexplored. We introduce two tasks to evaluate
this: (i) Visual Metaphor Captioning (VMC),
where models must generate coherent captions that
capture the intended meaning of a given visual
metaphor, and (ii) a Visual Metaphor VQA task
(VM-VQA) that assesses a model’s ability to
infer target-source mappings in a multiple-choice
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setting.

Our contributions are:

1. ImageMet: The largest visual metaphor
dataset of its kind, containing 2177 synthetic
image–simile pairs and a manually anno-
tated test set of 350 images for challeng-
ing evaluation. Fine-tuning on ImageMet
demonstrates significant improvement in Vi-
sual Metaphor Captioning (+4.67% SBERT-
Similarity, +4.84% task-specific metric) and
Visual Metaphor VQA (+9.3% Accuracy on
average) (Section 3).

2. Benchmarking of state-of-the-art VLMs
on the proposed test set for the two visual
metaphor tasks (VMC and VM-VQA) which,
to the best of our knowledge, is the first of
its kind. We compare 4 open-source models,
2 closed-source models, and human perfor-
mance on ImageMet, providing both quantita-
tive and qualitative analysis (Section 5, 6).

3. Strong baselines for visual metaphor un-
derstanding, featuring a task-specific CoT
prompting technique that begins with objec-
tive, perceptual questions and gradually shifts
to conceptual ones. This method outper-
forms standard zero-shot and few-shot setups
(+1.99% in VMC, +5.21% in VM-VQA) and
achieves the strongest overall performance
with GPT-4o. Fine-tuning on ImageMet yields
the best open-source results (Section 4.2, 5).

We release our code and data to support further
research in this area 1.

2 Related Works

Textual Metaphors: Significant progress has
been made in understanding (Aghazadeh et al.,
2022), detecting (Choi et al., 2021; Su et al., 2020;
Badathala et al., 2023), and generating (Stowe
et al., 2021; Chakrabarty et al., 2020) linguistic
metaphors, supported by sentence-level and token-
level datasets (Tsvetkov et al., 2014; Mohammad
et al., 2016; Mohler et al., 2016).
Visual Metaphors: Akula et al. (2023) extended
metaphor understanding to the visual domain by in-
troducing classification, generation, and captioning

1https://github.com/manishitIITB/Visual_
Metaphor_ImageMet_EMNLP2025

tasks. Chakrabarty et al. (2023) explored classifi-
cation and generation, while Rajakumar Kalarani
et al. (2024) focused on video metaphor captioning.
However, image-based visual metaphor understand-
ing remains largely unexplored. Prior work (Akula
et al., 2023) evaluated only a single model using
limited template-based metrics. We present the
first comprehensive benchmark of SOTA VLMs on
visual metaphor understanding in images, incorpo-
rating both automatic and human evaluations.
Multimodal Metaphor Datasets: Existing
datasets such as MetaCLUE (Akula et al., 2023)
and MultiMET (Zhang et al., 2021) are not publicly
available and were therefore not used. We primarily
compare our dataset, ImageMet, against VFLUTE
(Saakyan et al., 2024), as it is a curated subset
of both IRFL (Yosef et al., 2023) and HAIVMet
(Chakrabarty et al., 2023). VFLUTE includes 806
training, 116 validation, and 103 test examples
combining metaphor and simile cases. However,
the text-image pairs in VFLUTE predominantly
feature non-deliberate metaphors, where figurative
elements are incidental rather than central, making
them suboptimal for evaluating visual metaphor
understanding, where the metaphor must be visu-
ally expressible. In contrast, ImageMet focuses
exclusively on deliberate metaphors, where the
metaphor forms the core meaning and is explicitly
grounded in a visual comparison. To the best of
our knowledge, ImageMet is the only openly avail-
able dataset specifically designed for evaluating
visual metaphor understanding in this deliberate
sense. Expanded comparison with existing datasets
in Appendix C.

3 Dataset: ImageMet

We introduce ImageMet, a visual metaphor dataset
developed with two key objectives: (1) to provide a
challenging, manually-annotated test set containing
clearly intended visual metaphors, thereby minimis-
ing ambiguity and subjectivity; and (2) to supply
synthetic training data for fine-tuning models to
improve their visual metaphor understanding.

For the captions, we adopt a strict simile-based
template—“<Primary Concept> is as <Attribute>
as <Secondary Concept>”—inspired by prior
work (Akula et al., 2023; Rajakumar Kalarani
et al., 2024). This format explicitly decomposes
metaphorical comparisons into three components:
the Primary (target domain), the Secondary (source
domain), and the shared Attribute. During fine-
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Figure 1: Examples from the ImageMet dataset: (i) The train and validation sets (first and second row) consist of
synthetically generated instances, where a linguistic simile is first generated, followed by an image created through
its visual elaboration. (ii) The test set (last row) consists of manually curated and annotated images with intended
visual metaphors to minimise subjectivity.

tuning, this structured format allows for more ef-
ficient learning than open-ended metaphorical ex-
pressions (Appendix B). During evaluation, it facili-
tates reliable automatic assessment and emphasises
the importance of verbalising the correct concepts,
an essential aspect of visual metaphor understand-
ing (Forceville, 2008). This explicit verbalisation
challenges models to go beyond surface-level pat-
tern recognition and demonstrate true perceptual
reasoning and conceptual grounding. The train and
the validation sets were synthetically generated us-
ing the following automated pipeline:

• Primary Concepts: Inspired by Yang et al.
(2020), we curate nouns from a list of 4000
words sourced from the MRC Psycholinguis-
tic Database (Coltheart, 1981; Wilson and

Division, 1997), selecting those with image-
ability and concreteness scores above 500
(PAIVIO et al., 1968) to exclude non-visual
concepts (see Appendix H).

• Attributes: We extract adjectives associated
with each primary noun from WordNet 3.0
(Miller, 1994) using the ‘examples’ and ‘hy-
ponyms’ attributes where available. Addition-
ally, we prompt GPT-4o (OpenAI, 2023) to
generate the top three most associated adjec-
tives for each word, ensuring diverse semantic
coverage (see Appendix G).

• Secondary Concepts: We prompt GPT-4o
to complete a template of the form “The Pri-
mary is as Attribute as ”, allowing for
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grammatical variations. Among the generated
candidates, we select the one with the lowest
perplexity score as the final synthetic simile
for the (Primary, Attribute, Secondary) tuple.
To ensure metaphorical quality, a generation
is retained only if the primary and secondary
concepts are semantically dissimilar (cosine
similarity < 0.5).

• Images: For each synthetically generated sim-
ile, we create a corresponding synthetic image
using Stable Diffusion 3.5 Large (8B)2. To
achieve this, we transform the simile into a
detailed visual elaboration, following prior
works (Zhang et al., 2024; Chakrabarty et al.,
2023).This elaboration is generated using
GPT-4o, which first classifies the primary and
secondary concepts as concrete or abstract,
then follows a corresponding set of prede-
fined instructions to generate a coherent visual
elaboration. For a detailed breakdown of the
prompting strategy, see Appendix I.

To ensure consistency and reduce reliance on a
single LLM, we decompose simile generation into
smaller controlled steps, incorporating external
signals where needed. Our train and validation sets
consist of 2000 and 177 instances, respectively,
each pairing a synthetic image with a synthetic
simile caption.

Synthetic Data Validation: We sampled 10% of
similes from ImageMet and an equal number from
VFLUTE and asked human annotators to rate the
coherence of the similes on a 5-point scale. Im-
ageMet achieved an average score of 4.19, while
VFLUTE scored 4.25. We also evaluated 10% of
image-text pairs from both datasets for alignment
quality using the same 5-point scale. In image-text
alignment, ImageMet scored 4.17 and VFLUTE
4.53. These results demonstrate that, despite be-
ing synthetically generated, ImageMet instances
are comparable in coherence and alignment to
VFLUTE’s human-written content, validating both
our simile and image generation pipelines.
Test set: It contains 350 manually curated images
featuring clearly intended visual metaphors, each
paired with a simile-style caption. Images were
scraped using targeted queries such as “metaphor”
and “symbolism”. Two Master’s students, fluent in
English and experienced in linguistic annotation,

2stabilityai/stable-diffusion-3.5-large

independently wrote concise captions in our pre-
ferred simile format. In Round 1, each annotator
worked independently. In Round 2, they met to
resolve disagreements. If consensus was reached,
the agreed caption was retained; otherwise, the in-
stance was discarded. This framework was inspired
by the two-round protocol of Fabbri et al. (2021).
Annotation guidelines are detailed in Appendix J.

4 Methodology

4.1 Tasks
To evaluate models’ understanding of visual
metaphors, we define two tasks: (i) Visual
Metaphor Captioning (VMC) and (ii) Visual
Metaphor VQA (VM-VQA).

(i) Visual Metaphor Captioning (VMC): Given
an image containing a visual metaphor, the model
must generate a caption that coherently verbalises
the metaphor. We explore two settings:

• Open Format: The model generates a free-
form caption. We evaluate it using SBERT
similarity with the ground-truth caption.

• Simile Format: The model generates a cap-
tion in the form “A is as B as C”, which forces
explicit verbalization of the metaphor’s com-
ponents. This tests the deeper perceptual and
conceptual reasoning and the inherent verbal-
isation as argued by Forceville (2008). We
evaluate using BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), CIDEr (Vedantam
et al., 2015), SBERT-similarity (Reimers and
Gurevych, 2019), and a task-specific met-
ric: Average Cosine Distance (ACD) (Ra-
jakumar Kalarani et al., 2024), which weights
BERT-Score (Zhang et al., 2020) by the dis-
similarity between the primary and secondary
concepts (See Appendix D).

(ii) Visual Metaphor VQA (VM-VQA): The
model is shown an image and asked to identify one
of the three metaphor components: the Primary,
Secondary, or Attribute. For each component,
it is given multiple options to select from. The
options are framed as follows:

• For the Primary or Secondary components,
the model is given three options: the correct
answer and two distractors, which are the re-
maining metaphor components (converted to
noun form).
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The food is as
costly as jewellery.

Objects:
 Person, Jewellery, Plate.

Relationships:
Type: on

From: Jewellery
To: Plate

 Primary Concept: 
Food

     Secondary Concept:
Jewellery
Attribute:

Cost

A woman is as
extravagant as a

jeweler.

Stage 1: Initial Guess Stage 2: Scene Graph Generation 

Stage 4: Refining Guess Stage 3: Visual Metaphor Analysis 

Input :Image + Scene Graph

Input: ImageInput: Image

Input: Image + Guess+ Scene
Graph + Metaphor Analysis

Output: Guess Output: Scene Graph

Output: Metaphor Analysis Final Output: Caption

Figure 2: Our task-specific CoT pipeline consists of four steps: (1) Initial Model Guess, where the model provides
a preliminary interpretation of the visual metaphor based on the image alone, (2) Scene Graph Generation, capturing
object arrangements in the image to extract structural relationships, (3) Visual Metaphor Analysis using CoT,
progressing from objective observations to abstract reasoning to identify the primary, secondary, and attribute,
leveraging both the image and the generated scene graph, and (4) Refinement, where the model revisits its initial
guess, incorporating insights from the scene graph and CoT analysis to enhance its final prediction.

• For Attribute, we provide five adjective op-
tions. Challenging distractors are selected
through a multi-step process. First, we gen-
erate a verbose literal caption for the image
and extract all adjectives from it. Next, we
compute the cosine similarity between each
extracted adjective and the ground-truth at-
tribute. We then filter out adjectives that are
either too dissimilar (cosine similarity < 0.2)
or too similar (> 0.8) to the ground-truth at-
tribute, as these are unlikely to function as
effective distractors. From the remaining can-
didates, we select the top-4 most similar ad-
jectives to serve as distractors.

We report model accuracy for each metaphor com-
ponent.

4.2 Approaches
Prompting Techniques: We evaluate the follow-
ing prompting strategies:

• Zero-Shot: Models are first evaluated in a
zero-shot setting using a standard inference
prompt (details in Appendix I). Model names
without a suffix tag indicate zeroshot.

• Multishot with Explanations (MS): For few-
shot capable models, we use a 4-shot prompt
based on visual metaphor theory (Ojha, 2013),
covering core types: (1) juxtaposition, (2)
fusion, (3) abstract source, and (4) tangible
source. Each shot includes an image, its sim-
ile caption, and an explanation. Prompt details
are in Appendix I.

• Chain-of-Thought Reasoning (CoT): We in-
troduce a task-specific CoT prompting tech-
nique comprising four stages (Figure 2): (1)
The model first generates an initial caption
based solely on the image. (2) A scene graph
is generated (Mitra et al., 2024) to capture
object relationships, enabling perceptual rea-
soning over spatial and relational cues. (3)
We then guide the model through a structured
sequence of questions grounded in both the
scene graph and the image, progressing from
objective descriptions to more abstract infer-
ences that help uncover the metaphor’s source
domain, target domain, and shared attribute.
This stage improves the model’s conceptual
reasoning. (4) Finally, the model refines its
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initial caption by integrating insights from
the scene graph and metaphor decomposition.
This four-stage pipeline is designed to serve
as a strong task-specific baseline for visual
metaphor understanding. The pipeline is ap-
plicable to both zero-shot and multi-shot set-
tings, denoted as CoT and MS+CoT, respec-
tively. Full prompt details are provided in
Appendix I.

Fine-Tuning: We fine-tune two open-source mod-
els, LLaVa-1.5-7B (Liu et al., 2023) and Qwen2-
VL-7B-Instruct (Wang et al., 2024), on our Im-
ageMet dataset. The fine-tuned variants are de-
noted as LLaVa-1.5-7B-IM and Qwen2 IM, re-
spectively. We finetune the models to adhere to the
simile format. We freeze the vision encoders and
fine-tune the language layers, attention modules
and MLP layers. This strategy enables better adher-
ence to structured outputs while enhancing vision-
language alignment. Since ImageMet images are
crafted to foreground metaphorical elements, fine-
tuning helps models focus on relevant visual cues.
Training is performed using LoRA (Hu et al., 2022)
with a batch size of 4, a learning rate of 2× 10−4,
and for up to 5 epochs. We use BF16 precision and
a single A100 GPU.

4.3 Models

We evaluate both open-source and closed-source
models alongside human baselines on our test set.
Among open-source models, we consider LLaVa-
1.5-7B (Liu et al., 2023), LLaVa-1.6-7B (Liu et al.,
2024), Phi-3.5-Vision (Abdin et al., 2024), and
Qwen2-VL-7B-Instruct (Wang et al., 2024) (hereby
referred to as Qwen2). Among closed models, we
examine GPT-4o (OpenAI, 2023), and Gemini-
1.5-Flash (Reid et al., 2024) (hereby referred to
as Gemini). For the human baseline, we hired a
linguistics expert, fluent in English and familiar
with linguistic annotation work. They received fair
and competitive stipends for their contribution.

5 Results and Analysis

5.1 Automatic Evaluations

Closed Models exhibit Strong Latent Capa-
bilities. GPT-4o and Gemini outperform all
open-source baselines. Prompting yields only mod-
est improvements (+4.48 % SBERT-Similarity)
for open models, but unlocks substantial gains in
closed models (14.64 % on average) – highlighting

Model SBERT-Similarity
LLaVa 43.72
LLaVa 1.6 46.52
Qwen2 51.57
Qwen2 CoT 52.56
Qwen2 VF 56.20
Qwen2 IM 56.04
Gemini 59.44
GPT4o 62.78
GPT4o MS + CoT 69.88

Table 1: Benchmarking the mean performance (over
three runs) of open and closed SOTA Vision Language
models on the ImageMet test set for the task of Vi-
sual Metaphor Captioning (VMC) in Open Format.
Here, IM denotes finetuned on ImageMet, VF denotes
finetuned on VFLUTE, MS denotes 4-shot with Expla-
nation, CoT denotes Chain-of-Thought prompting, and
the absence of tags denotes zeroshot inferencing. The
metric has been scaled to lie in the range 0-100 and the
higher the value, the better.

their latent reasoning abilities and greater adapt-
ability.

Qwen2 leads among open-source models, out-
performing others like LLaVA and Phi (+24.49%
SBERT-Similarity), and significantly narrowing the
gap to closed-source systems. Finetuning on our
synthetic ImageMet dataset further boosts its per-
formance, making Qwen2 IM the strongest open-
source baseline. While ImageMet’s large-scale syn-
thetic data enables strong generalisation, even to
unseen tasks (see Section 5.3), VFLUTE, despite
being smaller, delivers comparable performance
due to its high-quality human annotations. This
highlights the importance of curated data for nu-
anced tasks like metaphor understanding. Still,
the scalability of ImageMet makes it a compelling
resource. We also observe that training with simile-
format data encourages structured reasoning over
metaphor components (see Appendix B, Table 7),
further validating the effectiveness of our synthetic
data.

Our prompting techniques improve visual
metaphor understanding by facilitating a guided
approach to analyse the visual metaphor. Few-
shot examples grounded in linguistic theory im-
prove format alignment and guide the model’s
reasoning. Chain-of-Thought prompting consis-
tently enhances performance across models (+1.81
% on average across all models) by guiding step-
wise metaphor analysis from perceptual (scene-
graph generation and objective questions) to con-
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Model BLEU-4 ROUGE-L CIDEr SBERT-Similarity ACD
LLaVa-1.5-7B 0.88 36.50 3.34 47.81 54.23
LLaVa-1.6-7B 1.00 36.80 3.50 47.70 54.43
Phi-3.5-Vision 1.78 31.42 3.33 48.09 56.54
LLaVa-1.5-7B-IM 5.02 46.57 6.26 56.87 58.63
Qwen2 5.28 43.72 7.67 59.51 58.19
Qwen2 CoT 8.46 46.87 10.48 60.74 60.41
Qwen2 MS 11.18 52.12 10.97 60.14 59.80
Qwen2 MS + CoT 11.41 53.99 13.13 62.18 61.04
Qwen2 VF 11.28 53.50 13.02 61.98 61.10
Qwen2 IM 12.55 55.48 13.76 62.29 61.01
GPT4o 11.57 53.78 12.41 59.49 62.90
GPT4o MS 20.86 61.74 19.52 70.00 64.45
GPT4o MS + CoT 20.95 61.90 19.60 70.06 64.78
Gemini 9.24 49.24 12.12 62.93 64.39
Gemini MS 22.05 61.46 21.05 70.18 64.56
Human 15.91 51.58 18.43 68.19 63.84

Table 2: Benchmarking the mean performance (over three runs) of open and closed SOTA Vision Language
models on the ImageMet test set for the task of Visual Metaphor Captioning (VMC) in Simile format. Here, IM
denotes finetuned on ImageMet, VF denotes finetuned on VFLUTE, MS denotes 4-shot with Explanation, CoT
denotes Chain-of-Thought prompting, and the absence of tags denotes zeroshot inferencing. All metrics have been
scaled to lie in the range 0-100 and the higher the value, the better.

Model Primary Accuracy (%) Secondary Accuracy (%) Attribute Accuracy (%)
LLaVa 46 51 33
LLaVa 1.6 45 37 39
Qwen2 46 45 45
Qwen2 CoT 44 49 46
Qwen2 VF 46 41 47
Qwen2 IM 51 45 53
GPT4o 67 56 67
GPT4o MS + CoT 75 62 74
Human 93 92 90

Table 3: Benchmarking the performance of open and closed SOTA Vision Language models on the ImageMet
test set for the task of Visual Metaphor VQA (VM-VQA). Here, IM denotes finetuned on ImageMet, VF denotes
finetuned on VFLUTE, CoT denotes Chain-of-Thought prompting, and the absence of tags denotes zeroshot. The
accuracies are represented as a percentage out of 100.

ceptual understanding (subjective questions about
the metaphorical components).

Humans demonstrate superior metaphor un-
derstanding compared to all models. Model
performance on generation tasks should be inter-
preted with caution. In Table 2, models appear to
outperform humans across all automatic metrics.
However, this is primarily due to the limitations of
automatic metrics in evaluating generated outputs.
Subtle phrasing variations, along with the inher-
ent subjectivity of human interpretations in VMC,
are often penalized by automatic metrics, resulting
in lower scores for human responses despite their
greater conceptual depth.

While we report gains on multiple automatic met-
rics, we note that these metrics correlate only mod-
erately with human judgments of semantic consis-
tency (highest correlation: SBERT-Similarity, Pear-
son r = 0.57). This highlights the interpretive nature
of visual metaphor understanding and the limita-
tions of current automatic metrics. Model gains in
VMC likely stem from a reliance on surface-level
patterns memorized during pretraining, with mod-
els often repeating familiar expressions rather than
exhibiting genuine abstract reasoning. In contrast,
the VM-VQA task exposes persistent gaps in visual
metaphor understanding, highlighting the difficulty
VLMs face in accurately identifying and reasoning
about the metaphor components.
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Figure 3: Results of human evaluation of the captions generated by 5 models demonstrate that the Human
outperforms all models in Semantic Consistency scores. Here, CoT denotes Chain-of-Thought, MS denotes 4-shot
with Explanation and only model name denotes zeroshot. For all metrics, the higher the better.

5.2 Human Evaluations

Two Master’s students (aged 25–30), fluent in
English, served as annotators and were fairly
compensated. They evaluated 100 test images and
outputs from the models across the following four
binary-labeled metrics: (1) Fluency: Assesses
grammatical correctness, natural flow, and ad-
herence to the task’s template. (2) Creativity:
Evaluates the originality of the metaphor, ensuring
dissimilar Primary and Secondary concepts. (3)
Concept Consistency: Checks accurate identifica-
tion of the metaphorical concepts without verifying
their relationship. (4) Semantic Consistency:
Ensures captions align with the image content,
accurately capturing the intended meaning. The
models considered for manual evaluation are (i)
GPT4o MS + CoT, (ii) GPT4o, (iii) Qwen2 IM,
(iv) Qwen2 and (v) Human.

Human evaluations reveal that finetuning im-
proves Semantic Consistency of the model.
Qwen2 IM shows consistent improvement in hu-
man evaluations (+20.34 % increase on average
across all metrics), confirming that finetuning does
improve the visual metaphor understanding of the
model. This is also consistently reflected in the
VM-VQA task, where the metaphor component un-
derstanding of the model significantly improves
(+10% increase in Primary accuracy, +17% in-

crease in Attribute Accuracy).

Models struggle with Semantic Consistency,
which requires Compositional Understanding
and Reasoning. Despite strong performance in
visual recognition, models exhibit a persistent gap
in semantic consistency compared to humans, a
trend mirrored in the VM-VQA task. Manual
inspection indicates that errors in semantic con-
sistency often stem from difficulties in aligning
metaphorical domains and from a bias toward lit-
eral interpretation. These limitations, elaborated in
Section 6, reflect a broader difficulty in abstract rea-
soning and in verbalising visual metaphors, a core
component of metaphor understanding (Forceville,
2008). An illustrative output example is provided
in Appendix E.

In contrast, human performance on VM-VQA
demonstrates a robust grasp of metaphorical struc-
ture, with consistently accurate identification of
source and target domains in an objective MCQ for-
mat. While captioning tasks involve some degree
of subjectivity, the structured evaluation reveals the
human ability to flexibly adapt to narrative scaf-
folds and compose creative interpretations. These
findings highlight that perception alone does not
guarantee correct interpretation, and that genuine
metaphor understanding requires nuanced percep-
tual and conceptual reasoning that current models
have yet to fully achieve.
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Task Figurative Image-Text Entailment [I] Figurative Image-Text Entailment [II] Metaphorical Captioning Visual Reasoning VQA
Metric Accuracy (%) Accuracy (%) SBERT-Similarity Accuracy (%)

Models Qwen2 46.62 60.15 50.78 75.62
Qwen2 VF 63.15 60.04 62.25 82.23
Qwen2 IM 66.06 59.92 57.64 86.41

Table 4: Fine-tuning on ImageMet improves performance across related tasks. VF denotes fine-tuning
on VFLUTE’s metaphor and simile subset, and IM denotes fine-tuning on ImageMet. We evaluate on three
tasks: Figurative Image-Text Entailment (on two subsets—metaphor/simile [I] and humor/sarcasm/irony [II] from
VFLUTE), Metaphorical Captioning (VFLUTE simile subset), and Visual Reasoning VQA (NLVR2). Qwen2 IM
performs competitively with Qwen2 VF, highlighting the utility of our synthetic data. All metrics are scaled to 100;
higher is better.

5.3 Generalization of Our Approach to
Related Tasks

In Table 4, Qwen2 IM yields consistent gains
across tasks involving abstract visual understand-
ing and visual reasoning.

We see notable improvements in Figurative
Image-Text entailment, Metaphorical Captioning,
and Visual Reasoning VQA (Suhr et al., 2019),
suggesting a deeper grasp of cross-modal metaphor
structure beyond template matching. Importantly,
ImageMet finetuning enhances metaphor compre-
hension without degrading performance on non-
metaphorical figurative tasks, indicating that the
model may be learning to differentiate metaphor-
specific reasoning. On VFLUTE Simile Caption-
ing, Qwen2 IM performs comparably to Qwen2 VF.
While VFLUTE contains a limited set of idiomatic
similes, which is likely easily memorised during
VF finetuning, ImageMet’s broader and more di-
verse data enables stronger generalisation despite
less lexical overlap.

6 Qualitative Error Analysis

While models show strong perceptual abilities,
their main limitation lies in composing visual obser-
vations into coherent metaphorical interpretations.
We identify three recurring error patterns:

(a) Domain Swap. Models occasionally reverse
the source and target domains of the metaphor. For
example, when interpreting an image where an ob-
ject from domain A is metaphorically mapped onto
domain B, the model instead generates a descrip-
tion where B is mapped onto A. This inversion
suggests that while the model recognises both do-
mains, it struggles to capture the intended direction-
ality of the mapping, which often requires strong
linguistic and cultural knowledge.

(b) Visual Representation Bias. Models often
conflate the literal depiction of an object with its

metaphorical meaning. For instance, an image con-
taining a syringe may be interpreted as referencing
the medical instrument itself rather than the con-
cept of addiction or medicine. This reveals a bias
toward surface-level visual recognition rather than
abstraction.

(c) Implicit Metaphors. When metaphors are
only partially realised, such as when one domain
is indirectly evoked through subtle visual cues,
models tend to fail. They either (i) associate the
metaphor with another salient but irrelevant visual
concept, or (ii) fall back on stereotypical metaphor-
ical associations learned during pretraining. This
highlights the model’s difficulty with inference in
the absence of explicit visual cues.

Overall, these errors reinforce the observation that
visual metaphor understanding requires not only
perceptual grounding but also flexible reasoning
over abstract conceptual mappings, where current
models remain limited.

7 Conclusion

We present ImageMet, a benchmark for visual
metaphor understanding with 2177 synthetic train/-
val and 350 human-annotated test instances. We
evaluate 4 open and 2 closed models, and a hu-
man baseline on two visual metaphor understand-
ing tasks (VMC and VM-VQA). Finetuning on
ImageMet improves performance, narrowing the
gap with closed models. Our CoT strategy sets
the strongest baseline (GPT4o MS+CoT) overall.
Despite gains, models still struggle with metaphor
domain mapping, as evidenced in VM-VQA, high-
lighting a gap in abstract reasoning. ImageMet
serves as a valuable tool for studying both the con-
ceptual and perceptual reasoning abilities of VLMs,
and it further contributes to the development of
models capable of metaphor-aware generation and
reasoning.
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Limitations

We briefly describe the identified limitations in our
work.

• Shortcomings of automated evaluations:
While we report improvements using auto-
matic metrics such as SBERT-Similarity and
a task-specific score, these metrics may not
fully capture the nuance, creativity, or inter-
pretive depth required for understanding vi-
sual metaphors. Metaphor comprehension of-
ten involves subjective and culturally depen-
dent reasoning, which is difficult to evaluate
through standard metrics alone. In fact, we
find that these metrics correlate only moder-
ately with human judgments (highest correla-
tion: SBERT-Similarity, Pearson r = 0.57, p
≪ 0.01), underscoring their limitations. Al-
though we include human evaluations to better
assess these aspects, they are limited in scale
and inherently subjective, leaving room for fu-
ture work to develop more robust automated
evaluation protocols.

• Resource constraint: Due to resource con-
straints, we limit ourselves to training and test-
ing on relatively smaller models (in the range
of 4-11 B parameters). Larger open-source
models (over 20B) parameters remain yet to
be investigated.

• ImageMet Scalability vs Diversity: While
the dataset is highly scalable due to automa-
tion, at sufficiently large scales, the diver-
sity of generated metaphors may still be con-
strained by the capability of the generation
pipeline.

Ethical Considerations

We release ImageMet under the CC-BY 4.0 license
and associated code under the MIT license for re-
search purposes, and we cite all third-party models
and datasets as required by their creators. Some
images in the ImageMet test set are real-world ad-
vertisements and are not publicly released due to
copyright restrictions; these images are used inter-
nally for research and evaluation purposes only. As
these images may reflect societal biases commonly
found in advertising media, we emphasise that no
personally identifiable information is present in
either the images or the captions written by our
annotators.

For the training and validation sets, similes are
synthetically constructed by associating adjectives
with nouns, using large language models (LLMs)
such as GPT-4o. Some bias inherent to the LLM
may still be reflected in the generated similes. Ad-
ditionally, the synthetic images used for these pairs
are generated using Stable Diffusion 3.5 Large,
which may also possess latent visual biases.

We acknowledge these limitations and encour-
age the research community to use ImageMet and
any derived models with appropriate caution, par-
ticularly in downstream applications. Responsi-
ble and context-aware use is essential to mitigate
the propagation of unintended social or representa-
tional biases.
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ImageMet Fraction BLEU-4 ROUGE-L CIDEr SBERT-Similarity ACD
33% 11.4 51.65 11.56 61.27 59.14
66% 11.96 51.72 11.91 62.10 59.89
100% 12.55 55.48 13.76 62.29 61.01

Table 5: Variation in performance of Qwen2 with variation in finetuning dataset size. We observe a clear
increase in performance across all metrics with increase in dataset size, with a very strong Pearson correlation (0.89
across all metrics)

Dataset Number of Instances Text Source Image Source
ImageMet 2177 Synthetically generated Synthetically Generated
VFLUTE 1024 Distilled from IRFL and HAIVMet Distilled from IRFL and HAIVMet
HAIVMet 958 Manually Curated Synthetically Generated

IRFL 1440 Manually Curated Manually Curated

Table 6: Comparison of ImageMet with other openly available related datasets based on size and the source of
text and images. ImageMet is the largest dataset of its kind and is fully synthetic, generated through an automated
pipeline that enables scalability.

A Background on Metaphors and Similes

As described in Section 1, we provide more lin-
guistic background on metaphors in this section. A
metaphor is a map between a source and a target
domain through their shared properties. It is a map-
ping of knowledge about one concept (the ‘source
concept’) to another (the ‘target concept’) (Lakoff,
1993). For example:

• Simple metaphor: In ‘Life is a rollercoaster’,
the target domain is ‘life’ and the source do-
main is a ‘rollercoaster’ and the unpredictabil-
ity of a rollercoaster is used to highlight the
unpredictable nature of life.

• Implied metaphor: In ‘He is drowning in
paperwork’, the target domain is ‘having too
much paperwork’ and the source domain is
‘drowning’ and the feeling of despair associ-
ated with drowning is used to highlight the
overwhelming nature of the work.

Metaphors are implicit comparisons and their sub-
tlety makes them difficult to extract information
from. Simple metaphors usually follow an ‘A is
B’ format, where A is called the tenor or the pri-
mary concept and B is referred to as the vehicle or
the secondary concept (Richards, 1936). In sim-
ple metaphors, the primary and the secondary con-
cepts are explicitly stated in the text, whereas in
implied metaphors, the comparison is subtle and
is implied, as the name suggests. This makes sim-
ple metaphors more desirable for computationally

extracting information. However, consider the ex-
ample: “Life is a box of chocolates". Although
the primary and the secondary concepts are explic-
itly stated, the attribute or common property being
shared between them is up to interpretation. One
possible attribute is ‘sweetness’, but another pos-
sible attribute is ‘unpredictability’ (as used in the
movie ‘Forrest Gump’), which completely changes
the meaning. Such ambiguity and subjectivity in
a metaphor is part of its beauty, however for our
purposes, it poses a problem. Similes are explicit
comparisons and often follow one of two formats
— ‘A is like B’ or ‘A is as C as B’. Clearly, the
latter is the most desirable format for our purpose
as it states not only the primary concept A, and
the secondary concept B but also the ‘Attribute’
or ‘Quality’ C that is being shared between them.
Therefore, we stick to the following template to
describe the metaphors present in our dataset:

Primary is as Attribute as Secondary.

For example, we write ‘Life is as unpredictable
as a rollercoaster’. This syntax imposes rigid con-
straints on the structure of the sentence, which
might sometimes diminish the aesthetic value of a
metaphor but offers a convenient setting for easier
information extraction and better evaluation of our
models. Prior works (Rajakumar Kalarani et al.,
2024; Akula et al., 2023) in visual metaphors have
also focused on such a format.
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Task VMC VM-VQA
Metric SBERT-Similarity Primary Accuracy (%) Secondary Accuracy (%) Attribute Accuracy (%)

Models Qwen2 IM-M 61.45 40 43 39
Qwen2 IM 61.27 46 45 45

Table 7: Finetuning on simile captions demonstrates better results compared to open-form metaphorical
sentences. This demonstrates the effectiveness of the ImageMet simile format for the Train set. IM denotes finetuned
on ImageMet and IM-M denotes finetuned on open-form metaphorical sentences paraphrased from ImageMet.

Model BLEU-4 ROUGE-L CIDEr SBERT-Similarity ACD Prometheus-Eval
Qwen2 5.28 43.72 7.67 59.51 58.19 62.23
Qwen2 IM 12.55 55.48 13.76 62.29 61.01 63.16
GPT4o MS + CoT 20.95 61.90 19.60 70.06 64.78 75.87
Human 15.91 51.58 18.43 68.19 63.84 65.15

Table 8: Performance of 4 models on the VMC task across multiple metrics. As Prometheus offers no substantial
additional insight over existing metrics, we omit it from further analysis.

B Ablation Studies

As described in Section 3 and Section 5, we demon-
strate the effect of scaling the ImageMet data and
the effectiveness of the simile caption form in this
section.

B.1 Finetuning Dataset Size
Table 5 presents the model’s performance relative
to the size of the fine-tuning dataset. We evaluate
three subsets of ImageMet — 33%, 66% and 100%
— to assess the impact of data quantity and high-
light the effectiveness of our dataset in improving
performance on this task. We observe a consistent
performance improvement with increasing dataset
size, underscoring both the need for more data and
the effectiveness of our dataset. This highlights
the value of our automated pipeline in efficiently
generating large-scale data for this task.

B.2 Finetuning on Simile captions vs
Open-form captions

To evaluate the impact of structured simile-based
training, we fine-tune Qwen2 on a subset (33%)
of the ImageMet train set, where simile captions
are paraphrased into open-form metaphorical sen-
tences using GPT-4o (denoted as Qwen IM-M).
While Qwen IM-M maintains SBERT similarity, it
underperforms on VM-VQA compared to Qwen
IM, indicating that the simile structure more effec-
tively supports metaphor component understanding
during fine-tuning (see Table 7).

C Comparison with existing Datasets

We compare ImageMet with existing datasets in Ta-
ble 6, considering only its synthetically generated

portion, which comprises 2177 instances. Includ-
ing the manually annotated test set, the total dataset
size is 2527. As shown in the table, ImageMet is
the largest openly available dataset and the only
one fully generated through a synthetic pipeline.
Its automated nature enables scalability, making it
a valuable resource for advancing research in visual
metaphor understanding.

In Table 1, 2, and 3, we analyze the impact of
fine-tuning Qwen2 on ImageMet versus VFLUTE.
We evaluate the fine-tuned models on both the
ImageMet and VFLUTE test sets. Qwen2 IM
outperforms Qwen2 VF on the ImageMet Test Set
but falls short on the VFLUTE Test Set (Table
4). Manual inspection reveals that VFLUTE
simile test set size is small (26 instances) and
less diverse (only 14 unique secondary concepts
forming similar similes). Since the VFLUTE
training set contains similar similes, Qwen2 VF
performs better. Despite this, Qwen2 IM performs
comparably to Qwen2 VF. Additionally, images in
the VFLUTE Simile Set rarely contain intended
visual metaphors, with the figurative language
being confined to the text.

This underscores that the quality of ImageMet is
at least on par with existing datasets like VFLUTE.
ImageMet stands out as the largest openly available
dataset for visual metaphors and offers scalability
through its automated pipeline.

D Choice of metrics

In Section 4, we provide the metrics used for the
VMC task. In this section, we justify our choice
of metrics. We evaluate a range of metrics to de-
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termine the most suitable for the VMC task, ex-
perimenting on a subset of models and their out-
puts (Table 8). These include BLEU, ROUGE-
L, CIDEr, SBERT-Similarity, and ACD, as well
as Prometheus Eval—an LLM-based evaluation
metric. BLEU, ROUGE-L and CIDEr are n-gram
based metrics, SBERT-similarity is to capture se-
mantic similarity and ACD is a task-specific metric
that attempts to capture semantic similarity as well
as primary and secondary concept dissimilarity.
However, we observe only moderate correlation
between these automatic metrics and human judg-
ments (based on semantic consistency labels), with
SBERT-Similarity showing the highest Pearson cor-
relation (r = 0.57, p ≪ 0.01). This is expected
given the complex and interpretive nature of visual
metaphor understanding. Since Prometheus scores
do not offer substantially different insights and are
compute-intensive, we opt not to report them across
the full test set.

E Output Example

In Figure 10, we compare model outputs against
the ground truth: “Caffeine is as addictive as a
drug.”

Qwen2 overly focuses on literal objects (“syringe,”
“coffee beans”). Qwen2-IM abstracts better, replac-
ing “syringe” with “drug”, and aligns more closely
with the metaphor. GPT-4o and GPT-4o MS+CoT
both provide creative yet valid interpretations, shift-
ing the attribute from “addictive” to “energizing.”
The CoT-enhanced output improves structure and
aligns better with metaphor format. The human-
written output also emphasizes caffeine’s energiz-
ing effect. While these diverge from the ground
truth, they reflect legitimate metaphorical readings,
showing the value of interpretive flexibility. Fine-
tuning and prompting strategies notably improve
metaphor grounding and coherence.

F Models and Module Details

The following are the checkpoint details for all
models used:

• GPT4o: gpt-4o-2024-08-06

• Gemini: gemini-1.5-flash

• LLaVa: llava-hf/llava-1.5-7b-hf

• LLaVa 1.6: llava-hf/llava-v1.6-mistral-7b-hf

• Phi: microsoft/Phi-3.5-vision-instruct

• Qwen2: Qwen/Qwen2-VL-7B-Instruct

• Prometheus: prometheus-eval/prometheus-7b-
v2.0 (Kim et al., 2024)

• SBERT: sentence-transformers/all-mpnet-
base-v2

• Stable Diffusion 3.5 Large: stabilityai/stable-
diffusion-3.5-large

We use:

• WordNet 3.0 (Miller, 1994)

• NLTK 3.9.1 (Bird and Loper, 2004)

• SpaCy 3.7.2 (Honnibal and Montani, 2017)

• Huggingface Transformers 4.46.0 (Wolf et al.,
2019)

G WordNet Structure and Adjectives

We utilise the WordNet structure to extract
frequently associated adjectives corresponding
to each Primary noun (refer Section 3), wher-
ever possible. For each noun, we explore the
‘hyponyms’ and ‘examples’ attributes to extract
possible adjectives.

Hyponyms: X is a hyponym of Y if X is a (kind
of) Y. For example, crow is a hyponym of bird.
For words with abstract meanings, hyponyms
sometimes contain a possible adjective for the
word. For example, for the word ‘tongue’ meaning
‘a manner of speaking’, ‘sharp tongue’ is one of
the hyponyms.

Examples: WordNet also contains example
sentences for some words. Examples sometimes
contain adjectives associated with the nouns. For
example, one of the examples under the same
synset of ‘tongue’ is ‘She has a glib tongue’ which
gives us the adjective ‘glib’.

We exploit these attributes to gather adjectives.
This method allows us to obtain adjectives per-
taining to different meanings of the same word.
For example, ‘tongue’ meaning ‘a mobile mass of
muscular tissue’ has adjectives such as red, thin
etc. Iterating through different synsets of the same
word allows us to collect adjectives corresponding
to different meanings of the word, thus ensuring a
diverse collection of adjectives.
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H Imageability and Concreteness of
Words

We plot the imageability and concreteness distribu-
tions for all words present in the MRC Database.
Based on Figure 4 and Figure 5, we choose our cut-
offs for both imageable and concrete concepts to
be at 500. All concepts having a score over 500 for
both imageability as well concreteness are chosen
as the Primary nouns (refer Section 3).

Figure 4: Distribution over Concreteness Scores. We
observe a natural separation between concrete and non-
concrete concepts around the 500 mark.

Figure 5: Distribution over Imageability Scores. We
see a dip around the 500 mark suggesting a natural sep-
aration between highly imageable and non-imageable
concepts.

I Prompt Details

Sections 3 and 4 outline the methods employed for
data generation and inference. Here, we present a
detailed elaboration of each prompt.

I.1 Inference
For zeroshot inferencing on the test set, we use the
following prompt across all models:

Caption the image in one sentence using a simile.
The image contains a metaphorical comparison
between two concepts. You must write the caption

in the form ‘A is as B as C’ where A is being
compared to C on the basis of a shared property B.

Figure 6 shows the 4 examples we use for our mul-
tishot prompting technique along with the accom-
panying explanations. We pass the four examples
back to back, followed by the above zeroshot infer-
encing prompt.

I.2 Instruction Tuning

We use the following instruction prompt for
instruction-finetuning the models:

Caption the visual metaphor in the image in a
single sentence. The caption should be a simile
of the form: A is as B as C where A is being
compared to C on the basis of shared property B.

I.3 Visual Elaboration

For the visual elaboration, we use Chain-of-
Thought prompting to identify the primary concept,
the secondary concept and the attribute, and then
prompt the model to follow specific rules based
on whether the tenor and vehicle are abstract or
concrete. The detailed visual prompt is provided in
Figure 7 and Figure 8.

I.4 CoT

We show the Stage 2 and Stage 3 prompts for our
CoT prompting technique. In stage 2, we gener-
ate the scene graph for the image. In stage 3, we
prompt the model to analyse the image using a
set of questions. The detailed prompt is given in
Figure 9.

J Annotation Details

In Sections 3 and 5, we briefly referenced the hu-
man annotation processes involved in our study.
This section provides a detailed account of the
guidelines followed for each annotation task.

J.1 ImageMet Test Set

For the manual annotation of the ImageMet test
set, we provided the following guidelines to our
annotators in Round 1:
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Figure 6: Multi-shot examples presented to the models, grounded in linguistic theory (Ojha, 2013), were selected
to highlight the diverse ways in which source and target domains can manifest in visual form.

Manual Annotation Guidelines (Round 1)

Task Instruction:
“You have to caption 350 im-
ages. Each image contains a
metaphorical comparison. Your
task is to understand the intended
meaning of the visual metaphor
present in the image. Then, you
must write it in a single sentence
while capturing the essence of
the comparison."

Task restrictions:
You must stick to the following
format: A is as B as C. Some of
the instances might be difficult
to fit in the format, however you
must caption it as closely as
possible while sticking to the
format.

For round 2, we give them the following instruc-
tion:

Manual Annotation Guidelines (Round 2)

Task Instruction:
“If the Primary, Attribute, and
Secondary concepts are all

similar for both (considering
synonyms), choose whichever
you unanimously decide to be
more natural and suitable.
If you differ on even one of the
three elements, you must discuss
and reach a consensus among
yourselves as to which caption
suits the image better.

If you’re unable to reach a consen-
sus even after discussing, discard
the instance."

J.2 Synthetic Data validation
The following are the guidelines used to validate
the quality of the synthetic data.

1. Synthetic Simile Validation:

Synthetic Simile Validation Guidelines

Task Instruction:
Rate the following similes on
a scale of 1–5 based on their
coherence. Follow the following
label descriptions as a guidance:

1 = No Coherence; The sentence
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makes no sense.
2 = Poor Coherence; The simile
makes sense but is confusing or
irrelevant.
3 = Moderate Coherence; The
simile is understandable but
loosely connected.
4 = Good Coherence; The simile
is relevant but lacks creativity.
5 = Excellent Coherence; The
simile is clear, vivid, and creative.

2. Synthetic Image-Simile Pair Validation:

Synthetic Image-Simile Pair Validation
Guidelines

Task Instruction:
Rate the following image-text
pairs on a scale of 1–5 based
on their metaphorical align-
ment. Each text is a simile, and
each image is intended to be
a meaningful visual metaphor
representing the comparison
expressed in the simile. Follow
the label descriptions below as
guidance:

1 = No Alignment; The image
does not relate to the simile’s
comparison in any meaningful
way.
2 = Weak Alignment; The im-
age loosely connects to the simile
but fails to visually convey the
metaphor.
3 = Moderate Alignment; The
image somewhat reflects the
metaphor in the simile but lacks
clarity, creativity, or precision.
4 = Strong Alignment; The image
clearly represents the metaphori-
cal comparison made in the simile
with relevant visual cues.
5 = Excellent Alignment; The im-
age vividly and creatively embod-
ies the metaphor in the simile, en-
hancing its meaning through vi-
sual storytelling.

J.3 Human Evaluation
For the human baselines, we provided the same
guidelines as Round 1 of the manual annotation
phase.

For the manual evaluation process, each annotator
was given 100 instances, where each instance in-
cluded an image and 5 model-generated captions.
The following guidelines were given to the annota-
tors:

Human Evaluation Guidelines

Task Instruction:
“Label each caption with 4 binary
labels(1 or 0) for the 4 metrics
defined below."

Metric Definitions:
Fluency: Is the caption grammati-
cally correct? Does the caption
stick to the simile syntax A is as
B as C? If yes to both, mark 1.
Else 0.

Creativity: Are ‘A’ and ‘C’
similar? For example, apple and
cherry can be considered similar
since they are both fruits, but
apple and ruby are dissimilar.
If they are similar, mark 0. Else 1.

Concept Consistency: Do the
Primary, Attrbiute and Secondary
concepts appear in the caption? If
all present, mark 1. If all absent,
mark 0. If some present, the de-
cision is up to you. Mark suitably.

Semantic Consistency: Does the
caption capture the essence of the
visual metaphor? If yes, mark 1.
Else 0.

During all the annotation processes, the authors
made sure to be available to the annotators for any
doubts they had regarding the task. However, they
did not explicitly look at any of the annotated cap-
tions to avoid bias. They only clarified the task
instructions, definitions and related doubts.
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CoT Prompt Guide for Visual Elaboration from Similes

Your task is to generate a visual elaboration given a simile in ’A is as B as C’ format. The key idea in this elaboration is
to create a visual scene using C and then swap C with A since A is being compared to C.

CoT Guide - Think step-by-step:

1. The tenor (A) is the object that is being compared in the simile. What is the tenor?

2. The vehicle (C) is the object that the tenor is being compared to. What is the vehicle?

3. The attribute (B) is a property of the vehicle being used to highlight the same property (B) in the tenor. What is
the attribute?

4. Consider this definition of abstract and concrete. Abstract: Concepts that do not have a definite physical form that
can be represented visually Concrete: Concepts that have a definite physical form that can be represented visually

5. Is the tenor abstract or concrete?

6. Is the vehicle abstract or concrete?

Based on the tenor and vehicle type, determine which of the following cases applies, and follow the corresponding rules.
Only one case applies per sentence.

CASE 1: If the tenor is concrete and the vehicle is concrete: You must adhere to the following rules:
Rule-1: Create a visual elaboration with the vehicle as the focus of the scene.
Rule-2: Replace the vehicle with the tenor in the visual elaboration. You should swap exactly the vehicle with the
tenor without changing any other component of the visual elaboration. Do not mention the vehicle in this rewritten
elaboration.
Rule-3: Write the same visual elaboration concisely within 40 words.

CASE 2: If the tenor is concrete and the vehicle is abstract: You must adhere to the following rules:
Rule-1: Think of a way to visually represent the vehicle using a concrete concept.
Rule-2: Create a visual elaboration with this concrete concept as the focus of the scene.
Rule-3: Replace the concrete concept with the tenor in the visual elaboration. Also include the concrete concept in the
visual elaboration. Create a juxtaposition or fusion of the tenor and the concrete concept.
Rule-4: Write the same visual elaboration concisely within 40 words.

CASE 3: If the tenor is abstract and the vehicle is concrete: You must adhere to the following rules: Rule-1: Create a
visual elaboration with the vehicle as the focus of the scene.
Rule-2: Think of a way to visually represent the tenor using a concrete concept, a scene or some objects.
Rule-3: Introduce the tenor’s visual representation in the visual elaboration and make it the focus of the scene. Create a
juxtaposition or fusion of the vehicle and the tenor’s visual representation.
Rule-4: Write the same visual elaboration concisely within 40 words.

CASE 4: If the tenor is abstract and the vehicle is abstract: You must adhere to the following rules:
Rule-1: Think of a way to visually represent the vehicle using a concrete concept, a scene or some objects.
Rule-2: Think of a way to visually represent the tenor using a concrete concept, a scene or some objects.
Rule-3: Create a visual elaboration, making a meaningful juxtaposition or fusion of the tenor and the vehicle’s visual
representations.
Rule-4: Write the same visual elaboration concisely within 40 words.Figure 9: Systemic Knowledge used to prompt
GPT-4o for Visual Elaboration Generation from Simile samples.

Figure 7: Systemic CoT Prompt Guide used for Visual Elaboration Generation from Similes.

23155



Few Shot Examples for Visual Elaboration from Similes

Simile: The lake is as reflective as a mirror.

Output:
1. The tenor (A) is "The lake."
2. The vehicle (C) is "a mirror."
3. The attribute (B) is "reflectiveness."
4. The tenor "The lake" is concrete.
5. The vehicle "a mirror" is concrete.

Case 1 applies here.
Initial Visual Elaboration: A large, perfectly smooth mirror sits nestled among trees and under the sky, reflecting the
blue expanse and fluffy clouds above with pristine clarity.
Final Visual Elaboration: [Case 1] A large, perfectly smooth lake sits nestled among trees and under the sky, reflecting
the blue expanse and fluffy clouds above with pristine clarity.

Simile: The sword is as sharp as justice.

Output:
1. The tenor (A) is "The sword."
2. The vehicle (C) is "justice."
3. The attribute (B) is "sharpness."
4. The tenor "The sword" is concrete.
5. The vehicle "justice" is abstract.

Case 2 applies here.
Initial Visual Elaboration: A set of scales, perfectly balanced, stands in the centre of a grand hall, its golden surface
catching the light.
Final Visual Elaboration: [Case 2] A gleaming sword stands upright in the centre of a grand hall, blending into the
scales of justice as part of its hilt.

Simile: Time is as valuable as money.

Output:
1. The tenor (A) is "time."
2. The vehicle (C) is "money."
3. The attribute (B) is "value."
4. The tenor "time" is abstract.
5. The vehicle "money" is concrete.

Case 3 applies here.
Initial Visual Elaboration: A pile of gold coins, gleaming under soft light, symbolizing wealth.
Final Visual Elaboration: [Case 3] An hourglass with shimmering golden sand flows like coins, blending time’s passage
with money’s value, as grains slip elegantly from the top to the bottom, embodying their shared significance.

Simile: Hope is as fragile as a dream.
Output:
1. The tenor (A) is "hope."
2. The vehicle (C) is "a dream."
3. The attribute (B) is "fragility."
4. The tenor "hope" is abstract.
5. The vehicle "a dream" is abstract.

Case 4 applies here.
Initial Visual Elaboration: A dream bubble showing a fantastic landscape.
Final Visual Elaboration: [Case 4] A flickering candle illuminates a bubble-filled floating landscape, symbolizing hope’s
delicate nature, interwoven with ethereal dreams.

Figure 8: Few-shot examples provided to GPT-4o for Visual Elaboration Generation from Simile samples.
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Scene Graph Generation (Stage 2) and Metaphor Analysis (Stage 3) Prompts for our Novel
CoT Approach

Stage 2: Scene Graph Generation Prompt

For the provided image, generate a scene graph in JSON format that includes the following:

Objects that are prominently visible in the image.
Object attributes that are relevant to its description.
Object relationships between the visible objects.
Object textures for each visible object.

Scene Graph:

Stage 3: Visual Metaphor Analysis Prompt using CoT step-by-step thinking

Chain-of-Thought Guide - Think step-by-step:

Step 1: Image and Task Context
You are given an image that may contain a visual metaphor. You are also given a scene graph of that image. Your task is
to analyze the image in a structured manner to progressively uncover its metaphorical meaning.

Step 2: Objective Understanding (Basic Image Comprehension)
First, extract factual information about the image.
a. Identify all objects present in the image. List them clearly.
b. Describe the attributes (e.g., color, size, texture) of the objects.
c. Explain the spatial arrangement of the objects.
d. Identify any interactions between the objects. If applicable, describe them.
e. Determine if any humans or animals are present. If yes, describe their actions.
f. Extract any visible text from the image and transcribe it.

Step 3: Visual Metaphor Building Block Understanding (Contextual Interpretation)
A visual metaphor contains a source domain and a target domain. The target domain is usually present in the picture.
The source domain may or may not be visually present. But it will always be visually represented.
The source domain lends one of its qualities to the target domain.
The source domain is often something general that people are familiar with and is used to highlight the quality of the
target domain which is more specialised.
If the source domain is visually present, it may be juxtaposed along with the target. It may also be fused with the target.
If the source domain is visually not present but represented through its perceptual features, it may be through colour,
texture, shape etc. that is commonly and generally associated to the source.
Based on this theoretical understanding of visual metaphors, answer the following questions:

a. What could be the source? Just write the source. Do not write what it represents.
b. What could be the target? Just write the target. Do not write what it represents.
c. What is the quality, attribute or property that the source is lending to the target?

Step 4: Final Output Format
Your final response should be structured as follows:
Objective Description: (List answers to questions 2a - 2f)
Visual Metaphor Building Block Analysis: (List answers to questions 3a - 3c)

Figure 9: Prompt for our Task-Specific CoT Prompting Technique
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Example

Qwen2: Coffee beans are as potent as a syringe in delivering a powerful caffeine boost.

Qwen2 IM: The coffee is as potent as a drug.

GPT4o: The coffee injection is as energizing as a jolt of electricity.

GPT4o MS + CoT: Coffee is as energizing as a medicine injection.

Human: Coffee is as energizing as medicine.

Ground Truth: Caffeine is as addictive as drugs.

Figure 10: Illustrative example of outputs from Qwen2, Qwen2 IM, GPT-4o, GPT-4o MS+CoT, and a human
baseline on a visual metaphor input. The ground-truth caption is provided for reference, highlighting differences in
how models align the source and target domains of the metaphor.
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