Instability in Downstream Task Performance During LLLM Pretraining
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Abstract

When training large language models (LLMs),
it is common practice to track downstream
task performance throughout the training pro-
cess and select the checkpoint with the highest
validation score. However, downstream met-
rics often exhibit substantial fluctuations, mak-
ing it difficult to identify the checkpoint that
truly represents the best-performing model. In
this study, we empirically analyze the stability
of downstream task performance in an LLM
trained on diverse web-scale corpora. We find
that task scores frequently fluctuate throughout
training, both at the aggregate and example lev-
els. To address this instability, we investigate
two post-hoc checkpoint integration methods:
checkpoint averaging and ensemble, motivated
by the hypothesis that aggregating neighboring
checkpoints can reduce performance volatil-
ity. We demonstrate both empirically and the-
oretically that these methods improve down-
stream performance stability without requiring
any changes to the training procedure.

1 Introduction

Large language models (LLMs) are typically de-
veloped through pretraining on large-scale corpora,
during which the performance on downstream tasks
evolves dynamically. Understanding these training
dynamics is essential for diagnosing issues dur-
ing model development and ensuring the reliabil-
ity, reproducibility, and effectiveness of the result-
ing models on downstream tasks. In particular,
the stability of evaluation metrics plays a key role
in model development: when evaluation metrics
fluctuate erratically, they undermine the reliabil-
ity of the evaluation and hamper fair comparison
across checkpoints, models, or experimental set-
tings. Such instability may arise not only in evalua-
tion signals based on next-token prediction, such as
training loss, but also in downstream task metrics
that are central to model evaluation.
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Figure 1: Overview of stabilizing downstream task per-
formance during pretraining. We observe instability in
task performance during LLM pretraining, and experi-
mentally show that theoretically motivated checkpoint
integration methods improve evaluation stability.

Previous research on training stability has largely
focused on signals derived from the next-token pre-
diction objective. Studies of loss dynamics have
offered insights into how architectural design, op-
timization strategies, and initialization schemes
can encourage smooth convergence (Chowdhery
et al., 2023; Rybakov et al., 2024; Takase et al.,
2024). More recently, Chang et al. (2024) have in-
vestigated token-level prediction probabilities and
shown that their stability varies with token fre-
quency and contextual diversity.

Practical evaluation of LLMs typically relies on
downstream tasks such as generation, question an-
swering, or classification, while prior studies shed
light on dynamics related to the next-token predic-
tion objective. For reliable evaluation, it is essential
to understand how stable downstream performance
is during pretraining and to explore ways to mit-
igate instability when it arises. However, little is
known about how downstream task performance
behaves throughout the pretraining process.

To this end, we empirically analyze the stability
of LLMs of different sizes pretrained on a diverse
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web-scale corpus. By tracking the performance
of multiple downstream tasks across a series of
training checkpoints, we observe that scores gener-
ally improve in the long run as training progresses,
while in the short term they repeatedly rise and
fall in an inconsistent manner, which we refer to
as fluctuations. These fluctuations are observed
not only in aggregate task-level scores but also at
the level of individual examples, indicating that
instability is inherent in downstream performance
during LLM pretraining. We further examine the
effect of model size on this instability and find that
scaling up models does not necessarily mitigate
fluctuations. This inherent instability, in turn, hin-
ders robust and reliable evaluation.

To address this challenge, we explore methods
for mitigating such fluctuations in downstream per-
formance. Motivated by the hypothesis that aggre-
gating multiple checkpoints can smooth out perfor-
mance volatility during training, we investigate two
checkpoint integration methods: checkpoint aver-
aging and ensemble. These methods, while sim-
ple and theoretically motivated, can reduce short-
term instability without altering the training pro-
cess. Our experimental results show that these
methods can mitigate performance instability and
improve evaluation robustness during training.

2 Observation of Task Instability

2.1 Experimental Settings

We conduct our analysis using a family of
Transformer-based language models trained on
web-scale corpora containing a mixture of
Japanese, English, and source code. The training
data, totaling approximately 2.1 trillion tokens af-
ter weighted sampling, is drawn from the LLM-jp
Corpus v3.! We analyze seven pre-trained mod-
els with varying the number of parameters: 150M,
440M, 980M, 1.8B, 3.7B, 7.2B, and 13B. During
pretraining, checkpoints were regularly obtained at
intervals ranging from several hundred to approxi-
mately a thousand steps for each model, according
to predefined schedules detailed in Appendix A.
In our analysis, we use all checkpoints except the
initial one (step 0), where parameters are randomly
initialized.?> Our analysis focuses on the pretrain-
ing phase, and does not include instruction-tuned

1https://gitlab. 1lm-jp.nii.ac.jp/datasets/
11m-jp-corpus-v3

2At the first step, the learning rate is set to zero, so param-
eters at step 0 and step 1 are identical; the only difference is
that the optimizer state is updated.

or otherwise adapted models.

For evaluation, we use the llm-jp-eval v1.4.1° to
perform 4-shot inference on a suite of Japanese
downstream tasks. We evaluate nine task cate-
gories: EL (entity linking), FA (fundamental anal-
ysis), HE (human examination), MC (multiple
choice question answering), MR (mathematical rea-
soning), MT (machine translation), NLI (natural
language inference), QA (question answering), and
RC (reading comprehension). Each category typi-
cally includes multiple datasets; for example, the
MC category includes three datasets. Details of the
tasks, datasets, and evaluation metrics used in each
category are provided in Appendix A.

2.2 Instability Across Task Categories

We begin by examining downstream performance
across task categories over the course of pretraining.
Figure 2 shows score trajectories for the 13B model
across task categories. In all categories except for
machine translation (MT; shown in Figure 2(f)),
we observe persistent short-term score fluctuations
throughout training.* Similar fluctuations are also
observed in Figure 3, which presents the trajec-
tory of average scores across all categories. These
fluctuations are not limited to a particular phase of
training, such as early instability or late saturation,
but instead persist across many checkpoints. Simi-
lar trends are observed across models of other sizes,
indicating that instability in task performance is a
general phenomenon not limited to specific scales.

2.3 Example-Level Score Dynamics

To understand the source of task-level fluctuations,
we investigate example-level prediction dynamics.
Figure 4 shows score trajectories for ten examples
drawn from JCommonsenseQA (Kurihara et al.,
2022) in the MC category, Jamp (Sugimoto et al.,
2023) in the NLI category, and JIMMLU (Yin et al.,
2024) in the HE category using the 13B model.’
Since these tasks use exact match as the evaluation
metric, the score for each example is either O (in-
correct) or 1 (correct). Across many examples, we
observe frequent alternations between correct and
incorrect predictions, even over extended training
periods. While some examples converge to stable
predictions, many continue to exhibit prediction

3https ://github.com/11m-jp/11lm-jp-eval
4 . . . .
In the following sections, we focus on the eight categories
other than MT, where instability was qualitatively observed.
SWe uniformly sampled indices, and then plotted the score
trajectories of the examples corresponding to those indices.
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Figure 2: Score trajectories of the 13B model across downstream task categories. In most categories, we observe
gradual long-term improvements over the course of training, accompanied by short-term score fluctuations that

persist throughout.
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Figure 3: Average score trajectory of the 13B model
across all downstream task categories.

instability well beyond early training.

These example-level dynamics suggest that the
task-level score fluctuations observed earlier may
be attributed to the accumulation of such local pre-
diction instabilities across many examples.

2.4 Scoring-Based Analysis of Pretraining
Instability

To quantify instability of downstream task per-
formance across checkpoints, we begin by mea-

suring fluctuations in reference-based evaluation
scores. Let @ = {64,...,60,,} denote the se-
quence of m checkpoints obtained during pre-
training. Let xg, be the output generated using
parameters 0; for a given input, and let f(zg,)
denote the reference-based evaluation score for
that output (e.g., exact match or charF1). We de-
note L(6;) = By, ~p(z;0,)[f (w0,)] as the expected
value of the evaluation score given an output sam-
pled from the model 8;. We use total variation over
these scores to measure how predictions change
throughout training. Specifically, we compute the
mean total variation (MTV) as follows:

1 m—1
MTV(G) - m tzl ’L(et-‘rl) - L<0t)‘ :
ey

This value captures the average magnitude of score
transitions and is normalized by the number of
transitions. This normalization ensures fair com-
parison across models with different numbers of
saved checkpoints. In our experiments, we com-
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Figure 4: Example-level score trajectories of the 13B model during training. Across examples from MC, NLI, and
HE categories, we observe frequent alternations between correct and incorrect predictions, indicating persistent

prediction instability over time.

pute MTV using only the last 20% of checkpoints,
in order to focus on fluctuations that remain in the
final stages of training, where model performance
is typically evaluated and selected in practical set-
tings. Figure 5(a) shows the average MTV over the
final training checkpoints for three representative
task categories: MC, NLI, and HE. The results re-
veal no consistent relationship between model size
and MTYV, suggesting that scaling up model size
does not reliably reduce instability in downstream
performance.

Although MTYV is useful for capturing reference-
based score variability, it depends on specific eval-
uation metrics and does not directly assess how
the model’s raw outputs change over time. To ad-
dress this, we introduce a complementary metric
based on output similarity. For each example, we

compute the dissimilarity between consecutive out-
puts zg, and g, , using a similarity function.® We
define the instability score (IS) as:

1=
— Z (1 - Sim(xeivxeiﬂ)) :

me L

2
In contrast to MTV, which reflects correctness with
respect to references, this metric directly captures
variability in the model’s own output behavior, of-
fering a complementary perspective on instability.
We compute the IS using the same final 20% of
checkpoints as used for MTYV, in order to evaluate
the remaining output fluctuations at the end of train-

®In this paper, we implemented sim(-, -) as a task-specific
score function provided by the llm-jp-eval framework, such as
exact match or charF1.
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ing. Figure 5(b) presents the average IS by model
size. As with the MTYV results, IS was not reduced
by scaling up model size.

3 Mitigation of Instability Through
Post-Processing

In the previous section, we observed that down-
stream task performance often fluctuates during
the pretraining of large language models (LLMs),
both at the task and example levels. These fluctua-
tions hinder reliable evaluation and model selection,
especially when performance at the final training
steps is used to benchmark models. To address this
challenge, we investigate post-processing methods
that stabilize performance by integrating informa-
tion from multiple adjacent checkpoints. In the
following, we describe two techniques, checkpoint
averaging and checkpoint ensemble, provide a the-
oretical motivation for their use, and empirically
evaluate their effectiveness in mitigating instability
at both the task and example levels.

3.1 Post-Processing Methods

Checkpoint averaging is a technique in which
model weights from multiple adjacent checkpoints
are averaged to produce a single inference-time
model. At each training step ¢, we compute the
average of the model parameters saved in the most
recent n checkpoints: 8; = % zzzt_m 41 0;. Prior
studies have shown that this approach can im-
prove model stability and generalization (Gao et al.,
2022). In our experiments, we use window sizes m
of 2, 3,5, 10, and 20.

Checkpoint ensemble is an alternative that re-
tains the original models and aggregates their infer-
ence outputs (Chen et al., 2017; Liu et al., 2018).
Specifically, we use a majority vote ensemble,
where the final prediction is determined by the most
frequently predicted label among the constituent
checkpoints. Each checkpoint contributes equally.
This method is only applicable to multiple-choice
tasks (MC, NLI, HE), where the output space con-
sists of a small number of predefined options. We
use the same window sizes (m = 2, 3, 5, 10, 20) as
in averaging. Unlike averaging, checkpoint ensem-
ble does not modify model parameters and is free
from artifacts introduced by weight interpolation.
However, it incurs a higher inference cost, as it re-
quires separate forward passes for each checkpoint.

3.2 Theoretical Motivation

We now provide a theoretical justification for why
checkpoint averaging and ensemble would enhance
the stability of downstream performance during
training. Let 6; denote the model parameters at
training step ¢, and define the average over the most
recent n checkpoints as 6; = 1 S 410 We
define ® = {64, ...,0,,} and show MTV(@®) <
MTV(©).

Suppose each 8; is close to 8;, we can assume a

first-order approximation of the evaluation score’:

L(6y) ~ L(6;) + (6, — 6;) ' VoL(6;), (3)

L(6,) + (8; — 0,) ' VgL(6,). (4)

=
>
2

These assumptions imply VoL(0;) ~ VoL(6;).
By summing Eq. (3) overi € {t—n+1,...,t}, we
obtain the following equation:

-
R~ Z L(6;) + (nH_t - Z 0¢> VoL(6;)

since n@; = >~;0;. Thus, the evaluation score
at @, approximates the average score across the
previous checkpoints. The expected value of the
evaluation score under majority voting also corre-
sponds to the average score across all models used
in the ensemble.

Let Ly = L(6;) and L, = L(6;) ~ 1 Y. L;.
Note that

t

> (Liyi—Li). (6

i=t—n+1

- - 1
Liy1— Ly = —

By the triangle inequality,

t

1
<= > |Lin-L|. M

i=t—n+1

Lo — L

3

"Particularly in the final stage of pretraining, which is

important in practice, changes in model parameters between
adjacent checkpoints are sufficiently small, making this as-
sumption reasonable.
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AT+ 006

403+ 025

6214 022
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507+ 029

.261+ 005
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.579i_012

-820+.017

Averaging

SO

479+ 005
480+ .005
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410+ 022
4124 022
415+ 022
4234 018
4244 013

6254+ 018
6284 017
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551+ 015
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521+ 020
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.263+.004
263+ 004
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628+ 016
.630+.010

5824 011
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.820+ 010

Ensemble

D= W= Wi

(=N

403+ 021
408+ 021
410+ 020
414+ o017
410+ 012

.620+.018
.626+.018
.628+ 015
.631+ 013
631+ 015

547+ 019
549+ o017
549+ 018
548+ 016
547+ 015

Table 1: Effect of stabilization methods on downstream task performance during the training of the 13B model.
"Overall" indicates the aggregated score across all task categories. Scores are reported as mean + standard deviation,
computed over the final 20% of training checkpoints. Both checkpoint averaging and ensemble reduce score
variance and improve mean performance across many task categories.

0.25 —e— HE —— NLI FA QA —e— HE —+— NLI FA QA
MC —— EL MR RC 0.81 MC —v— EL MR RC
£ 020 0.7]
8 % 0.61
8 0.151 B 051
E £
2 0.10 ) 304
5 @ % 03l
S £ \/ 203
= ]
0.051 0.2
0.11
0.00 ‘ ‘ 0.0 ‘ ‘
10° 10! 10° 10!

Model Size [Billion: 10°]
(a) Mean total variation IMTV)

Model Size [Billion: 109]
(b) Instability score (IS)

Figure 5: Relationship between model size and two measures of downstream performance instability. MTV is
computed from reference-based evaluation scores, while IS captures output dissimilarity between consecutive
checkpoints. Neither metric shows a consistent decreasing trend with increasing model size, suggesting that scaling
does not reliably mitigate instability.

Summing over all ¢ gives

MTV(®)

IN

0

®)

3.3 Effect on Task-Level Scores

We first evaluate the impact of stabilization meth-
ods on downstream task performance at the cate-
gory level. Table 1 summarizes the mean and stan-
dard deviation of scores for the 13B model across
all task categories, measured over the final 20%
of training checkpoints. This final-phase evalua-
tion focuses on the later training stages, which are
typically used for model selection and benchmark
reporting.

Applying checkpoint averaging leads to improve-
ments in both mean scores and stability (i.e., lower
standard deviation) in most task categories, includ-
ing the overall score. These effects become more
pronounced with larger averaging window sizes.
A similar trend is observed with the checkpoint
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ensemble scores. The window size for stabilization methods was set at 20.

ensemble, which also reduces score variance and
enhances mean accuracy. Both results support our
hypothesis that checkpoint integration suppresses
short-term fluctuations and improves reliability in
evaluation. When comparing the two methods,
checkpoint averaging tends to yield greater im-
provements in mean performance, particularly for
larger windows. These trends are consistent across
other model sizes as well.

While Table 1 highlights the aggregate improve-
ments in performance and stability, Figure 6 pro-
vides a qualitative view of how the stabilization
methods affect score trajectories throughout train-
ing. The figure visualizes the 13B model’s per-
formance in three representative categories (HE,
MC, and NLI) under different stabilization settings.
With a window size of 20, both checkpoint av-
eraging and ensemble methods visibly suppress
score fluctuations across training steps, indicating
enhanced stability throughout pretraining.

3.4 Effect on Example-Level Scores

We now examine whether the stabilization effects
also hold at the example level. Figure 7 illustrates
score trajectories for five representative examples
from JCommonsenseQA (MC) before and after ap-
plying stabilization methods. The examples were
selected based on having the highest MTV under
the no-stabilization setting. As shown, both check-
point averaging and ensemble yield qualitatively
smoother predictions, indicating reduced instability
across training.

To quantitatively evaluate this effect, we quan-
tify example-level score instability following the
same procedure described in § 2.4. Figure 8 shows
how the mean total variation (MTV) changes with
different window sizes in the MC, NLI, and HE

categories.® A window size of 1 corresponds to
the unstabilized baseline. Both checkpoint aver-
aging and ensemble methods consistently reduce
the average MTV, confirming their effectiveness
in mitigating example-level instability. We also
observe that larger window sizes yield greater re-
ductions in instability. These findings align with
our task-level results and highlight the stabilizing
effect of checkpoint integration at the granularity
of individual performance.

We additionally report results based on the insta-
bility score in Appendix B.2. Similar to MTYV,
both stabilization methods consistently reduced
example-level instability across multiple tasks.
These results indicate that the effect is not lim-
ited to reference-based evaluation metrics but also
holds for reference-free assessments of output con-
sistency.

4 Related Work

Stability in Language Model Training. Stabil-
ity in language model training has primarily been
investigated through the behavior of training loss.
Challenges such as loss divergence and large fluc-
tuations, as well as inconsistency due to sensitivity
to random initialization, have been widely recog-
nized. To address these issues, various architectural
and optimization strategies have been proposed to
improve convergence and reduce variance across
training runs (Chowdhery et al., 2023; Rybakov
et al., 2024; Takase et al., 2024). In addition, stud-
ies have examined token-level prediction probabili-
ties during training and found that high-frequency
tokens tend to be learned more reliably (Chang
et al., 2024). However, these studies have mainly

8Results for the remaining task categories are presented in
Appendix B.1.
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Figure 7: Example-level score trajectories for JCommonsenseQA in the 13B model with and without stabilization
methods. The examples shown were selected based on having the highest MTV under the no-stabilization setting.

0251 -=- HE(ave.) -=- MC(ave) -=+- NLI(ave) progress on evaluation tasks. These works focus on
HE (ens.) MC (ens.) —— NLI (ens.) identifying learning phases or scaling behaviors. In
201
5 0-20 contrast, our study concentrates on the short-term
o o instability of downstream task scores, such as fre-
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% quent reversals in performance, which can occur
2 o101 even in the later stages of pretraining.
s
(]
=
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10° Window Sise 10! Inference Using Multiple Checkpoints. Using

multiple checkpoints from a single training run has
Figure 8: Mean total variation (MTV) for the 13B model been proposed as a way to improve robustness and
in each category. Checkpoint averaging is abbreviated  gtability. Two common techniques are checkpoint
as “ave.”, and checkpoint ensemble as “ens.” averaging, which averages model weights, and
checkpoint ensemble, which aggregates predictions
from multiple checkpoints (Junczys-Dowmunt
et al., 2016; Chen et al., 2017; Liu et al., 2018).
These methods are primarily used to improve the
final performance of natural language processing
Progression of Downstream Task Performance  models. Notably, Gao et al. (2022) reported that
in LLMs. Several recent studies have tracked  applying checkpoint averaging to neural machine
how language models acquire capabilities during  translation models also led to improved stability
pretraining by analyzing downstream task perfor-  in translation quality. However, the effectiveness
mance over time (Biderman et al., 2023; Xia et al.,  of such checkpoint-based integration methods for
2023; Yang et al., 2024; Gadre et al., 2024). For ex-  checkpoints during the pretraining of large lan-
ample, Biderman et al. (2023) examined the learn-  guage models remains largely unexplored. Our
ing curves of models of different sizes in the Pythia ~ work addresses this gap by empirically demonstrat-
suite, while Yang et al. (2024) analyzed example- ing that simple checkpoint integration strategies
level learning trajectories to uncover when and how  can effectively mitigate downstream performance
individual examples are learned. Gadre et al. (2024)  instability during LLM pretraining, without requir-
showed that larger models tend to exhibit smoother  ing any changes to the training procedure.
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5 Conclusion

This study analyzed the instability of downstream
task performance during the pretraining of large
language models, focusing on performance fluc-
tuations across checkpoints. We found that such
instability occurs widely across tasks and model
sizes. These findings suggest that downstream per-
formance can fluctuate significantly even in the
later stages of training, which can undermine the
reliability and reproducibility of evaluation results.

To address this, we investigated post-processing
approaches that integrate multiple checkpoints.
Both checkpoint averaging and ensemble meth-
ods effectively reduced performance fluctuations
at both the task and example levels, without mod-
ifying the training procedure. While checkpoint
averaging contributed more to improving average
scores, checkpoint ensemble was more effective
in stabilizing example-level predictions. Given its
lower inference cost, checkpoint averaging is par-
ticularly well-suited for practical deployment.

Limitations

Our work demonstrates that instability in down-
stream task performance is prevalent during LLM
pretraining, and that simple checkpoint integra-
tion methods can effectively mitigate this issue at
both the task and example levels, without requir-
ing changes to the training procedure. However,
to further improve robustness and generality, there
remain several limitations to be addressed. First,
the integration methods explored in this work do
not incorporate model confidence or prediction un-
certainty, which could offer additional gains in sta-
bilization. Second, our analysis focuses on models
trained on a single multilingual corpus and does
not extend to instruction-tuned or alignment-based
models.

Expanding the scope of checkpoint integration
to include adaptive strategies, such as confidence-
weighted averaging, and evaluating models across
diverse pretraining regimes would be valuable next
steps. Additionally, analyzing how output instabil-
ity relates to prediction probability dynamics and
internal representations could offer deeper insights
into the nature of learning fluctuations. Under-
standing whether the observed instability persists
or transforms in downstream-tuned models also
remains an important open question.
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A Detailed Settings

Table 2 summarizes the number of parameters,
batch sizes, maximum sequence lengths, and the
training steps at which checkpoints were obtained
for each model. The checkpoints were saved at
regular intervals ranging from several hundred to
approximately a thousand steps.
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Figure 9: Mean total variation for the 13B model across
all task categories using checkpoint averaging. This
figure complements the main text by providing results
for the remaining categories and enabling direct com-
parison with HE, MC, and NLI.

Table 3 lists all downstream task categories,
datasets, and the evaluation metrics used. Each
task category typically comprises multiple datasets.
For example, the MC (multiple choice question
answering) category includes JCommonsenseQA,
JCommonsenseMorality, and KUCI.

B Additional Results

B.1 Mean Total Variation for All Task
Categories

To supplement the main results shown in Figure 8,
we report the mean total variation (MTV) across
different window sizes for all task categories using
the 13B model. As described in § 2.4, MTV quanti-
fies the average fluctuation in example-level scores
across checkpoints, with lower values indicating
greater temporal stability in predictions.

While Figure 8 focused on three representative
categories (HE, MC, and NLI), Figure 9 presents a
complementary overview that includes the remain-
ing six categories alongside the previously shown
ones for comparison. Since the results of check-
point ensemble have already been presented for
all categories, this figure exclusively reports the
results of checkpoint averaging.

The trends observed here are consistent with the
findings in the main text: increasing the averaging
window size reduces MTV across categories, indi-
cating the stabilizing effect of checkpoint averaging
during LLM pretraining.
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Figure 10: Instability score for the 13B model across
different task categories using checkpoint averaging.
Larger window sizes consistently reduce output instabil-

ity.

B.2 Instability Score Across Tasks

In addition to the MTV results presented in the
main text, we report complementary results using
the instability score (IS) introduced in § 2.4. Un-
like MTYV, which measures reference-based score
fluctuations, IS directly evaluates the variability of
model outputs by computing dissimilarity between
consecutive predictions.

Figures 10 and 11 show the IS values for the
13B model across multiple task categories using
checkpoint averaging and checkpoint ensemble, re-
spectively. Both figures report the average IS over
the final 20% of checkpoints, which captures in-
stability during the final stage of pretraining, an
essential phase for model selection in practical ap-
plications.

Figure 10 illustrates the effect of checkpoint av-
eraging across different window sizes. We observe
a consistent reduction in IS as the window size in-
creases, confirming that averaging helps smooth
output transitions across checkpoints.

Figure 11 shows the results for checkpoint en-
semble. This figure includes the corresponding IS
values for checkpoint averaging as a baseline for
comparison. We find that ensemble methods also
reduce instability and yield comparable trends to
averaging, further validating the effectiveness of
checkpoint integration strategies.

Together, these results confirm that both check-
point averaging and ensemble reduce output-level
fluctuations as measured by IS, and that the effect
extends beyond reference-based metrics to general
output consistency.
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Model size  Checkpointed steps (total) Batch size  Max tokens
IsoM 0,1,---,9,10,---,90, 100, - - -, 900, 1000, - - -, 988000, 988240 (1,017 total) 512 4,096
440M 0,1,---,9,10,---,90, 100, - - -, 900, 1000, - - -, 988000, 988240 (1,017 total) 512 4,096
980M 0,1,---,9,10,---,90, 100, - - -, 900, 1000, - - -, 988000, 988240 (1,017 total) 512 4,096

1.8B 0,1,---,9,10,---,90, 100, - - -, 900, 1000, - - -, 988000, 988240 (1,017 total) 512 4,096
37B 0,1,---,9,10,---,90, 100, - - -, 900, 1000, - - -, 494000, 494120 (523 total) 1,024 4,096
73B 0,1,---,9,10,---,90, 100, - - -, 900, 1000, - - -, 494000, 494120 (523 total) 1,024 4,096
3B 0,1,---,9,10,---,90, 100, - - -, 900, 1000, - - -, 494000, 494120 (523 total) 1,024 4,096

Table 2: Training configurations and saved checkpoints for each model size.

Task category Dataset Sub task Evaluation metric
NLI (natural language inference) Jamp - Exact match
JaNLI - Exact match
JNLI - Exact match
JSeM - Exact match
JSICK - Exact match
QA (question answering) JEMHopQA - Char. F1
NIILC - Char. F1
RC (reading comprehension) JSQuAD - Char. F1
MC (multiple choice question answering)  JCommonsenseMorality - Exact match
JCommonsenseQA - Exact match
KUCI - Exact match
EL (entity linking) chABSA - Set F1
FA (fundamental analysis) Wikipedia Annotated Corpus  NER Set F1
PAS Set F1
Coreference  Set F1
Dependency  Set F1
Reading Char. F1
MR (mathematical reasoning) MAWPS - Exact match
MT (machine translation) ALT Ja—En COMET (Rei et al., 2020)
En—Ja COMET
WikiCorpus Ja—En COMET
En—Ja COMET
HE (human examination) MMLU - Exact match
JMMLU - Exact match

Table 3: Task categories, datasets, subtasks, and evaluation metrics used in the 1lm-jp-eval framework. Each category
may include multiple datasets, each evaluated with a task-specific metric.

C Used Data and Software

C.1 Data

Jamp created by Sugimoto et al. (2023). License:
CCBY-SA 4.0. https://github.com/tomo-ut/
temporalNLI_dataset

JaNLI created by Yanaka and Mineshima (2021).
License: CC BY-SA 4.0. https://github.com/
verypluming/JaNLI

JNLI created by Kurihara et al. (2022). Li-
cense: CC BY-SA 4.0. https://github.com/
yahoojapan/JGLUE

JSeM created by Kawazoe et al. (2015). License:
Available for research use. https://github.com/

DaisukeBekki/JSeM

JSICK created by Yanaka and Mineshima
(2022). License: CC BY 4.0. https://github.
com/verypluming/JSICK

JEMHopQA created by Ishii et al. (2024). Li-
cense: CC BY-SA 4.0. https://github.com/
aiishii/JEMHopQA

NIILC created by Sekine et al. License: CC BY-
SA 4.0. https://mynlp.is.s.u-tokyo.ac.jp/
niilc-qga/

JSQuAD created by Kurihara et al. (2022). Li-
cense: CC BY-SA 4.0. https://github.com/
yahoojapan/JGLUE
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Figure 11: Instability score for the 13B model using
checkpoint ensemble. For comparison, corresponding
results for checkpoint averaging are also shown.

JCommonsenseMorality created by Takeshita
et al. License: MIT. https://github.com/
Language-Media-Lab/commonsense-moral-ja

JCommonsenseQA created by Kurihara et al.
(2022). License: CC BY-SA 4.0. https://
github.com/yahoojapan/JGLUE

KUCI created by Omura et al. (2020). License:
CC BY-SA 4.0. https://github.com/ku-nlp/
KUCI

chABSA created by Kubo et al. License: CC
BY 4.0. https://github.com/chakki-works/
chABSA-dataset

Wikipedia Annotated Corpus created
by Kawahara et al. License: CC BY-
SA 4.0. https://github.com/ku-nlp/

WikipediaAnnotatedCorpus

MAWPS created by Horio et al. (2023). License:
Apache-2.0 license. https://github.com/
nlp-waseda/chain-of-thought-ja-dataset

Asian Language Treebank (ALT) Parallel Cor-
pus created by Thu et al. (2016). License:
CC BY-NC-SA 4.0. https://www2.nict.go. jp/
astrec-att/member/mutiyama/ALT/

WikiCorpus created by NICT. License: CC
BY-SA 3.0. https://alaginrc.nict.go.jp/
WikiCorpus/

MMLU created by Hendrycks et al. (2021). Li-
cense: MIT. https://github.com/hendrycks/
test

JMMLU created by Kawazoe et al. License: CC
BY-SA 4.0. https://github.com/nlp-waseda/
JMMLU

LLM-jp Corpus v3 created by LLM-
ip- License:  Available for research use.
https://gitlab.1l1lm-jp.nii.ac.jp/
datasets/11lm-jp-corpus-v3/

C.2 Software

Ilm-jp-eval
Apache-2.0 license.
11m-jp/11lm-jp-eval

created by Han et al. License:
https://github.com/
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