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Abstract

Like most languages, sign languages evolve
over time. It is important that sign language dic-
tionaries’ vocabularies are updated over time
to reflect these changes, such as by adding
new signs. However, most dictionary retrieval
methods based upon machine learning mod-
els only work with fixed vocabularies, and it
is unclear how they might support dictionary
expansion without retraining. In this work,
we explore the feasibility of dictionary expan-
sion for sign language dictionaries using a sim-
ple representation-based method. We explore
a variety of dictionary expansion scenarios,
e.g., varying number of signs added as well
as amount of data for these newly added signs.
Through our results, we show how performance
varies significantly across different scenarios,
many of which are reflective of real-world data
challenges. Our findings offer implications for
the development & maintenance of video-based
sign language dictionaries, and highlight direc-
tions for future research on dictionary expan-
sion.

1 Introduction

Dictionaries are important resources for sign lan-
guages, offering a way to document the many dif-
ferent signs comprising the intricate vocabularies
of these languages. In addition to documentation,
dictionaries are particularly helpful to novices or
language learners, allowing them to easily look
up signs they are unfamiliar with. It is crucial
that these dictionaries have mechanisms to stay
up-to-date with changes in the language, such as
the creation and adoption of new signs by signing
communities. Here we consider the problem of
dictionary expansion, where the vocabulary of an
established sign language dictionary is updated to
incorporate new signs.

A key factor that makes sign language dictio-
naries (and thereby their expansion) unique is that
sign languages are visual-manual languages. This
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means that sign language dictionaries typically use
video entries to represent each sign in their vocabu-
lary, and need video-based approaches for users to
look up signs and query the dictionary. In a video-
based dictionary, a user demonstrates a sign to a
camera, and the dictionary returns a ranked list of
entries from the dictionary that might correspond
to that sign. Recent advancements in sign language
datasets and modeling show exciting promise in
making video-based dictionary retrieval a reality
(Hassan et al., 2025). For example, many state-of-
the-art isolated sign language recognition models
(which are trained to recognize single signs from
vocabularies of 2k+ signs) currently achieve re-
call@10 above 90% (i.e., queried sign is in top-10
results) — this high performance makes it possible
to deploy these models for dictionary retrieval.

However, a key limitation of almost all such
modeling approaches is that it is unclear how they
might support dictionary expansion. The technolo-
gies underlying most video-based retrieval methods
are often machine learning classifier models trained
on a fixed vocabulary, where each sign corresponds
to a label in a fixed label set. Incorporating new vo-
cabulary into these models would typically require
retraining them from scratch — however, this is
can be computationally expensive and relies on the
availability of a sufficient amount of high-quality
training data, which may be difficult in practice.
It also means that third-parties can’t adapt exist-
ing dictionaries to their needs (e.g., representing
local dialects or specialized lexicons). An ideal ap-
proach would support vocabulary expansion with-
out retraining the existing model, but this class of
approach remains largely unexplored.

In this work, we investigate the feasibility of
dictionary expansion without retraining for video-
based sign language dictionaries. To overcome
fixed vocabulary constraints encountered with cur-
rent classification approaches, we propose a sim-
ple method that instead uses the representations
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learned by deep learning models for dictionary
retrieval, rather than just their final classification
layer. Doing so allows us to work with unseen
signs through nearest neighbor-type approaches.

We explore how this type of approach performs
across a range of circumstances, simulating dictio-
nary expansion in ideal settings as well as more
realistic and challenging scenarios. We separately
evaluate the performance of expanded models on
core signs (those in the original dictionary) as well
as newly added signs. We find that our method
performs well when adding a small number of new
signs (~ 1 —100), each with many examples (~ 15
per sign), to a dictionary with an existing large vo-
cabulary — maintaining performance compared to
the pre-expansion for both new and old signs. How-
ever, performance degrades substantially when we
constrain the number of examples for new signs,
or attempt to add many new signs to the vocabu-
lary, which we argue are likely scenarios for real-
world dictionary expansion. Our work is the first
to systematically explore computational challenges
dictionary expansion, providing directions for fu-
ture methods development grounded in real-world
needs of sign language dictionaries and their users.
These opportunities for future research not only of-
fer a space for technical discovery, but also further
the exploration of sign languages as languages (Yin
et al., 2021; Desai et al., 2024).

2 Background

Sign Languages and Dictionaries. Sign lan-
guages are visual languages, with each sign com-
posed of distinct handshapes, movements, non-
manual markers, and other phonological features.
There are over 300 sign languages in the world. Our
work focuses on American Sign Language (ASL),
which is the most common in North America. ASL
is culturally significant to Deaf community in the
continent, and is also learned by many as a second
language (Looney and Lusin, 2019). ASL dictio-
naries are a valuable resource for this group.

Part of what makes dictionary retrieval in sign
language challenging is that two different signs
might share nearly all the same phonological fea-
tures (which can cause them to look visually sim-
ilar) but have very different meanings. For exam-
ple in ASL, SORRY and PLEASE only differ in
handshape, SUNRISE and SUNSET only differ in
movement (examples of minimal pairs). Dictionary
retrieval methods need to be robust to such dense

lexical neighborhoods.

Existing sign language dictionaries support
querying in English, through a set of descriptive
features, or by video demonstration. Searching
by English word or gloss (e.g., SigningSavvy,
LifePrint) is a valuable approach for those looking
to learn a sign from an English word (i.e., English-
to-ASL translation). However, users cannot lever-
age these dictionaries to look up the meaning of
an unfamiliar sign (i.e., ASL-to-English). Allow-
ing users to navigate dictionary search directly in
sign languages is complicated as sign languages
do not have standardized written forms. One ap-
proach is feature-based search (e.g., HandSpeak
& (Bragg et al., 2015)) that allows users to search
by describing features of a sign (e.g., handshapes,
movements). Video-based search allows users to
search by demonstrating a sign (returning all dic-
tionary entries that may match the search video).
Video-based dictionaries also allow native signers
to navigate dictionaries in their primary language—
their development is an important avenue of work.

Video-based Dictionaries and Sign Language
Recognition. Recent advancements in datasets
and modeling have changed the landscape of sign
language recognition research. Consider the re-
lease of large-scale isolated sign datasets for ASL
(e.g., ASL Citizen (Desai et al., 2023), Semlex
(Kezar et al., 2023), PopSign (Starner et al., 2023),
WLASL (Li et al., 2020), ASLLVD (Athitsos et al.,
2008)), each of which contains large vocabular-
ies (over 2000 signs) and multiple samples per sign
from different contributors. It is now feasible to use
deep learning to train models for single sign recog-
nition, and thus build video-based sign language
dictionaries (Hassan et al., 2025). While many
have worked to surpass dictionary retrieval perfor-
mance on these benchmark datasets (e.g., (Gueu-
wou et al., 2024; Wong et al., 2025)), most of these
methods are limited by approaching sign language
dictionary lookup as a classification problem — thus
making it hard to adapt to changing vocabularies.
In this work, we propose a basic method for lever-
aging these classifiers as dictionaries expand their
vocabulary, and demonstrate where this method
succeeds and where challenges still remain.

Prior Work on Dictionary Expansion. While
some work has explored how sign language recog-
nition models might generalize to unseen data (such
as different datasets and different languages, e.g.,
(Wong et al., 2025)), only few have focused on the
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task of dictionary expansion. Huamani-Malca and
Bejarano (2023) compares different incremental
learning approaches for Peruvian Sign Language
dictionaries, and Gupta (2022) explores the same
for Indian Sign Language. Both works consider
small vocabulary contexts (under 100 signs) un-
der ideal data conditions (multiple examples of
the new vocabulary), which might not reflect real-
world conditions with larger vocabularies, larger
expansion demands and variable amount of ex-
amples. While some researchers have explored
sign language recognition with data constraints
(e.g., limited data for all signs (Bohacek and Hruz,
2023; Vandendriessche et al., 2025) or unequal data
across signs (Kezar et al., 2023) or demographics
(Atwell et al., 2024)), they again focus on fixed
vocabulary contexts. In this work, we look at the
combination of the two contexts i.e., expanding
vocabularies and data-constrained recognition as
this is the most reflective of real-world use of sign
language recognition for dictionaries.

3 Experimental Setup

3.1 Task Definition

We consider the task of video-based search in sign
language dictionaries. For dictionary retrieval,
we aim to map user-submitted video queries x to
glosses' y. We assume have access to a pre-trained
classifier f that maps videos to a fixed number
of glosses N: f : x — {1,..., N}, outputting
probability for each gloss in the vocabulary of the
dictionary. These probabilities can be ranked and
used to retrieve a list of likely matching signs for
the user (e.g. the highest probability gloss is the
top-ranked retrieval result).

After training this classifier, we discover that
M new signs have become commonplace and
we wish to add them to our classifier, to yield
/" ix = {1,...,N + M}. We wish to expand
the dictionary without having to retrain f, as com-
putational resources or time for retraining are lim-
ited. To facilitate the expansion of f to f’, we
assume that we have access to varying number (m)
of videos for each of the M new signs (e.g., through
crowdsourcing contributions).

Given this new model f’, we care about how well
it does on both the original N signs (i.e., we do
not want its performance to degrade dramatically
on the old signs in comparison to f), and the new

"English translations for isolated signs

M signs (i.e., we want it to correctly recognize the
new signs).

3.2 Our Dictionary Expansion Approach

In this work, we propose a method to support
dynamic vocabulary expansion of f to f’ using
learned feature representations. Deep learning
models, particularly those trained for classifica-
tion like f, learn rich intermediate representations
that capture semantic and visual structure in the
data. These representations (typically extracted
from the penultimate layer) can often generalize
beyond the specific labels used during training. We
adopt a similarity-based retrieval approach using
these feature representations. Given a query video
of a new sign, we extract its feature representation
using f and retrieve the most similar video from
a database using a nearest-neighbor search in the
feature space. This database consists of feature
representations from both the core vocabulary and
an expansion set of new signs.

In practice, to expand the dictionary, an admin-
istrator would simply need to process new sign
videos through the trained (frozen) classifier to ex-
tract their feature representations and add them to
the retrieval database. No additional training or
fine-tuning is required. This provides a lightweight,
scalable solution for incorporating new signs into
a fixed-vocabulary dictionary by leveraging the
generalization capacity of learned embeddings and
similarity-based retrieval. Below, we discuss how
we simulate a variety of realistic dictionary expan-
sion scenarios, carefully slicing a large ASL dictio-
nary dataset into appropriate subsets.

3.3 Data Setup

We use the ASL Citizen dataset (Desai et al., 2023)
as it was collected to support research and devel-
opment of ASL dictionaries. This dataset contains
about 84k videos of 52 d/Deaf and hard-of-hearing
contributors fluent in ASL performing single signs.
It also contains videos of the seed signer (a highly
proficient ASL signer) whose videos were used to
prompt data collection. Each video is labeled as
1 of 2731 glosses. The dataset provides standard-
ized train, validation, and test splits by contributor,
allowing for testing of model generalization onto
unseen users, mimicking real-world use.

To simulate dictionary expansion, we split
the ASL Citizen dataset by gloss into two non-
overlapping subsets: a “core vocabulary” and an
“unseen vocabulary”. The core vocabulary is in-
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Figure 1: Schematic of Data Setup for Dictionary Expansion

tended to simulate entries that are initially present
in a dictionary. We assume that the dictionary ad-
ministrators have already trained a classifier, using
the training dataset associated with the core vocab-
ulary. Held-out test recordings of the core vocabu-
lary can then be used for the purpose of simulating
a dictionary query.

The unseen vocabulary are glosses that we re-
serve to test dictionary expansion under various
scenarios. The unseen vocabulary is intended to
simulate new signs that will be added to the dictio-
nary at a future date, after machine learning mod-
els have already been trained on the core vocabu-
lary. We further split the unseen vocabulary into
expansion and query samples. We consider the
expansion dataset to be examples the dictionary
administrator is in possession of, and can use to
expand their machine learning model. The query
dataset is then intended to simulate users querying
the expanded model, and used to test performance
of the expanded models.

Mindful of how the composition of the vocabu-
lary might influence task difficulty, we randomly
generated three different core-unseen splits for our
dictionary expansion experiments?. We repeat our
experiments with each split and report average per-
formance and standard deviation across these runs.
We note that we did not segment the core and un-
seen vocabulary by contributor, meaning that sign-
ers in the unseen vocabulary may have already been
seen in the training dataset of the core vocabulary.

2Splits can be found here: https://github.com/
aashakadesai/asl-dict-expansion-splits/

We consider this to still be reflective of real-world
usage as crowdsourced dictionaries (like ASL Citi-
zen) often sustain repeat contributors.

3.4 Dictionary Settings

To understand how the difficulty of dictionary ex-
pansion interacts with various data acquisition chal-
lenges in the real-world, we begin by declaring a
base setting for dictionary expansion. We then vary
parameters of this base set-up in controlled ways
to simulate these various data challenges.

Base setup In this set-up, we assume we begin
with a reasonably large core vocabulary with many
examples per sign. We then simulate a scenario
where only one new sign is added to the vocabu-
lary, with ample expansion samples for this sign.
In our case, our core vocabulary consists of 1,000
signs and total of 14,691 training videos (i.e., ~15
videos per sign, each performed by different con-
tributors). We then expand the vocabulary by 1 sign
(going from 1000 to 1,001 signs) using all available
expansion samples for that sign (i.e., ~15 videos
per sign, each performed by different contributors).
We repeat this procedure over all 1,731 signs in our
unseen vocabulary and report averaged metrics (see
section 3.6), testing on a total of 20,902 videos.

Adding a Sign with a Single Example Gather-
ing multiple samples for a new sign involves con-
siderable effort. For example, for dictionaries that
rely upon crowdsourcing, newly added vocabulary
may be recently invented signs that have not fully
disseminated through the community yet. In these
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cases, only a small number of contributors may
initially provide videos of the sign. To simulate
this scenario, our core vocabulary consists of 1,000
signs (with ~15 videos per sign, each performed
by different contributors). We then expand the vo-
cabulary by 1 sign (going from 1000 to 1,001 signs)
using only one expansion sample for that sign (in
contrast to ~15 samples used in the base set up).
We consider two settings for how the single sample
per sign is obtained: In the first setting, we assume
that signs are organically contributed by different
contributors. We simulate this by randomly sam-
pling a video from the unseen expansion set. In the
second setting, we assume a long-term contributor
(i.e., someone who has likely recorded examples
of most of the core vocabulary) contributes a new
sign to the dictionary. We simulate this by using a
specific contributor’s video to represent core and
added signs throughout the dictionary.

Adding Multiple Signs with Multiple Examples
In the real world, it is likely that multiple signs
will be added to a dictionary. Dictionaries are ex-
pected to grow iteratively with contributions over
time. This larger expansion context might have a
more significant impact on dictionary performance
for the core vocabulary. To simulate this scenario,
our core vocabulary again consists of 1,000 signs
and newly added signs have 15 expansion samples
each. Unlike the previous two settings, instead of
adding one sign to the dictionary, we sample a set
of signs (n = 100, 500, 750, or 1000) to add to the
dictionary. This allows us to test expanding the
vocabulary by 10%, 50%, 75% and 100% respec-
tively. For each stage of expansion, we randomly
sample three different sets of signs from the unseen
split to be added to the dictionary, as differently
composed sets might impact the difficulty of the
task uniquely. We report the average performance
across these splits as well as corresponding changes
in performance of core vocabulary after expansion.

Adding Multiple Signs with Few Examples
Next, we were curious about the interaction be-
tween adding multiple signs and having limited
expansion samples for a new sign on dictionary
expansion — a very likely real-world scenario. To
simulate this, we used used aspects from each of
the above settings: Our core vocabulary consists of
1,000 signs (with ~15 videos per sign). We then
test expanding the the vocabulary by 10%, 50%,
75% and 100% (i.e., adding sets of 100, 500, 750,
and 1000 signs respectively). But in this setting,

newly added signs have only one expansion sam-
ple each. We again consider two settings for how
the single sample per sign is obtained: In the first
setting, we assume that signs are organically con-
tributed by different contributors. We simulate this
by randomly sampling a video from the unseen
expansion set. In the second setting, we assume a
long-term or hired contributor adds new signs to
a dictionary. We simulate this by using the seed
signer’s video to represent core and added signs
throughout the dictionary.

Exploring Smaller Dictionaries Certain sign
language dictionaries may be more specialized or
in early stages of documenting a lexicon, and thus
smaller in vocabulary. To simulate this scenario,
we decided to create three new core-unseen splits
(100 and 2631 signs respectively) for our experi-
ments. Each of these splits is uniquely composed
to reflect various underlying rationales of smaller
dictionaries. First, naively, we randomly sampled
set of glosses. Second, reflecting a dictionary that
might be aiming to be comprehensive but is newer,
we sampled a set of semantically distributed glosses
(details in Appendix E). Third, to reflect a more spe-
cialized dictionary (such as one targeted towards
language learners), we sampled a set of glosses
matching that use case (from HandSpeak’s list of
first 100 signs for ASL learners). For each of these
splits, our core vocabulary has 100 signs and total
of ~1490 training videos (i.e., ~15 videos per sign,
each performed by different contributors). We first
test performance adding a single sign with multi-
ple examples (i.e., newly added signs have ~15
samples). Then we test adding multiple signs to
the dictionary— exploring adding sets of 10, 50, 75,
and 100 signs to the dictionary, following the same
sampling approach as the large dictionary setting.

3.5 Model Architecture and Training

We use the spatiotemporal graph convolutional net-
work (ST-GCN) (Yan et al., 2018), following pre-
vious works on this dataset. We extract keypoints
using MediaPipe Holistic, and use the same 27
keypoints outlined in OpenHands (Selvaraj et al.,
2022). We preprocess the keypoints using the same
procedures outlined in prior work (Selvaraj et al.,
2022; Desai et al., 2023). The model is trained on
the core vocabulary for 100 epochs using a learn-
ing rate le-3, an Adam optimizer and a Cosine
Annealing scheduler. We select the best perform-
ing checkpoint on the core validation set for our
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expansion experiments. To extract feature embed-
dings for our experiments, we use the encoder of
the ST-GCN model®. We use cosine distance to
calculate similarity between embeddings in nearest
neighbor search for dictionary retrieval.

3.6 Maetrics

We use metrics consistent with prior work on sign
language dictionary retrieval to evaluate the re-
turned ranked list of glosses: Discounted Cumula-
tive Gain (DCG, which evaluates overall ranking
of the correct sign in the list) and recall-at-k (which
considers if the correct is in the top-k rankings).

4 Results

Overall, we find that the performance of our dic-
tionary expansion method varies greatly across dif-
ferent dictionary settings — Figure 2 provides a
snapshot of our results. In the following subsec-
tions, we walk through the results in each setting
and our corresponding analysis. The ranking of set-
tings was consistent across all metrics so we report
DCG, but full tables reporting each metric for each
experiment can be found in the appendix.

4.1 Core Dictionary Performance

We provide a baseline to contextualize dictionary
expansion by first measuring the retrieval perfor-
mance of seen signs in the core vocabulary only,
with no dictionary expansion performed (Table 1
in Appendix A). The classifier trained on the core
vocabulary achieves a DCG of 0.7787 and top-1
accuracy of 62.21% when tested on the test split of
the core vocabulary (1000 glosses, ~12038 videos).
We then validate our feature representation-based
retrieval method: it achieves a DCG of 0.7719 and
top-1 accuracy of 61.11% on the same test split
of the core vocabulary. Comparing these two ap-
proaches, we see that the feature-representation
approach performs as well as the classifier on seen
(i.e., core) signs. We were further able to improve
performance of the feature representation approach
by calculating the centroid of all sample videos
for each sign and using this instead in our retrieval
database of feature representations. Interestingly,
this strategy even surpasses the classifier, with a
DCG of 0.8050 and top-1 accuracy of 66.04%.
Thus, we retrieve the centroid representation of
all core and expanded signs for all subsequent ex-
periments.

3as the decoder is a single fully connected layer this corre-
sponds to the second-to-last layer of the model

4.2 Base Setup Performance

Having established that using extracted features
from a classifier is an effective strategy for dictio-
nary retrieval, we next focused on testing a baseline
dictionary expansion scenario that we consider the
most ideal setting for dictionary expansion. In this
set-up, we add a single sign, with expansion sam-
ples equal to the maximum number in the ASL
Citizen training dataset for that sign (typically 15).

When we have multiple examples for each sign,
we find that the performance of newly added signs
is comparable to that of the core vocabulary (Ta-
ble 2 in Appendix B). Specifically, we see a DCG
of 0.8042 and top-1 accuracy of 65.38% on the
new vocabulary (compared to a DCG of 0.8050
and top-1 accuracy of 66.04% for the core vocabu-
lary). This suggests that our feature representation
method could be effective in this dictionary expan-
sion setting.

4.3 Adding a Sign with One Example

When adding a new sign with just a single example,
however, we see a significant degradation in perfor-
mance (Figure 2). When this sample is randomly
selected, the newly added signs achieve a DCG of
0.4492 and top-1 accuracy of 21.74% (Table 2 in
Appendix B) — a large drop compared to a DCG of
0.8042 and top-1 accuracy of 65.38% in the base
setup with multiple examples per sign.

This demonstrates that data plays a critical role,
and we hypothesize that constraining ourselves to a
single example video for a sign limits our method’s
ability to provide a robust representation for re-
trieval with the new sign. The feature representa-
tion of a given video likely contains both informa-
tion about the sign along with variation specific to
a given contributor — we hypothesized that taking
the centroid across many samples “averages out"
the contributor-specific variation, providing a more
robust representation of the sign itself.

Based upon this hypothesis, we reasoned that us-
ing a single contributor for all videos in the retrieval
database, as opposed to different contributors, may
reduce the impact of contributor-specific variation.
We experimented with using a specific contribu-
tor’s videos as expansion samples for the dictio-
nary. We reasoned this would simulate a scenario
where a long-term contributor to the dictionary has
recorded many, if not all, signs in the vocabulary
in addition to the added sign. A benefit of this is
that we can then use this signer’s videos to con-
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sistently represent all signs in the dictionary, both
core and added — and thus minimize impact of user
variation. We tested this approach with videos of
five different contributors from the ASL Citizen
dataset: the seed signer (P52), P33, P11, P50, P27
— all of whom had recorded videos for (almost all)
glosses in the ASL Citizen dataset. We find that
dictionary retrieval performance for added signs
improves significantly with this single signer set up
—in the best case (seed signer), achieving a DCG of
0.6881 and top-1 accuracy of 49.55% after using
only one expansion sample per added sign (Table
2). However, we also note that performance varies
drastically across contributors: e.g., 24.81% top-1
accuracy using P11°s videos vs 42.15% using P27’s
videos (results for each signer can be found table 3
in Appendix B).

4.4 Adding Many Signs with Many Examples

Having explored expanding the vocabulary of a dic-
tionary by one sign (i.e., going from a vocabulary
of 1000 to 1001), we next studied the impact of
larger scale expansion that involves adding multi-
ple signs. The left half of Figure 4 and Table 4
summarize performance of core and added signs
at different stages of expansion (adding 100, 500,
750, and 1000 signs).

We observed that as more signs are added, dic-
tionary performance degrades. However, even in
the largest expansion scenario we tested, dictionary
retrieval performance overall remains reasonable
for core and added signs at each stage of expan-
sion (Table 4). When adding 100 signs, new signs
achieve a DCG of 0.7984 and a top-1 accuracy of
64.33% on average — a slight drop in performance

compared to the baseline expansion setup. At this
tier, the impact on core vocabulary is also minimal,
dropping to a DCG of 0.7968 and top-1 accuracy of
64.84% compared to pre-expansion. We find that
performance continues to drop for both core and
added vocabulary as we add more signs to the dic-
tionary. The last expansion tier, adding 1000 signs,
achieves a DCG of 0.7397 and top-1 accuracy of
56.03% for new signs and a DCG of 0.7436 and
top-1 accuracy of 57.27% for core vocabulary. This
tier corresponds to effectively doubling the vocab-
ulary of the dictionary and shows a ~9 point drop
in top-1 accuracy and a 0.06 point drop in DCG.
While this is not insignificant, we note that top-
10 accuracy remains above 85% post-expansion
for both core and added signs, meaning that users
of a dictionary will continue to find the desired
sign among the first 10 entries. This suggests that
expanded dictionaries generally maintain similar
levels of usability in our simulated setting, even up
to 1000 added signs.

4.5 Adding Many Signs with One Example

We next assessed the interaction between adding
multiple signs to a dictionary and limited number of
expansion samples per sign. Figure 3 summarizes
our results multiple stages of expansion and across
two different setups— using a random contributor’s
video for each sign vs. using a specific, long-term
contributor’s video for all signs.

For both setups, we note a similar overarching
trend that performance degrades as we proceed to
larger expansion tiers i.e., as we add more signs
to the vocabulary. However, we find that perfor-
mance for core and added signs varies drastically
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in each setup (Figure 3 and Appendix D). When us-
ing the random contributor’s video for added signs
(alongside centroid for core signs), we find large
disparities in performance between added signs and
core signs — added signs achieve a DCG of ~0.4
and top-1 accuracy of ~20% in contrast to core
signs with a DCG of ~0.75 and top-1 accuracy of
~62% across different stages of expansion (Table
5). When using a long-term contributor’s videos,
we again note the benefit of reducing user-variation
in the retrieval space (Table 6)— added signs achieve
a much better performance: a DCG of ~0.64 and
a top-1 accuracy of ~44%. We note that there are
less disparities between core and added signs in this
setup; however, we see a bigger drop in core vo-
cabulary performance compared to pre-expansion:
achieving a DCG of ~0.65 and a top-1 accuracy of
~48% (Table 6). This is likely due to the fact that
the seed signer’s video does not approximate the la-
tent representation of the sign as well as calculating
centroid across multiple users.

4.6 Small Dictionaries

We were curious if the trends we see in dictionary
expansion experiments would hold for dictionaries
with smaller core vocabularies (such as new or
emerging dictionaries). We tested this scenario
using models trained on a vocabulary of 100 signs
with multiple examples per sign. We then tested
expansion using multiple examples per sign.
When adding a single sign to the vocabulary,
we find that similar to our results with the larger
dictionary, the performance of the added signs is
comparable to that of the core vocabulary (first row
of tables in Appendix E). When adding multiple
signs, this trend continues (Figure 4)— we find small
gaps between core vocabulary performance and
added vocabulary performance at each stage of
expansion. However, for the smaller dictionary, we
note much larger variations in performance across
different core-unseen splits (as evinced by large
deviation bars in Figure 4). For example, with the
randomly generated split, adding 10 signs to the
vocabulary leads to a 9 point drop in top-1 accuracy
for added signs (going from 67.22 to 58.21) (Table
7); whereas the semantically distributed split has
almost no drop (Table 8) and the HandSpeak split
has 3 point drop (Table 9). We believe this suggests
that the lexical composition of the vocabulary (both
core and added) is a much more significant factor
for small dictionary expansion. Lastly, we note that
performance degrades faster with each expansion
tier for the small dictionaries. We hypothesize that
this is because small dictionaries have not been
exposed to sufficient data during training to learn
good/robust feature representations for signs.

4.7 Visual and Runtime Analysis

Our representation-based method assumes that
signs that are visually similar are placed closer
to each other in the embedding space. To evaluate
this, we examined the visual similarity of errors
made by our method (i.e., confusions) in the base
setup. We used phonological labels from ASL-
Lex (Sehyr et al., 2021) to identify key parameters
(Handshape, Movement, Location) for each sign
in our vocabulary and then counted how many of
these features differed between confused signs. We
find that on average 1.85 features differ between
confused signs. In contrast, when sampling 1000
random pairs of signs from the lexicon, 2.38 fea-
tures differ on average. This indicates that the
confusions made by the model are between signs
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with fewer differences in phonology (i.e., more vi-
sually similar signs). Appendix F provides some
examples of common confusions.

Finally, given the motivation around practical
deployment, we calculated the time it takes for re-
trieval as the dictionary expands. As expected with
nearest-neighbor search, retrieval time increases
linearly with the size of the vocabulary: 10.12ms
for 1000 signs vs. 16.08ms for 1500 signs vs.
21.47ms for 2000 signs. At the current vocabu-
lary sizes, we anticipate this increase in time would
not significantly impact user experience. However,
as the dictionary grows further, implementing tech-
niques for speeding up nearest neighbor search
(e.g., using Meta’s FAISS package) would be valu-
able.

5 Discussion

In this work, we explored sign language dictionary
expansion across a variety of settings. Our results
highlight the feasibility of expanding sign language
dictionaries using feature representation-based ap-
proach, and demonstrate that performance is con-
tingent on the type and quantity of data available
for new vocabulary.

Given enough examples of a sign, we show
that incorporating it into an existing dictionary is
quite feasible. This is valuable for when small
changes need to be made to a dictionary quickly
(e.g., recording a new variation or documenting a
newly emerging and rapidly adopted sign, like the
sign for ‘coronavirus’).

When adding multiple signs with multiple ex-
amples, we show that models are generally robust,
albeit at a slightly lower performance than when
just a single sign is added. This can inform the fre-
quency at which we retrain models in response to
changing vocabularies. A comparison of numbers
from the small dictionary experiments (100 core
signs) to the large dictionary experiments (1000
core signs) suggest models may need to be re-
trained at more frequent intervals initially, but less
often once they’ve develop robust representations.

On the other hand, we find that performance
degrades when added new signs that have only
a limited number of samples. As we would ex-
pect, this is the most difficult, but also the most
realistic, expansion scenario. This illuminates an
important direction for future research: examining
new methods for incorporating signs into a dictio-
nary in data-constrained scenarios. We focused on

classifiers trained using deep learning in this work;
however, alternative training approaches (e.g., meta
learning) may result in more robust feature repre-
sentations for core and added signs. We encourage
researchers to take up this line of inquiry.

Looking forward, we emphasize the importance
of addressing dictionary expansion for sign lan-
guages. Compared to written languages, existing
sign language dictionaries represent only a small
fraction of the true language lexicon. While many
crowdsourcing and documenting initiatives are un-
derway, gathering a snapshot of sign languages that
is representative of the many different regional and
contextual variations continues to be a challenge.
In addition to variations in everyday vernacular,
different fields of study (such as STEM disciplines)
frequently produce new signs to represent new con-
cepts. Dictionary expansion then offers a crucial
pathway to building sustainable and scalable sign
language dictionaries.

Our results also offer interesting implications for
the maintenance of current crowdsourced dictionar-
ies. Examples available for each sign are expected
to grow over time with contributions from users.
A representation-based approach like ours (that
works with any number of signs and any number
of examples per sign) aligns well to the fluctuating
vocabulary size and data availability encountered
in these dictionaries. Initially, dictionary adminis-
trators could work to incorporate a sign with any
available sample, and then switch to centroid for
these added signs as more examples are collected.
While this results in poor added sign performance
initially, it allows the sign to be incorporated into
the video-based dictionary and solicit further in-
teraction and contributions from dictionary users.
To maximize initial performance, dictionary ad-
ministrators could also work to sustain long-term
contributors to record most, if not all, signs being
added to the dictionary (as this shows best added
sign performance with limited data).

Overall, our work outlines directions for sign
language research aligned with community needs
and real world settings and furthers the exploration
of sign languages as languages in their own right.

6 Limitations

In this work, we reported results on dictionary ex-
pansion using only an ST-GCN model. While this
architecture is frequently used in sign language
recognition and has the benefit of being lightweight,
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it is not the only established approach. Appearance-
based approaches to sign language recognition (like
I3D) might fare differently under expansion sce-
narios. Exploring dictionary expansion across a
variety of architectures as well as robustness of
their learned feature representations could be an
interesting direction for future research.

To simulate dictionary expansion, we created
core-unseen splits from ASL Citizen. This meant
that many of the contributors in the unseen split had
previously been seen by the model — while this is
reflective of a real-world scenario (long-term dictio-
nary contributors), using a completely new dataset
for unseen vocabulary would have also allowed us
to simulate a dictionary setting with a completely
new contributor scenario for added signs.

In our results, we note that the centroid approach
outperforms the classifier even in the base dictio-
nary setting — to the best of our knowledge, this
has not been discussed in prior literature. While
valuable, a core limitation of this approach is that
the centroid representation requires multiple train-
ing examples to become reliable, which may be
difficult leverage with data scarcity.

Our analysis surfaces large variance in dictio-
nary retrieval performance across contributors (sec-
tion 4.3), we do not investigate these disparities in
depth. We hypothesize these disparities could be
explained by variations in video quality for these
different signers or biases in the underlying model
(or both). Disentangling these aspects and more
systematically exploring dictionary expansion per-
formance across different contributors is valuable
direction for future work.

We also highlight differences in dictionary ex-
pansion trends at smaller vs. larger core vocab-
ulary sizes. However, our results are limited to
comparing two specific vocabulary sizes (100 vs.
1000) — a more systematic investigation across dif-
ferent vocabulary sizes may have better unearthed
overarching trends. Additionally, with our smaller
vocabularies we note sensitivity to lexical compo-
sition, but our analysis reports aggregates which
prevents us from investigating sign-level nuances
and conducting a linguistically-informed analysis.

Lastly, we position our work related to evolu-
tion of sign languages, but only focus on adding
signs to dictionaries and not replacing or removing
signs. While our method could be easily adapted
to address these, further research is required to
investigate impacts on overall dictionary retrieval
performance.
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A Core Dictionary Performance

Table 1 corresponds to section 4.1, where we establish a baseline of the classifier performance and our
feature-representation approach using the test split of our core vocabulary.

Setup DCG Rec@1 Rec@10
Classifier ~ 0.7787 +£0.0051 0.6221 +0.0101  0.8860 + 0.0020
All Features 0.7719 £0.0016 0.6111 £0.0052 0.8815 + 0.0021
Centroid  0.8050 £ 0.0013 0.6604 £+ 0.0040 0.9048 + 0.0010

Table 1: Establishing baseline performance using classifier and our feature-based approach. The ‘all features’ setting
corresponds to naive use of learned feature representations, and centroid corresponds to calculating centroid for
each sign first.

B Adding a Single Sign

Table 2 corresponds to section 4.2 and section 4.3, where we experiment with adding one sign to the
dictionary. Table 3 summarized results of our experiments using different contributors when simulating
our ‘long-term contributor’ scenario in section 4.3.

Setting DCG Rec@1 Rec@10
Many Examples 0.8042 +0.0037 0.6538 £0.0047  0.9105 £ 0.0040
One Random Contributor Example ~ 0.4492 + 0.0016 0.2174 £0.0041  0.5396 + 0.0056

One Long-term Contributor Example 0.6881 +0.0025 0.4955 £ 0.0006 0.81205 £ 0.0070

Table 2: Dictionary expansion performance when adding a single sign to the dictionary under a variety of data
settings. We can see that amount of data and choice of sample (in low-data settings) are a significant factor in
performance.

Setup DCG Rec@1 Rec@10
P52 (seed signer) 0.6881 +0.0025 0.4955 +0.0006 0.8121 +0.0070
P33 0.5556 £0.0017 0.3275+0.0035 0.6781 £0.0014
P11 0.4715+0.0031 0.2482 £0.0024 0.5615 £ 0.0043
P50 0.6163 £0.0035 0.4004 +£0.0031 0.7445 £+ 0.0056
P27 0.6346 £ 0.0037 0.4215+0.0038 0.7678 £ 0.0038

Table 3: Dictionary expansion performance when adding a single sign to the dictionary with a single example and
using a specific contributor’s videos to represent all signs. We see performance varies significantly across chosen

contributor.
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C Adding Many Signs with Many Examples

Table 4 corresponds to section 4.4, where we experiment with adding many signs to the dictionary using
all available samples — it summarizes performance of both added signs and core signs with each stage
of expansion (adding 100, 500, 750, 1000 signs). We report averages across each the three randomly

sampled sets for each stage of expansion.

Setup DCG Rec@1 Rec@10
Adding 1 0.8042 £ 0.0037 0.6538 £ 0.0047 0.9105 + 0.0040
Adding 100 0.7984 £ 0.0090 0.6433 +0.0107 0.9078 + 0.0084
Adding 500 0.7644 + 0.0031 0.5949 £ 0.0030 0.8815 + 0.0040
Adding 750  0.7494 £ 0.0080 0.5730 £ 0.0100 0.8689 + 0.0093
Adding 1000 0.7397 £ 0.0076  0.5603 £ 0.0101  0.8600 + 0.0072

Setup DCG Rec@1 Rec@10
Original 0.8050 £ 0.0013  0.6604 +0.0040 0.9048 +0.0010
Adding 100 0.7968 + 0.0015 0.6484 +0.0038 0.8989 + 0.0018
Adding 500  0.7694 £ 0.0025 0.6090 + 0.0052 0.8774 +0.0022
Adding 750  0.7548 £ 0.0034 0.5882 +0.0067 0.8657 + 0.0030
Adding 1000 0.7436 £ 0.0033 0.5727 £0.0057 0.8567 £ 0.0037

Table 4: Dictionary Expansion performance when adding multiple signs with multiple examples. Top table is
performance of added signs and bottom table is corresponding performance of core signs after dictionary expansion.

Top rows in each table are baselines from previous settings.
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D Adding a Many Signs with Single Example

Tables 5 and 6 corresponds to section 4.5, where we experiment with adding many signs to the dictionary
using a single only one expansion sample. They summarize results with two different setups: using a
random contributor’s video for each sign vs. using the seed signer’s video across the board. We report
performance of both added signs and core signs with each stage of expansion (adding 100, 500, 750, 1000
signs). We report averages across each the three randomly sampled sets for each stage of expansion.

Setup DCG Rec@1 Rec@10
Adding 100 0.4527 £0.0062 0.2203 £ 0.0016 0.5457 £ 0.0163
Adding 500  0.4332 +0.0043 0.2016 + 0.0023  0.5200 + 0.0094
Adding 750  0.4263 £ 0.0066 0.1971 £0.0040 0.5091 £0.0114

Adding 1000 0.4192 +0.0024 0.1910 £0.0013  0.4990 + 0.0051

Setup DCG Rec@1 Rec@10
Adding 100 0.8009 + 0.0021 0.6543 £0.0059 0.9027 + 0.0009
Adding 500  0.7909 + 0.0037 0.6402 + 0.0078 0.8946 + 0.0006
Adding 750  0.7852 £ 0.0035 0.6327 £0.0078 0.8895 + 0.0010

Adding 1000 0.7792 £ 0.0048 0.6251 £0.0085 0.8845 + 0.0008

Table 5: Dictionary Expansion performance when adding multiple signs with a single example, and using a random
contributor’s video as a sample. Top table is performance of added signs and bottom table is corresponding
performance of core signs after dictionary expansion. We see large disparities between added and core sign

performance at each expansion stage.

Setup DCG Rec@1 Rec@10
Adding 100 0.6813 £ 0.0062 0.4877 +£0.0118 0.8038 + 0.0057
Adding 500  0.6504 +0.0035 0.4477 £0.0037 0.7743 + 0.0086
Adding 750  0.6308 + 0.0074 0.4231 £0.0091 0.7561 + 0.0088
Adding 1000 0.6164 +£0.0034 0.4047 £0.0055 0.7401 + 0.0075

Setup DCG Rec@1 Rec@10
Adding 100 0.7070 £ 0.0049 0.5205 £ 0.0043  0.8284 + 0.0064
Adding 500  0.6764 £ 0.0056 0.4808 +0.0069 0.8005 + 0.0092
Adding 750  0.6613 £ 0.0052 0.4614 +£0.0065 0.7855 + 0.0091
Adding 1000 0.6477 £0.0056 0.4443 £0.0077 0.7728 + 0.0087

Table 6: Dictionary Expansion performance when adding multiple signs with a single example and using the seed
signer’s videos to represent all signs. Top table is performance of added signs and bottom table is corresponding
performance of core signs after dictionary expansion. We see improvement in added sign performance compared to
the random contributor setup, but core sign performance lags behind.
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E Small Dictionaries

Tables 8 and 7 and 9 corresponds to section 4.6, where we experiment with simulating dictionary expansion
for small dictionaries. We report results on three different core-unseen splits: randomly generated (Table
7), semantically distributed (Table 8), and specialized (language learning lexicon) (Table 9). To sample
the semantically distributed glosses, we extracted GloVE embeddings (Pennington et al., 2014) for all
glosses in ASL Citizen dataset (2731) and used geometric sketching (Hie et al., 2019) to sample 100
representative glosses. In the following tables, we report performance of both added signs and core signs
with each stage of expansion (adding 100, 500, 750, 1000 signs). We report averages across each the three

randomly sampled sets for each stage of expansion.

Setup DCG Rec@1 Rec@10
Adding 1  0.8314 0.6722  0.9580
Adding 10 0.7877 0.5821  0.9522
Adding 50 0.7654 0.5735  0.9180
Adding 75 0.7572 0.5714  0.8987

Adding 100 0.7328 0.5285  0.8937

Setup DCG Rec@1 Rec@10

Original ~ 0.8302 0.6953  0.9290
Adding 10 0.8311 0.6967  0.9396
Adding 50 0.7925 0.6430  0.9071
Adding 75 0.7783 0.6244  0.8915
Adding 100 0.7625 0.6054  0.8754

Table 7: Performance with small randomly sampled dictionary, adding multiple signs with multiple examples. Top
table is performance of added signs and bottom table is corresponding performance of core signs after dictionary
expansion. Top rows in each table correspond to establishing a baseline and adding single signs.

Setup DCG Rec@1 Rec@10
Adding 1 0.8230 0.6549  0.9551
Adding 10  0.8300 0.6695  0.9491
Adding 50 0.7544 0.5383  0.9236
Adding 75 0.7481 0.5511  0.8959
Adding 100 0.7511 0.5555  0.9015

Setup DCG Rec@1 Rec@10
Original ~ 0.8427 0.7073  0.9498
Adding 10  0.8304 0.6965  0.9409
Adding 50 0.7962 0.6530  0.9086
Adding 75 0.7818 0.6305  0.8980
Adding 100 0.7658 0.6056  0.8841

Table 8: Performance with small semantically diverse dictionary, adding multiple signs with multiple examples. Top
table is performance of added signs and bottom table is corresponding performance of core signs after dictionary
expansion. Top rows in each table correspond to establishing a baseline and adding single signs.
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Setup DCG Rec@1 Rec@10
Adding 1  0.8528 0.7083  0.9689
Adding 10  0.8261 0.6601  0.9568
Adding 50 0.8112 0.6446  0.9468
Adding 75 0.7835 0.6016  0.9307

Adding 100 0.7692 0.5818  0.9150

Setup DCG Rec@1 Rec@10

Original 0.8255 0.6694  0.9507
Adding 10 0.8291 0.6801  0.9481
Adding 50 0.8007 0.6423  0.9233
Adding 75 0.7863 0.6184  0.9139
Adding 100 0.7749 0.6053  0.8964

Table 9: Performance with small specialized lexicon dictionary (for language learners), adding multiple signs with
multiple examples. Top table is performance of added signs and bottom table is corresponding performance of core
signs after dictionary expansion. Top rows in each table correspond to establishing a baseline and adding single

signs.

F Visual Similarity of Common Confusions

We present some common confusions that occurred for an experimental split under the Base Setup scenario
(Section 4.2). We present ground truth and predicted glosses alongside phonological labels to describe
visual similarity. These phonological labels were derived from ASL-Lex (Sehyr et al., 2021) (a database

of phonological properties of signs which all ASL Citizen glosses are cross-referenced against).

Type Gloss Handshape Movement Location
Truth SHOVELI S Curved Neutral
Predicted DIGUP a Curved Neutral
Truth ASSEMBLY a Straight Body
Predicted @ ATLANTA a Curved Body
Truth RING g Straight Hand
Predicted FILTER 5 Straight Neutral
Truth VISUALIZE S Straight Head
Predicted IMAGINE2 S Straight Head
Truth CALM closed-b Curved Neutral
Predicted QUIET closed-b Curved Head

Table 10: Common Confusions from Base Setup Scenario (Adding One Sign With Many Examples)
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