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Abstract

In collaborative creation tasks, people steer ar-
tifacts towards specific goals by refining them
with multimodal communication over multiple
rounds of interaction. In contrast, generative
Al excels at creating artifacts in a single turn
but can struggle to make precise refinements
that match our design intent. To close this
gap, we present mrCAD, a dataset of multi-
turn interactions in which pairs of humans it-
eratively created and refined computer-aided
designs (CADs).! In each game, a Designer
sent instructions to a Maker, explaining how
to create and subsequently refine a CAD to
match a target design that only the Designer
could see. mrCAD consists of 6,082 commu-
nication games, 15,163 instruction-execution
rounds, played between 1,092 pairs of human
players. Crucially, Designers had access to two
communication modalities — text and drawing.
Analysis finds that players relied more on text
in refinement than in initial generation instruc-
tions, and used different linguistic elements
for refinement than for generation. We also
find that state-of-the-art VLMs are better at fol-
lowing generation instructions than refinement
instructions. These results lay the foundation
for modeling multi-turn, multimodal communi-
cation not captured in prior datasets.

1 Introduction

Recent advances in generative Al allow people to
ask for the creation of artifacts in natural, conver-
sational language. However, while many models
generate high-quality output in response, they often
struggle to process complex, multi-turn requests
(Laban et al., 2025). This challenge is especially
pronounced in tasks such as image editing (Fu et al.,
2024) and code generation (Cassano et al., 2023),
resulting in frustration with Al-generated content
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Figure 1: We present mrCAD, a dataset of humans play-
ing a multi-turn, multimodal communication game in
a 2D CAD environment. A pair of participants collab-
orated to recreate a target CAD over multiple rounds.
The target design is known only to the Designer, who
instruct the Maker using drawing and text. The Maker
manipulate the current CAD based on these instructions.

that is “nearly there” but difficult to refine to pre-
cisely match user intent. On the other hand, the
ability of humans to iteratively refine communi-
cated concepts is a core mechanism used to en-
sure robustness of communication (Dingemanse
and Enfield, 2024), as well as a crucial part of the
design process (Lawson, 2006; Williams and Cow-
droy, 2002). Training Al systems to understand
these forms of repair is particularly challenging
given that they are typically multimodal, relying on
the interaction between different communication
modalities to make their meaning precise.

We present mrCAD, a resource for studying and
benchmarking multimodal refinement communica-
tion in a computer-aided design (CAD) setting. Our
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task (Figure 1) elicits the following phenomena:
(1) contextual dependence, where the refinement
instructions must be interpreted in the context of
the current CAD (§ 4); (2) interactions between
modalities, where drawings and texts must be inter-
preted together (§ 4); and (3) monotonicity, where
participants communicate to iteratively shrink the
distance between the current CAD and the target
CAD (§ 4 and § 5). These phenomena capture how
humans can communicate flexibly to accomplish
precise tasks such as producing CAD designs.

We highlight two main uses of mrCAD: (1) as
a benchmark for evaluating multimodal, multi-
turn instruction following systems such as those
powered by vision-language models, and (2) as a
resource for understanding the nature of human
refinement communication.

Benchmarking CAD reconstruction is particu-
larly attractive as an instruction following bench-
mark for the following reasons: (1) The CAD re-
construction accuracy can be programmatically de-
fined, rather than relying on learned metrics such
as CLIP (Radford et al., 2021). (2) CAD programs
can be easily manipulated using clicks and drags
(similar to a slide design software), making it easy
to evaluate both tool-using agents and human par-
ticipants. (3) The target CAD designs in mrCAD
are sourced from SketchGraph (Seff et al., 2020),
consisting of naturalistic 2D designs created by hu-
man designers, rather than synthetically generated
from a domain-specific language that the authors
have crafted by hand.

Understanding As a resource for understand-
ing the nature of multimodal refinement in human-
human collaboration, mrCAD is large scale, con-
taining 6,082 human-to-human plays of the game,
with a total of 15,163 rounds of instruction. A large
number of CADs in our dataset are recreated multi-
ple times by different dyads, ranging from 2 to 30
games per design, capturing the natural variation
in refinement strategies across people. A notable
feature of CAD is that while it only contains simple
curves, they combine form rich semantic objects
and sub-parts (like the “flower” and “petals” in Fig-
ure 1), which must be parsed contextually (Ji et al.,
2022). This is in contrast to works such as Zitnick
and Parikh (2013), where each object in the scene
has a canonical, pre-defined name.
Our work makes the following contributions:

¢ A novel dataset of multimodal refinement of

CAD designs.

* A detailed procedure for collecting a dataset of
multimodal refinement communication using
crowd-sourcing.

* The dataset and benchmark, consisting of
15,163 instructions and executions, wrapped
in an accessible gym environment.

* Analyses of human-human communication
that reveal differences in the multimodal lan-
guages of generation and refinement.

* Evaluation of existing VLM models, revealing
a severe gap in their refinement ability, partic-
ularly compared to their generation ability.

2 The mrCAD Task

The mrCAD task (Fig. 1) is a two player, multi-
turn communication game. Following McCarthy
et al. (2024), a Designer issues multimodal instruc-
tions to guide a Maker to take actions in a mutually
observable CAD environment to construct a target
CAD, known only to the Designer.

2.1 mrCAD environment

State The state D is a CAD data structure.

D -> {Curve, ...}
Curve -> Line | Circle | Arc
Line -> 1(P,P) // end points

Circle -> c(P,P) // points on diameter
Arc -> a(P,P,P) // start, mid, end
Each curve is defined by its control points that the
Maker selects. A render function allows players to
view the state by rendering the design as an image.

Action The Maker can alter the CAD by making,
removing, and moving curves via translation. They
can also change the shape of a curve by moving its
control points. If multiple curves share the same
control point, moving the point would modify all
the curves, and deleting the point would delete all
the adjacent curves.

Action -> make_curve Curve
| remove_curve Curve
| move_curve Curve Vxy
| move_point P P
| delete_point P

Transition Actions @ = [a1,a2,...,ay] can be
applied to a design, which results in a new design.

D' =a(D) = [ay,az, .. .,a,](D)
...0 al)(l))

fry G‘TLO
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Figure 2: The asymmetric Chamfer distance from
CAD D to CAD F is calculated by sampling 10 points
on every curve of D, and calculating (symbolically) the
minimum distance from each point to E. Each distance
is then normalized by multiplying i of the maximum
size of the canvas, making it invariant to the canvas size.
These distances are summed, making the asymmetric
Chamfer distance. The symmetric Chamfer distance we
use is the average of both directions.

Distance metric CADs are programmatic enti-
ties that exist in a visual space, where very different
elements could be used to create two CADs of sim-
ilar appearance. For example, a series of straight
lines can be used to represent a curve. Therefore,
we devise a distance metric A based on Chamfer
distance (Butt and Maragos, 1998) that respects the
vector-like nature of CADs while also accounting
for geometric similarity (Fig. 2).

Instructions The Designer can instruct the
Maker using multimodal messages.
Message -> (Text, Drawing)

Text -> [char, ...]1 | empty
Drawing -> [stroke, ...] | empty

A text is a sequence of characters and a drawing is
a sequence of strokes, encoded in SVG format.

2.2 Playing the Game

The shared goal of the Designer and Maker is to
collaboratively reconstruct a target design, which
is only given to the Designer.

Round and rollout A round is a tuple of: a de-
sign D, the message from the Designer m, the
actions generated from the maker @, and the re-
sulting updated design D’ = d@(D). A rollout is a
sequence of rounds.

r; = (Di, my, @;, D)
R=r,...

, rn]
Each rollout has Dy = {} and D; = D;_;. A

game is “won” if the final design is within a certain
threshold 6 of distance from the target D*.

A(D,,D*) < 0

Designer At round i, the Designer is given
both the target and current designs, rendered as
images of D* and D;, along with the history
of the (rendered) interaction of previous rounds
render(R;.;—1), and generates a message m from

Pesigner(m | render(D™),
render(D;), render(Ry.i—1))

Presenting the Designer only the rendered CADs
encourages them to focus on the geometric proper-
ties and communicate the refinements in a natural-
istic manner, instead of communicating about the
underlying programmatic representation itself.

Maker The Maker takes in the message, the cur-
rent design, the interaction history, and generates a
sequence of actions @ from

Pmaker(a ’ m, Di7 Rl:i—l)

Play Playing the game starts with a target design
D* and involves a dyad (a Designer-Maker pair)
acting in turns to generate a rollout.

R= play(D*, Pdesignera Pmaker)

3 Effects of Multimodality and
Refinement on Communication

We first confirm that multimodality and refinement
do indeed play important roles in communication
of designs. We conduct an ablation study by manip-
ulating the kind of communication schemes avail-
able to the participants (details in Appendix B.1):

1. multimodal + refinement: (original condi-
tion): 3 rounds total. Each round consists of
instruction (30s) and execution (120s).

2. drawing-only + refinement: the Designer
can only draw but not use text.

3. text-only + refinement: the Designer can
only use text but not draw.

4. multimodal + generation-only: the pair of
participants had 1 big round of instruction
(90s) and execution (360s), so they can only
generate at once but not refine.

Results are summarized in Figure 3. In conclu-
sion: (1) drawing is important, and (2) refinement
is important. Note that while drawing-only per-
formed as well as multimodal in this study (Fig-
ure 3A), in the multimodal condition participants
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Figure 3: A: reconstruction accuracy for the 4 communi-
cation conditions — multimodal+refinement, text only +
refinement, drawing only + refinement, and multimodal
+ generation only. Using text only was less effective.
Generation-only was less effective. Drawing only and
multimodal are comparable in performance. B: usage of
text across rounds — in the multimodal condition, par-
ticipants used more texts in the later refinement rounds,
suggesting a usage of text in conjunction with draw-
ings to communicate refinements. C: usage of drawing
across rounds — in the multimodal condition, partici-
pants used more drawing in the generation round, and
less in the refinement rounds.

still used more text and less drawing over time (Fig-
ure 3B,C). This points to a preference to use more
drawing in communicating generation and more
text in communicating refinements. Statistical anal-
ysis of results are given in Appendix B.2.

4 The mrCAD Dataset

We detail the collection of the dataset, present the
main statistics of our dataset, and a set of basic anal-
yses that reveals the striking effects of multimodal-
ity and refinement on communication. We also
include a gallery of multimodal refinement rounds
(Figure 5), highlighting the intriguing yet unex-
plored aspects of the dataset for future research.

4.1 Collection

Our goal is to collect a large number of high-quality,
multimodal refinement instructions. We designed
an online platform for crowd workers to play the
mrCAD game (Appendix C.1) and recruited play-
ers on Prolific. We seeded the mrCAD communi-
cation games with target designs created by peo-
ple (Seff et al., 2020; Appendix C.4). We then
presented these games in sequence to crowd work-
ers, taking measures to allow skilled players to
play longer while limiting the annotations from un-
skilled players (Appendix C.5). We also designed
a dynamic submission threshold to encourage more

very-dense

. chamfer dist <=0.2

dyads

Figure 4: The mrCAD dataset contains three subsets:
the coverage set of 2249 CADs with 1-2 successful
rollouts, dense set of 698 CADs with 3+ successful
reconstruction, and the very-dense set of 27 CADs with
30+ successful reconstruction.

refinement instructions (Appendix C.6) as well as a
fixed threshold on final reconstructions to exclude
poor reconstructions (Appendix C.7).

4.2 Dataset statistics

mrCAD contains 3166 unique CADs recreated by
1092 dyads. This resulted in a total of 6082 roll-
outs (for a sample, see Figure 5A) with a total of
15163 rounds of instructions and corresponding ex-
ecutions. On average, each rollout has 2.49 rounds,
and there are a total of 6078 generation rounds
(round 1) and 9085 refinement rounds (rounds 2+).
To achieve coverage over diverse CADs while also
capturing variance in human communication (Ji
et al., 2022), our dataset contains three distinct sub-
sets: a coverage set, containing 2249 unique CADs
each successfully reconstructed by 1-2 dyads; a
dense set, containing 698 unique CADs each suc-
cessfully reconstructed by at 3—6 dyads; and a very-
dense set, containing 27 unique CADs successfully
reconstructed by at least 30 dyads (Figure 4). In
the following analyses we combine data from the
coverage and dense sets, and leave the very-dense
set for future work.

4.3 Analyzing instructions in mrCAD

Refinements increased accuracy of CADs Af-
ter the initial round, distance to the target continued
to decrease (b = —0.0512,¢t = —16.5, p < 0.001;
Figure 7). These improvements got smaller as
rounds progressed (b = 0.0094, ¢ = 8.84, p <
0.001), suggesting that refinements became more
fine-grained in later rounds.

Modality use differs in generation and refine-
ment Across the 4946 rollouts analyzed, 83.4%
are multimodal, 14.5% are drawing-only, and only
2.1% are text-only. Across the individual rounds an-
alyzed, 53.5% are multimodal, 30.2% are drawing-
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Figure 5: A Example rollouts from the dataset. Target CADs (top-center) were shown to Designers, who created
instructions (left columns) that Makers followed (right columns). Dyads iteratively refined their CADs across
a series of rounds (rows). B Examples of multimodal refinement instructions. Language and drawing mutually
constrain and inform the others’ semantics. Many instructions don’t make sense without the accompanying drawings,
and vice-versa.
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Figure 6: A Designers’ instructions to generate CADs (round 1) involved lots of drawing and little text, whereas
instructions to refine CADs (rounds 2+) used a balance of modalities. B The proportions of the types of root words
in the dependency parse tree of instruction text. More verbs are used over rounds, and these verbs become more
imperative. C Samples of 20 generation drawings and 20 refinement drawings highlights the rich detail in generation
instructions, and more targeted modifications in refinement.

only, and 16.3% are text-only. The distribution of
text, drawing, and multimodal instruction was strik-
ingly different in generation (round 1) refinement
(rounds 2+) (x%(2) = 1095, p = 0); almost all
generation instructions involved drawings (96.6%),
whereas refinement rounds had a roughly equal
split of unimodal text and drawing (Figure 6A).

Refinement drawings are more sparse than gen-
eration drawings Most strikingly, compared to
generation, Designers drew less in refinement
rounds, as measured by the number of strokes
(b= —-5.64,t = —72.8, p < 0.001) and amount of
digital “ink” (b = 20.9, t = 2.23, p = 0.026) used.
Rendering these drawings (Figure 6C) suggests that
Designers’ drawings changed from mostly com-
plete drawings of target CADs in generation to
smaller modifications of sub-parts of the current
CAD in refinements.

Refinement text expresses actions and directives
The text of instructions contained an average of
50.2 characters, or 9.66 words. We use the English
pipeline of the Stanza NLP package (Qi et al., 2020)
to parse the sentences and extract the root words.
We tag the root word based on whether it is a verb,
and if so whether the mood of the verb is indica-
tive, imperative, or otherwise. We see in Figure 6B
that generation instructions don’t have a verb at
the head a majority of the time, while refinement
instructions do. The proportion of imperatives —
verbs typically used to express directives issued

to a listener — also increases over the course of re-
finement. This suggests refinement and generation
instructions use different languages.

Multimodal refinement messages There are a
total of 3723 multimodal refinement messages.
Of these, many contained drawings and text that
worked together to convey meaning, such that ei-
ther modality alone would not be sufficient to con-
vey the same intent (Fig. 5B). This dataset, along
with the very-dense subset, provide a resource for
future work to investigate how language and draw-
ing are used fogether to communicate precisely.

5 Evaluation of frontier models

We evaluate both API access models and open-
weights models (which we finetune) on the mrCAD
dataset. We are interested in the following.

RQ1 What is the difference in performance be-
tween humans and models in following the
instructions in mrCAD?

RQ2 What is the effect of generation vs refinement
in model performance ?

RQ3 What is the effect of multimodal vs single-
modal in model performance?

5.1 Benchmark

We select CADs from the dense set that have 3 or
more successful (A(D,,, D*) < 0.2) rollouts. This
results in 682 unique CADs with 2324 rollouts,
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Figure 7: A Comparison of human and model movement towards target following instructions, normalized by
distance at start of round. Only humans make reliably positive changes in responses to refinement instructions.
Models made positive steps in generation but largely destructive changes when refining. B Comparison of human

and model responses.

and a total of 5751 rounds of instruction-execution
pairs. Then, for these selected rounds, we can
evaluate VLM agents by having them assume the
role of a human maker Ppaer.

Metric We evaluate the instruction following
abilities by proportional improvement PI: how
much the distance to the target D* shrinks as a
consequence of an agent’s actions.

A(Di, D*) = A(A(Dy), D)

PI(A, R, D*) = AD. D"

This metric is a proportion of the remaining dis-
tance to target at every round. This accounts for
the fact that distances to the target decrease sig-
nificantly as rounds progress, making late-stage
refinements less noticeable without normalization.

5.2 Evaluating vision-language models

Gym environment We build a gym framework
for standardized evaluations across models. The
gym framework allows for instantiating agents
that interface with a standardized representation of
CAD:s, and allows for handing the mrCAD dataset,
evaluating models, and simulating interactions be-
tween designer and maker agents. We evaluate
multiple vision-language chat models by having
these models assume the role of a human maker.

Pmodel-maker(A ‘ m, D;, Rl:i—l)

API access models Since we present the ren-
dered interaction history and drawing instructions
to the model, we require models that are accept

interleaved image-text inputs. We choose the fol-
lowing models off-the-shelf based on this criterion:
GPT-40 (OpenAl, 2024), GPT-40-mini (OpenAl,
2025), Claude-3.7-Sonnet (Anthropic, 2025), and
Qwen2.5-VL-7B-Instruct (Bai et al., 2025). To
generate editing actions, we prompt the models to
generate editing actions as tool calls.

Finetuned models We also fine-tune a Qwen2.5-
VL-7B-Instruct model in the same setting to gen-
erate editing actions with supervised fine-tuning.
The models are given all the previous rounds of
interaction between the pair of humans that played
that game, the most recent instruction, and trained
to predict the editing actions. The actions are for-
matted as a sequence of tool calls, and the model is
trained to produce tool calls. We train LoRA (Hu
et al., 2022) adapters for all linear modules.

We use the 2684 rollouts from the coverage set
as a training set. We also include rollouts that don’t
pass the evaluation threshold. We create a small
held-out validation set by choosing 303 success-
ful rollouts from the dense set for 187 CADs that
have fewer than 3 successful rollouts for model
selection.

Ablation on modality We ablate one modality
@if present) from all the instructions and evalu-
ate them to create —drawing and —text evalua-
tion sets. We also perform these ablations on the
training data and finetune separate Qwen2.5-VL-
7B-Instruct models to obtain Qwen-7B FT_g;,ying
and Qwen-7B FT_,,; models to evaluate on the
—drawing and —text sets respectively. We use the
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same LoRA finetuning setup for these experiments.

5.3 Performance of vision-language models

For the results, we group rounds as either genera-
tion (round 1) and refinement (round 2+). Note that
this grouping is imprecise and can be improved in
future works, as later rounds can contain genera-
tions as well. We show some examples of model
actions in Figure 7B.

RQ1, RQ2 We found (Table 1) that models are
generally able to decrease the distance to the tar-
get during generation, with more capable models
(GPT-40, Claude-3.7-Sonnet) and fine-tuned mod-
els doing better. However, we find that models per-
form quite poorly in refinement turns. We see that
models often make changes that actually increase
the distance to the target — in opposition to the inten-
tion of the designer’s instruction. We also see that
while an approach like supervised fine-tuning leads
to significant improvements in generation turns, the
gains don’t transfer to refinement turns. This sug-
gests that more sophisticated training approaches
might be needed to tackle refinement.

We also investigated the influence of context.
People are able to interpret a refinement instruction
in the context of all instructions that came before it
and improve the design. To study whether models
leverage previous turns of the interaction to im-
prove performance, we presented models with only
the most recent state and instruction as opposed to
the entire trajectory. In refinement rounds (where
this results in a different context; —context rows in
Table 1) we observed better performance for both
GPT-40 and GPT-40-mini which we tested. We
further investigate the connections between context
and the number of actions taken in Appendix E.
However, the proportional improvement metric is
still negative for these models, highlighting the
room for improvement.

RQ3 We also see that models are sensitive to
both instruction modalities (Table 1), with perfor-
mance descreasing when a multimodal instruction
is ablated to have only a single modality. This
effect is more pronounced in generation rounds.

6 Related Work

Multimodality The instructions in mrCAD are
multimodal, consisting of both texts and drawings.
This is in contrast to other works such as Pejsa et al.
(2016) and Ku et al. (2020), where the context of
the agent is multimodal, yet the instructions them-

generation refinement
Human 0.854 0.119
GPT-40 0.547 —0.119
—context - —0.036
—drawing 0.508 —0.159
—text 0.540 —0.124
Qwen-7B FT 0.474 —0.017
—drawing 0.437 —0.038
—text 0.470 —0.035
GPT-40-mini 0.308 —0.129
—context - —0.049
Claude-3.7 0.520 —0.112
Qwen-7B 0.121 —0.050

Table 1: Proportional improvement results for vision-
language chat models, including results on ablated in-
structions. All models performed worse than humans
at following instructions, especially refinement instruc-
tions, where the models’ outputs made designs worse.

selves only contain language. Our drawings effi-
ciently convey spatial information and reference,
and even short utterances — “delete this”, “move to
here” — can hugely constrain the meaning of draw-
ings. Our work highlights the capacity of drawing
to act, not only as a depictive medium, but as a
versatile tool for communication (Goodman, 1976;
Huey et al., 2021; Fan et al., 2023), and provides a
resource for studying how language is used in con-
junction with another medium of communication
in a grounded way (Lachmy et al., 2022).

Generating Designs Prior work has explored Al
agents that assist with computer aided design tasks,
including those that leverage various kinds of input
modality (Sanghi et al., 2022; Chen et al., 2024),
including drawings (Seff et al., 2021). Beyond
CAD, other work has explored how agents can
support various kinds of designs given multimodal
inputs, including generating HTML and CSS code
(Si et al., 2024) and slide-shows (Ge et al., 2025).

Refinement The interactions between people in
mrCAD take multiple turns, as a dyad collabora-
tively refines a current CAD toward a specific target.
Lachmy et al. (2022) study complex instructions,
but these are presented all at once by the speaker
and verified with interpretation by another agent.
mrCAD prioritizes refinement, where people must
elaborate on and repair previous instructions. In
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this regard, our work is similar to Kim et al. (2019).
Zhou et al. (2025) present an algorithm to train
LLM agents to engage in multi-turn collaborative
design interactions with a simulated user.

Our work is also similar to work by Narayan-
Chen et al. (2019) that presents a dataset of col-
laborative construction interactions in a Minecraft
environment. Both works focus on a similar setting
of an “architect” or “designer” agent that knows the
target instructing a “builder” or “maker” to create
it while not being able to act in that environment.
We also introduce the dimension of multimodal
instructions, which provide an additional facet of
context in which language is grounded. Our lighter-
weight environment also allows us to collect a sub-
stantially larger number of interactions, while also
having more complex targets and reconstructions
(perfect reconstruction is very difficult for complex
targets in our setting, while it is not the case in
theirs).

7 Discussion

We present mrCAD, a large-scale dataset of hu-
mans playing multi-turn, multimodal communica-
tion games in a CAD environment. Analysis re-
vealed significant differences between instructions
to generate and instructions to refine, notably a
trend towards the complementary use of drawing
and text when refining designs. This distinction is
mirrored by a severe performance gap in frontier
VLMs ability to generate vs to refine CADs.

We posit that this is due to the lack of mul-
timodal refinement data on the internet, from
which these models are trained: (i) Lack of draw-
ing-as-instruction data: While the internet is a rich
source of textual and image data, data of drawings
used as instructions is much sparser — particularly
the ephemeral drawings that accompany language.
(i1) Lack of refinement trajectories: Furthermore,
people typically upload only finished artifacts to the
internet, often with accompanying contextual text
data, making these datasets well-suited for genera-
tion tasks. On the other hand, the process of editing
artifacts based on further instructions is rarely up-
loaded, which is why these models struggle with
interactive refinements. As a multimodal refine-
ment dataset, mrCAD serves as a valuable resource
for investigating these phenomena.

Limitations

The Designers and Makers are crowdworkers re-
cruited through Prolific. Their communication
might not fully capture the nuances of language
use by CAD experts. Our interface also doesn’t
capture how expert users of CAD software work
on designs. The 2D CAD models used as targets
given to the participants are quite simple compared
to industrial and architectural designs used in the
real world. The inclusion threshold for the dataset
(6 = 0.2) is bespoke, and may have to be chosen
differently in other settings. We also note that the
distance metric we use is based on geometry, and
does not reflect higher-level semantics such as sym-
metry, parallelism, coincidence of curves, which
are important in real CAD manufacturing.

Intended use, risks, and ethical
considerations

We release the data for non-commercial use under
the CC BY-NC 4.0 license. We intend the data
to be used to evaluate and train machine learning
models in research settings, and in scientific analy-
sis of human communicative behavior. We do not
anticipate adverse impacts from the release of this
data.
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A Analysis

A.1 Statistical methods

Our primary statistical method was the linear mixed
effects model. For modality experiments, we fit
models with fixed effects for round and condition,
as well as their interaction, and random intercepts
for dyad. We then compared this full model to a
series of simpler, nested models with predictors
removed. We report results from the most com-
plex model for which AIC substantially dropped,
compared to the subsequent simpler model. For
the effect of refinement, we we ran paired t-tests
between the multimodal + refinement condition
and the multimodal + generation only condition.

o -

[V IS
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A.2 Distance metric

The distance between two designs D, E, are calcu-
lated as follows.

def dist_chamfer_symmetric (D, E):
return 0.5 * (dist_asymmetric(D,
dist_asymmetric(E, D))

E) +

def dist_asymmetric(D, E):
pts_in_D = [sample_points(curve) for
curve in D].flatten()
pts_dists_to_E =
[dist_pt_to_design(pt,
pts_in_D]

E) for pt in

def dist_pt_to_design(pt, E):
return min([dist_pt_to_curve(pt,
curve) for curve in EJ)

The distance between a point and a curve (line
10) is omitted for brevity, for details please consult
the code base. The default value for the min opera-
tor (line 10) is %, expressing the idea that beyond
half a quadrant away, two points are not likely to
be unrelated.

In the analysis, we found a small error in our
javascript implementation of the accuracy function
that led to a proportion of lower performing tri-
als receiving greater distances than they should
have. As accuracy for inclusion of trials was re-
calculated post-hoc, entries in our dataset were
unaffected. However, some participants may have
performed extra rounds of modification to meet the
target threshold.

B Multimodality and Refinement
Ablations

B.1 Experimental methods

Crowd source participants were paired and ran-
domly assigned the role of Designer or Maker. We
sampled 100 CADs from the Sketchgraph dataset
(Seff et al., 2020), and presented these CADs across
the set of dyads in each of four conditions:

multimodal + refinement Designer’s messages
could include text (up to 200 characters) and/or
drawing instruction (unlimited). There are 3 rounds
total, each round with 30 seconds for the Designer
to construct a message, and 120 seconds for the
Maker to manipulate the current CAD in a CAD
interface.

text only + refinement Where the message could
only contain text but not drawing.

drawing only + refinement Where the message
could only contain drawing but not text.
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multimodal + generation only Here, rather than
having 3 rounds of communication, they are aggre-
gated into a single big round, with 90 seconds for
the Designer and 360 seconds for the Maker.

B.2 Results

Refinement improves reconstruction Partici-
pants in all refinement conditions were able to
improve their reconstructions over all three rounds
(b = —0.0335, t = —6.91, p =< 0.001) (Fig.
3A). While participants in the multimodal refine-
ment condition on round one generated less ac-
curate CADs than the generation only condition
(t = 1.47, p = 0.145), by round three their de-
signs were reliably more accurate (t = —2.15,
p = 0.0340), despite having the same total time
available. This highlights the value of iterative
refinement for creating accurate designs.

Drawings improves reconstruction Participants
who could only use text achieved considerably less
accurate reconstructions than those in the drawing-
only and multimodal conditions (b = 0.127, ¢t =
6.54, p =< 0.001). While text is a relatively poor
communicative medium on its own, participants in
the multimodal condition still opted to use text in
conjunction with drawings, and increased their use
of text in later rounds (Fig. 3B), suggesting that lan-
guage is useful for refining CADs. The amount of
drawing remained consistent in the drawing-only
condition, but dropped precipitously after round
1 in the multimodal condition (Fig. 3C). Overall,
when given a choice of multimodality, human par-
ticipants favored more drawing for the generation
round, and more texts in the refinement rounds.

Interim discussion Why do participants choose
to use multimodal instructions when given a
choice? Manually inspecting the data revealed that
drawings are primarily used in two ways: Those
used for creating a shape, and those used for editing
a shape. In the multimodal condition, the Designer
can disambiguate these with texts such as “make
this shape” or “move the shape as shown”. How-
ever, in the drawing only condition, the Designer
frequently resorted to redrawing the entire target
CAD from scratch — a valid yet inefficient strategy.
Data collected from this experiment hint towards a
complex interplay between linguistic and graphic
communication that differs in generation and re-
finement settings. The mrCAD dataset, discussed
next, aims to provide a large scale dataset of mul-
timodal generation and refinement instructions to

study these phenomena.

C Data Collection Procedure

C.1 mrCAD annotation task

We recruited fluent English speakers from the USA
and UK on Prolific. Prolific workers were told
that their data was being collected for research
and development purposes, presenting findings in
academic papers, presentations, or datasets, and
gave consent. Our institution did not require IRB
approval for this work. We also do not release
any personally identifying information for partici-
pants in the dataset. Participants were paired, ran-
domly assigned the role of Designer or Maker, and
worked together over a series of rounds to recreate
target CADs.

Rather than fixing a number of rounds and the
amount of time per round, we instead limited the
maximum round number to 10, and time to 9 min-
utes. Within these limits, participants can choose
how many rounds they will take, and to allocate
different amount of times for each round. We also
lifted the limit on the amount of text characters the
participants can send in a message.

C.2 Dataset collection interface

Figure 8 shows screenshots of the user interface
used for data collection for both players.

C.3 Dataset collection parameters

While the key features of our data collection
paradigm were kept consistent between our con-
trolled studies (Section 3) and full dataset collec-
tion (Section 4), we implemented several changes
between versions to increase efficiency of data col-
lection.

C.4 Sampling CAD tasks

We sample tasks from the SketchGraphs dataset
(Seff et al., 2020), which is released under the per-
missive MIT license. We first normalize all designs
to a 20 x 20 grid to identify duplicates. We then
rescale the designs by a random scaling factor to
ensure a variety of design sizes, while ensuring a
minimum gap between pairs of elements such as
control points, parallel lines, and concentric arcs or
circles to ensure that they were far enough apart to
be reproducible in the CAD construction interface.
We then grouped designs into buckets based on a
‘signature’ determined by the count of various types
of curves in the design (horizontal lines, vertical

22916



A practice design lives G0 shared time |

Messages
The Maker sent you some new shapes.
Explain how to modify these shapes to match
the target by drawing directly on top of them
and/or typing a message. Q Q
progress
| e
Design Goal Current design (draw here) Type here
"""""""""""""""""""""" make eyes a little smaller and move
out. make face| symmetrical
62/1000
B practice design lives G shared time [
Current Design Messages

Maker
make eyes a little smaller and move out.
make face symmetrical
Select a tool.
Edit shapes by dragging end points Above you will find instructions telling you how to edit the Current Design (left).

Move shapes by dragging lines
Delete shapes by dragging them off the grid

Figure 8: A Designer display: target design is shown on the lower leftand instructions are created on the lower right,
by drawing on the current CAD and by typing in the text box. History of prior interaction is shown in top right.
B Maker display: on the Maker’s turn, the current CAD can be edited in CAD interface on the left, by dragging
elements and control points, and by placing new elements by selecting a tool and clicking on grid squares to place
control points. Instructions are shown in chat window on right. Both Designer and Maker can see shared time and
number of lives remaining. This target was shown to all participants as a practice trial.
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studies dataset
Designer turn time ~ 60s (180s) unlim.
Maker turn time 120s (360s) unlim.
Trial time limit unlim. up to 540s
Base payment $10 $9.10
Trial bonus 0 $1.00
Lives N/A 3
Trials per dyad 6 1-13
Rounds per trial 3 1-10
Character limit 200 (600s) unlim.
Drawing limit unlim. unlim.

Table 2: Parameters for ablation studies (generation-
only in parentheses) and primary dataset collection. In
experiments, we manipulated access to modalities and
refinement rounds (across participants). For dataset
collection, participants had up to 540 seconds per trial,
but time elapsed at double speed for the Designer to
discourage precisely drawn copies of the target.

lines, skewed lines, arcs, and circles). By selecting
one design per bucket, we: (1) eliminated most
near-duplicates (2) select a more diverse set of de-
signs. Participants were given 12 tasks randomly
sampled from the task pool and shown in order of
increasing difficulty (increasing number of curves
in the design).

C.5 Prioritizing motivated annotators

The mrCAD task is challenging. Successful perfor-
mance requires a person to (1) learn to operate a
new CAD interface and (2) be adept at communicat-
ing CAD modifications, all within the span of one
online session. Furthermore, in a two player game,
both players must be motivated and capable for a
successful reconstruction. How can we prioritize
capable dyads to provide high-quality annotations,
while fairly compensating capable individuals with
an unmotivated partner? We devised an incentive
scheme as follows.

Prioritizing capable individuals Before partic-
ipants started performing CAD tasks, they had to
pass through three checks: a comprehension quiz,
a solo CAD reconstruction task, and a paired prac-
tice trial. In the solo CAD reconstruction task, each
participant has to recreate a simple CAD consist-
ing of a line, circle, and arc, to our fixed threshold
level of accuracy. All participants who passed the
solo reconstruction task are deemed capable and
motivated, and received a base pay of ($8.70).

passed in trial:
05

0.4

1)
w
-

UBRWNR

distance

o
N

0.1

I . submit threshold

. inclusion threshold

1 2 3 4 5 6 7 8 S
round number

Figure 9: We implemented a dynamic threshold for
submitting designs that became more lenient in later
rounds. Participants took a variable number of rounds
to reach the threshold. Visualizing distance to the target
broken down by round submitted reveals a trend of
refinement over time. Red dashed line indicates the
fixed threshold for including in analysis. A. Dyads
successfully refined CADs over multiple rounds, and
could submit their CAD once they reached the threshold,
which became more lenient as rounds went on. Only
CADs that meet our fixed threshold are included in the
full mrCAD dataset.

Prioritizing capable dyads Once paired, dyads
had to successfully recreate one practice trial (a
simple smiley face) in order to attempt other CADs.
We awarded a $1 bonus per person for every recre-
ation that met the accuracy threshold. If a dyad
failed to meet the threshold in 9 minutes, they lost
a “life”, and were ejected from the study when they
lost 3 lives. This limited the number of CADs that
unmotivated dyads could attempt, directing study
time and compensation towards higher quality re-
constructions.

C.6 Prioritizing refinement instructions

Our primary goal was to collect a large number
of multimodal refinement instructions that led to
high-quality reconstructions. A simple way of en-
suring high-quality reconstructions it to implement
a fixed threshold of accuracy for submitting CADs.
However, this fixed threshold does not take into
account that some CAD would be easier to recon-
struct while others would be more challenging. In a
pilot study, we found that with a lenient threshold,
unmotivated dyads submitted low quality recon-
structions without refinements, while with a strin-
gent threshold, motivated dyads were not compen-
sated for decent quality reconstructions on more
complex CADs.

Therefore, we implemented a dynamic submis-
sion threshold, which allowed only highly accu-
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rate reconstructions to be submitted in early rounds,
but was more permissive in later rounds. Imple-
menting this change allowed us to collect 1,532
additional refinement rounds, an increase of 10.1%
compared to using a static threshold. Furthermore,
a dynamic threshold kept motivated dyads who had
been “stumped” by a difficult CAD in the study
longer by not losing a life. The effect of dynamic
threshold can be seen in Figure 9.

C.7 Exclusion criteria

Rollouts that contained no CAD actions, entirely
empty messages, or had missing rounds were ex-
cluded from the dataset for analysis. We also im-
posed a fixed inclusion threshold (Figure 4A) on
reconstruction accuracy for analysis. In the statis-
tics below, we report only data that meets these
criteria, however our full dataset release also in-
cludes failures and practice trials.

D Vision-language model experiments

D.1 Hardware and software details

Evaluation We queried API models using Open-
Router. For Qwen models, we hosted the model on
a local server 1 Nvidia A6000, 6000Ada, L40, or
L40S GPU (each of which has 48§GB VRAM) using
vLLM (Kwon et al., 2023). For each instruction in
context, we sampled one response from the model.
For locally hosted models, each run (through the
entire evaluation set with 2324 rollouts) took ap-
proximately 19 GPU hours. Evaluation hyperpa-
rameters are shown in Table 3.

Training We implemented finetuning using the
supervised finetuning functionality provided by the
TRL library (von Werra et al., 2020). Each fine-
tuning run (with a max of 10 epochs over the 2684
training rollouts) took 32-48 GPU hours. We used
4 Nvidia L40 or L40S GPUs with 48GB of VRAM
for each run. Training hyperparameters are in Ta-
ble 4.

D.2 Prompt

Figure 10 shows the structure of the prompts used
in experiments.

E Analyzing the number of actions

We studied how agents edit the design by count-
ing the editing actions each agent took. We found
(in Table 5) that in the ablated context (when only
the most recent instruction in the sequence of re-
finement instructions was presented), models took

fewer editing actions. By performing fewer bad
actions, models are able to achieve better scores.
However, the negative value highlights that models
don’t take a sufficient number of good actions to
improve the design. We would also like to note
the effect of finetuning here. While more actions
results in worse performance for off-the-shelf mod-
els, the finetuned model is able to take more actions
while also improving performance. While the over-
all performance is still poor, this change highlights
the potential for approaches that better leverage
the training data to improve multi-turn, multimodal
refinement abilities of models in this setting.
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You are an expert CAD software user playing a game called mrCAD. In this game, there is a designer
and a maker. The two players work together to iteratively create a design over a sequence of
turns. You will play the role of the maker in this game, and the user will play the role of the
designer. In each turn the designer provides an instruction about how to modify the design on
the canvas. The instruction may include language instructions, drawings on the canvas, or both.
The drawings appear as red strokes on the canvas. The design appears in black strokes on the
canvas. Your goal is to follow the designer’s instructions. You have to take actions to edit the
current state of the design. Each action is taken by calling a tool that performs the action.
Each control point is a pair of floating point numbers between -20 and 20 that represent the
coordinates of the point on the canvas.

New game:

Round 1.

big round circle with a smaller circle inside it sort of resembling a clock

Edit the design based on the designer’s instructions using the provided tools. Make sure to
follow the instructions carefully.

[{"name": "make_curve", "arguments”: {"type": "circle", "control_points"”: [[0.0, -18.0], [0.0,
18.011}}, {"name”: "make_curve”, "arguments”: {"type": "circle”, "control_points”: [[0.0,
-15.0]1, [0.0, 15.0]11}}, {"name”: "move_point"”, "arguments”: {"point”: [0.0, -15.0], "new_point":
[0.0, -16.0]1}}, ... ]

The resulting design is:

{"curves": L {"type":"circle","control_points":[[0.0,-18.0],[0.0,18.0]1}, {"type":
"circle", "control_points”:[[0.0,-16.0],[0.0,16.0]1]}, {"type": ‘"circle”, "control_points”:
[[e.0,-12.0],[0.0,-8.0]11}, ...1}

Figure 10: Structure of the prompt used for API calls as well as SFT models. The prompt in-
cludes system messages , templated parts of the instruction presented as user messages , Designer instructions ,

Maker responses as assistant messages , and environment feedback presented as user messages . For Qwen mod-
els, a description of the tools is presented as part of the system message (not shown here). For other models, the tool
descriptions are integrated by the server.
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Qwen-7B(-Instruct and -FT) others

temperature 0.7 1
top-p 0.95 1

Table 3: Prompting hyperparameters

value
LoRA parameters all linear layers
LoRA rank 128
LoRA « 32
learning rate 1074
warmup steps 10
batch size 1/GPU x 4 GPUs =4
gradient accumulation steps 4

Table 4: Fine-tuning hyperparameters for all runs. We used

Model # generation actions # refinement actions
Human 17.59 8.31
GPT-40 4.70 4.13
—context - 2.63
GPT-40-mini 3.90 5.35
—context - 3.21
Claude-3.7 2.02 4.29
Qwen2.5-7B 1.39 1.11
Qwen2.5-7B-FT 7.32 6.40

Table 5: Average number of actions taken by models in generation and refinement stages
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