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Abstract

Understanding human social behavior such as
recognizing emotions and the social dynamics
causing them is an important and challenging
problem. While LLMs have made remarkable
advances, they are limited to the textual do-
main and cannot account for the major role that
non-verbal cues play in understanding social
situations. Vision Language Models (VLMs)
can potentially account for this gap, however
their ability to make correct inferences over
such social cues has received little attention.
In this paper, we explore the capabilities of
VLMs at social reasoning. We identify a pre-
viously overlooked limitation in VLMs: the
Visual Social-Pragmatic Inference gap. To tar-
get this gap, we propose a new task for VLMs:
Visual Social-Pragmatic Inference. We con-
struct a high quality dataset to test the abilities
of a VLM for this task and benchmark the per-
formance of several VLMs on it.

1 Introduction

“It is only with the heart that one can see rightly;
what is essential is invisible to the eye.”

— de Saint-Exupéry, The Little Prince

Understanding social dynamics—such as recog-
nizing emotions and their cause—is something hu-
mans do intuitively (Spunt and Adolphs, 2019), yet
how we do it remains a challenging question. Even
emotion perception, an intuitive ability for most
people, poses several levels of complexity (Abbas
et al., 2024) arising from a variety of factors such as
context, cultural variability and channels of percep-
tion (language, vision, etc.). Influential psychology
and cognitive neuroscience studies (Ekman and
Friesen, 1978; de Gelder, 2006) have shown that
significant proportions of socially relevant infor-
mation is contained in non-verbal cues like facial
expression and body language. In certain situa-
tions (Mehrabian and Wiener, 1967; Mehrabian,
1972), only 7% of meaning is conveyed through

Figure 1: In the video, the man smiles sadly, teary eyed. His
partner looks at him with sympathy and pats his leg com-
fortingly. The VLM (InternVL2 26B) correctly identifies the
smile, and the woman next to the man, but is not able to inter-
pret the smile correctly.

words, with 38% coming from tone of voice and
55% through facial expressions! Even within the
visual modality alone, emotion recognition is not
simply a matter of identifying facial expressions
(Barrett and Kensinger, 2010), as the same facial ex-
pression can convey different emotions depending
on body posture (Aviezer et al., 2012). E.g., even
an iconic emotion indicator like a smile, may not al-
ways indicate joy (Fernández-Dols and Ruiz-Belda,
1995). Despite the intuitive ease with which most
people perceive emotions, research has shown that
this ability relies on complex mechanisms spanning
cognition, perception and understanding.

In recent years there has been increasing inter-
est in AI systems that can achieve human levels
of social intelligence. LLMs in particular have
shown remarkable promise in such tasks, though
they struggle when presented with complex scenar-
ios (Li et al., 2024; Liu et al., 2024d; Mou et al.,
2024; Wu et al., 2025) and are limited to the textual
domain. The recent emergence of VLMs (Singh
et al., 2022; Bai et al., 2023; Bordes et al., 2024;
Zhang et al., 2024a) provides an exciting opportu-
nity to study social scenes by connecting textual
and visual information and leveraging the strong
reasoning capabilities of LLMs. However, while
some works have explored the efficacy of using
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VLMs for social intelligence tasks (Yang et al.,
2024; Sun et al., 2024; Bhattacharyya and Wang,
2025; Liu et al., 2025a), this area still remains rela-
tively underexplored.

In this paper, we conduct a thorough investiga-
tion of VLMs’ ability to perform social reason-
ing tasks. We focus on emotion-related inferences
drawn from videos that depict a scene’s social dy-
namics. Our goal is to test whether VLMs can

“read the room”, i.e., assess the alignment between
their inferences and human-level understanding of
the scene. Our assessment is done at two levels
of analysis. First, in terms of the visual cues the
model identifies as relevant for understanding the
social situation, and second in terms of the prag-
matic inferences made on top of these cues. Most
works have focused on the correctness of the first
step, i.e., testing whether models incorrectly hallu-
cinate a visual pattern (Li et al., 2023a; Yin et al.,
2023; Liu et al., 2024a; Favero et al., 2024; Rawte
et al., 2025). In contrast, we focus on the second
and as a result expose a previously overlooked lim-
itation in VLMs: even when the VLM correctly
identifies a relevant visual cue, it struggles to in-
terpret it correctly. We refer to this as the Visual
Social-Pragmatic (VSP) Inference gap. To fur-
ther elucidate what we mean by this, we use Fig-
ure 1 (a frame representing a short video clip) as
an example: while a man is clearly smiling, it does
not indicate joy, as evident by his slumped posture
and teary eyes. Furthermore, the second person
in the scene (a pregnant woman in hospital gown)
looks at him in sympathy and comforts him. The
smile should be interpreted as sad or bittersweet.
However, while the VLM correctly identifies the
smile, it misinterprets it as evidence for joy.

Our diagnostic process proceeds in three steps.
First we conduct a diagnostic analysis over the
emotion recognition task in conversational videos
(see Sec. 4) by evaluating the contribution of the
visual modality. While offering limited (often neg-
ative) contribution when fusing the modalities di-
rectly, we note an interesting finding - when visual
cues derived from the VLM augment the conver-
sational transcript, they can lead to improved per-
formance. This improvement is not guaranteed and
careful tuning is needed, indicating that these cues
or inferences made over them are noisy. Second,
through human evaluation we separate between
noisy cues (i.e., hallucinated) vs. misinterpreted
cues (see Sec. 5.3). We curate a dataset, VIBE
(VSP Inference of Behavior and Emotion), con-

sisting of 994 unique instances of the VSP Infer-
ence task. We benchmark several VLMs on our
dataset, and we compare model performances to
human performance on the dataset, revealing that
humans outperform the best VLM by 17.2% in
accuracy. This indicates that VSP Inference–and
not only hallucination–is an important limitation
that VLMs struggle with. We perform analyses to
elucidate exactly which kinds of social visual cues
are hallucinated, misinterpreted, or uninformative.
Specifically, we see that the most common failure
mode on a downstream emotion recognition task
is misinterpretation, particularly among subtle fa-
cial movements like gaze and eye behavior and
furrowed brows (Sec. 5.3). Our contributions are:

1. Expose the VSP inference gap in VLMs. Pro-
pose a task and dataset that isolates the gap
and provides a tool for measuring it.1

2. Analyze how the effects of this gap influence
performance on a downstream social science
task (emotion recognition).

This paper has two main components, presented
in Section 4 and Section 5.

1. Section 4 (Diagnostic Emotion Prediction
Task): This section builds an understanding of
current VLM capabilities on tasks that require
social common sense and cognitive reasoning
and serves as motivation for why this is an
important problem. Section 3.2 gives a high
level definition and motivation for this task.

2. Section 5 (Novel VSPI Task): This section de-
scribes in detail the construction of the dataset
VIBE, and the subsequent results of evaluat-
ing several models on it. Section 3.3 provides
a high level introduction of the dataset VIBE
and the novel VSPI task.

2 Related Work

Multi-modality in Social Science Tasks: Many
methods have been proposed for multi-modal emo-
tion prediction that involve parametric training
(Zheng et al., 2023; Yun et al., 2024; Yang et al.,
2023a; Huang et al., 2025). Several other ap-
proaches combine LLMs with vision models for
multi-modal social understanding, e.g. Zhang et al.
(2024b); You et al. (2025); Lei et al. (2024) propose
prompting strategies to work around the limited rea-
soning of VLMs. Other works use the reasoning

1We will release the dataset under MIT license.
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powers of an LLM in conjunction with vision tools
(Hyun et al., 2024; Kelly et al., 2024; Etesam et al.,
2024). Additionally, some datasets have been pro-
posed for exploring models’ capabilities in theory
of mind and in emotion interpretation (Lin et al.,
2025; Chen et al., 2024). The key difference in
our work comes from (1) the use of videos for the
temporal dimension and (2) the explicit separation
that our dataset makes between the problem of hal-
lucination and VSP inference.
Hallucinations in VLMs: VLMs are known to suf-
fer from hallucinations (Liu et al., 2024b). Many
methods attempt to measure and mitigate halluci-
nations, either by breaking down outputs (Li et al.,
2023a; Yin et al., 2023; Petryk et al., 2024), training
(Ben-Kish et al., 2024; Xie et al., 2024), or decod-
ing algorithms (Manevich and Tsarfaty, 2024). Vi-
sual hallucinations fundamentally differ from VSP
in that a description or explanation may be factu-
ally correct in isolation (identifying a smile), but
provide the wrong pragmatic interpretation, and
therefore, incorrect meaning (not realizing it is a
sad smile).
Pragmatics: Pragmatics is the study of how con-
text contributes to meaning (Morris, 1938), and has
a rich history in linguistics. Recently, works have
sought to understand and improve the pragmatics
in LLMs via grounding of various forms (Sravanthi
et al., 2024; Fried et al., 2023; Mohapatra et al.,
2024; White et al., 2024). In the visual domain,
VLMs have also been provided with context com-
ing from outside sources, (Luo et al., 2024; Li et al.,
2023b; Willemsen et al., 2023), while other works
address generating contrastive captions using prag-
matic inferences (Ou et al., 2023; Tsvilodub and
Franke, 2023). However, in the visual domain, the
study of pragmatics in social contexts remains un-
derexplored.
Multimodal Datasets: There have been excel-
lent datasets that tackle similar problems of social
reasoning in multimodal settings. VCR (Zellers
et al., 2019) is one such popular image based
common-sense dataset. A closely related class of
such datasets are image based emotion prediction
datasets such as Kosti et al. (2019) and Yang et al.
(2023b). VIBE differs from these in 2 main re-
spects: (1) in contrast to images, videos add a layer
of complexity due to longer context, subtle tem-
poral effects changing the meaning and (2) VIBE
tackles a deeper problem than these tasks by specif-
ically testing the abilities of models to interpret a
visual artifact.

3 Task Definitions

In this section we briefly define the two tasks
that the paper addresses: The diagnostic task of
Emotion Prediction (in multi-party conversation
videos) and the novel proposed task of Visual
Social-Pragmatic Inference (VSP Inference). We
also define vocabulary used in the paper.

3.1 Vocabulary

We define with examples the terms and vocabulary
used in this paper.

Video Description: The text description of a
video, output by a VLM.

Visual Cue: The text representation of a directly
observable artifact in a video. E.g. a smile, wave,
laughter, etc. Anti-example: happiness (requires
inference over what is seen).

VSP Inference: The interpretation of a Visual
Cue. Examples:

1. Smile indicating joy: If everything else about
the person aligns with happiness then the VSP
inference of joy is correct. (visual cue: smile,
VSP inference: joy).

2. Smile indicating sadness: If the person is
smiling but also has tears in their eyes and
a down-turned mouth, then the VSP inference
is that it is a sad smile. (visual cue: smile,
VSP inference: sadness).

Levels of VSP Inference: Via prompting, we can
‘toggle’ how much VSP inference a VLM is al-
lowed to insert into its descriptions. We assign a
"Level" (1, 3 or 5)2 as:

1. Level 1: Only Visual Cues. Eg., The woman
had raised eyebrows and pursed lips.

2. Level 3: Visual Cues with some inference.
Eg., The woman raised her eyebrows in disap-
proval and pursed her lips angrily.

3. Level 5: Complete inferences. Eg., The
woman was furious, with angry eyes and
pursed mouth.

3.2 Diagnostic Emotion Prediction Task
Overview

The input for this task is the text-transcript of a
conversation between multiple people and a video
clip for the target utterance. The task is to predict
the emotion of the speaker of the target utterance.

2We do not list (or use in the paper) Levels 2 and 4. They
would fall somewhere between their nearest neighbors.
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Figure 2: Emotion Prediction Experiment Set-ups. Legend on the bottom, preprocessing on the left.

Several works such as (Aviezer et al., 2012) and
(Barrett and Kensinger, 2010) show that emotion
recognition is not as simple as identifying facial
expressions, but rather highly dependent on con-
text. (Aviezer et al., 2011) showed that the same
facial expression is interpreted differently by peo-
ple when there are changes in body posture. Based
on these works, in order for a VLM to do well at
emotion prediction, it would need to be good at
identifying relevant Visual Cues in the video, but
just as importantly, would need to excel at making
the right VSP Inference about the Visual Cues.

To the best of our knowledge, the capabilities of
VLMs in this domain remain underexplored, and
there are no datasets that isolate VSP Inference
as a standalone task. For this reason, we chose
emotion prediction as a starting point. This task
served as a diagnostic tool for us to first determine
the capabilities of VLMs in social intelligence.

If a VLM struggles with the emotion prediction
task, it could be due to hallucinations, or due to
VSP inference mistakes (seeing the cues but mis-
interpreting them). The goal of the following pro-
posed task was to investigate whether the VLM
struggles with one or both types of mistakes. Our
intent here was not to train the best multi-modal
emotion predictor, but rather to gauge the social
intelligence of a VLM.

3.3 Novel Visual Social-Pragmatic Inference
Task Overview

Visual Social-Pragmatic Inference is a new task
that we propose in this paper. The input to the task
is a video, a Visual Cue and two different VSP
Inferences about the Visual Cue. The task is to
pick the correct inference, based on visual context
present in the video.

E.g., in Figure 1, the man is smiling. But in the
video, he has tears in his eyes, and a slouched down-
cast body posture. His partner looks at him and

rubs his hand sympathetically. Given the context,
the correct interpretation is that the man is smiling
sadly, reminiscing about something bittersweet.

With extensive human annotation, we con-
structed VIBE: a dataset of challenging VSP In-
ferences. VIBE was carefully curated to isolate the
VSP Inference task. The Visual Cue that the VLM
is required to interpret is guaranteed to be in the
video, which mitigates hallucinations. Addition-
ally, unlike other video datasets, the questions in
VIBE are guaranteed to be answerable since we
only have videos where the speaker is clearly visi-
ble, and the context required to interpret a Visual
Cue is contained locally in the video.

Using VIBE, we conducted an analysis of several
VLMs and were able to get a better understanding
of VLMs abilities at VSP.

4 Diagnostic Task: Emotion Prediction

The conversations and video clips we used were
sourced from the MC-EIU dataset (Liu et al.,
2024c) which consists of text transcripts of con-
versations and video clips of the utterances. Since
our focus was videos that require VSP Inferences,
we used only the videos explicitly labeled with a
non neutral emotion. Additionally, it is known that
VLMs struggle with long context videos (Qu et al.,
2025), so we only used videos that were under 4
seconds. The final dataset included 3,536 Chinese
video clips (from three different shows) and 5,589
English clips (from two shows). This formed a
robust, diverse set of over 9000 videos spanning
multiple languages, cultures, and genres.

As illustrated in Figure 2, we had two main diag-
nostic experimental settings: (1) The VLM acts in-
dependently to do the task, and (2) The VLM acts
as a perception agent only, and a stronger LLM
(GPT-4o-mini) reasons over the visual information.
For both settings, we compare performance with
the very strong baseline of an LLM (GPT-4o-mini)
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operating over the text transcript. The motivation
behind having the two settings was to probe two
different capabilities of the VLM. In setting (1)
the goal was to test the VLM’s ability to directly
identify the emotion of the speaker. It was not ob-
vious how the VLM would perform compared to
the stronger LLM; while the LLM has stronger
reasoning capabilities, the VLM is aided by rich
visual data in addition to the text. In contrast, it was
reasonable to expect a boost in performance when
the VLM had both modalities, compared to either
one alone. In setting (2) the goal was to test the
ability of the VLM to identify, accurately interpret
and communicate what it saw to the LLM (GPT-4o-
mini). In this setting, it was reasonable to expect
that the additional visual information would boost
the performance of the LLM compared to the text
only baseline. For both settings, to give the VLMs
the best chance, we sampled the maximum possi-
ble frames that our compute resources allowed (30
frames). This decision was based on prior research
that showed that performance generally increases
as more frames are sampled (Hu et al., 2025; Liu
et al., 2025b).

4.1 VLM Independent Setting

We benchmarked the performance of 4 VLMs of
sizes varying from 3B to 26B, from 2 different fam-
ilies of models: InternVL2 and Qwen (Chen et al.,
2025; Qwen et al., 2025). We chose the models
based on their performance on vision benchmarks,
support for video and the computational cost of
running them. As illustrated in Figure 2, we set up
the emotion prediction task for each model under
3 different settings: (1) Vision only, (2) Text Only,
and (3) Text + Vision. We set the number of frames
to be the maximum allowed frames for the smallest-
context model (the InternVL2 models), which is 30
frames, and uniformly sampled this many frames
for all models to ensure fairness. The 30-frame,
4-second limitations guaranteed at least 7 frames
per second, but in most cases was more than 15.

Diagnostic Results: As seen in Table 1, the best
performing model was InternVL2 26B with text
only, having also very strong performance under
the other two settings. Based on these results, we
decided to use InternVL2 26B for further experi-
ments. The key take-away here was, contrary to
expectations, in general combining the modalities
did not perform significantly better, even though
each modality had strong individual performance.

Model Vision Text Text + Vision

GPT-4o-mini3 – 0.538 –

Qwen 3B 0.387 0.446 0.456
Qwen 7B 0.373 0.449 0.476
InternVL-8B 0.466 0.488 0.422
InternVL-26B 0.457 0.493 0.468
CogVLM2-Video 0.47 – 0.387

Table 1: Weighted F1 for VLM Independent Experiments.

4.2 VLM-LLM Agent Setting

In this second diagnostic experiment, we used the
VLM as a perception agent. We prompted the VLM
to describe the speaker’s facial expression and body
language at 3 Levels of VSP Inference (see defini-
tions) to get Video Descriptions and fed them into
the LLM for classification. For some examples of
the 3 Levels of VSP Inference, and an experiment
confirming the toggling of levels see App. A.1. In
this experiment, we implemented the same three
settings as in the previous experiment: V, T, and T
+ V (Figure 2).

Results: This experiment’s results are shown in
Figure 3. The takeaways were: (1) There are strong
signals in the vision which the VLM was able to
communicate, (2) yet combining the modalities
did not lead to significant improvement. Both the
visual and textual modalities exhibited strong indi-
vidual performance, but naively combining them
did not yield a clear performance gain—when the
VLM operated independently and also when paired
with an LLM. Works like (Zheng et al., 2023) sug-
gest that directly incorporating vision is difficult
because of the noise in the visual domain. To bet-
ter understand the results, we broke them down by
emotion. As shown in Figure 8 (App. A), the rel-
ative performance of each modality varies across
emotions. We discuss the implications of these
results in the next subsection.

4.3 Emotion Prediction Discussion and
Implications

From the experiments in sections 4.1 and 4.2, we
saw that while VLMs show reasonable strong per-
formance over the visual domain, there was not
a clear improvement over the text based perfor-
mance (Table 1 and Figure 3). This could imply
two things: (1) That there is no visual information
that would help improve over the text and/or (2)
current VLMs do not have the ability to extract and
communicate the necessary information accurately.
We designed a simple yet effective algorithm to fur-

3Strong closed model (skyline), to contextualize results.
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Figure 3: Weighted F1-Score for the VLM-LLM Agent experi-
mental setting. The x-axis represents the various types of input
to the LLM. Here Text is the text transcript of the conversation,
and Visual means the visual cues generated from the VLM
when given the conversation video. The Levels correspond to
the various VSP levels of the visual cues (see definitions).

ther analyze this: the Weighted Voting Algorithm.
The success of the algorithm depended on two key
conditions being true: (1) There is complementary
information in the Video Descriptions that cannot
be recovered from the text transcripts, and (2) The
VLM’s performance has a consistent pattern: it
struggles with certain emotions and does better at
others, even with small sample sizes. We first de-
scribe and present results of the algorithm, then
discuss its implications:

Weighted Voting Algorithm: As shown in Fig-
ure 3, we had seven sources for emotion prediction:
text-only (T), visual-descriptions at three pragmatic
levels (V1, V3, V5), and combined modalities with
the visual description at 3 pragmatic levels (TV1,
TV3, TV5). We exclude Level 1 (due to subpar per-
formance) from the weighted voting algorithm, and
refer to the remaining 5 sources as Agents. Each
agent casts an equal vote, which is accepted if there
is a clear majority. If no majority is reached, then
the votes are weighted as follows:

For each of the five agents, we constructed a sim-
ple trust model by estimating their per-emotion pre-
cision on a small subset of the data, referred to as
the Calibration Set. Each agent casts a vote for an
emotion, and the influence of their vote is weighted
according to the corresponding trust score.
Formally, let the agents be:

A = {AT , AV 3, AV 5, ATV 3, ATV 5} (1)

Let the emotion space be:

E = {all candidate emotion labels} (2)

Using the calibration set, we compute the precision
for each agent a ∈ A and emotion e ∈ E and use

it to create a Trust function:

T : A× E → [0, 1] (3)

Each agent a ∈ A votes for an emotion ea ∈ E.
Their vote is weighted by the trust function T. Thus
for each e ∈ E we compute a score, S(e):

S(e) =
∑

a∈A
1(ea = e)T (a, e) (4)

Finally the predicted emotion ê is computed:

ê = argmax
e∈E

S(e) (5)

Overall Performance and Takeaways: Results
are in Table 2. For both languages for both
calibration settings we showed that our simple
algorithm led to much better performance than any
of the baselines. This validates our assumptions:
(1) There is complementary information in video
descriptions not recoverable from the text, and (2)
The VLM struggles (and succeeds) in a consistent
manner across emotions. From these results, we
can answer the following questions:

• Is there complementary information in the
videos beyond text? → Yes

• Can a VLM extract and communicate this in-
formation? → Yes (sometimes)

• Do VLM successes and failures follow sys-
tematic patterns? → Yes

• Can these patterns be leveraged to do social
and cognitive reasoning tasks better? → Yes

Clearly, vision can play an important role in
understanding social scenarios, and VLMs are able
to (sometimes) give us valuable information that
is not recoverable from the text. This encouraging
result motivates us to further study exactly what
kinds of things does a VLM struggle with? In
the next section we show that hallucinations (well
known in the literature) are not the only limitation:
VLMs also struggle with VSPI. That is, even when
they correctly identify visual elements, there are
cases when they cannot interpret the correct VSP
meaning of what they identified.

Within
lang en

Within
lang zh

Cal. zh
test en

Cal. en
test zh

Vision 0.481 0.526 0.481 0.526
Text 0.498 0.568 0.501 0.567
Vis+Text 0.509 0.543 0.509 0.538
Voting 0.523 0.592 0.530 0.609

Table 2: Weighted Voting Algorithm at calibration size 50.
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Figure 4: Main steps of the VIBE dataset curation pipeline.

5 Proposed Task: Visual
Social-Pragmatic Inference

The VSP Inference task is a new task we propose in
this paper. Given a Visual Cue and a video, the task
is to correctly interpret the pragmatic meaning of
the cue. In the following sections we describe the
process of creating the dataset and formalize the
inputs and outputs. We benchmark select VLMs
on the dataset and present the results and analysis.

5.1 VIBE Dataset Creation

This section details the process of curating the
dataset we name VIBE (VSP Inference Based on
Evidence). Our vision for VIBE was a dataset of
rich video clips that contain Visual Cues which can
be interpreted in more than one way. At a high
level, the first step we took was to carefully filter
for videos that were likely to contain such informa-
tion. Once we had a pool of candidate videos, we
began the process of curating the dataset. The main
steps are shown in Figure 4, and detailed below.

Video Selection: To ensure the dataset consisted
of videos rich in challenging Visual Cues, we used
performance on the emotion prediction task as a
heuristic for video selection. We note that the emo-
tion prediction task was originally designed for a
multi-modal setting. Whereas for our dataset, we
wanted to isolate videos that were informative and
interpretable based on visual information alone, as
is required by the VSP Inference task. To that end,
we applied a three-stage filtering process to identify
promising videos. Specifically, we selected videos
where the emotion was misclassified for three dif-
ferent settings: (1) VLM given only the video, (2)
LLM provided with Level 3 visual information,
and (3) LLM provided with Level 5 visual cues.
Furthermore, since some emotion pairs naturally
co-occur very frequently (e.g., joy and surprise),
we only retained videos where the predicted and
gold emotions are highly unlikely to co-exist, such

as joy and anger. The list of excluded and retained
emotion pairs is provided in App. E.

Video Description Generation: For each video,
in our candidate pool of videos, we extracted Video
Descriptions that would be pertinent to the dataset.
We generated these descriptions to be at Level 3 and
Level 5 of VSP Inference and made sure there was
a focus on facial expressions and body language.
The prompts can be found in App. D.

Visual Cue and Inference Extraction: We im-
plemented few-shot prompting to GPT-4o to break
down the descriptions into candidate4 Visual Cues
and VSP Inferences.

Human Annotation: A human was shown the
video clip and asked to predict the main speaker’s
emotion. The annotator could pick up to 3 Ekman
emotions. Next, they verified the presence (or ab-
sence) of the candidate Visual Cues in the video. If
the Visual Cue was confirmed to be present in the
video, they rated the correctness of the Pragmatic
Visual Inference drawn from the Visual Cue.

For every Visual Cue-VSP Inference pair, we
had 2-4 humans do the annotation. We chose anno-
tators from a variety of backgrounds and included
both native English speakers and native Chinese
speakers. All annotators had at least a Bachelor’s
degree and were proficient in English. The anno-
tation involved a total of about 25 hours of high
quality human annotation time. Even though this
was an inherently subjective task, we saw an agree-
ment of 74.5% for visual cues (random being 50%),
and 52.8% for VSP inferences (random being 33%).
To ensure the high quality of VIBE, the dataset only
includes Visual Cue-VSP Inference pairs for which
at least 2 annotators had perfect agreement on both
Visual Cue and VSP inference.

Fix and Falsify: Post human annotation, we
were left with a set of verified Visual Cues, VSP
Inferences that were confirmed to be correct or

4"candidate" since Visual Cues are unverified at this stage.
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incorrect, and a pool of emotions for the speaker la-
beled by annotators. For each video, we computed
a "max scoring emotion", which was the emotion
that was labeled the most times by annotators (ties
broken arbitrarily). We envisioned VIBE as a mul-
tiple choice dataset, so as the final step, we needed
to come up with correct and incorrect counter-parts
for all the inferences we had. We used an LLM
(GPT-4o-mini) and the human labeled emotions to
do this final step of "fixing" and "falsifying" the
inferences.
Creating Correct Inference Choices: For all the in-
ferences that were confirmed incorrect by annota-
tors, we came up with the correct inference using
the following methods:

1. When the max scoring emotion from annota-
tors agreed with the gold label for the video,
we used this emotion to correct the wrong in-
ference. We call these human fixed inferences.

2. When the agreement was not there, we simply
negated the incorrect inference. We call these
fixed by negation inferences.

Creating Incorrect Inference Choices: For all the
inferences that were confirmed correct by anno-
tators, we came up with the incorrect inference
using the following methods:

1. When the max scoring emotion from annota-
tors agreed with the gold label for the video,
we used this emotion to come up with a mu-
tually exclusive emotion (App. E). We then
used this emotion to falsify the inference. We
call these distractor inferences.

2. When an agreement could not be reached, we
employed two methods: We either used the
emotion that no annotator voted for to falsify
the inference (these are also distractor infer-
ences) or we simply negated the correct infer-
ence, which we call false negation inferences.

Final Dataset Composition: In the final dataset we
had 50% negation style choices (which could be
correct or incorrect), and 50% distractor style
choices (which could also be correct or incorrect).
The diverse methods were carefully designed to
safeguard the dataset against being hacked by al-
ways choosing negations or distractors or even by
discerning between VLM and LLM generated text.

Final Dataset: The final dataset contains 433
unique video clips and 994 unique instances of the
VSP Inference task. An instance of the task is:
Given a video, a Visual Cue, and two candidate
VSP Inferences, output the correct inference.

5.2 VSP Inference Experiments

We benchmarked all VLMs used in the emotion
prediction task on our VIBE dataset to illustrate its
difficulty. We additionally include the expensive
OpenAI GPT-4o mini model as a reference to large,
closed VLMs. All models are prompted using CoT,
though we include results for standard prompting
in App. B. Finally, we had two humans do the
VIBE dataset on 100 instances each as comparison.
The results can be seen in Table 3. These results
demonstrate that (1) VLMs struggle with VSPI
(which comes intuitively to humans), and (2) The
question types in VIBE that VLMs struggle with
most (fixed and NT) are consistently hard for all
the models we evaluated (but not for humans!).
This result underscores the importance of targeting
VSPI for VLMs in order to make them socially and
emotionally intelligent. In section 5.3 we dive into
a deeper analysis of the kinds of mistakes made on
VIBE and connect the results back to the emotion
prediction task from Section 4

Model Fixed Distractor NF NT All

IVL2-26B5 29.5 74.5 78.8 18.1 63.4
IVL2-8B 13.1 93.5 97.3 5.5 73.8
IVL2-4B 20.5 86.6 87.7 29.1 71.5

Q2.5-3B 25.4 90.3 93.8 22.8 75.1
Q2.5-7B 26.2 93.3 87.7 26.8 74.4

4o-mini 31.1 90.1 94.6 17.3 75.3

CogVLM
2-Video 25.4 78.0 95.4 12.6 69.7

Humans 88.9 94.7 95.2 81.8 92.5
Table 3: Accuracy on VIBE by model and question type (CoT).
NF and NT are negation false and negation true respectively.

5.3 VSP Inference Analysis

In this section, we use the VIBE dataset to quantita-
tively analyze the VLM’s ability to describe a scene
(i.e. read the room). We do this by investigating
the impacts of its visual cues on the downstream
emotion prediction task. We aim to answer two
questions: (1) “Which kinds of visual cues help
reach the correct emotion label?” and (2) “When a
mistake is made, is it due to hallucination, misinter-
pretation, or something else (like an uninformative
visual cue, necessary textual context, etc.)?”.

From our annotations, using only annotator-
agreed labels, we had over 1.2 K visual cues.
Among these, 27.3% were labeled as hallucina-
tions. In the remaining, non-hallucinated visual

5Evaluation on this model is not wholly fair as the dataset
was partially created from its mistakes.
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cues, 27.5% were labeled as being misinterpreted.
In order to better understand the distribution, we

came up with 12 clusters of visual cues (e.g. “Em-
phatic gestures”, “Smile/Laughter”, etc.), created
keyword representations of them, and used cosine
similarity over SBERT embeddings to retrieve the
top 200 visual cues for each. Since all visual cues in
the dataset were there because they led to an incor-
rect emotion prediction, we aimed to explain that
error using the human annotations. Specifically,
we calculated the hallucination and misinterpreta-
tion rate within each cluster. If the visual cue was
neither hallucinated nor misinterpreted, then it was
correct, but for other reasons led to an incorrect
emotion prediction (e.g. being uninformative, tex-
tual context being necessary, etc.). Figure 5 shows
the composition of the kinds of errors among the
different visual cue clusters.

We see that the “Smile/Laughter” cluster has
both a high misinterpretation and hallucination rate,
meaning that the VLM often mistakes non-smiles
for smiles, and even when it identifies a real smile,
it often cannot interpret its meaning (e.g. a sad
smile). Likewise, we see that the cluster “Leaning
& Body Orientation” visual cues (e.g. “leaning for-
ward”, “upright posture”, “laying down”) are less
commonly hallucinated, but often misinterpreted.

In order to further investigate how these errors
led to misclassification, we mapped the clusters
onto the full, un-annotated space of visual cues
used for the emotion prediction task. To do this,
we used the same cluster keywords and the same
cosine similarity search mechanism to retrieve the
top 500 visual cues for each cluster. We then com-
puted the precision and recall for each emotion, for
each cluster. The result for ‘Joy’ can be seen in
Figure 6 (other emotions in App. C). We plot 1−P
and 1−R on the y-axis to emphasize bigger errors
and visualize their compositions.

We see that for ‘Joy’, recall failures substan-
tially exceed precision failures across every cluster,
indicating that the VLM more often misses true
visual cues than it hallucinates spurious ones. Par-
ticularly, subtle facial movements such as “Brow
Furrows” and “Gaze & Eye Behavior” exhibit the
highest total failure rates, with nearly all true in-
stances going undetected (very low recall). In sharp
contrast, the ‘Smile/Laughter” cluster is almost per-
fectly handled (both precision and recall failures
< 0.1), showing the model’s strength on overt ex-
pressions like smiles. Across the board, misinter-
pretation comprises the largest slice of the error

Figure 5: Distribution of error type by type of visual cue.

budget, followed by hallucination, while other er-
ror types remain minimal. These results suggest
that, to improve emotion-prediction accuracy, fu-
ture work should focus on bolstering the model’s
sensitivity to subtle nonverbal signals and reducing
its tendency to misinterpret correctly detected cues.

Figure 6: Error analysis for ‘Joy’. Bigger bars = bigger errors.

6 Conclusion

We introduced the VSP Inference task, expos-
ing a previously overlooked limitation in VLMs.
Through diagnostic analyses, human annotation
and the VIBE dataset, we showed that current
VLMs struggle with VSP Inference. Our results
underscore the need for improved social reason-
ing in VLMs and provide a benchmark for future
research.

7 Limitations and Future Work

Variety in Vision models chosen: In this paper
we limited our analyses to 3 families of VLMs up
to size 26B. The VIBE dataset was tested on 7 mod-
els of varying families and sizes. More extensive
analysis including more models and architectures
could lead to more insights.
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Bias Due to Video Description Source: The
Visual Cues in our dataset were selected from fail-
ure cases of InternVL2 26B, which may have in-
herent biases. Anything the model did not identify
as relevant would be missed in the dataset. The
dataset would benefit from having more models in
the video description generation process.

Inherent subjectivity in human annotation:
While we saw high inter-annotator agreement, the
annotation task was inherently subjective. Cultural
and personal biases may have some impact on the
dataset, even if it only meant that we were not able
to include some hard cases because of disagreement
within annotators.

Future Work The limitations mentioned above
give rise to some natural directions for future work.
It would be worthwhile to study more models on
this family of tasks, with an emphasis on architec-
ture and training data to see if there are significant
performance differences. Additionally, given the
subjective nature of the task, a promising exten-
sion of this paper would be to model variations
in human judgments as uncertainty estimation of
the models. Finally, this paper is a first step into
investigating the alignment of multi-modal mod-
els and human perceptions of social scenarios; We
believe that further investigations and subsequent
improvements to these models will lead to socially
competent AI systems.

8 Ethics Statement

This paper addresses social reasoning capabilities
of VLMs, and proposes a dataset for it. We ac-
knowledge that the inherent subjective nature of
the task might affect the dataset. To mitigate any
issues we employed a diverse group of annotators
that were willing to volunteer their time. We recog-
nize that systems that aim to mimic or understand
human social dynamics raise ethical concerns. The
purpose of this paper is not to endow VLMs with
any malicious capabilities but rather to foster bet-
ter understanding of such models in the research
community. The video clips in our data-set were
sourced from an existing research dataset and were
obtained with the required permissions. This data
is meant to be used for research purposes only.
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A Diagnostic Results

A.1 Experiment to support toggling Levels of
VSP Inference

In order to generate output at the correct level of
VSP Inference, prompts were manually tuned with
care. Additionally we did an experiment to confirm
that the outputs generally matched the expected
VSP Inference Level; We extracted the top 20 n-
grams (n=5, 7, 10) from each of the 3 levels. These
were manually inspected (and 10 are provided be-
low in Table5. Additionally, the 20 10-grams were
provided to GPt o4-mini-high to compare them
with shuffled level order using the prompt:

I’m going to give you top phrases from three different sources. Summarize the
main differences between the 3 sources. Output a table where each row is a
source. The columns should be “Focus” and “Characteristic Phrases”.

Source x: <top n-grams from level 1>
Source y: <top n-grams from level 5>
Source z: <top n-grams from level 3>

Figure 7: Prompt to confirm VSP Level.

The summary result (re-ordered for readability):

Level 1 (Source: X)

Focus: Detailed, low-level facial movements
Characteristic Phrases:
– “his eyebrows move up and down”
– “her mouth and lips open and close as she speaks”

Level 3 (Source: Z)

Focus: Broader body-language/facial cues
Characteristic Phrases:
– “exhibits a range of body language cues that suggest she
is”
– “his eyebrows are slightly furrowed indicating concern”

Level 5 (Source: Y)

Focus: Explicit emotion labeling/classification
Characteristic Phrases:
– “emotions such as joy sadness fear disgust surprise or
anger”
– “he is feeling joy. he is smiling and appears to be”

Table 4: The Focus and Characteristic Phrases confirm that
the toggling worked as expected.

A.2 Complete VLM-LLM Agent Experiment
Results

Here are the f1-scores of the VLM-LLM agent
setting for both languages (and overall). Chinese
scores are generally slightly higher than the Egnlish
ones, which could be due to quirks of the VLM
model or the data itself.
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10-gram Freq 7-gram Freq 5-gram Freq

Level 1 (Detailed, low-level facial movements)
changes in his facial features the video. his
eyebrows move

1031 mouth and lips open and close as 2117 eyebrows move up and down 3621

and her mouth and lips open and close as she 1020 maintains a relatively static posture the video. 1975 the the man in the 2690
her mouth and lips open and close as she
speaks.

1005 changes in his facial features the video. 1294 mouth and lips open and 2482

changes in her facial features the video. her
eyebrows move

998 in his facial features the video. his 1294 and lips open and close 2473

facial features the video. his eyebrows move
up and down

975 his facial features the video. his eyebrows 1294 there are no significant changes 2433

in his facial features the video. his eyebrows
move up

960 changes in her facial features the video. 1180 are no significant changes in 2433

his facial features the video. his eyebrows
move up and

960 in her facial features the video. her 1178 lips open and close as 2128

and his mouth and lips open and close as he 855 her facial features the video. her eyebrows 1178 maintains a relatively static posture 2040
in her facial features the video. her eyebrows
move up

854 eyebrows move up and down her forehead 1144 a relatively static posture the 2007

her facial features the video. her eyebrows
move up and

854 her mouth and lips open and close 1142 relatively static posture the video. 1975

... ... ...

Level 3 (Broader body-language/facial cues)
a range of body language cues that suggest she
is

647 exhibits a range of facial expressions the 2150 a range of facial expressions 3760

exhibits a range of body language cues that
suggest she

644 a range of facial expressions the video. 1798 exhibits a range of facial 3704

exhibits a range of facial expressions that sug-
gest he is

601 exhibits a range of facial expressions that 1522 is feeling a mix of 3547

that suggest she is feeling a mix of emotions.
her

544 exhibits a range of body language cues 1488 the a man in a 2297

exhibits a range of body language cues that
suggest he

513 a range of body language cues that 1482 he is engaged in a 2285

a range of body language cues that suggest he
is

513 range of body language cues that suggest 1430 range of facial expressions the 2192

that suggest he is feeling a mix of emotions.
his

512 a range of facial expressions that suggest 1332 is engaged in a serious 2036

his eyebrows are slightly furrowed indicating
concentration or concern. his

501 his body language suggests that he is 1156 body language cues that suggest 1941

eyebrows are slightly furrowed indicating con-
centration or concern. his mouth

482 shirt exhibits a range of facial expressions 938 be feeling a mix of 1891

are slightly furrowed indicating concentration
or concern. his mouth is

482 the slight furrow in his brow and 936 that he might be feeling 1831

... ... ...

Level 5 (Explicit emotion labeling)
emotions such as joy sadness fear disgust sur-
prise or anger.

680 the in the appears to be feeling 2188 the in the is the 5982

the in the appears to be expressing a mix of 510 the in the appears to be expressing 1446 in the appears to be 4947
strong emotions such as joy sadness fear dis-
gust surprise or

440 joy sadness fear disgust surprise or anger. 1345 the in the appears to 4808

the in the appears to be expressing a sense of 406 appears to be engaged in a conversation 1335 to be engaged in a 3396
such as joy sadness fear disgust surprise or
anger. based

404 in the is the man in the 1247 in the is the man 3015

as joy sadness fear disgust surprise or anger.
based on

404 the in the is the man in 1244 the appears to be feeling 2554

that he is feeling joy. he is smiling and appears 383 appears to be expressing a mix of 1226 appears to be engaged in 2534
based on these observations it seems that the
is feeling

380 to be engaged in a conversation with 1054 in the is the woman 2104

a positive and happy emotion. the in the is the 349 in the appears to be expressing a 963 appears to be expressing a 2090
is feeling joy. he is smiling and appears to be 329 the in the is the man wearing 946 her body language including her 1685

... ... ...

Table 5: Representative n-grams (10, 7, and 5) across Levels 1, 3, and 5.

Modality Overall Chinese English

T 0.5266 0.5673 0.5006
TV_1 0.5224 0.5582 0.4991
TV_3 0.5199 0.5376 0.5091
TV_5 0.5114 0.5422 0.4952
V_1 0.3002 0.2326 0.3438
V_3 0.4559 0.4568 0.4583
V_5 0.4961 0.5260 0.4805

Table 6: Weighted F1-scores for LLM operating over various
modalities. Visual Cues are generated by a VLM given videos
of the conversation.
T: Transcript, TV: Transcript & Visual Cues, V: Visual Cues

A.3 Weighted Voting Algorithm Details and
Full Results

We split our dataset into a very small calibration
pool (300 chinese, 550 english) which still left a

large test set to test on (3236 for chinese, 5039
for english). For various calibration sizes, we ran-
domly sampled from the calibration pool, and re-
peated the algorithm described above 50 times. As
shown in Table 7 even at just calibration size of
50, we were able to do much better than any of the
other LLM classifications. We also report standard
error and confidence intervals for the calibration
sets.

B Benchmarking on VIBE

Table 8 shows results for benchmarking on VIBE
using a direct prompt instead of CoT prompting.
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Figure 8: Weighted f1-by emotion.

Cal size Text Vision Vision+Text Ensemble

Within Language: en (Test: 5039, Calibration Pool: 550)
0 0.498 0.481 0.509 0.522
50 0.498 0.481 0.509 0.523 (7.49e-04, 1.51e-03)
100 0.498 0.481 0.509 0.523 (6.88e-04, 1.38e-03)
250 0.498 0.481 0.509 0.524 (5.52e-04, 1.11e-03)
500 0.498 0.481 0.509 0.526 (1.45e-04, 2.91e-04)

Within Language: zh (Test: 3236, Calibration Pool: 300)
0 0.568 0.526 0.543 0.567
50 0.568 0.526 0.543 0.592 (2.42e-04, 4.85e-04)
75 0.568 0.526 0.543 0.592 (1.72e-04, 3.46e-04)
100 0.568 0.526 0.543 0.592 (1.16e-04, 2.33e-04)
250 0.568 0.526 0.543 0.592 (6.17e-05, 1.24e-04)

Cross Language: zh Calibration, en Test (Test: 5589, Cal Pool: 300)
0 0.501 0.481 0.509 0.542
50 0.501 0.481 0.509 0.530 (5.10e-04, 1.02e-03)
75 0.501 0.481 0.509 0.530 (3.97e-04, 7.98e-04)
100 0.501 0.481 0.509 0.530 (3.42e-04, 6.87e-04)
250 0.501 0.481 0.509 0.531 (1.56e-04, 3.13e-04)

Cross Language: en Calibration, zh Test (Test: 3536, Cal Pool: 550)
0 0.567 0.526 0.538 0.598
50 0.567 0.526 0.538 0.609 (1.65e-03, 3.33e-03)
100 0.567 0.526 0.538 0.613 (1.16e-03, 2.33e-03)
250 0.567 0.526 0.538 0.614 (5.87e-04, 1.18e-03)
500 0.567 0.526 0.538 0.614 (2.97e-04, 5.97e-04)

Table 7: Results from Weighted Voting Algorithm

C Failure Analysis

Figures 10, 11, and 12 show the error breakdowns
for the remaining emotions. Emotions of disgust
and surprise had too few data points to contain
significant results. Among the figures, clusters with
too few points to be significant are also excluded.

D Prompts

Figures 13-22 contain all prompts used during di-
agnostic experiments and for dataset creation.

E Implementation Details

Model Fixed Distractor NF NT All

IVL2-26B 24.6 88.7 93.8 19.7 73.9
IVL2-8B 31.1 87.1 94.4 15.0 73.7
IVL2-4B 27.9 88.2 90.6 29.1 74.1

Q2.5-3B 30.3 86.9 92.3 16.0 72.8
Q2.5-7B 26.2 88.2 93.0 19.7 73.6

Table 8: Accuracy by model and question type (Direct
Prompt).

### Task Overview
You are a socially intelligent body language expert. Your task is to interpret a
person’s body language. You will be given a video clip with one main speaker
and asked which interpretation of their body language is better. Follow the Task
Guidelines and the Response Format.

### Task Guidelines
- You are given a video clip with one main speaker.
- You are given one fact about the speaker’s body language, and two possible
interpretations of that body language.
- Think out loud about which interpretation is better given what you see in the
video (2-3 sentences).
- Finally, give your answer according to the Response Format.

### Response Format
Thinking out loud: <your thoughts about which interpretation is better (2-3
sentences)>
Answer: <A OR B>

### Video Clip
{clip} ### Fact
{ fact_text }

### Interpretations
A. { inference_A }
B. { inference_B }

### Response

Figure 9: CoT prompt used for all VLMs on the VIBE bench-
marking.
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Figure 10: Error analysis for ‘Anger’. Bigger bars = bigger
errors.

Figure 11: Error analysis for ‘Sadness’. Bigger bars = bigger
errors.

Figure 12: Error analysis for ‘Fear’. Bigger bars = bigger
errors.

You are given a short video clip from a TV show. There is one main speaker.
Throughout the video, think out loud about the mouth movements of the people
in the foreground. Based on this, decide who the main speaker is.

Figure 13: VLM Prompt to get speaker.

In 3-4 sentences, without using any adjectives or emotions, describe the changes
in the facial features (eyebrows, forehead, eyes, nose, cheeks, mouth and lips.)
of the identified speaker. Do not interpret what they mean.

Figure 14: VLM Prompt to get facial expression at Level 1

In 3-4 sentences, describe the facial expressions of the speaker, with an emphasis
on the features that hint at the person’s emotion. Describe what each of the
features indicates about the person’s emotional state. What emotion might they
be feeling?

Figure 15: VLM Prompt to get facial expression at Level 3

We want to decide the emotion of the speaker. The options are joy, sadness, fear,
disgust, surprise and anger. In 3-4 sentences, think about the facial expression of
the speaker and what they indicate. Based on this, what emotion is the speaker
feeling?

Figure 16: VLM Prompt to get facial expression at Level 3.

In 3-4 sentences, without using any adjectives or emotions, describe the changes
in the body language (arms, hands, legs, torso) of the identified speaker. Do not
interpret what they mean.

Figure 17: VLM Prompt to get body language at Level 1.

In 3-4 sentences, describe the body language of the speaker, with an emphasis
on the features that hint at the person’s emotion. Describe what each of the
features indicates about the person’s emotional state. What emotion might they
be feeling?

Figure 18: VLM Prompt to get body language at Level 3.

We want to decide the emotion of the speaker. The options are joy, sadness, fear,
disgust, surprise and anger. In 3-4 sentences, think about the body language of
the speaker and what they indicate. Based on this, what emotion is the speaker
feeling?

Figure 19: VLM Prompt to get body language at Level 5.

Emotion 1 Emotion 2
joy anger
joy sadness
joy fear
joy disgust

sadness surprise
sadness fear

fear disgust
sadness disgust
anger fear
anger disgust

Table 9: Pairs of emotions that were included in list of "bad"
mistakes.

Emotion Opposite Emotion
anger joy
fear joy
joy sadness

sadness joy
disgust joy
surprise sadness

Table 10: Emotion-opposite pairs.
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### Task Overview:

You will be given a piece of text. The text will consist of facts (Eg: she has a
smile) and inferences (Eg: indicating she is relaxed). Your task is separate the
facts and inferences. Try to pair up the facts and inferences. The same fact can
be repeated for multiple inferences (explicitly repeat it). Say "No Fact" if there
is no fact with an inference. Follow the guidelines to do this.

### Strict Guidelines:

- Facts are physical traits like smiles, furrowed brows, other physical traits
**without adjectives**.
- The fact may come after the inference in some sentences. Example: Her facial
expression is one of happiness and contentment, with a smile on her face. Fact:
There is a smile on the speaker’s face. Inference: The smile suggests happiness
and contentment.
## Definition of Inferences:
- Inferences are **what the facts mean or indicate** such as happiness, sadness
etc.
- All emotions are inferences.
- ALL adjectives are inferences (in distress, tense, calm, sadly, etc..)
- Any words like "indicates", "suggests", "appears", etc are pointers to
inferences.
3 **VERY STRICT RULE**: Do not come up with inferences on your own.
Only cluster the information already present in the text.

### Examples:

## Example text 1:

The speaker, the woman driving the car, has a neutral expression with a slight
smile, indicating that she is calm and possibly content. Her eyes are focused
forward, suggesting that she is engaged in the conversation. The slight smile on
her face hints at a positive emotion, such as happiness or satisfaction. Overall,
her facial expression suggests that she is in a relaxed and pleasant emotional
state.

## Example response 1:

Information breakdown:
1. The speaker is a woman driving the car.
2. The speaker has a neutral expression with a slight smile, indicating that she
is calm and possibly content.
3. The speaker’s eyes are focused forward, suggesting that she is engaged in the
conversation.
...

5. The speaker’s facial expression suggests that she is in a relaxed and pleasant
emotional state.
- Fact Part: The speaker’s facial expression is clearly visible.
- Inference Part: The expression suggests that she is in a relaxed and pleasant
emotional state.

## Example text 2:

The speaker in the video appears to be feeling joy. Her facial expression is one
of ...
3. The speaker seems to be enjoying the conversation and the moment, which
indicates a positive and joyful emotion.
- Fact Part: The speaker is participating in a conversation.
- Inference Part: The speaker is enjoying the conversation and the moment,
indicating a positive and joyful emotion.

### Your text:

text

### Your response:

Figure 20: LLM Prompt to break down video descriptions.

### Task Overview
You will be given the text of a conversation. Your task is to predict the top
emotion of the speaker of the last sentence. The possible emotions are [joy,
surprise, anger, fear, disgust, sadness]. Follow the Task Guidelines and the
Response Format.

### Task Guidelines
- Think out loud about the possible options [joy, surprise, anger, fear, disgust,
sadness] using the text. For each emotion, think about whether the last sentence
could be an expression of that emotion.
- Finally, output the top emotion according to the Response Format.

### Response Format
Thinking out loud: My only allowed emotions are [joy, surprise, anger, fear,
disgust, sadness]. Based on the text, I think... <your thoughts>. Therefore...
<your choice>.
Emotion: <your top emotion>

### Conversation
conversation

### Response

Figure 21: LLM Prompt to classify emotion with Text only.

### Task Overview
You will be given the text of a conversation and some visual cues about the
main speaker of the last sentence. Your task is to predict the top emotion of the
speaker of the last sentence. The possible emotions are [joy, surprise, anger,
fear, disgust, sadness]. Follow the Task Guidelines and the Response Format.

### Task Guidelines
- Think out loud about the possible options [joy, surprise, anger, fear, disgust,
sadness] using the text and then the visual cues. Carefully consider if each
emotion could apply. - You must pick an emotion.
- Finally, output the top emotion according to the Response Format.

### Response Format
Thinking out loud: My only allowed emotions are [joy, surprise, anger, fear,
disgust, sadness]. Based on the text I think... <your thoughts>. Now, based
on the visual cues, I think... <your thoughts>. Therefore... <your choice>.
Emotion: <your top emotion>

### Conversation
conversation
### Visual cues
cues

### Response

Figure 22: LLM Prompt to classify emotion with Text + Vi-
sion.

### Task Overview
You will be given some visual cues about a speaker extracted from a video clip.
Your task is to predict the top emotion of the speaker. The possible emotions
are [joy, surprise, anger, fear, disgust, sadness]. Follow the Task Guidelines and
the Response Format.

### Task Guidelines
- Think out loud about the possible options [joy, surprise, anger, fear, disgust,
sadness] using the visual cues. Carefully consider if each emotion could apply.
- You must pick an emotion.
- Finally, output the top emotion according to the Response Format.

### Response Format
Thinking out loud: My only allowed emotions are [joy, surprise, anger,
fear, disgust, sadness]. Based on the visual cues, I think... <your thoughts>.
Therefore... <your choice>. Emotion: <your top emotion>

### Visual cues
cues

### Response

Figure 23: LLM Prompt to classify emotion with Vision.

23008


