How Can Input Reformulation Improve Tool Usage Accuracy in a Complex
Dynamic Environment? A Study on 7-bench

Venkatesh Mishra™ Amir Saeidif*

Jayanth Srinivasa‘

fArizona State University

Gaowen Liu?

Mutsumi Nakamura'
Chitta Baral'

Satyam Raj’
Ali Payani?

{Cisco Research

{vmishr23, ssaeidil, chitta}@asu.edu, {jasriniv, gaoliu, apayani}@cisco.com

Abstract

Recent advances in reasoning and planning ca-
pabilities of large language models (LLMs)
have enabled their potential as autonomous
agents capable of tool use in dynamic envi-
ronments. However, in multi-turn conversa-
tional environments like 7-bench, these agents
often struggle with consistent reasoning, adher-
ence to domain-specific policies, and extract-
ing correct information over a long horizon of
tool-calls and conversation. To capture and
mitigate these failures, we conduct a compre-
hensive manual analysis of the common errors
occurring in the conversation trajectories. We
then experiment with reformulations of inputs
to the tool-calling agent for improvement in
agent decision-making. Finally, we propose the
Input-Reformulation Multi-Agent (IRMA)
framework, which automatically reformulates
user queries augmented with relevant domain
rules and tool suggestions for the tool-calling
agent to focus on. The results show that IRMA
significantly outperforms ReAct, Function Call-
ing, and Self-Reflection by 16.1%, 12.7 %, and
19.1%, respectively, in overall pass*5 scores.
These findings highlight the superior reliability
and consistency of IRMA compared to other
methods in dynamic environments.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) (Annepaka and Pakray, 2025) have
created the potential for them to be used as au-
tonomous agents in complex real-world tasks like
travel-booking, customer-support, and enterprise
operations (Chen et al., 2024a; Wang et al., 2024;
Singh et al., 2024; Yang et al., 2024). However,
such complex tasks require the need of reasoning
and planning capabilities beyond just language pro-
cessing: they require the ability on behalf of these
agents to be able to invoke suitable tools! which
* Equal Contribution

'The terms ’tool-use’, "tool-calling” and ’function-calling’
are used interchangeably in this paper

Available Tools f‘

GetReservationDetails
BookReservation
CancelReservation

° Domain Policies |rues T
Modify flight:
- The agent must first

obtain the user id and the

reservation id.

Hi! I need to make
some changes to my
upcoming flight
reservation. Could you!
assist me with that?

Input Reformulation Framework

@er>User Query: Hi, I'd like to book a flight from
San Francisco to New York, please.</memory>

<constraints> 1. The agent must first obtain the user id,
then ask for the trip type, origin, destination. 2. Passengers:
Each reservation can have at most five passengers. The agent
needs to collect the first name, last name, and date of birth for|
each passenger. All passengers must fly the same flights in
the same cabin. 3. Payment: each reservation can use at most
one travel certificate, at most one credit card, and at most
three gift cards. All payment methods must already be in user
profile for safety reasons.</constraints>
<tool_suggested> I.book_reservation: This tool is
directly relevant as it allows booking a flight reservation,

Hi! I need to make some
changes to my upcoming
flight reservation. Could you
assist me with that?

which is the main intent of the user's query. 2.
search_direct_flight: This tool can be used to find available
direct flights from San Francisco to New York, which is
necessary before booking. 3. search_onestop_flight: This
tool can be used to find available one-stop flights from San

Francisco to New York, providing more options for the
booking. </tool_suggested>

‘Thought: I need to obtain the user
id first before proceeding with the
booking process. Action: {"name":
"get_user_detai g g
{"user_id": "sara_doe_496"}}

hought: To assist the user with modifying their flight
reservation, I need to first obtain the user id and the
reservation id. This information is necessary to retrieve the
reservation details and determine what ch can be made

according to the constraints. Action: {"name": "respond", Tool Mechanism
"arguments": {"content": "Could you please provide your API output: Error: user not found
user ID and the reservation ID for the flight you wish to
modify?"} }

Correct Action
[Surel My user ID is yara_garcia_1905, and the } 6 Wrong Action

reservation ID is HXDUBJ.

our method Previous Methods

Figure 1: Comparison of the IRMA framework with
other methods. The Input Reformulation framework
takes the user query, domain policies, and available
tools to generate a structured input for the assistant
agent. This augmented input enables the assistant to
make more accurate decisions from the first turn.

can complete tasks through logic implemented in
computer programs leading to deterministic out-
comes. Recent research (Yao et al., 2024; Lu et al.,
2024; Yan et al., 2024), which benchmarks the sim-
ulation of such real-world problem-solving settings,
shows that LLM-agents significantly falter in cor-
rectly solving these tasks and commit errors that
range from generative hallucinations to failure to
adhere to context and domain-specific policy vio-
lations by incorrect reasoning about actions over
extended interactions.

22949

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 22949-22972
November 4-9, 2025 ©2025 Association for Computational Linguistics

Stage 1: Behavior Understanding of
Different Agents in a Dynamic Environment

Stage 2: Proof of Concept of Input
Reformulation of User Request

Stage 3: Automation of
Input Reformation

Tau-Bench Trajectory
User: I'd like to exchange my office chair to the Il

cheapest one available.
0441] (@)
Database:

{name: Office Chair, product_id: 4794339885, item_id:
806905054, price: $499.23}

Human Evaluation

1. Detecting Errors
2. Classifying Detected
Errors

Assi: : get_order_details]

Common Error Categories

Assistant: Found your office chair. Looking for the User Instruction Hallucination

cheapest alternative.
Action: get_product_details[product id of office chair]

Database: @
{Office chair alternative 1: $466.71, status: unavailable}
{Office chair alternative 1: $471.82, status: available}...
(Other office chairs being more expensive than these
options)

Constraint Violation

Contextual Misinterpretation

Assistant: Found the cheapest alternative for office ?/\]
chair, price is $466.71 H
T

User

I'd like to exchange my office chair
to the cheapest one available and ——3
return my water bottle.

(@™ (@™
m —— Constrains ——Tool Selector
3 O Memory | Exiractor Agent Agent
Found the cheapest Q i
altemative for office | =y, @ 1 Inced o return a
water bottle. 2. I want to’

chair, price is
Agent Hallucination $471.82

Iterative Reformulation based on Agent

User

I'd like to exchange my office chair to the cheapest one
available and return my water bottle.

Initial Reformulation by
Human

Input Reformulation Multi Agent (IRMA)
A A

Module
<memory>
</memory>
Thought: ... ‘-;‘

Action: Found the cheapest alternative

@ for office chair, price is $471.82 FACT
Assistant

<constraints> | | <tool_suggested>
Human-in- exchange my office chair
the-loop to the cheapest version.

</constraints>| |</tool_suggested>

Response correctness

Figure 2: Overview of the tasks conducted for evaluating and improving tool-calling capabilities of language agents
in 7-bench (Yao et al., 2024). Stage 1) involved human evaluators manually evaluating simulated conversation
trajectories to find common failure modes of the language agents. Stage 2) employs a human-in-the-loop approach
to experiment with various prompt reformulations to improve agent correctness. Stage 3) automates this process
through the IRMA framework, which leads to improved agent behavior.

These shortcomings underscore the need for
more fine-grained evaluations and methods that can
diagnose and address the nuanced failure modes
of LLM agents in complex, real-world interactions
that employ natural language as a form of com-
munication. Thus, our main focus in this work is
to find and mitigate the causes of why language
agents fail to solve simulations of real-world con-
versational requests that require complex reasoning
and relevant information processing according to
the situation at hand. To this end, we utilize 7-
bench (Yao et al., 2024) as an appropriate test-bed
for such investigation as it emulates realistic airline
and retail dialogues. We define the reasoning about
actions of language agents as the ability to gener-
ate context-aware inference and decision-making
tokens for selecting the next best action (a tool-call
in this context). Additionally, we define and evalu-
ate the planning capabilities of the agents through
decision-making for tool-calling over multiple tool-
calls in the correct sequential manner to complete
a goal.

Inspired by recent work in context engineering
(Mei et al., 2025), we propose a three-pronged se-
quential approach. First, we develop a compre-
hensive error classification that categorizes com-
mon reasoning and planning mistakes in a multi-
turn tool-calling simulation. This taxonomy serves
as a diagnostic guideline to systematically iden-
tify and understand the causes of failures for
LLM agents. Second, we manually experiment
with input reformulations of the user requests to
evaluate whether the correct prompt reformula-

tions can guide the tool-calling agents towards
correct decision-making through appropriate tool-
calling/response to the user. Third, we automate
this prompt-reformulation process by building a
multi-agent LLM framework (§5.2), called Input-
Reformulation Multi-Agent (IRMA), which fur-
ther optimizes the input reformulation with aug-
mentation of follow-up questions (§5.1). Before
the tool-calling agent invokes or responds to any
tool output, our automated framework supplies
targeted guidance that ensures strict adherence to
domain-specific rules and well-placed follow-up
questions to extract accurate information, thereby
enhancing its reasoning and planning capabilities
in dynamic environments.

Our results show that the IRMA framework not
only outperforms ReAct (Yao et al., 2023), Func-
tion Calling, and Self-Reflection (Renze and Gu-
ven, 2024) on pass@ 1, but also achieves 20% and
22.4% higher accuracy on Airline tasks compared
to Gemini 1.5 Pro-FC and Claude 3.5 Haiku-FC,
respectively. IRMA also demonstrates stronger re-
liability, with higher scores on pass”4 and pass”5
(Figure 4). In addition, IRMA solves tasks in fewer
turns than competing methods, highlighting its ef-
ficiency (Figure 6). Lastly, IRMA shows greater
robustness, with an increased performance gap on
pass”™5 after removing tasks affected by ground
truth and instruction errors in the airline and retail
domains.

The main contributions of our work are:

1. Fine-grained causal-centric error classifica-
tion of failure modes occurring in a multi-turn

22950

tool-use conversational benchmark.

2. We propose the Input-Reformulation Multi-
Agent Framework (IRMA), a verification-
loop-free approach that improves function-
calling agents by reformulating prompts with
structured and contextually relevant informa-
tion. IRMA guides the agent to better follow
domain policies by enriching its input with
key constraints and tool-related context.

3. We perform an in-depth evaluation of IRMA’s
performance across reliability, consistency,
and accuracy. Furthermore, our analysis of
efficiency reveals that IRMA is able to solve
tasks using fewer interaction turns than com-
peting methods.

2 Related Works

Tool-Integration for LLMs The ReAct frame-
work, introduced by Yao et al. (2023), is one of the
first approaches to explore the potential of Large
Language Models (LLMs) as tool-using agents
by integrating reasoning and acting within LLMs.
Toolformer (Schick et al., 2023) presents a fine-
tuning approach to teach LLMs to invoke tool calls.
ToolEVO (Chen et al., 2024b) and ToolLLM (Qin
et al., 2023) employ tree search algorithms for inte-
grating and evaluating tool-learning capabilities
in LLMs. ToolACE (Liu et al., 2024b), Auto-
Tools (Shi et al., 2025), and APIGen (Liu et al.,
2024c) introduce automated frameworks designed
to generate accurate, complex, and high-quality
tool-learning data, with works like (Prabhakar et al.,
2025; Yin et al., 2025) extending this to multi-turn
interactive conversational settings.

Tool-Use Benchmarks LLMs have been exten-
sively evaluated on invoking external functions in
both single-turn and interactive multi-turn conver-
sational test beds. API-Bench (Patil et al., 2024)
and API-Bank (Li et al., 2023) are two promi-
nent benchmarks designed to evaluate the function-
calling capabilities of LLMs in single-turn scenar-
i0s. NESTful (Basu et al., 2024) focuses on evalu-
ating LLMs’ ability to handle nested sequences
of API calls. ToolQA-D (Chen et al., 2024b)
gauges robustness in changing API specifications.
T-bench (Yao et al., 2024) and ToolSandbox (Lu
et al.,, 2024) emulate realistic dialogues requir-
ing policy-compliant tool use over multi-turn user-
agent interactions, where each step modifies an
external environment. While these existing multi-
turn benchmarks evaluate the overall success of

tool-calling agents, they lack fine-grained analysis
of reasoning errors while following complex do-
main rules—a gap our work addresses through the
construction of a fine-grained error classification
by evaluating 7-bench.

Improving LLM Tool-Use Recent research has
explored diverse strategies to enhance the tool-use
capabilities of LLMs, focusing on API calling and
web-environment interaction—by leveraging tech-
niques such as synthetic data generation, reinforce-
ment learning, and memory augmentation. Liu et al.
(2024c) introduces APIGen, an automated pipeline
that generates high-quality, verifiable single-turn
function-calling datasets, enabling small models
to outperform GPT-4 on the BFCL (Patil et al.,
2025). APIGen-MT (Prabhakar et al., 2025) ex-
tends the framework to show improvement in
models on multi-turn scenarios through blueprint-
driven simulation of human—agent dialogues. Re-
Tool (Feng et al., 2025) integrates dynamic code
execution within the reasoning process and train-
ing via outcome-driven RL, which significantly
improves multi-step reasoning. Nemotron-Tool-
N1 (Zhang et al., 2025) uses an RL framework to
teach precise tool invocation and explicit reasoning,
achieving state-of-the-art on API-Bank (Li et al.,
2023) and BFCL. ARTIST (Singh et al., 2025) inte-
grates agentic reasoning with RL, enabling LL.Ms
to decide autonomously when and how to call tools.
Memento (Zhou et al., 2025) employs a memory-
augmented, case-based planner for continual adap-
tation without retraining, achieving strong general-
ization on GAIA (Mialon et al., 2023) and DeepRe-
searcher (Zheng et al., 2025) benchmarks. While
these works mark a shift toward adaptive, planning-
driven, and memory-augmented LLM agents by
leveraging training methods, our proposed IRMA
framework explores tool-use improvement from
the perspective of context engineering (Mei et al.,
2025) principles.

3 Problem Statement

To evaluate the tool-usage capabilities of current
Large Language Models (LLMs), we adopt the
benchmark provided by 7-bench (Yao et al., 2024).
This benchmark is specifically designed to assess
language agents in realistic, multi-turn interaction
settings. 7-bench includes tasks from two domains:
(1) Airline, comprising 50 tasks centered around
flight reservation scenarios, and (2) Retail, con-
taining 115 tasks focused on shopping and order

22951

management. In this setup, both the user and the
customer-service assistant are simulated by LLMs,
enabling a controlled environment for analyzing
interactive behavior. The customer-service agent is
the language agent that generates the tokens signify-
ing which tools are to be invoked, while following
the specific domain policies (refer Appendix C)

Each task is framed as a Partially Observable
Markov Decision Process (POMDP) (Details in
Appendix A), where the assistant agent must gener-
ate appropriate function calls based on user inputs.
These function calls are executed in an external
environment, which then returns outputs that shape
the ongoing dialogue. The interaction continues
until the user ends the conversation, and the perfor-
mance of the assistant is evaluated based on final
rewards. These rewards reflect how closely the
agent’s actions align with gold-standard trajecto-
ries and how well it fulfills the user’s goals.

A key challenge in 7-bench arises from the dy-
namic nature of user-agent interactions, where both
user inputs and agent responses can vary across
runs. This variability requires the agent to consis-
tently execute correct action sequences, regardless
of the conversational path. However, current results
indicate that even state-of-the-art LLMs struggle to
reliably complete these tasks as the number of trials
increases. To address this limitation, we conduct
a root-cause analysis of common agent errors (§4)
and introduced IRMA, a multi-agent framework
(§5) designed to improve agent reliability in this
challenging setting.

4 Error-Classification

To identify the failure modes of LLMs, human
evaluators conducted experiments using GPT-40
(Hurst et al., 2024) as the base model for both the
user and the assistant agent across all tasks in 7-
bench (Yao et al., 2024). Both ReAct and function-
calling agent configurations were used to generate
up to five trials per task in each domain. Evalu-
ators manually reviewed the resulting multi-turn
conversation trajectories from the retail and airline
domains. While prior studies (Sun et al., 2024;
Winston and Just, 2025; Cemri et al., 2025) have
examined failures related to tool availability, def-
inition errors, or tool set complexity, our analysis
focuses specifically on the contextual reasoning
limitations of LLMsS in generating tool calls within
dynamic, multi-turn interactions.

Although 7-bench provides a general taxonomy

of failure types for the retail domain, our classifica-
tion is more cause-oriented than effect-oriented. By
framing errors in terms of their underlying causes,
we can more effectively inform the design of tar-
geted interventions, such as retrieval-augmented
memory to mitigate context retention issues or
follow-up question generation (§5.1) to reduce hal-
lucinations from context drift. The following sub-
sections (§4.1-§4.4) provide a detailed breakdown
of the identified error types.

4.1 User Instruction Hallucination

User instruction errors occur when the LLM-
simulated user deviates from the original task in-
struction, typically in the later stages of a conver-
sation. These errors highlight the limitations of
LLMs in maintaining instruction fidelity over long
contexts, especially when multiple follow-up turns
introduce competing directives. Another contribut-
ing factor is context drift, where the model increas-
ingly relies on recent inputs or high-probability
continuations, leading it to overlook or forget the
initial user intent. An Example illustrating this
error is provided in Figure 8 in Appendix D.

4.2 Agent Hallucination

Agent hallucination errors arise when the assistant
agent generates incorrect or incomplete responses
that fail to fully satisfy the user’s request. For ex-
ample, the agent may neglect to process all items
specified by the user or incorrectly fulfill a request
by selecting the wrong item or applying it to the
wrong order. These errors reflect underlying chal-
lenges with LLM memory limitations (Shan et al.,
2025) and the degradation of instruction-following
abilities over long contexts (Liu et al., 2023). As
prior context accumulates, excessive or outdated
information can distort the model’s understanding,
leading to hallucinated outputs and ultimately in-
correct decisions (Zhang et al., 2024).

4.3 Domain Policy Violation

Domain policy violations occur when tool-calling
agents make decisions that contradict the domain-
specific constraints defined for task completion.
For instance, in Retail task 19 (Figure 9), the agent
attempts to exchange the user’s office chair and pet
bed even when the order is no more in ‘delivered’
status: a prerequisite domain rule required to be
satisfied for exchange. This leads to the agent vio-
lating the domain rule (see Figure 12): An order
can only be exchanged if its status is 'delivered’...’

22952

Such violations may also arise when the user is-
sues an invalid request, and the agent proceeds to
fulfill it without adhering to the applicable domain
rules. This error is caused due to similar reasons as
mentioned in §4.1 and §4.2.

4.4 Contextual Misinterpretation

Contextual misinterpretation errors occur when the
tool-calling agent misunderstands the intent or nu-
ance of the user’s request and generates function
calls using inappropriate tools for the given context.
For example, if a user asks to return an item and
receive a different one in exchange, a human famil-
iar with the domain policies would recognize this
as an exchange request. However, the LLM-based
agent may misinterpret it as a simple return, failing
to grasp the full context and thereby invoking the
wrong tool.

5 Method

As outlined in the previous sections, complex dy-
namic environments such as 7-bench present re-
liability challenges. Specifically, the user simula-
tor may hallucinate during interactions, generating
questions that do not adhere to the provided instruc-
tions. In this study, we aim to improve the assis-
tant agent’s tool-calling performance in 7-bench
by enabling more accurate decision-making. Un-
like prior approaches that monitor and correct
agent actions through verification or reflection, our
method focuses on enhancing the quality of the
agent’s input before any action is taken. To achieve
this, we first introduce a novel prompting strategy:
Follow-up Question Acting (FACT), designed to
support decision-making in dynamic settings. We
then present the Input Reformulation Multi-Agent
(IRMA) framework that reformulates the agent’s
input to guide more effective and context-aware
decisions.

5.1 FACT: Follow-up question ACTing

Although reasoning-based prompting techniques
like ReAct outperform non-reasoning methods
such as Act, they remain inefficient in dynamic
environments. As shown in Figure 3, ReAct often
calls a tool prematurely, triggers an error, and only
then asks clarifying questions, leading to longer
conversations and increased interaction issues. To
overcome this, we introduce Follow-up Question
ACTing (FACT), a prompting method that first
gathers information through targeted questions be-
fore calling a tool. Our results in Figure 6 show that

/[Hi, 1'd like to book a flight from San Francisco to New York, please. }
—

@

-~ ReAct Agent

@O
*_FACT Agent
hought: To proceed with booking a flight
from San Francisco to New York, ...

Thought: I need to obtain the user id
first before proceeding with the

A . . . booking process.

Action: {"name": "respond", "arguments": &P

{"content": "Could you please provide your

Action: {" "' "get_us details",
user ID? Once I have that, I'll need to ction: {'name": "get_user_cetatls

know if you're looking for a one-way or ar%::::nzlso; {4;123;7}1d :
round-trip flight."} } sara_doe_ g
[T
Q A
A Tool Mechnanism

\\Sure, my user ID is anaﬁmullerﬁ9847.] [API output: Error: user not fow

Figure 3: FACT agent demonstrates superior user guid-
ance, avoiding tool-call errors encountered by the ReAct
Agent.

FACT is more effective than ReAct and performs
comparably to Function Calling. We refer readers
to Appendix §E.1.

Another advantage of FACT is its ability to in-
volve the user in the loop. When the user simulator
hallucinates or provides misleading input, FACT
detects the issue and hands off the conversation
to a human, ensuring more robust handling of un-
reliable inputs. In summary, FACT is more effi-
cient, reliable, and consistent than other methods in
dynamic environments. However, in long conver-
sations, it may forget domain rules and tools due
to system prompt limitations, leading to domain
violations. To address this, we propose the Input-
Reformulation Multi-Agent Framework (IRMA),
which restructures the user prompt to retain key
information like domain rules and a relevant tool
list within the assistant’s input.

5.2 IRMA: Input-Reformulation Multi-Agent
Framework

Our analysis reveals three key failure cases for
assistant agents. First, in long conversations,
the agent may forget the user’s initial request
and respond only partially. Second, it may vio-
late domain rules by forgetting constraints from
lengthy policy lists. Third, tool selection be-
comes harder over time, especially when tools
have similar names (e.g., "search_direct_flight"
vs. "search_onestep_flight"), leading to incorrect
choices.

We hypothesize that combining user queries with
crucial context, such as domain rules and relevant
tools, can improve the assistant agent’s decision-
making. To test this, we conducted a human-in-the-
loop experiment with prompt engineers who refor-

22953

mulated queries using additional policy and tool
information. In most cases, the agent successfully
completed the tasks, motivating us to automate this
input reformulation process.

Based on this insight, we propose the Input Re-
formulation Multi-Agent Framework (IRMA).
In contrast to prior methods that focus on post-hoc
correction of the agent’s behavior, such as Self-
Reflection, PlanGen (Parmar et al., 2025), or other
verification-based approaches, IRMA centers on
enhancing the quality of the input provided to the
assistant agent. This approach enhances decision-
making at the input stage—before any action is
taken—ensuring more accurate and context-aware
responses. The framework comprises three core
modules: memorization, constraints, and tool sug-
gestion.

Memorization This module is independent of
the language model and is responsible for stor-
ing the user queries throughout the interaction
trajectory. It helps the agent retain awareness
of the initial request and make decisions accord-
ingly. The conversation history is maintained
within <memory> tags.

Constraints One of the main reasons the agent
makes incorrect decisions is domain policy viola-
tion. A key insight from the human-in-the-loop
experiment was the positive impact of providing
a concise list of domain constraints to guide the
assistant agent’s decisions. To address this chal-
lenge, we define a dedicated agent that generates a
checklist of relevant domain constraints based on
the user query. If the user query is a response to
a follow-up question from the assistant, the agent
is prompted to return “None”. The generated con-
straint list is stored within <constraints> tags to
ensure the assistant agent receives a structured and
interpretable input prompt.

Tool Suggestion Although the number of avail-
able tools is limited, the assistant agent sometimes
struggles to select the most relevant tool for a given
user query. In some cases, after encountering an
error or receiving an empty output, the agent may
lose track of other parts of the user’s request. To
mitigate this, we introduce a Tool Selector agent
that generates a short list of tools most relevant
to the user query, along with a one-line explana-
tion for each suggestion. This list is stored within
<tool_suggested> tags to help the assistant agent
focus on selecting the most appropriate tool.

Model | Method | 7-Retail | T-Airline
Open-Source Models
Qwen 2.5 32B ReAct 24.4 25.0
Llama 3.1 70B ReAct 50.4 26.0
DeepSeek v3* ReAct 58.3 22.8
Phi-4 14B ReAct 32.2 28.0
Closed-Source Models
Gemini 1.5 pro* FC 54.9 252
Claude 3.5 Haiku? FC 51.0 22.8
Claude 3.5 Sonnet? FC 62.6 36.0
GPT-40-mini FC 443 23.6
GPT-4o FC 60.5 424
GPT-40 ReAct 51.8 39.6
GPT-40 SR 51.1 44.8
GPT4o (ours) | IRMA | 583 | 472

Table 1: Performance of various open and closed-source
models in Pass”1 for retail and airline domains in 7-
bench across 5 runs. *SR’ stands for the Self-Reflection
agent. ! indicates results from (Cognition, 2025); 2
indicates results from (Anthropic, 2024a)

In summary, the IRMA framework aims to repli-
cate the input reframing performed by researchers
during the human-in-the-loop experiment. Un-
like other techniques such as verification, self-
reflection, or agentic verification methods, IRMA
functions in a loop-free manner and focuses on
strengthening the input by reformulating the user
query. This approach not only improves accuracy
but also offers better cost-effectiveness compared
to alternative methods. In the next section, we
provide a comparative analysis of IRMA against
existing techniques.

6 Experiments

6.1 Experimental Setup

We present the baseline models and comparison
methods, followed by an analysis of the IRMA
framework using various evaluation metrics and
ablation studies (refer Appendix G) to assess the
impact of its individual components on 7-bench
performance.

Models and Methods We evaluated IRMA
against a range of open-source and closed-source
language models. The open-source models include
Qwen2.5-32B (Qwen et al., 2025), LLaMA-3.1-
70B (Grattafiori et al., 2024), DeepSeek-v3 (Liu
et al., 2024a), and Phi-4-14B (Abdin et al., 2024),
while the closed-source models comprise Claude
3.5 (Anthropic, 2024b), Gemini 1.5 (Team et al.,
2024), and GPT-40 (Hurst et al., 2024). In addition,

22954

1 IRMA (ours) [ReAct B FC H SR

Airline

0.6

0.5

x 04

o 0.3

N
N

0.2

0.1

0.0

X Improvement after GT removal

zz2 \mprovement after Ul removal

Retail

2
%‘
1

Figure 4: Comparison of IRMA and other techniques across five runs with varying values of K. The figure shows a
significant performance difference between IRMA and other methods on pass”5. Note that all methods use GPT-40

as the base model. See Appendix B for more details.

we compared IRMA with three widely adopted
prompting strategies: (1) ReAct, a reasoning-
based prompting technique; (2) Function Call-
ing, designed specifically to enhance a model’s
tool-calling capability; and (3) Self-Reflection, a
method aimed at improving tool-use performance
by addressing errors in the agent’s actions.

Evaluation To evaluate performance, we use the
pass”k metrics, which measure the reliability and
consistency of models across different prompting
strategies. The pass”k metric (pronounced "pass
hat k") is defined as the probability that all of the k
independently sampled outputs successfully com-
plete the task, averaged across all tasks. Specifi-
cally, if a task is run for n independent trials and ¢
of those are successful (i.e., have a correct result
with reward r = 1), an unbiased estimate of pass
Ak can be computed using the following formula:

=5 (1) / ()]

This metric provides insight into how likely a
model is to succeed given multiple attempts, cap-
turing both reliability and diversity in its outputs.

6.2 Experimental Results

As outlined in the 7-bench, in real-world scenar-
ios—reliability and consistency are often more crit-
ical than the average success rate (measured by
pass@1). We argue that an ideal agentic method
should exhibit three key properties: (1) Accuracy,
(2) Reliability, and (3) Consistency. Accordingly,
we begin by comparing results using pass@1 to
assess accuracy, and then evaluate the performance

of state-of-the-art methods using pass”k to measure
reliability and consistency.

IRMA outperforms other state-of-the-art meth-
ods in tool calling. We conducted evaluations of
multiple methods—Function Calling (FC), ReAct,
and Self-Reflection—each executed over five trials.
These experiments were performed using the GPT-
40 model. The results, presented in Table 1, show
that the IRMA framework outperforms ReAct, Self-
Reflection, and FC by 6.1%, 3.9%, and 0.4%, re-
spectively, in overall pass@1 score. Additionally,
in the airline tasks, which represent the most chal-
lenging scenarios within the dynamic environment,
IRMA on GPT-40 achieves improvements of 20%,
22.4%, and 9.2% compared to Gemini 1.5 Pro-
FC, Claude 3.5 Haiku-FC, and Claude 3.5 Sonnet-
FC, respectively. These findings highlight IRMA’s
strong accuracy in real-world tasks and demon-
strate its effectiveness over existing methods.

mmm Others mmm GT Error mmm Ul Error

i

Retail

Airline

Figure 5: Error statistics across Airline and Retail tasks.
GT: Ground Truth errors; UI: User Instruction errors.

IRMA is more reliable and consistent than other
methods in dynamic settings. The results in Ta-
ble 1 show that the performance of IRMA on retail

22955

pass™1 is slightly lower than that of GPT-40-FC.
For this reason, we further explored the perfor-
mance of other methods using pass”k to evaluate
their reliability and consistency. The results in Fig-
ure 6 show that IRMA, compared with ReAct and
FC on GPT-4o0, is much more reliable and consis-
tent, outperforming ReAct and FC by 16.1% and
12.6%, respectively, in overall scores on pass”S5.

IRMA is more robust on tasks with GT and UI
errors. As explained in the previous sections,
T-bench suffers from two major issues: (1)
Ground Truth (GT) errors and (2) User Instruction
(UD errors. Figure 5 shows the distribution of
these errors across the airline and retail tasks.
We progressively removed tasks affected by
these problems, and the results revealed that the
performance of all three methods improved, with
IRMA showing slightly greater gains compared
to the others. We hypothesize that IRMA is more
robust to hallucination-related issues. Specifically,
in tasks with GT errors, IRMA tends to avoid
incorrect tool calls or invalid actions and instead
produces safe and accurate responses.

A key observation is the change in perfor-
mance difference between IRMA and FC on
pass”5. Before removing tasks with GT and
Ul errors, IRMA outperformed FC by 10%.
However, after removing these problematic tasks,
the performance gap widened to 16.1% on average.
Similar patterns were observed for other methods
as well, reinforcing the claim that IRMA is more
robust and less sensitive to noisy supervision
and ambiguous instructions compared to existing
techniques.

IRMA solves tasks more efficiently and effec-
tively, using fewer turns than others. One of
the primary reasons assistant agents make incor-
rect decisions in the final turns is the length of the
conversation, which often causes them to forget
important rules and instructions. In an ideal sce-
nario, an assistant should resolve the user’s query
with the fewest but most effective actions. To in-
vestigate this aspect, we analyzed the distribution
of turns in successful task completions by IRMA,
ReAct, FC, and Self-Reflection, as shown in Fig-
ure 6. The results show that, in retail tasks, IRMA
completes tasks with 7.9 points fewer turns than
Self-Reflection and 3.1 points fewer than FC. In
airline tasks, IRMA requires 8.3 fewer turns than
Self-Reflection, 1.1 fewer than FC, and 3.3 fewer

Airline

74 Retail

0.06 — ReAct
—— IRMA (ours)

0.04
0.02

0.00

0.06 —fc

—— IRMA (ours)

0.04

0.02

0.00
0 20 40 60

235

0.06 Self-Reflection
L4 — IRMA (ours)

0.04

0.02

0.00

20 40 60 80 100 0 20 40 60 80
Trajectory Turns Trajectory Turns

0

Figure 6: Comparison of IRMA and other methods
based on the number of turns in successful tasks in the
Airline and Retail domains.

than ReAct. These results demonstrate IRMA’s su-
perior efficiency compared to other state-of-the-art
methods.

Input Reformulation framework vs Self-
Reflection The central concept of IRMA is to
reformulate the agent’s input under the assumption
that supplying sufficient and well-structured
information enables the agent to act more reliably
and consistently in real-world scenarios. To
evaluate this, we implemented the Self-Reflection
method (Appendix F), which analyzes the agent’s
previous actions and extracts relevant information
from domain rules to guide future decisions (see
section E.1 for implementation details). As shown
in Figure 4, IRMA outperforms Self-Reflection
in both airline and retail tasks, achieving a 3.9%
higher overall score in pass@1. More notably,
IRMA exceeds Self-Reflection by 19.1% in pass”3,
highlighting its superior reliability in a real-world
environment.

In summary, while ReAct and Self-Reflection
perform well in certain settings, they fall short
in complex, dynamic environments like 7-bench.
Role-play methods, including verification tech-
niques, are also inefficient, as real-world scenarios
require assistant agents to act based on limited
information, with each action affecting the envi-
ronment. Although Function Calling was designed
for tool use, our results show it lacks reliability in
decision-making and offers limited controllability,
even in GPT-4o0 with tailored system prompts.
Combining FACT with GPT-40-FC led to a
12% performance drop, highlighting the need
for more robust approaches. In contrast, IRMA

22956

consistently delivers higher accuracy, reliability,
and consistency in dynamic environments like
T-bench.

7 Conclusion

In this work, we investigate the limitations of state-
of-the-art LLM-based tool-calling agents in com-
plex, multi-turn environments, focusing on the re-
tail and airline domains of 7-bench. Through a
detailed analysis of conversation trajectories, we
identify four major failure modes: user instruction
hallucination, agent hallucination, domain-policy
violations, and contextual misinterpretation, all of
which stem from limitations in memory retention,
contextual reasoning, and adherence to domain con-
straints across extended interactions. To address
these challenges, we propose the Input Reformula-
tion Multi-Agent (IRMA) framework, designed to
enhance the structure of the assistant agent’s input.
Our results show that IRMA not only outperforms
other methods in pass”1 but also demonstrates sig-
nificantly higher reliability, achieving an overall
score of 43% pass”S in 7-bench. Moreover, by
leveraging the FACT agent, IRMA exhibits greater
efficiency in task completion. In conclusion, IRMA
shows robust and consistent behavior in the unre-
liable and dynamic environment of 7-bench, high-
lighting its effectiveness in real-world tool-use sce-
narios.

Limitations

Although the Input Reformulation Multi-Agent
(IRMA) framework demonstrated superior per-
formance on 7-bench, several limitations remain.
As shown in Figure 4, while IRMA exhibits
greater reliability compared to other methods, its
performance on pass”5 still hovers around 43%.
This indicates that there is still considerable room
for improving the reliability of tool-using agents
in real-world scenarios. Another limitation of
this work is that our experiments and analysis are
restricted to the 7-bench benchmark. It would
be valuable to evaluate IRMA across a broader
range of real-world environments to assess its
generalizability.

Moreover, our observations suggest that be-
yond the error taxonomy we proposed, 7-bench
itself suffers from issues related to unfair reward
modeling. Building a truly dynamic and reliable
evaluation environment—especially one that

can control for the correctness of user instruc-
tions—would have a significant impact on the field.
Such an environment would enable more rigorous
development and evaluation of agentic frameworks
and encourage further research into robust,
real-world agent behavior. Ultimately, we believe
this work contributes meaningfully to the research
community and provides a strong foundation for
developing more reliable and consistent agentic
methods for dynamic environments.

Ethics Statement

We have utilized Al assistants, specifically Gram-
marly and ChatGPT, to correct grammatical errors
and rephrase sentences.

Acknowledgement

We thank the anonymous reviewers for their con-
structive suggestions. We extend our gratitude
to the Research Computing (RC), and Enterprise
Technology at ASU for providing computing re-
sources, and access to the GPT API version for
experiments. This work was in part supported by a
gift award from Cisco Research. This work makes
use of the 7-bench dataset, which is distributed
under the MIT License.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell] Hewett, Mojan Javaheripi, Piero
Kauffmann, et al. 2024. Phi-4 technical report. arXiv
preprint arXiv:2412.08905.

Yashwanth Annepaka and Prasenjit Pakray. 2025. Large
language models: a survey of their development, ca-
pabilities, and applications. Knowledge and Informa-
tion Systems, 67:2967-3022.

Anthropic. 2024a. Claude 3.5 models and com-
puter use. https://www.anthropic.com/news/
3-5-models-and-computer-use. Accessed: 2025-
05-20.

Anthropic. 2024b. Claude 3.5 sonnet. https://www.
anthropic.com/news/claude-3-5-sonnet. 4
min read.

Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank
Agarwal, Maxwell Crouse, Yara Rizk, Kelsey Brad-
ford, Asim Munawar, Sadhana Kumaravel, Saurabh
Goyal, et al. 2024. Nestful: A benchmark for eval-
uating llms on nested sequences of api calls. arXiv
preprint arXiv:2409.03797.

22957

https://doi.org/10.1007/s10115-024-02310-4
https://doi.org/10.1007/s10115-024-02310-4
https://doi.org/10.1007/s10115-024-02310-4
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A
Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan
Ramchandran, et al. 2025. Why do multi-agent 1lm
systems fail? arXiv preprint arXiv:2503.13657.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and
Jiangjie Chen. 2024a. Travelagent: An ai assis-
tant for personalized travel planning. arXiv preprint
arXiv:2409.08069.

Guoxin Chen, Zhong Zhang, Xin Cong, Fangda Guo,
Yesai Wu, Yankai Lin, Wenzheng Feng, and Yasheng
Wang. 2024b. Learning evolving tools for large lan-
guage models. arXiv preprint arXiv:2410.06617.

Scaled Cognition. 2025. Apt-1: Adaptive prompt
tuning for llms. https://www.scaledcognition.
com/blog/apt-1. Accessed: 2025-05-19.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-
ment learning for strategic tool use in llms. arXiv
preprint arXiv:2504.11536.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, et al. 2024b. Toolace:
Winning the points of llm function calling. arXiv
preprint arXiv:2409.00920.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian
Lan, Juntao Tan, Weiran Yao, Zhiwei Liu, Yihao
Feng, Rithesh RN, et al. 2024c. Apigen: Auto-
mated pipeline for generating verifiable and diverse

function-calling datasets. Advances in Neural Infor-
mation Processing Systems, 37:54463-54482.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, et al. 2024. Toolsandbox: A
stateful, conversational, interactive evaluation bench-

mark for llm tool use capabilities. arXiv preprint
arXiv:2408.04682.

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Bao-
long Bi, Yujun Cai, Jiazhi Liu, Mingyu Li, Zhong-Zhi
Li, Duzhen Zhang, et al. 2025. A survey of con-
text engineering for large language models. arXiv
preprint arXiv:2507.13334.

Grégoire Mialon, Clémentine Fourrier, Thomas Wollf,
Yann LeCun, and Thomas Scialom. 2023. Gaia: a
benchmark for general ai assistants. In The Telfth
International Conference on Learning Representa-
tions.

Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen,
Long Le, Swaroop Mishra, Hossein Mobahi, Jindong
Gu, Zifeng Wang, Hootan Nakhost, et al. 2025. Plan-
gen: A multi-agent framework for generating plan-
ning and reasoning trajectories for complex problem
solving. arXiv preprint arXiv:2502.16111.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji,
Fanjia Yan, Vishnu Suresh, Ion Stoica, and Joseph
E. Gonzalez. 2025. The berkeley function calling
leaderboard (bfcl): From tool use to agentic eval-
uation of large language models. In Forty-second
International Conference on Machine Learning.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2024. Gorilla: Large language model
connected with massive apis. Advances in Neural
Information Processing Systems, 37:126544—126565.

Akshara Prabhakar, Zuxin Liu, Weiran Yao, Jianguo
Zhang, Ming Zhu, Shiyu Wang, Zhiwei Liu, Tulika
Awalgaonkar, Haolin Chen, Thai Hoang, et al. 2025.
Apigen-mt: Agentic pipeline for multi-turn data gen-
eration via simulated agent-human interplay. arXiv
preprint arXiv:2504.03601.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

22958

https://www.scaledcognition.com/blog/apt-1
https://www.scaledcognition.com/blog/apt-1
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115

Matthew Renze and Erhan Guven. 2024. Self-reflection
in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539-68551.

Lianlei Shan, Shixian Luo, Zezhou Zhu, Yu Yuan, and
Yong Wu. 2025. Cognitive memory in large language
models. arXiv preprint arXiv:2504.02441.

Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng,
Xiuyi Chen, Zhumin Chen, Dawei Yin, Suzan Ver-
berne, and Zhaochun Ren. 2025. Tool learning in
the wild: Empowering language models as automatic
tool agents. Preprint, arXiv:2405.16533.

Harmanpreet Singh, Nikhil Verma, Yixiao Wang, Man-
asa Bharadwaj, Homa Fashandi, Kevin Ferreira, and
Chul Lee. 2024. Personal large language model
agents: A case study on tailored travel planning. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 486-514, Miami, Florida, US. Associa-
tion for Computational Linguistics.

Joykirat Singh, Raghav Magazine, Yash Pandya, and
Akshay Nambi. 2025. Agentic reasoning and tool
integration for llms via reinforcement learning. arXiv
preprint arXiv:2505.01441.

Jimin Sun, So Yeon Min, Yingshan Chang, and Yonatan
Bisk. 2024. Tools fail: Detecting silent errors in
faulty tools. arXiv preprint arXiv:2406.19228.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Cailin Winston and René Just. 2025. A taxonomy of
failures in tool-augmented llms. In Proceedings of
the International Conference on Automation of Soft-
ware Test (AST).

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. 2024. Berkeley function calling leader-
board.

Yingxuan Yang, Qiuying Peng, Jun Wang, and Weinan
Zhang. 2024. Multi-llm-agent systems: Tech-
niques and business perspectives. arXiv preprint
arXiv:2411.14033.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik
Narasimhan. 2024. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains.
Preprint, arXiv:2406.12045.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Fan Yin, Zifeng Wang, I Hsu, Jun Yan, Ke Jiang, Yanfei
Chen, Jindong Gu, Long T Le, Kai-Wei Chang, Chen-
Yu Lee, et al. 2025. Magnet: Multi-turn tool-use data
synthesis and distillation via graph translation. arXiv
preprint arXiv:2503.07826.

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz,
Bryan Catanzaro, Andrew Tao, Qingyun Wu, Zhiding
Yu, and Guilin Liu. 2025. Nemotron-research-tool-
nl: Exploring tool-using language models with rein-
forced reasoning. arXiv preprint arXiv:2505.00024.

Yuxiang Zhang, Jing Chen, Junjie Wang, Yaxin Liu,
Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao Lin,
Hanwen Wan, Yujiu Yang, Tetsuya Sakai, Tian Feng,
and Hayato Yamana. 2024. ToolBeHonest: A multi-
level hallucination diagnostic benchmark for tool-
augmented large language models. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 11388—11422,
Miami, Florida, USA. Association for Computational
Linguistics.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai,
Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. 2025.
Deepresearcher: Scaling deep research via reinforce-
ment learning in real-world environments. arXiv
preprint arXiv:2504.03160.

Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan,
Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun
Zhang, Kun Shao, Linyi Yang, and Jun Wang. 2025.
Memento: Fine-tuning llm agents without fine-tuning
Ilms. Preprint, arXiv:2508.16153.

A Task Definition in 7-bench

Following Yao et al. (2024), each task in 7-bench
is modelled as a partially observable Markov deci-
sion process (POMDP)

M=(S, A O, T, R, U).

We briefly restate every component and specify
how they instantiate in the retail and airline
domains.

State space S : The hidden state is factored into
S = Sap ® Suser Where Sgp is a snapshot of the
underlying database (orders, flights, balances efc.)
and Sygr stores the latent user context (identity,
revealed preferences, dialogue progress).

22959

https://arxiv.org/abs/2405.16533
https://arxiv.org/abs/2405.16533
https://arxiv.org/abs/2405.16533
https://doi.org/10.18653/v1/2024.emnlp-industry.37
https://doi.org/10.18653/v1/2024.emnlp-industry.37
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://doi.org/10.18653/v1/2024.emnlp-main.637
https://doi.org/10.18653/v1/2024.emnlp-main.637
https://doi.org/10.18653/v1/2024.emnlp-main.637
https://arxiv.org/abs/2508.16153
https://arxiv.org/abs/2508.16153

Action space A : The agent can either (i) invoke
an API tool that queries or mutates the database
(Agp) or (ii) send a free-form respond message to
the user (Ayser). Thus A = Agp U Ayser.

Observation space O : After each action the
environment returns either a JSON payload/error
from the database (Ogp,) or the next user utterance
produced by an LLM simulator (Oyer), yielding
0= Odb U Ouser-

Transition function 7: 7 :Sx A —-Sx 0O
is deterministic for database tools (state is updated,
observation is the tool output) and stochastic for
respond, which calls the user simulator to sample
the next utterance and potentially reveal more of
the instruction.

Reward function R : At dialogue termination
we compare the execution log to a gold reference:
(1) hashes of mutable tables must match, (2) all
mandatory natural-language outputs must appear
in the agent’s responses. If both hold, R = 1,
otherwise 0.

Instruction space I/ : Each task provides a fixed
natural-language instruction u € U describing the
user goal, persona and constraints. The user sim-
ulator may disclose u incrementally; therefore the
agent must act under partial observability.

This causal decomposition lets us pinpoint
failure modes such as wrong tool arguments
(action-level), policy violations (transition-level),
or hallucinated user messages (observation-level).

B Pass”k Results

B.1 Airline results

Tables 2-4 refer to pass”k results of the baselines
and our implemented methods. As explained in
§6.2, IRMA performs better when there are no
ground-truth or user instruction errors. All results
are obtained using GPT-4o0 as the LLM in the agent
frameworks.

Method Pass®1 Pass”2 Pass*3 Pass"4 Pass"5
ReAct 0.396 0.2779 0.2279 0.200 0.180
IRMA 0452 0.3680 0.3280 0.308 0.300
FC 0424 0.3120 0.2660 0.232 0.200
Self-reflection 0.448 0.3140 0.2560 0.224 0.200

Table 2: Results on all Airline tasks.

Method Pass”1 Pass”2 Pass"3 Pass"4 Pass"5
ReAct 0.4941 0.3735 0.3206 0.2882 0.2647
IRMA 0.5706 0.4912 0.4471 0.4235 0.4118
FC 0.5529 04353 03794 0.3353 0.2941
Self reflection 0.5167 0.3750 0.3139 0.2778 0.2500

Table 3: Results of different methods on all Airline
tasks, excluding the tasks with ground-truth errors.

Method Pass®1 Pass"2 Pass”"3 Pass"4 Pass"5
ReAct 0.5226 0.4065 0.3516 0.3161 0.2903
IRMA 0.6258 0.5387 0.4903 0.4645 0.4516
FC 0.6000 04774 04161 03677 0.3226
Self reflection 0.5556 0.4146 0.3528 0.3111 0.2778

Table 4: Results of different methods on all Airline
tasks, excluding the tasks with ground-truth errors and
user instruction errors.

B.2 Retail results

Tables 5-7 represent the results of the baseline and
our implemented methods in the Retail domain.

Method Pass1 Pass"2 Pass"3 Pass"4 Pass"5
ReAct 0.5182 03704 0.2999 0.2573 0.2260
IRMA 0.5826 0.4783 0.4261 0.3948 0.3739
FC 0.6052 0.4522 0.3643 0.3043 0.2609
Self-reflection 0.5113 0.3809 0.3017 0.2383 0.1826

Table 5: Results of different methods on all Retail tasks.

Method Pass”1 Pass"2 Pass"3 Pass"4 Pass*5
ReAct 0.5304 0.3804 0.3080 0.2643 0.2321
IRMA 0.5982 0.4911 0.4375 0.4054 0.3839
FC 0.6164 04616 0.3732 0.3125 0.2679
self-reflection 0.5250 0.3911 0.3098 0.2446 0.1875

Table 6: Results of different methods on all Retail tasks,
excluding the tasks with ground-truth errors.

Method Pass®1 Pass”2 Pass"3 Pass"4 Pass"5
ReAct 0.5562 0.4048 0.3200 0.2818 0.2476
ours 0.6248 0.5171 0.4629 0.4305 0.4095
FC 0.6381 0.4838 0.3933 0.3314 0.2857
self reflection 0.5562 0.4171 0.3305 0.2610 0.2000

Table 7: Results of different methods on all Retail tasks,
excluding the tasks with ground-truth errors and user
instruction errors.

C Domain Policies

Figures 12 and 13 are the domain policies present
for the retail and airline domains in the 7-bench.
These rules are injected verbatim as the system
prompt to every tool-calling agent. An agent that

22960

violates any of them—even if it successfully fulfills
the user’s request—receives zero reward, so strict
compliance is essential. The Tool-Calling Agent
has to strictly operate under the constraints of these
policies to correctly solve user requests.

D Failure Example

Figures 8 and 9 show an example of errors occur-
ring in the conversational trajectories simulating
task 19 (retail) of the user-agent interactions as enu-
merated in subsections of §4. Error 1 in Figure 8
shows an example of ’*User Instruction Hallucina-
tion” occurring in the very first user turn. Error 2
in Figure 9 shows an example of ’Domain Policy
Violation’ error. The user instruction for Task 19
is provided in Figure 7. This ’instruction’ repre-
sents the original user instruction provided to the
LLM-simulated user. It is the ‘script’ the user has
to follow to provide requests to the agent.

E Input Reformulation Multi Agent
framework

E.1 Follow-up question ACTing (FACT)
Agent

The primary difference between FACT and other
prompting techniques lies in the instruction section
of the system prompt (refer to Figure 10).

F Self-Reflection Framework

To check the effectiveness of self-reflection as an
alternative against the baselines and IRMA, we im-
plement a multi-agent LLM self-reflection pipeline,
consisting of a retriever LLM agent and a veri-
fier LLM agent. Contrary to input reformulation,
where the prompt provided in the user query is
reformulated, the self-reflection agent pauses the
tool-calling LLM agent before the execution envi-
ronment executes the tool-call. All of the previous
user queries are provided as input to the retriever
agent to extract the relevant domain policy rules
based on the user intent reflected from the user re-
quests in the conversation. The retrieved rules are
provided to the verifier agent along with the tool-
calling agent’s planned tool call. The verifier agent
then verifies whether the tool-call is correct by pro-
viding a reflective justification based on determin-
ing whether any domain rule has been violated or
not. The overall pipeline of the self-reflection agent
is provided in Figure 11. The reflective feedback
loop from verifier is set to be a one-time loop as
the execution of the loop is very latency-heavy and

invoking it multiple times might not be ideal in
real-world customer-agent scenarios.

IRMA Ablations (/) Pass”"1 Pass®2 Pass"3 Pass"4 Pass"5

M 0.416 0.27 0.212 0.18 0.16
C 0416 0276 0206 0.164 0.14
T 0424 0.268 0.19 0.14 0.1
M+C 0.428 0.31 0.26 0.236 0.22
M+T 0.448 0294 0.214 0.16 0.12
C+T 0.38 0264 0212 0.18 0.16
M+C+T 0452 0368 0328 0.308 0.3

Table 8: Results of IRMA component ablations on Air-
line tasks. Bold scores represent the best scores. Ifalic
scores represent the second-best scores. ‘M’ represents
the Memory sub-agent of IRMA, ‘C’ represents the Con-
straint sub-agent, and ‘T’ represents the Tool-Suggestor.

G Ablation Studies on IRMA

We ablate the three IRMA modules—Memory (M),
Constraint (C), and Tool (T)—and evaluate them
on the airline subset. Across all Pass"k metrics,
the full configuration (M+C+T) achieves the best
performance, indicating strong complementarity
among modules. Among the ablations, M+C is
consistently the strongest, ranking second overall
in terms of better reliability at higher values of
k. This pattern suggests that instruction retention
(M) and policy/constraint adherence (C) account
for most gains in long-horizon reasoning and plan
stability, while tool disambiguation (T) provides
the additional performance improvement needed to
reach state-of-the-art performance. In sum, each
module targets a distinct failure mode—carryover
of instructions (M), rule compliance (C), and tool
selection/parameterization (T)—but their integra-
tion is necessary for robust behavior in dynamic
tool-use settings. The results of the ablation experi-
ments are provided in Table 8.

Method (]) Pass™1 Pass*2 Pass®3 Pass"4 Pass”"5

ReAct 0.188 0.09 0.052 0.032 0.02
FC 0.236 0.1179 0.062 0.036 0.02
IRMA 0.208 0.144 0.106 0.08 0.06

Table 9: Performance of IRMA in the Airline domain
using GPT-40-mini as the LLM-backbone model in all
the modules of IRMA. Bold scores represent the best
scores.

We also test IRMA using GPT-40-mini as the
LLM backbone, to test the effect of IRMA with a
smaller LLM. As shown in Table 9, the results indi-
cate that the benefits of IRMA are not tied to a par-
ticular larger model’s reasoning strength and trans-

22961

fer to smaller function-calling backbones. Con-
ceptually, IRMA does not replace parametric rea-
soning; rather, its structured inputs—memory, con-
straints, and tool suggestions—amplify a model’s
ability to retain instructions, follow domain rules,
and disambiguate tools across long contexts, yield-
ing more stable performance under multiple at-
tempts.

Method (|) Pass®1 Pass”2 Pass”3 Pass”"4 Pass"5

IRMA (R) 0.4 0302 0.256 0.232 0.22
IRMA (F) 0452 0368 0.328 0.308 0.3

Table 10: IRMA comparison with Follow-up question-
ing disabled (IRMA (R)) and enabled (IRMA (F)) in the
Airline domain with GPT-40 backbone.

To isolate the effect of follow-up questioning,
we create a controlled variant that swaps IRMA’s
system prompt with the standard ReAct prompt
while keeping all information-consolidating com-
ponents—memory, constraint extraction, and tool
suggestions—unchanged. This “IRMA + ReAct-
prompt” baseline places both agents on identical
inputs and differs only in the instructions provided
to the final tool-calling agent. As reported in Ta-
ble 10, IRMA consistently outperforms this base-
line across Pass”k metrics, indicating that targeted
follow-up questioning provides gains beyond Re-
Act.

22962

{
"instruction": "You are Mei Davis in 80217. You want to return the water bottle, and exchange the pet bed and office chair to the cheapest version.
Mention the two things together. If you can only do one of the two things, you prefer to do whatever saves you most money, but you want to know the
money you can save in both ways. You are in debt and sad today, but very brief.",
"outputs": [

"54.04",

"41.64"
1

"actions": [

"name": "find_user_id_by_name_zip",
"kwargs": {
"first_name": "Mei",
"last_name": "Davis",
"zip": "80217"
}
b

"name": "get_user_details",
"kwargs": {
"user_id": "mei_davis_8935"
}
h
{
"name": "get_order_details",
"kwargs": {
"order_id": "#W2890441"
}
h

"name": "get_order_details",
"kwargs": {
"order_id": "#W1267569"
}
b
{

"name": "get_product_details",
"kwargs": {
"product_id": "2747247837"
}
b
{
"name": "get_product_details",
"kwargs": {
"product_id": "4794339885"
}
h

"name": "return_delivered_order_items",
"kwargs": {
"order_id": "#W2890441",
"item_ids": [
"2366567022"

I,
"payment_method_id": "credit_card_1061405"
}

}
]

Figure 7: User instruction of Task 19 (Retail) in 7-bench.

22963

START OF THE TRAJECTORY:

USER: Hi. | want to return a water bottle and also exchange my pet bed and office chair for cheaper versions. Can you
help me with that? # Error 1: User Instruction Hallucination: User outputs ‘cheaper’ instead of ‘cheapest’, which is actually
mentioned in the user instruction.

ASSISTANT: | can assist you with returning the water bottle and exchanging the pet bed and office chair. First, | need to
authenticate your identity. Could you please provide your email address or your name and zip code?

USER: I'm Mei Davis, and my zip code is 80217.

ASSISTANT: Function(arguments="{"first_name":"Mei","last_name":"Davis","zip":"80217"},
name='find_user_id_by_name_zip')

TOOL: mei_davis_8935

ASSISTANT: Function(arguments='{"user_id":"mei_davis_8935"}', name='get_user_details")

TOOL: API output: {"name": {"first_name": "Mei", "last_name": "Davis"}, "address": {"address1": "698 Maple Drive",
"address2": "Suite 465", "city": "Denver", "country": "USA", "state": "CQO", "zip": "80217"}, "email":
"mei.davis6811@example.com”, "payment_methods": {"credit_card_1061405": {"source": "credit_card", "brand":
"mastercard", "last_four": "1037", "id": "credit_card_1061405"}}, "orders": ["#W2890441", "#W1267569")}

ASSISTANT: Thank you, Mei. | have located your account. Let's proceed with your request. I'll first check the status of your
orders to see if the return and exchange can be processed.

Function(arguments='{"order_id": "#W2890441"}', name='get_order_details")

TOOL: API output: {"order_id": "#W2890441", "user_id": "mei_davis_8935", "address": {"address1": "698 Maple Drive",
"address2": "Suite 465", "city": "Denver", "country": "USA", "state": "CO", "zip": "80217"}, "items": [{"name": "Water Bottle",
"product_id": "8310926033", "item_id": "2366567022", "price": 54.04, "options": {"capacity": "1000ml", "material": "stainless
steel", "color": "blue"}}, {"name": "Pet Bed", "product_id": "2747247837", "item_id": "2751999929", "price": 195.11,
"options": {"size": "large", "material": "memory foam", "color": "grey"}}, {"name": "Office Chair", "product_id": "4794339885",
"item_id": "8069050545", "price": 499.28, "options": {"material": "leather", "color": "blue", "armrest": "none", "backrest
height": "high-back"}}, {"name": "Skateboard", "product_id": "1968349452", "item_id": "3877188862", "price™: 182.03,
"options": {"deck material": "plastic", "length": "31 inch", "design": "plain"}}], "fulfillments": [{"tracking_id": ['642796688644"],
"item_ids": ["2366567022", "2751999929", "8069050545", "3877188862"]}], "status™: "delivered", "payment_history":
[{"transaction_type": "payment", "amount": 930.46, "payment_method_id": "credit_card_1061405"}]}

CONTINUED...

Figure 8: Part 1 of the conversation trajectory simulation of Task 19 (Retail).

22964

PART 2 OF THE TRAJECTORY:

IASSISTANT: Your order #/N2890441 is delivered and includes the following items:
1. **Water Bottle** - Item ID: 2366567022
2. **Pet Bed™ - Item ID: 2751999929
3. **Office Chair** - Item ID: 8069050545
4. **Skateboard** - Item ID: 3877188862
'You can return the water bottle and exchange the pet bed and office chair. Please confirm the following details:
- **Return**: Water Bottle
- **Exchange**:
- Pet Bed for a cheaper version
- Office Chair for a cheaper version

Please also confirm the payment method for any price differences or refunds. You have a Mastercard ending in 1037 on file.
Would you like to use this for the transactions?

USER: Yes, please use the Mastercard ending in 1037. Also, could you let me know how much | can save by exchanging
each item to the cheaper versions?

IASSISTANT: Function(arguments="{"product_id": "2747247837"}', name='get_product_details')

TOOL: API output: {"name": "Pet Bed", "product_id": "2747247837", "variants": {...}, "price": 195.11}
ASSISTANT: Function(arguments="{"product_id":"4794339885"}', name='get_product_details')

TOOL: API output: {"name": "Office Chair", "product_id": "4794339885", "variants": {...}, "price": 499.28}
ASSISTANT: Here are the available cheaper options for the items you want to exchange:

#HHE Pet Bed

- **Current Price**:\$195.11

- **Cheaper Option**: Large, Memory Foam, Beige - \$180.93
- **Savings**: \$14.18

Office Chair

- **Current Price**: \$499.28

- **Cheaper Option**: Leather, Blue, Standard Backrest - \$471.82
- **Savings**: \$27.46

Would you like to proceed with these exchanges and the return of the water bottle? Please confirm, and I'll process the
transactions using your Mastercard ending in 1037.

USER: Yes, let's proceed with both exchanges and the return.

IASSISTANT: Function(arguments="{"order_id": "#W2890441", "item_ids": ['2366567022"], "payment_method_id":
"credit_card_1061405"}', name="return_delivered_order_items')

TOOL: API output: { ... "return_items™: ['2366567022"], "return_payment_method_id": "credit_card_1061405" }
ASSISTANT: Function(arguments="{"order_id":"#W2890441","item_ids":["2751999929","8069050545"],"new_item_ids":
['6942241102","4168944673"],"payment_method_id":"credit_card_1061405"}', name='exchange_delivered_order_items')
#Error 2- Assistant violates a domain rule by trying to exchange an order which is no more in ‘delivered status’

TOOL: Error: non-delivered order cannot be exchanged

IASSISTANT: It seems there was an error processing the exchange for the pet bed and office chair. The system indicates that
the order cannot be exchanged, possibly due to a status issue.

| have successfully processed the return for the water bottle, and you will receive an email with instructions on how to return
it.

For the exchange issue, | recommend contacting our human support team for further assistance. Would you like me to
transfer you to a human agent?

USER: No, that's okay. Thank you for your help. ###STOP###

Figure 9: Part 2 of the conversation trajectory simulation of Task 19 (Retail).

22965

Instruction

You operate in a dynamic environment and must resolve the user’s request through **informed reasoning**, **tool usage**, and
strategic follow-up questions. Your goal is to progress the task without making assumptions, violating constraints, or misusing
incomplete data.

Special Input Tags

* ‘“memory>‘; Contains the **user’s conversation history**. Respond to the **most recent query**, but consider the **entire context**
when reasoning or making decisions.
* ‘<constraints>": Lists **required policy conditions**.

You must:
* **Validate** whether constraints are met.
Ask follow-up questions if information is missing or unclear.

Only **call tools** if all relevant constraints are satisfied with valid data.
* ‘<tool_suggested>": Suggests specific tools.
'You must only choose from this list, and only when appropriate for the task.

Additional Guidelines

##H# Placeholder Handling

If the user provides **placeholder or generic

values™* (e.g., "XXX", "[name]", "123456", "some location"):

* **Do not** call any tool using these. *

**Call it out* in your Thought.

Ask a follow-up question to collect the required specific value.

##H# Data Conflict Handling

If a tool returns **factual data** (e.g., from a reservation system, database, or API) that **conflicts with what the user claims** (e.g.,
number of passengers, destination, price):

Acknowledge the discrepancy in your Thought.

Clarify the conflict to the user in your response.

Avoid proceeding with incorrect assumptions — instead, confirm or resolve the difference with a follow-up.

Example:
> The user requested a refund for 3 passengers, but the reservation data only includes 2. The agent must highlight this and seek
clarification.

Output Format

Always respond using this structure:

“ Thought: <Explain how you processed the inputs, constraints, memory, placeholders, data
conflicts, and why you're taking your next action.>

Action: "name": <Tool or response action>, "arguments": <Valid JSON with real data only> “
* **Do not** use dummy data. * **Do not** skip validation steps. * **Always prioritize clarity, constraint compliance, and correctness.**

(a) Part 1 of the FACT system prompt

Figure 10: FACT System prompt.

22966

Example

User Input:
“I want a refund for 3 passengers.”

Tool Output:
Reservation data: 2 passengers only.

Thought:

The user requested a refund for 3 passengers, but the tool shows only 2 on the reservation. | need to clarify
this mismatch before proceeding.

Action:

{{"name": {RESPOND_ACTION_NAME}", "arguments": {{"{RESPOND_ACTION_FIELD\ _NAME}": "Your
reservation currently includes 2 passengers. Can you confirm if there's another booking or if the count was
mistaken?"}}}}

Summary of Priorities

. **Use memory™** to understand full context.

. **Respect constraints** and gather info to fulfill them.

. **Use tools only with valid, real data** (not placeholders).

. **Identify and handle data conflicts** between tools and user input.

. **Ask follow-up questions** when necessary — this is preferred over assumptions or invalid actions.

a b ON -

Stay helpful, policy-compliant, and driven by accuracy, context, and user success.

(b) Part 2 of the FACT system prompt

Figure 10: FACT System prompt.

22967

Latest User-Assistant Conversation Trajectory All Domain Policies

(4 N
“ I'd like to ex?hange my office chair to the cheapest one :l Exchange Delivered Orders:
o available and return my water bottle. || - An o?der c;.m only be returned if its
status is 'delivered'
(- There cannot be any change of
(;) get_order_details[#W2890441] || product types

Assistant
|
(;) Found your office chair. Looking for the cheapest alternative ||_ Extract all the relevant domain ’:ules
| based on the latest user requests in the
conversation trajectory

o get_product_details[product id of office chair] || Inpuu.) q Retriever A gent
|
n Can you tell me how much I save by returning my water ||
bottle? |
|
. ! 1. <All domain rules relevant to exchange of items>
« o J | 2.<All domain rules relevant to return of items>

3. <Other relevant rules>
Relevant Domain Policies E
Yes ¢

Q.1. Is the last user request violating any domain

rule?
7 AN . . .
. 2. 1 -
m) é . 1\? g Continue Q.2. Is the planned tO(:i lc:?ll violating any domain
§ > \a 00/'/ No) conversation B ’ . .
_ ased on the answers to above questions. provide
Assistant v Justification for the Planned Tool-Call

A | {=)
=One-time Feedback: = = Reflection € = = = = = = = = = q Verifier Agent

Fail
lPass

% Proceed with tool call

Figure 11: Overview of the pipeline showcasing the working of the self-reflection framework. The italicized text
inside dotted green dotted text boxes refer to prompt gists provide to the Retriever and Verifier LLM Agent. The
self-reflection only activates when the assistant generates the tokens to invoke a tool call.

22968

Retail agent policy
As a retail agent, you can help users cancel or modify pending orders, return or exchange delivered orders, modify their default user
address, or provide information about their own profile, orders, and related products.

- At the beginning of the conversation, you have to authenticate the user identity by locating their user id via email, or via name + zip
code. This has to be done even when the user already provides the user id.

- Once the user has been authenticated, you can provide the user with information about order, product, profile information, e.g. help
the user look up order i

- You can only help one user per conversation (but you can handle multiple requests from the same user), and must deny any requests
for tasks related to any other user.

- Before taking consequential actions that update the database (cancel, modify, return, exchange), you have to list the action detail and
obtain explicit user confirmation (yes) to proceed.

- You should not make up any information or knowledge or procedures not provided from the user or the tools, or give subjective
recommendations or comments.

- You should at most make one tool call at a time, and if you take a tool call, you should not respond to the user at the same time. If you
respond to the user, you should not make a tool call.

- You should transfer the user to a human agent if and only if the request cannot be handled within the scope of your actions.

Domain basics:
- All times in the database are EST and 24 hour based. For example \"02:30:00\" means 2:30 AM EST.

- Each user has a profile of its email, default address, user id, and payment methods. Each payment method is either a gift card, a
paypal account, or a credit card.

- Our retail store has 50 types of products. For each type of product, there are variant items of different options. For example, for a 't
shirt' product, there could be an item with option 'color blue size M', and another item with option 'color red size L'.

- Each product has an unique product id, and each item has an unique item id. They have no relations and should not be confused.

- Each order can be in status 'pending’, 'processed', 'delivered', or 'cancelled'. Generally, you can only take action on pending or
delivered orders.

- Exchange or modify order tools can only be called once. Be sure that all items to be changed are collected into a list before making
the tool call!!!

Cancel pending order
- An order can only be cancelled if its status is 'pending’, and you should check its status before taking the action.
- The user needs to confirm the order id and the reason (either 'no longer needed' or 'ordered by mistake') for cancellation.

- After user confirmation, the order status will be changed to 'cancelled’, and the total will be refunded via the original payment method
immediately if it is gift card, otherwise in 5 to 7 business days.

(a) Part 1 of the Retail Domain Rules

Figure 12: Domain Policies of the Retail Domain

22969

Modify pending order
- An order can only be modified if its status is 'pending', and you should check its status before taking the action.

- For a pending order, you can take actions to modify its shipping address, payment method, or product item options, but
nothing else.

Modify payment
- The user can only choose a single payment method different from the original payment method.
- If the user wants the modify the payment method to gift card, it must have enough balance to cover the total amount.

- After user confirmation, the order status will be kept 'pending'. The original payment method will be refunded immediately if
it is a gift card, otherwise in 5 to 7 business days.

Modify items
- This action can only be called once, and will change the order status to 'pending (items modifed)', and the agent will not be
able to modify or cancel the order anymore. So confirm all the details are right and be cautious before taking this action. In

particular, remember to remind the customer to confirm they have provided all items to be modified.

- For a pending order, each item can be modified to an available new item of the same product but of different product
option. There cannot be any change of product types, e.g. modify shirt to shoe.

- The user must provide a payment method to pay or receive refund of the price difference. If the user provides a gift card, it
must have enough balance to cover the price difference.

- If the user wants to exchange a 'pending' item then it can be modified instead of being exchanged.

Return delivered order

- An order can only be returned if its status is 'delivered', and you should check its status before taking the action.

- The user needs to confirm the order id, the list of items to be returned, and a payment method to receive the refund.

- The refund must either go to the original payment method, or an existing gift card.

- After user confirmation, the order status will be changed to 'return requested', and the user will receive an email regarding
how to return items.

Exchange delivered order

- An order can only be exchanged if its status is 'delivered’, and you should check its status before taking the action. In
particular, remember to remind the customer to confirm they have provided all items to be exchanged.

(b) Domain Policies of the Retail Domain

Figure 12: Domain Policies of the Retail Domain

22970

Airline Agent Policy
The current time is 2024-05-15 15:00:00 EST.
As an airline agent, you can help users book, modify, or cancel flight reservations.

- Before taking any actions that update the booking database (booking, modifying flights, editing baggage, upgrading cabin
class, or updating passenger information), you must list the action details and obtain explicit user confirmation (yes) to
proceed.

- You should not provide any information, knowledge, or procedures not provided by the user or available tools, or give
subjective recommendations or comments.

- You should only make one tool call at a time, and if you make a tool call, you should not respond to the user
simultaneously. If you respond to the user, you should not make a tool call at the same time.

- You should deny user requests that are against this policy.

- You should transfer the user to a human agent if and only if the request cannot be handled within the scope of your
actions.

Domain Basic

- Each user has a profile containing user id, email, addresses, date of birth, payment methods, reservation numbers, and
membership tier.

- Each reservation has an reservation id, user id, trip type (one way, round trip), flights, passengers, payment methods,
created time, baggages, and travel insurance information.

- Each flight has a flight number, an origin, destination, scheduled departure and arrival time (local time), and for each date:
- If the status is "available", the flight has not taken off, available seats and prices are listed.
- If the status is "delayed" or "on time", the flight has not taken off, cannot be booked.
- If the status is "flying", the flight has taken off but not landed, cannot be booked.

Book flight
- The agent must first obtain the user id, then ask for the trip type, origin, destination.

- Passengers: Each reservation can have at most five passengers. The agent needs to collect the first name, last name,
and date of birth for each passenger. All passengers must fly the same flights in the same cabin.

- Payment: each reservation can use at most one travel certificate, at most one credit card, and at most three gift cards. The
remaining amount of a travel certificate is not refundable. All payment methods must already be in user profile for safety
reasons.

- Checked bag allowance: If the booking user is a regular member, 0 free checked bag for each basic economy passenger,
1 free checked bag for each economy passenger, and 2 free checked bags for each business passenger. If the booking
user is a silver member, 1 free checked bag for each basic economy passenger, 2 free checked bag for each economy
passenger, and 3 free checked bags for each business passenger. If the booking user is a gold member, 2 free checked
bag for each basic economy passenger, 3 free checked bag for each economy passenger, and 3 free checked bags for
each business passenger. Each extra baggage is 50 dollars.

- Travel insurance: the agent should ask if the user wants to buy the travel insurance, which is 30 dollars per passenger and
enables full refund if the user needs to cancel the flight given health or weather reasons.

(a) Part 1 of the Airline Domain Rules

Figure 13: Domain Policies of the Airline Domain.

22971

4 Modify flight
- The agent must first obtain the user id and the reservation id.

- Change flights: Basic economy flights cannot be modified. Other reservations can be modified without changing the origin,
destination, and trip type. Some flight segments can be kept, but their prices will not be updated based on the current price.
The API does not check these for the agent, so the agent must make sure the rules apply before calling the API!

- Change cabin: all reservations, including basic economy, can change cabin without changing the flights. Cabin changes
require the user to pay for the difference between their current cabin and the new cabin clags. Cabin class must be the
same across all the flights in the same reservation; changing cabin for just one flight segment is not possible.

- Change baggage and insurance: The user can add but not remove checked bags. The user cannot add insurance after
initial booking.
- Change passengers: The user can modify passengers but cannot modify the number of passengers. This is something

that even a human agent cannot assist with.

- Payment: If the flights are changed, the user needs to provide one gift card or credit card for payment or refund method.
The agent should ask for the payment or refund method instead.

Cancel flight

- The agent must first obtain the user id, the reservation id, and the reason for cancellation {change of plan, airline cancelled
flight, or other reasons)

- All reservations can be cancelled within 24 hours of booking, or if the airline cancelled the flight. Otherwise, basic economy|
or economy flights can be cancelled only if travel insurance is bought and the condition is met, and business flights can
always be cancelled. The rules are strict regardless of the membership status. The APl does not check these for the agent,
50 the agent must make sure the rules apply before calling the API!

- The agent can only cancel the whole trip that is not flown. If any of the segments are already used, the agent cannot help
and transfer is needed.

- The refund will go to original payment methads in 5 to 7 business days.

Refund

- If the user is silver/gold member or has travel insurance or flies business, and complains about cancelled flights in a
reservation, the agent can offer a certificate as a gesture after confirming the facts, with the amount being $100 times the
number of passengers.

- If the user is silver/gold member or has travel insurance or flies business, and complaing about delayed flights in a

reservation and wants to change or cancel the reservation, the agent can offer a certificate as a gesture after confirming the
facts and changing or cancelling the reservation, with the amount being $50 times the number of passengers.

(b) Part 2 of the Airline Domain Rules

Figure 13: Domain Policies of the Airline Domain

22972

