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Abstract

Accurate analysis of pathological images is es-
sential for automated tumor diagnosis but re-
mains challenging due to high structural sim-
ilarity and subtle morphological variations in
tissue images. Current vision-language (VL)
models often struggle to capture the complex
reasoning required for interpreting structured
pathological reports. To address these limi-
tations, we propose PathoHR-Bench, a novel
benchmark designed to evaluate VL. models’
abilities in hierarchical semantic understand-
ing and compositional reasoning within the
pathology domain. Results of this benchmark
reveal that existing VL models fail to effec-
tively model intricate cross-modal relation-
ships, hence limiting their applicability in clini-
cal setting. To overcome this, we further intro-
duce a pathology-specific VL training scheme
that generates enhanced and perturbed samples
for multimodal contrastive learning. Exper-
imental evaluations demonstrate that our ap-
proach achieves state-of-the-art performance
on PathoHR-Bench and six additional pathol-
ogy datasets, highlighting its effectiveness in
fine-grained pathology representation.

1 Introduction

Recently, vision-language (VL) models have
gained substantial advances (Goel et al., 2022;
Li et al., 2022), fostering an integration of com-
puter vision and natural language processing across
a wide range of application domains (Wei et al.,
2024; Das et al., 2024). In medical image analysis,
contrastive learning-based approaches have been
extensively employed to align large-scale medi-
cal images with corresponding diagnostic reports,
thereby enabling zero-shot classification and grad-
ing without additional fine-tuning (Xie et al., 2024;
Phan et al., 2024). This paradigm markedly re-
duces the reliance on high-quality annotated data
and enhances the scalability of medical imaging
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Figure 1: Radar charts for compared models on
PathoHR-Bench across multiple compositional reason-
ing aspects. The axes correspond to three types of per-
turbations: I (Information Loss), S (Semantic Drift), O
(Order Variation), evaluated under three semantic roles:
Entities, Descriptors and Connections. Higher values
indicate stronger robustness.

models. Nevertheless, in contrast to other imaging
modalities such as X-ray and MRI, pathological im-
age analysis presents distinct and more formidable
challenges due to its higher structural complexity
and more subtle visual cues in the images.

Pathological biopsy microscopy remain the gold
standard for tumor diagnosis, as it capture intri-
cate cellular structures and morphological details
(Ruiz Lépez et al., 2017). However, the sub-
tle intra-class variations in images pose signifi-
cant challenges for disease classification. Exist-
ing approaches predominantly rely on task-specific
models tailored to individual applications, such
as Gleason grading of prostate cancer and breast
cancer subtyping (Pati et al., 2023; Bulten et al.,
2022). In contrast, pathological texts are inherently
fine-grained, characterized by specialized medical
terminology, precise pathological reasoning, and
structured diagnostic logic. These narratives not
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only describe subtle visual cues but also offer crit-
ical insights for diagnostic grading and prognosis
prediction.

Although recent studies have explored VL pre-
training and zero-shot transfer in pathology (Javed
et al., 2024; Lu et al., 2023a,b), most existing mod-
els still treat pathological texts as a “bag-of-words,”
ignoring their hierarchical structure, syntactic de-
pendencies, and diagnostic reasoning logic. Previ-
ous research (Yuksekgonul et al., 2022) reveals that
standard VL benchmarks often inadequately evalu-
ate a models’ capacity for compositional and struc-
tural semantic understanding. This shortcoming is
particularly critical in pathology, where diagnostic
texts require more than surface-level pattern match-
ing. Accurate and interpretable decision-making
in pathology requires effective modeling of hierar-
chical clinical language in conjunction with visual
and morphological cues. Current models and eval-
uation methods face several limitations:

i). Limited hierarchical structure awareness:
Pathological tests typically follow a structured di-
agnostic pattern (Bera et al., 2019), (e.g., lesion re-
gion + cellular morphology + symptoms identifica-
tion + diagnostic conclusion.). However, most VL
models treat texts as unordered token sets, lacking
the capacity to model multi-level semantic depen-
dencies or structured reasoning patterns. Although
these models may perform adequately on retrieval
or classification tasks, their disregard for compo-
sitional structure undermines their interpretability
and alignment with clinical diagnostic logic.

ii). Limited compositional reasoning capability:
Pathology texts contain complex reasoning that in-
tegrates anatomical regions, cellular structures, and
molecular markers, often within intricate spatial
and functional contexts. Bag-of-words-based mod-
els would fail to capture such contextual and infer-
ential relationships, thereby hindering accurate and
nuanced diagnostic decision-making.

Based on the above analysis, the main contribu-
tions of this work are summarized as follows:

¢ We introduce PathoHR-Bench, a novel bench-
mark designed to evaluate the hierarchical
structure awareness and compositional reason-
ing capabilities of pathological VL models.
Unlike existing evaluation protocols that focus
on application performance, PathoHR-Bench
offers a systematic assessment of model ro-
bustness under three core perturbation types
that reflect key challenges in pathology text

comprehension. To better reflect the struc-
tured nature of diagnostic narratives, the
benchmark further categorizes evaluations ac-
cording to distinct semantic roles commonly
observed in pathology reports.

* We subsequently propose a data-driven VL
training scheme tailored to the pathology do-
main, aimed at more effectively leveraging ex-
isting pathological VL datasets. The approach
generates both enhanced and perturbed sam-
ples across textual and visual modalities, and
employs cross-modal contrastive learning to
improve the model’s ability to capture fine-
grained semantic alignments and diagnostic
reasoning cues.

As illustrated in Figure 1, the proposed training
scheme yields consistent performance gains across
all perturbation types and hierarchical components
on the PathoHR-Bench, highlighting its effective-
ness in capturing multi-level semantic dependen-
cies and inferring complex pathological relation-
ships. Moreover, in standard zero-shot diagnostic
classification tasks, we observe that improved struc-
tural understanding and compositional reasoning
directly enhance diagnostic accuracy, underscoring
the critical importance of these capabilities for real-
world clinical deployment. The full benchmark
suite and source code will be publicly released
upon acceptance.

2 Motivations

The lack of hierarchical reasoning capabilities sig-
nificantly limits the reliability and clinical inter-
pretability of existing VL models in pathological
analysis. A further limitation lies in current evalu-
ation practices, which predominantly rely on stan-
dard retrieval or classification metrics and offer
limited insight into models’ structural understand-
ing or reasoning ability. While recent studies in the
natural image domain have proposed benchmarks
for evaluating compositional reasoning in VL. mod-
els (Zhao et al., 2022b; Diwan et al., 2022), these
approaches are not directly applicable to pathol-
ogy due to fundamental domain differences in tex-
tual structure and semantics. Descriptions in natu-
ral image datasets are typically open-domain and
emphasize visually salient features. In contrast,
pathological texts are “closed-domain,” relying on
highly specialized and standardized vocabularies
(e.g., MeSH, ICD-0O) and structured diagnostic pat-
terns. Unlike open-domain free text, these reports
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Figure 2: Cross-dimensional taxonomy in PathoHR-Bench: Text perturbation levels and semantic role levels.

follow controlled terminology and precise reason-
ing logic, resulting in much tighter semantic rela-
tionships and long-range inferential chains.

For instance, in describing a gastric cancer patho-
logical image: “Disordered glandular arrangement
with gland fusion and lumen disappearance, con-
sistent with poorly differentiated adenocarcinoma.”
Here, the reasoning between “gland fusion” and
“poorly differentiated” determines the malignancy
grade of the lesion (Grillo et al., 2020), making this
logical relationship crucial for both model learn-
ing and final diagnostic decision-making. In ad-
dition, pathological texts often contain a signifi-
cant amount of “implicit reasoning”. This type
of inference typically requires integration with ex-
ternal medical knowledge bases (Jha et al., 2017)
rather than solely relying on visual features for text
generation. These characteristics underscore the
need for a domain-specific benchmark tailored to
pathology. In this context, PathoHR-Bench is de-
signed to fill this gap by providing a structured and
diagnostic-relevant framework for evaluating the
compositional and inferential reasoning capabili-
ties of VL models in the pathological domain.

3 Pathology Hierarchical Reasoning
Benchmark (PathoHR-Bench)

Inspired by VL-CheckList (Zhao et al., 2022a)
and ARO (Yuksekgonul et al., 2023) that uti-
lize generated adversarial samples and image-text
matching as primary evaluation objectives, we pro-
pose a novel pathology VL benchmark, termed as
PathoHR-Bench, which is designed to systemati-
cally assess pathology-related VL. models on hi-
erarchical structure awareness and compositional

reasoning capabilities. As shown in Figure 2, it
adopts a cross-dimensional structure, enabling a
comprehensive assessment of VL models across
two independent yet interrelated dimensions: text
perturbation and semantic role. This design al-
lows for an in-depth analysis of model robustness,
fine-grained comprehension, and compositional
reasoning when processing pathological VL data.
By identifying model limitations more effectively,
PathoHR-Bench can serve as a valuable resource
for advancing VL model development and opti-
mization for pathology applications. Details of the
PathoHR-Bench are illustrated in Figure 3.

At the text perturbation level, we have designed
three core tasks to simulate the challenges encoun-
tered in real-world pathology texts, including infor-
mation loss, semantic drift, and order variation:

i). Assessing sensitivity to information loss: We
employ saliency-driven phrase deletion by lever-
aging the Pathology Language Image Pretraining
(PLIP) (Huang et al., 2023) model to compute the
similarity between each phrase and the correspond-
ing image. The two most salient pathological terms
are removed to create adversarial text variants, sim-
ulating the model’s reliance on critical textual cues
and assessing its behavior under different deletion
orders. It reflects how the model allocates informa-
tion between visual and textual inputs while evalu-
ating its robustness to local information losses.

ii). Assessing sensitivity to semantic drift: We
employ LLM-guided token substitution, where a
randomly selected word in each text is masked and
then predicted using a pretrained medical BERT
model (BioBERT) (Kenton and Toutanova, 2019;
Lee et al., 2020). The generated adversarial sam-
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Figure 3: Overview of proposed PathoHR-Bench, comprising three sensitivity tests (top row) with performances of
existing VL models (bottom left). Bottom right shows further semantic perturbation levels.

ples test the model’s robustness to semantic drifts
and fine-grained semantic comprehension. It evalu-
ates whether the VL models can accurately differ-
entiate between subtly different but diagnostically
significant textual descriptions.

iii). Assessing sensitivity to order variation: We
employ structure-aware phrase reordering to ex-
amine the model’s sensitivity to order variation.
Specifically, we use PLIP (Huang et al., 2023)
to identify the top three phrases with the highest
image-text similarity and cyclically reorder them
within the sentence to generate two adversarial vari-
ants. This strategy assesses whether the VL model
responds to sentence structure changes, offering
insights into its structural awareness.

As shown in the bottom-left of Figure 3, cur-
rent pathological VL models perform poorly on
perturbation-level evaluation tasks, often at or be-
low random chance which highlighting a lack of
structural awareness and fine-grained composi-
tional reasoning abilities. Although VL models can
leverage shortcut strategies (Geirhos et al., 2020)
during contrastive pretraining to excel at coarse-
grained classification and matching, such heuris-
tics are insufficient for pathology-specific tasks.
The image-text relationships in pathology are more
complex than in general vision tasks, requiring hier-
archical semantic understanding and the modeling

of nuanced diagnostic relations.

To further investigate these limitations, we ex-
tend the perturbation-level evaluation by introduc-
ing three major semantic roles derived from the
structural patterns of pathological texts.

i). Entities: Including anatomical locations, patho-
logical structures, and molecular markers, which
form the foundation of pathology reports. VL
models must accurately recognize these entities
to achieve precise image-text alignment.

ii). Descriptors: Including terms that modify
pathological entities, such as diagnostic assessment
terms and physical characteristics. These descrip-
tors are crucial for precise disease classification.

iii). Connections: This category consists of tex-
tual elements describing spatial relationships and
functional interactions between entities. Such infor-
mation facilitates complex pathological reasoning
and disease progression analysis.

Examples of these semantic role classifications
are illustrated in Figure 3. By combining the se-
mantic role hierarchy with text perturbation tasks,
we construct a systematic, cross-dimensional evalu-
ation framework. The key advantage of this frame-
work is its ability to assess VL models not only for
robustness under various text transformations but
also for their understanding of different pathology-
related semantic concepts. This allows for a more
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precise identification of model weaknesses and de-
veloping effective optimisation strategies. A de-
tailed evaluation of various models on PathoHR-
Bench is presented in Section 5.

4 Pathology Hierarchical Reasoning
Training Scheme

We propose a data-driven training scheme for patho-
logical VL model, shown in Figure 4. It consists of
four branches for generating positive and negative
samples for both text and imagery. The following
subsections discuss these four branches and the
losses incorporated into VL contrastive learning.

4.1 Pathology-guided textual perturbation

A simple but effective approach of negative text
generation is to apply a collection of pre-defined
linguistic rules to match and replace words associ-
ated with specific entity types or patterns (Doveh
et al., 2023). We pre-defined seven pathological at-
tribute dimensions (pathological states and grading,
morphological features, histochemical characteris-
tics, staining methods, anatomical structures and
organs, biomolecular features, color information)
via PubMed (Namata et al., 2012) and MeSH (Lip-
scomb, 2000), followed by random substitution
at the level of pathological attributes to generate
controlled perturbations.

To account for the specificity of pathological
language, we further introduce a refinement stage
using BioGPT (Luo et al., 2022), which ensures
that the generated negative texts retain pathological
plausibility and clinical relevance. This pathology-
guided textual perturbation applies controlled se-
mantic transformations and plausibility correction,
enabling VL models to learn subtle yet critical dif-
ferences in pathological semantics.

4.2 Hierarchical diagnostic reasoning-based
text expansion

This branch provides multi-level structured diag-
nostic insights, guiding the model to engage in
hierarchical compositional reasoning and allowing
it to grasp diagnostic logic rather than relying on
superficial text-image correlations. Traditional VL
models tend to rely heavily on shallow semantic
matching, ignoring the reasoning process and hier-
archical context of diagnosis. To address this, we
employed GPT-4 (Achiam et al., 2023) to gener-
ate structured positive texts across four pathologi-
cal analysis perspectives: pathological description,

causes analysis, symptoms identification, and diag-
nostic basis. This approach enables VL models to
learn from multi-perspective and multi-level diag-
nostic information, enhancing their compositional
reasoning in medical knowledge. By incorporat-
ing hierarchical diagnostic reasoning, the model
shifts from data-driven medical text generation to
more explainable diagnostic reasoning, improving
its contextual reasoning capabilities.

4.3 Dual-constraint negative image mining

To enhance the fine-grained structural reasoning
ability of VL models in pathology, we propose
a dual-constraint negative sample mining strategy.
This approach generates negative images under two
complementary mechanisms: semantic inconsis-
tency and distributional ambiguity, yielding both
easy and hard negatives.

i. Text-guided visual editing: To simulate ex-
plicit semantic inconsistencies, we employ text-
guided image editing using Stable Diffusion (Rom-
bach et al., 2022) to generate easy negative images
conditioned on deliberately corrupted diagnostic
texts. These generated samples are not expected
to conform to natural image distributions. Instead,
they serve as visual exaggerations of erroneous se-
mantics, providing strongly misaligned image-text
pairs. The goal is not to simulate realistic pathol-
ogy, but to reinforce the model’s ability to identify
and reject pathology-irrelevant or structurally in-
valid cues. This mechanism enhances fine-grained
semantic-to-structural reasoning by anchoring the
model’s attention to diagnostically critical patterns.
ii. Adversarial distribution-aware perturbation:
In parallel, we introduce an adversarial distribution-
aware sampling strategy that generates hard nega-
tives without relying on textual input. Operating
purely in the visual domain, this module seeks per-
turbations near the real distribution of pathological
images that would cause the most confusion to the
model. We consider the worst-case scenario (Qiao
et al., 2020) around the original distribution Mj:

Eny [L(0,1)] (1)

min sup
0 My:D(My,Mo)<m

where 6 denotes the pretrained model weights,
is the original image, and L represents the task-
specific loss. D denotes the distance metric, and m
is the maximum distributional variability between
My and the generated distribution M.

The solution to worst-case problem aims to gen-
erate negative samples that remain visually and
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Figure 4: Structured textual and visual data manipulation for pathological VL training.

statistically plausible within the pathology domain,
while being maximally separated from the original
distribution under the constraint. These samples
serve as structurally valid but distributionally chal-
lenging examples, exposing the model to difficult
decision-boundary cases without deviating from
the natural appearance of real pathological images.
Detailed formulation and optimization procedures
are provided in the Appendix A.

4.4 Wavelet-morphology-guided consistency
refinement

This branch enhances the multi-scale representa-
tion of pathology images while preserving semantic
consistency of tissue structures. A wavelet trans-
form (Othman and Zeebaree, 2020) decomposes
each image into frequency components, with high-
frequency bands capturing microstructural details.
Morphological operations are then applied to these
components: Top-Hat enhances bright structures
(e.g., nuclei, fibers), Black-Hat emphasizes low-
density regions (e.g., necrosis, inflammation), and
Morphological Gradient highlights cellular bound-
aries. The enhanced image is reconstructed via
inverse wavelet transform. To ensure semantic
alignment with the original image, we apply a con-
sistency constraint based on feature similarity com-
puted using a pretrained PLIP model. A similarity
threshold dynamically adjusts transformation pa-
rameters, generating structurally enriched positive
samples that preserve pathological integrity.

4.5 Loss Function

In our validation experiments, the dual-encoder
vision-language models (e.g., CLIP (Radford et al.,
2021), PLIP (Huang et al., 2023)) admit text-image
pairs (T, I') through a text encoder fr (7") and an
image encoder f7 (I). The text-image similarity

score is then computed as:

afr(D)" f1(1)
\|fT<T>H2||fI<I>H2> 2)

S(T,1) :exp<

where « is a learned temperature parameter.

Contrastive Loss. Similar to most contemporary
VL models, we employ the contrastive CLIP-loss
as one of the losses for each batch B = {(T;, I;, ) }:

o S(T3,1;) S(T;,1;)
Leon = 3, log (723- sm-,f,-)) +log (T sm,m)
3

Negative Loss. For the negative text TZ-N generated
in Section 4.1, we focus on similarity difference
between the original text 7; and the generated TiN
with respect to their corresponding original image
I;, leading to a negative text loss:

text __ _ S(T;,1;)
Liég = 22— log <S(Tiyli)+S(TlN ,Ii)> “)
Similarly, for the negative images I, 1E Nand I ZH N

generated in Section 4.3, we obtain negative image
loss Lyey” and Lyeg” similar to Equation 4. Then
the total negative loss L., is obtained:

Lneg — Ltext + Ling + LimgN

neg neg neg

&)

Positive Loss. For the positive text, to ensure that
the four hierarchical levels of positive text sam-
ples (TiP k, k=1,2,3, 4) generated in Section 4.2
are closely aligned in the feature space and match-
ing with the original text 7;, we compute the co-
sine similarity between their text embeddings using
S (T1,T») and define the text-text positive loss as:

S S (1 10)
5, S S )

Lteth — Zi _

pos

log (6)
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To ensure that all four hierarchical levels of pos-
itive text samples align with the original image I;
and preserve cross-modal consistency, we intro-
duce a text-image positive loss:

. Skt § (1 1)
Lpes't = 22— log (zj SETIGONN G

For the positive image loss, we omit the image-
image positive term, as the generation process de-
scribed in Section 4.4 ensures feature consistency
with the original image. Thus, our goal is to ensure
that the positive images [ Z-P remain closely aligned
with their corresponding text descriptions:

img S(T,17)
g =v-tos (S50 ) o

The total positive loss L, is computed as:

Lpos — Lte.’EtT + Ltextj + ngbsg (9)

pos pos

Finally, the full fine-tuning loss of our proposed
method can be written as:

L= Lcon +a- Lneg + B ’ Lpos (10)

S Experiments

5.1 Datasets

The ARCH dataset (Gamper and Rajpoot, 2021)
is the only widely available pathology-specific
paired image—text dataset, comprising 8,617 pairs
extracted from pathology textbooks and PubMed
research articles. To avoid overlap between training
and evaluation, we carefully split ARCH into two
disjoint subsets: textbook-derived samples were
used to construct PathoHR-Bench, while PubMed-
derived samples were reserved for training. Build-
ing on this resource, PathoHR-Bench was created
by systematically applying three types of pertur-
bations across three semantic roles. This expan-
sion yielded a total of 77,553 image—text pairs for
evaluation. The textbook portion provides more
structured and hierarchical narratives, making it es-
pecially suitable for robust assessment of reasoning
capabilities, while the PubMed portion ensures fair
training for all baseline models.

We compared the performance of our proposed
method with current pathological VL models, in-
cluding baseline CLIP (Radford et al., 2021), PLIP
(Huang et al., 2023), BiomedCLIP (Zhang et al.,

2023), CONCH (Lu et al., 2024), QuiltNet (Ike-
zogwo et al., 2023), and MI-Zero (Lu et al., 2023c)
on PathoHR-Bench. Inspired by the fair compari-
son strategy in CPLIP (Javed et al., 2024), we fine-
tuned all baseline models on the ARCH dataset
before evaluation, with the exception of CLIP.
Notably, while PLIP was originally pre-trained
on PubMed captions and various biomedical im-
age—text pairs, it had not been fine-tuned on ARCH
in its released version. To ensure consistent data
distribution and minimize domain bias, we addi-
tionally fine-tuned PLIP and the other baselines on
ARCH using their original loss objectives, without
introducing our perturbation-based augmentations.
CLIP remained a purely zero-shot baseline without
fine-tuning on ARCH, serving as a general-purpose
reference point. All models were then evaluated
under the same testing splits and inference prompts
for fair comparison.

For the zero-shot task, we utilized six publicly
available datasets covering a range of cancer types,
including four datasets at the patch level and two at
the whole-slide level. To ensure fairness and con-
sistency across all methods, we adopted a single
prompt per class for evaluation, rather than using
prompt ensembling. Detailed dataset descriptions
are provided in the Appendix B, and implemen-
tation details can be found in the Appendix C. To
disentangle the effect of ARCH-specific fine-tuning
from the inherent representation ability of existing
models under our unified single-prompt protocol,
we additionally report the performance of Biomed-
CLIP and PLIP without any fine-tuning on ARCH
in Appendix D.

5.2 Comparison of existing VL. models

To comprehensively evaluate the current patholog-
ical VL models, we conducted a detailed assess-
ment using the benchmark proposed in Section 3.
Results are shown in Table 1. The results reveal
an unexpected fact that some existing VL mod-
els that were trained specifically on pathological
datasets performed worse in structural awareness
and compositional reasoning tests for pathologi-
cal texts compared to the CLIP baseline trained on
natural images.

This discrepancy may be attributed to the lim-
ited scale of pathological datasets and the rich and
diverse open-world concepts in natural image-text
pairs, which may inherently promote compositional
reasoning capability. However, CLIP performed
poorly in pathology-specific tasks, demonstrated
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‘ Semantic Drift ‘ Order Variation

‘ Entities Descriptors  Connections ‘ Entities Descriptors Connections ‘ Entities Descriptors  Connections ‘ Entities  Descriptors  Connections
CLIP 0.7072 0.6643 0.5851 0.6431 0.6129 0.5237 0.4915 0.5220 0.4655 0.3831 0.3026 0.3409
BiomedCLIP | 0.6325 0.5201 0.4138 0.5924 0.5088 0.4152 0.5037 0.4904 0.4326 0.3142 0.2874 0.2703
PLIP 0.6679 0.5472 0.4664 0.5210 0.4936 0.4427 0.4720 0.4843 0.4473 0.2926 0.3079 0.2931
CONCH 0.6531 0.5496 0.4389 0.6031 0.5142 0.4195 0.5028 0.5288 0.4736 0.3574 0.4397 0.4052
QuiltNet 0.7354 0.6992 0.7158 0.6985 0.6079 0.6423 0.5529 0.5706 0.5230 0.4572 0.5831 0.4590
MI-Zero 0.7623 0.6236 0.6089 0.7114 0.6033 0.5796 0.5789 0.6083 0.5519 0.5748 0.6139 0.5327
Ours ‘ 0.9134 0.8780 0.8205 ‘ 0.8901 0.8427 0.7945 ‘ 0.6853 0.6744 0.6520 ‘ 0.7932 0.7819 0.7813

Table 1: Performance comparison across different compositional reasoning aspects on PathoHR-Bench. Best results

are highlighted in bold and second best in underline.

Model | CRC100K | UHU | PanNuke | DigestPath | TCGA-BRCA | TCGA-RCC

| Ace F1 | Acc F1 | Ace F1 | Acc F1 | Acc F1 | Acc F1
CLIP 0.2593  0.1971 | 0.3349  0.1836 | 0.3220 0.3517 | 0.2056  0.1432 | 0.5021  0.3490 | 0.3348  0.1956
BiomedCLIP | 0.4461 0.3549 | 03538 0.2281 | 0.5632 0.5926 | 0.6149 05974 | 0.5164 04209 | 0.6533  0.6273
PLIP 0.5361 04603 | 03735 0.2538 | 0.6275 0.6438 | 0.7955 0.8031 | 0.4508 03502 | 0.6987  0.7055
CONCH 0.5482  0.5219 | 0.3574 02306 | 0.5074 0.5128 | 0.8386  0.8470 | 0.6327 0.6152 | 0.7899  0.7740
QuiltNet 0.5097 04390 | 0.3413 02451 | 0.6377 0.5932 | 0.8059 0.7814 | 0.7235 0.6943 | 0.8053  0.7905
MI-Zero 0.5637 05626 | 0.3492 0.2870 | 0.6527 0.6779 | 0.8253 0.8214 | 0.7729 0.7006 | 0.7986  0.7260
Ours | 0.6985 0.6841 | 0.4937 04612 | 0.7386 0.7609 | 0.8517 0.8638 | 0.8129 0.7746 | 0.8327  0.7996

Table 2: Zero-shot classification performance using a single prompt per class, reported as balanced accuracy and
weighted F1 across six datasets. Best and second results are highlighted with bold and underline.

by near-zero effectiveness as shown in Table 2,
as expected. These results highlight a fundamen-
tal limitation of current pathological VL models
that domain adaptation may help improve zero-shot
performance in pathological classification tasks, it
remains insufficient to address the complexity of
pathological reasoning.

In contrast, our proposed method effectively
leverages limited pathology-specific data to enable
fine-grained compositional reasoning while main-
taining strong performance on conventional classifi-
cation tasks. As shown in Tables 1 and 2, the model
achieves consistent improvements across nine tex-
tual perturbation settings and six zero-shot clas-
sification benchmarks. Notably, substantial gains
are observed on CRC100K and UHU (with fine-
grained cancer subtypes), while more moderate
gains are seen on PanNuke and DigestPath (with
coarser tumor/normal classification). These results
further support PathoHR-Bench as a robust bench-
mark for evaluating a VL model’s ability to capture
fine-grained pathological semantics. The case stud-
ies provided in the appendix E further illustrate the
model’s performance on fine-grained diagnosis.

5.3 Ablation studies

We performed a series of ablation studies to vali-
date the effectiveness of the proposed key compo-
nents in Section 4, including negative text (Text
Neg) generated via textual perturbation, positive

text (Text Pos) derived from diagnostic reasoning-
based expansion, easy and hard negative images
(Img Neggasy and Img Negpa.q) obtained through
a dual-constraint negative sample mining strategy,
and positive images (Img Pos) refined by wavelet-
morphology-guided consistency.

Results are presented in the Table 3, which sum-
marizes the individual contributions to model per-
formance on PathoHR-Bench, along with average
zero-shot accuracy across six pathology datasets.
We observe that incorporating either negative text
or negative images enhances structural awareness,
but alone is insufficient to boost zero-shot perfor-
mance. As detailed in Appendix F, the generation
of negative samples introduces contrastive, parallel,
and inclusion relationships; among them, inclusion
relationships often lead to semantic confusion due
to high similarity, which undermines contrastive
learning effectiveness.

In contrast, positive text and images improve
classification accuracy but may reduce the model’s
sensitivity to structural variations. Our full scheme
achieves optimal results by jointly enhancing struc-
tural understanding, compositional reasoning, and
generalization ability. To further assess the clinical
plausibility of the generated samples, we conducted
a qualitative evaluation with a certified pathologist.
The evaluation protocol and results are presented
in Appendix G.
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‘ Information Loss ‘ Semantic Drift ‘ Order Variation ‘ 6 Zero-shot
Model Tasks Average

| Ent. Desc.  Conn. | Ent. Desc.  Conn. | Ent. Desc.  Conn. | 8
CLIP 0.6752 0.6386 0.5544 | 0.4915 0.5220 0.4655 | 0.3831 0.3026  0.3409 0.3725
PLIP 0.5945 0.5204 0.4546 | 0.4720 0.4843  0.4473 | 0.2926 0.3079  0.2931 0.5246
Ours Text Neg 0.8896  0.8637 0.7833 | 0.7032 0.6651 0.6509 | 0.7863 0.7640  0.7698 0.5892
Ours Text+Img Neg 0.9005 0.8720 0.7926 | 0.6924 0.6704 0.6395 | 0.7914 0.7729 0.7520 0.5804
Ours Text Pos 0.8032 0.8154 0.6941 | 0.6538 0.6370 0.5786 | 0.5249 0.5462  0.5033 0.6497
Ours Text+Img Pos 0.7976  0.8203  0.6859 | 0.6249  0.6459 0.5842 | 0.5087 0.4576  0.4725 0.6718
Ours w/o Img Negpqsy | 0.8529  0.8342  0.7803 | 0.6625 0.6431 0.6319 | 0.7635 0.7796  0.7446 0.6728
Ours w/o Img Negz74rqa 0.8973  0.8675 0.8018 | 0.6949  0.6724 0.6507 | 0.7911 0.7804  0.7801 0.6537
Ours w/o Text Pos 0.8742  0.8631 0.7746 | 0.6731 0.6522 0.6425 | 0.7806 0.7649  0.7537 0.6293
Ours w/o Img Pos 0.9022 0.8791 0.7854 | 0.6780 0.6638  0.6409 | 0.7824 0.7725 0.7679 0.6358
Ours Combined | 0.9018 0.8604 0.8075 | 0.6853 0.6744  0.6520 | 0.7932 0.7819 0.7813 |  0.7380

Table 3: Ablation study on the contribution of different components. Best and second results are highlighted with

bold and underline.

6 Conclusions

In this study, we investigated the limitations of
current VL models in pathological image analysis
and introduced a new benchmark to evaluate their
structure awareness and compositional reasoning
on pathology-specific text-image pairs. To the best
of our knowledge, this is the first work to explic-
itly focus on compositional reasoning in patholog-
ical VL models. By targeting fundamental rea-
soning capabilities, PathoHR-Bench provides deep
insights into current model shortcomings and can
foster methodological advancements in pathology-
specific VL understanding. In addition, we pro-
posed a data-driven training scheme to enhance the
fine-grained learning capacity of existing patholog-
ical VL models. Through diverse augmentations
and perturbations across four branches, our ap-
proach not only improves the model’s fine-grained
reasoning ability but also achieves notable gains in
zero-shot pathological diagnosis tasks.

Potential Limitations

Despite the improvements achieved with PathoHR-
Bench and our proposed training scheme, several
limitations remain. First, while the proposed bench-
mark systematically evaluates structural awareness
and compositional reasoning, it does not yet incor-
porate external medical knowledge, which could
further enhance model interpretability and diagnos-
tic accuracy. Second, although our negative sample
construction was carefully designed to simulate re-
alistic yet diagnostically challenging perturbations
with both clinical plausibility and semantic preci-
sion, its scalability remains limited. Future work
could explore more automated approaches, such

as leveraging large language models to simplify
perturbation generation and improve adaptability.
Third, the perturbation strategies used in the frame-
work, though effective, may not fully capture the di-
verse and nuanced variations present in real-world
pathology reports.

Additionally, our approach to model training is
data-driven, meaning that its performance is still
constrained by the availability and quality of ex-
isting pathology datasets. Fourth, although we
conducted an expert evaluation to assess the clini-
cal plausibility of generated samples, it was based
on a limited sample set and a single pathologist’s
judgment. Broader expert participation, inter-rater
agreement analysis, and context-aware evaluations
are needed to fully validate the diagnostic reliabil-
ity and safety of generated content.

Future work should explore larger-scale mul-
timodal datasets, integrate explicit medical rea-
soning modules, and refine adaptive augmenta-
tion techniques to further improve the robustness
and clinical applicability of pathology-focused VL
models.

Ethics Statement

The data utilized in our study was sourced from
public repositories, and does not pose any privacy
concerns. We are confident that our research ad-
heres to the ethical standards set forth by ACL.
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A Adversarial distribution-aware
perturbation

This section provides the mathematical formula-
tion and optimization process of the adversarial
distribution-aware perturbation branch used for
hard negative sample generation in our method.

To expose the model to visually plausible yet
structurally challenging examples, we aim to gen-
erate hard negative images that deviate from the
source domain distribution M, but still remain
within the manifold of valid pathological appear-
ances. We consider the worst-case scenario around
the source distribution My as Equation (1), its so-
lution guarantees good performance against data
distributions that are distance m away from M.
The Wasserstein distance (Ozair et al., 2019) is
used as the distance metric D, which is defined by
calculating the minimum transport cost between
two distributions in the representation space. As-
suming that X and X are obtained by sampling
from the generated distributions M and original
distribution M, we can measure the distance in
the representation space as follows:

Dy (M, Mo) = infyerany,mo) By [ILf (6, Xn) — f (97X0)||]§
(11

where f (0, X ) is the encoder of the contrastive
learning model, + is the joint probability distribu-
tion that satisfies the marginal distribution for My
and My, and T is the set of all joint probability
distributions that satisfy the marginal distribution.
By substituting the formula for the distance met-
ric defined in Equation (11) into the worst-case
objective Equation (1), the generated distribution
My that satisfies D (M, Mp) < m achieves max-
imal divergence in the feature space while preserv-

ing pathological plausibility and structural coher-
ence with respect to the source domain. However,
directly solving for the supremum over the con-
strained distributional space is intractable. To ad-
dress this, we introduce a Lagrangian relaxation
with a penalty term A that softly enforces the adver-
sarial constraint. The final formulation for adver-
sarial distribution-aware hard negative generation
becomes:

rneinsup Eny [L(0,1) — ADg (M, Mp)] (12)
My

B Datasets

We used six independent publicly available com-
putational pathology datasets, including four at the
patch level and two at the whole-slide level:

i). CRC100K (Kather et al., 2019): is a col-
orectal cancer dataset comprising 224 x 224 pixel
image patches acquired at 0.5um per pixel reso-
lution from 50 patients. It includes nine tissue
categories: colorectal adenocarcinoma epithelium,
normal mucosa, smooth muscle, lymphocytes, mu-
cus, cancer-associated stroma, adipose tissue, back-
ground, and debris. The official split consists of
100,000 training and 7,180 testing images. For
zero-shot tile-level classification, we directly eval-
uated on the testing split without any fine-tuning.

ii). UHU (Arvaniti et al., 2018): is a prostate
cancer dataset comprising five tissue microarrays
with a total of 886 tissue cores, each sized at
3,100 x 3,100 pixels. All slides were scanned
at 40 x magnification using a NanoZoomer scanner.
An experienced pathologist annotated benign (BN)
regions and three cancer grades (Gleason grade 3,
4, and 5) with pixel-level segmentation masks. We
adopted the official preprocessing pipeline from
(Arvaniti et al., 2018), generating a total of 22,022
image patches (750 x 750 pixels) after excluding
patches dominated by luminal or unannotated areas.
The training set contains 2,076 BN, 6,303 grade 3,
4,541 grade 4, and 2,383 grade 5 patches. The test
set includes 127 BN, 1,602 grade 3, 2,121 grade 4,
and 387 grade 5 patches. Only the patch-level test
set was used for zero-shot evaluation.

iii). PanNuke (Gamper et al., 2019): is a multi-
organ dataset designed for nuclei segmentation and
classification, encompassing 19 tissue types across
various pathological conditions. It contains 4,346
training and 1,888 testing images, each sized at
256 x 256 pixels. Following the evaluation protocol
used in PLIP, we assess zero-shot performance on
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the testing split for a binary classification task that
distinguishes Tumor vs. Normal Benign.

iv). DigestPath (Da et al., 2022): is a dataset
of H&E-stained colonoscopy tissue sections, com-
prising 660 whole-slide images. Following the
protocol used in PLIP, we conducted patch-level
zero-shot classification (Tumor vs. Normal) on the
official testing set, which includes 18,814 image
patches.

v). TCGA-BRCA (Tomczak et al., 2015): is a
whole-slide image (WSI) dataset of invasive breast
carcinoma derived from The Cancer Genome Atlas
(TCGA), comprising two subtypes: Invasive Ductal
Carcinoma (IDC) and Invasive Lobular Carcinoma
(ILC). It includes a total of 1,048 WSIs, with 837
IDC and 211 ILC slides. For zero-shot WSI-level
classification, following the protocol in MI-Zero,
we used a test set consisting of 75 WSIs from each
class, ensuring no patient-level overlap between
training and testing splits.

vi). TCGA-RCC (Tomczak et al., 2015): is a
renal cell carcinoma WSI dataset from TCGA con-
sisting of three subtypes: Clear Cell RCC (CCRCC,
519 slides), Papillary RCC (PRCC, 294 slides), and
Chromophobe RCC (CHRCC, 109 slides), totaling
922 WSIs. For zero-shot classification, we use 75
WSIs from each subtype as the test set, with no
patient overlap between training and testing, fol-
lowing the MI-Zero setup.

The first four datasets are at the patch level, fo-
cusing on localized morphological patterns, while
the latter two are whole-slide level datasets that
require global diagnostic reasoning across multiple
cancer subtypes.

C Implementation Details

We implemented all models using PyTorch and con-
ducted training on 2 NVIDIA A100 GPUs. Across
all vision-language pretraining variants, we used a
temperature parameter of 0.02 for the contrastive
loss and optimized using AdamW (Loshchilov
and Hutter, 2017) with an initial learning rate of
5 x 1076, A cosine decay scheduler was applied
throughout training. All models were trained for 50
epochs with a batch size of 256. During fine-tuning,
we adopted BioClinical BERT (with a maximum
token length of 512) as the text encoder, and PLIP-
ViT-B/32-224 as the visual encoder. All images
were resized to 224 x 224, and standard data aug-
mentations including random cropping, horizontal
flipping, and color jittering were applied during

Model | UHU | PanNuke | DigestPath
(no ARCH finetune)
‘ Acc F1 ‘ Acc F1 ‘ Acc F1
BiomedCLIP 0.3371 0.1804 | 0.5019 0.5073 | 0.5481 0.5226
(w/o finetune)
PLIP 0.3618 0.2085 | 0.6139 0.6014 | 0.7890 0.8027
(w/o finetune)

Table Al: Zero-shot results without ARCH fine-tuning
for two widely used baselines. Numbers are reported
with a single prompt per class under our unified proto-
col.

training. For zero-shot classification, we used sin-
gle prompts per class for evaluation, following the
standard setup in prior works. Following a uni-
fied protocol, we finetune all pathology-focused
baselines on the ARCH training split using their
original objectives and without our perturbation-
based augmentations, and then evaluate them on
PathoHR-Bench and public datasets with a single
prompt per class. Although PLIP is pretrained on
large biomedical corpora, it is not originally fine-
tuned on ARCH; we therefore additionally finetune
PLIP on ARCH to reduce distribution shift. To pre-
serve a general-purpose reference, CLIP remains a
purely zero-shot baseline (no ARCH fine-tuning).

D Zero-shot without ARCH fine-tuning.

In Table A1, we observe that the performance dif-
ferences between the settings with and without
fine-tuning on ARCH are not very large, espe-
cially for PLIP. This is likely because PLIP was
already pretrained on a sufficiently large number of
pathology-specific image—text pairs, so plain fine-
tuning on paired data may approach an upper limit
for representation learning on coarser-grained tasks
such as PanNuke and DigestPath. In contrast, our
method yields clear improvements on fine-grained
subtype classification (CRC100K and UHU) and
on PathoHR-Bench even when trained with only
limited ARCH data.

We attribute these gains to the use of carefully
designed structured positives and targeted hard or
soft negatives that explicitly supervise composi-
tional reasoning over entities, descriptors, and rela-
tions, rather than relying solely on generic image-
text alignment. Taken together, these results indi-
cate that our framework can more effectively cap-
ture the inherent logic and hierarchical structure of
pathology data beyond what standard fine-tuning
can achieve.
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E Case Study

In this section, we present additional case studies
to further demonstrate the improvement in fine-
grained learning capabilities achieved by our pro-
posed training scheme. Figure A1l illustrates ex-
amples of semantic drift perturbations at the con-
nections level, information loss perturbations at the
descriptors level, and order variation perturbations
at the entities level within the PathoHR-Bench. Ad-
ditionally, comparative results are presented on
PLIP and our proposed training framework across
these tasks, highlighting their performances in han-
dling different types of perturbations. The results
demonstrate that our proposed training scheme sig-
nificantly enhances compositional reasoning and
structural awareness, enabling the model to bet-
ter understand pathological diagnostic logic and
reasoning processes.

To further highlight the advantages of our
scheme in real-world diagnostic applications, we
take a practical diagnostic task as an example.
Prostate Gleason grading is a standard pathology
assessment used to evaluate the aggressiveness of
prostate cancer, which is classified into four grades
(Benign, Grade 3, Grade 4 and Grade 5). Although
existing models can effectively distinguish between
low-grade and high-grade cancers, they often strug-
gle to differentiate between Grade 3 and Grade 4,
where the differences are subtle and accurate classi-
fication requires attention to fine-grained pathologi-
cal features, leading to frequent mis-classifications.
Such errors can significantly affect prognosis and
treatment decisions. As shown in the figure A2,
our model exhibits a notable advantage on these
challenging borderline cases, demonstrating its su-
perior capability in capturing subtle pathological
differences and providing more reliable diagnostic
predictions.

F Pathological Relationships in Negative
Sample Generation

In this section, we analyze three types of relation-
ships that may arise when generating negative text
samples as shown in Table A2. Contrasting rela-
tionships refer to pairs of pathological concepts
with opposite pathological characteristics or diag-
nostic properties, while parallel relationships rep-
resent concepts at the same hierarchical level but
belonging to different pathological categories. Neg-
ative samples generated through these two relation-
ships enhance the model’s fine-grained classifica-

tion capability and category boundary awareness.
However, there exists an inclusive relationship,
where one pathological concept is a subset of a
broader concept, which can result in high semantic
similarity between negative samples and the origi-
nal samples, thereby reducing the effectiveness of
contrastive learning.

G Expert Evaluation of Generated
Samples

To assess the clinical relevance and diagnostic va-
lidity of the generated samples, we conducted a
qualitative review with an expert pathologist.

G.1 Evaluation Setup

We randomly selected 200 samples, divided into
five categories (40 per type):
i). Text Neg: generated via semantic perturbation.
ii). Img Neggasy: generated by Stable Diffusion
guided by corrupted diagnostic texts.
iii). Img Negpara: generated through adversarial
distribution-aware perturbation.
iv). Text Pos: generated through hierarchical diag-
nostic reasoning.
v). Img Pos: generated via wavelet-morphology-
guided consistency refinement.

Each sample was rated by the expert using a 1-5
Likert scale on dimensions relevant to its intended
purpose:

* For positive samples and hard negative im-
ages: clinical realism and structural integrity.

* For text-guided negatives and textual nega-
tives: semantic inconsistency clarity and mis-
leading plausibility.

Free-form comments were also collected.

G.2 Evaluation Summary

Textual Negatives: 90% were judged as plausibly
misleading, effectively simulating clinical contra-
dictions. Inclusion-type perturbations were particu-
larly subtle and challenging.

Text-guided Image Negatives: 85% of samples
exaggerated incorrect structures in a way that was
visually interpretable. While not clinically realistic
by design, the expert confirmed their usefulness
for training models to reject structurally invalid
patterns.

Adversarial Image Negatives: 87.5% retained re-
alistic tissue appearance while introducing subtle,
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endocervical glands shows confluent growth within tumor or | %X
neoplastic glands are noted adjacent to preexisting the cervix.
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X cervix shows confluent growth within endocervical glands or cervix shows confluent growth within endocervical glands or | x
neoplastic glands are noted adjacent to preexisting tumor. neoplastic glands are noted adjacent to preexisting tumor.

Figure Al: Cases study of semantic drift perturbations at the connections level, information loss perturbations at the
descriptors level, and order variation perturbations at the entities level within the PathoHR-Bench.

Ground Truth Model | Grade 3 | Grade 4 | Ground Truth Image Model | Grade 3 | Grade 4
CLIP 0.42 0.58 z HE CLIP 0.39 0.61
PLIP 0.70 0.30 PLIP 0.43 0.57
Grade 3 Mi-Zero| 051 | 049 | Orade3 MI-Zero| 059 | 041
Ours 0.76 0.24 Ours 0.69 0.31
CLIP 0.47 0.53 CLIP 0.48 0.52
/| PLIP 0.41 0.59 PLIP 0.36 0.64
Grade 4 MLZero| 047 | o053 | Oraded Mi-Zero| 036 | 0.64
8| Ours 0.37 0.63 Ours 0.28 0.72
CLIP 0.56 0.44 CLIP 0.59 0.41
PLIP 0.63 0.37 PLIP 0.75 0.25
Grade 3 / Grade 3
race Mi-Zero| 069 | 031 race Mi-Zero| 081 | 0.19
Ours 0.82 0.18 Ours 0.94 0.06
CLIP 0.52 0.48 CLIP 0.43 0.57
PLIP 0.41 0.59 PLIP 0.28 0.72
Grade 4 Grade 4
rade MI-Zero 0.40 0.60 rade MI-Zero 0.20 0.80
Ours 0.11 0.89 Ours 0.08 0.92
Grade 3 | Photo of a prostate biopsy showing Gleason Grade 3 (well-formed separate glands).
Prompt
Grade 4 | Photo of a prostate biopsy showing Gleason Grade 4 (fused glands with cribriform pattern).
Figure A2: Case Study of fine-grained classification for Gleason grades.
Relationship Case
Contrasting Relationship in colon carcinoma — in colon adenoma
Parallel Relationship in colon carcinoma — in gastric carcinoma

Inclusion Relationship  in colon carcinoma — in gastrointestinal carcinoma

Table A2: Pathological relationship types in negative sample generation.
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distribution-aware shifts. Many resembled border-
line cases in real practice.

Textual Positives: 80% were rated clinically coher-
ent, capturing diagnostic logic. Some samples were
considered too generic or lacking critical context
for high-grade interpretations.

Image Positives: 92.5% preserved diagnostic struc-
tures and enhanced local detail (e.g., nuclei, fibrous
margins) without introducing artifacts.

G.3 Expert-Identified Limitations

During the review, the expert also identified several
limitations in the generated samples. Some text-
guided image negatives exhibited subtle structural
artifacts or biologically implausible tissue combi-
nations. In several cases, semantic perturbations
were considered too trivial to mislead a diagnostic
system. For positive text expansions, certain sam-
ples lacked sufficient diagnostic context, such as
staging information or relevant biomarkers. These
observations provide valuable feedback for refin-
ing the sample generation strategies and improving
their clinical fidelity.
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