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Abstract

Aligning large language models (LLMs)
with human preferences relies heavily on
high-quality reward models. However, ex-
isting approaches struggle with two crit-
ical challenges: noisy preference labels
and the varying importance of preference
samples. We introduce DORM, a method
that enhances reward modeling by learn-
ing to dynamically weigh preference data.
DORM initializes data importance using a
combination of model uncertainty and pre-
diction disagreement, then iteratively re-
fines them via bilevel optimization to max-
imize validation performance. Using only
50k samples, DORM trains a 12B reward
model that achieves 90.5% accuracy on
RewardBench, matching the performance
of models trained on significantly larger
datasets. Furthermore, downstream align-
ment tasks show that fine-tuned LLMs with
DORM achieve a 61.2% win rate against
baseline methods, highlighting its data effi-
ciency and generalizability.

1 Introduction

Aligning large language models (LLMs) with
human preferences is crucial to ensure LLMs
adhere to human values. Recent advances
in LLM alignment have primarily focused
on algorithmic innovations, ranging from re-
inforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) to alternative pref-
erence learning approaches like sequence likeli-
hood calibration (SLiC) (Zhao et al., 2023) and
direct preference optimization (DPO) (Rafailov
et al., 2023). Although such algorithmic ad-
vancements have enhanced LLM alignment, the
quality of preference data used for reward mod-
eling has received limited attention.

∗ Work done during internship at Amazon.

Recent studies highlight two key challenges
in reward modeling for LLM alignment: (1)
Preference data are often noisy: Zheng et al.
(2023) report 19-37% preferences provided by
crowd workers are noisy. Gao et al. (2024)
reveal that preference noise is observed in a
wide range of tasks, including QA, Summa-
rization, and Dialogue, where the noise rate
ranges between 20-40%. (2) Not all prefer-
ence data contributes equally: Noisy prefer-
ence data forces reward models to require more
training data to achieve desired performance.
For instance, Wang et al. (2024a) categorize
preference data into groups based on preference
strength and find that some groups negatively
impact reward modeling, which highlights the
need for selective data curation to boost reward
model performance.

Existing works addressing preference data
quality fall into two categories, each with signif-
icant limitations. The first category, heuristic-
based filtering, employs predefined quality cri-
teria to remove low-quality data. For example,
Liu and Zeng (2024) retains only top-scored
data points based on reward model predictions,
potentially discarding informative examples
that could aid in learning decision boundaries.
Dong et al. (2024) develop dataset-specific fil-
tering rules based on response length, semantic
similarity, and sentiment analysis. While ef-
fective, these rigid, manually crafted criteria
often fail to capture the nuanced aspects of pref-
erence quality and require substantial human
effort to adapt to new domains. On the other
hand, denoising techniques attempts to mitigate
the impact of noisy samples during model train-
ing. Yu et al. (2024) leverage LLMs to self-
refine the reward difference between positive
and negative pairs based on the data quality as-
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sessed through the LLMs-as-judges framework.
Cheng et al. (2024) compute the KL divergence
between predicted preferences and annotated
labels to retain reliable preference labels and
flip unreliable ones. However, these methods
struggle in achieving both robust denoising per-
formance and high data efficiency.

These existing approaches face three key lim-
itations: (1) they often rely on heuristics or ex-
pensive oracle feedback, (2) they treat ambigu-
ous preferences as unreliable samples rather
than potential learning opportunities, and (3)
they fail to adaptively adjust data importance
based on the reward modeling progress. These
limitations raise a critical research question:
Can we develop a learning-based approach to
automatically estimate the importance of prefer-
ence data, thereby enhancing reward modeling?

We address this challenge by introducing
DORM (preference Data weights Optimization
for Reward Modeling) – a two-stage approach
that combines preference data quality estima-
tion with adaptive data weighting. The key intu-
ition of the first stage is that data points where
the model is uncertain are often informative and
should be emphasized, whereas mislabeled or
unreliable samples should be down-weighted.
To this end, we estimate preference data weights
by integrating model uncertainty and prediction
disagreement. Specifically, we employ approxi-
mate Bayesian inference techniques for uncer-
tainty estimation (Gal and Ghahramani, 2016),
while measuring disagreement by the discrep-
ancy between predictions and labels. This pro-
cedure prioritizes informative and reliable data
and mitigates the impact of unreliable data.

The second stage further refines data weight-
ing by dynamically adjusting weights through a
bilevel optimization framework. This approach
maximizes validation performance while using
initial uncertainty-based data weights as regu-
larization. The framework consists of two lev-
els: (1) The upper-level optimization adjusts
data weights to minimize validation loss, guided
by initial weight estimates; (2) The lower-level
optimization trains a reward model using the
weights determined by the upper-level problem.
This learning process automatically identifies
which data points are most useful for improving

validation performance while mitigating overfit-
ting through uncertainty-based regularization.

To evaluate our method, we conduct ex-
periments on both the reward model and pol-
icy model levels. Our 12B reward model,
trained with only 50k preference data samples,
achieves 90.5% overall performance on Reward-
Bench, matching the performance of similar-
sized models trained with significantly more
data. Analysis of data weight tracking reveals
that high-quality datasets are progressively as-
signed greater weights, while noisy samples
are gradually down-weighted. Furthermore, the
policy model aligned using our reward model
shows 61.2% win rates compared to using the
baseline reward model.

Our contributions can be summarized as fol-
lows: 1) Preference Data Quality Estima-
tion: We introduce a method for estimating
preference data quality by combining epistemic
uncertainty and disagreement measures. 2)
Bilevel Optimization Framework: We for-
mulate learning to weigh preference data as
a bilevel optimization problem, enabling data-
driven refinement of data weights while in-
corporating initial quality estimates. 3) Data-
Efficient Reward Model Training: Our ap-
proach achieves 90.5% accuracy on Reward-
Bench, with 10 – 40× less preference data com-
pared to baselines.

2 Preliminaries

Multi-Objective Reward Modeling. Let X
and Y denote the space of prompts and re-
sponses, respectively. Unlike traditional re-
ward models that rely solely on pairwise prefer-
ences (Bradley and Terry, 1952; Ouyang et al.,
2022; Bai et al., 2022a; Rafailov et al., 2023),
multi-objective reward modeling leverages fine-
grained ratings across multiple reward attributes
(Wang et al., 2024b,g,f) to capture richer pref-
erence signals. In this setup, human feedback
is collected in the form of structured ratings,
where each response y ∈ Y is assigned a rating
vector r ∈ Rm, with each dimension corre-
sponding to a different reward attribute.

Given a dataset D = {(xi, yi, ri)}|D|
i=1, where

xi represents the input prompt, yi is the gen-
erated response, and ri is the associated multi-
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dimensional rating, the objective is to learn a
reward model rθ that predicts these ratings ac-
curately. Specifically, given an input pair (x, y),
we concatenate the prompt and response as x⊕y
and pass it through a pre-trained decoder-only
LLM Mψ, extracting a d-dimensional represen-
tation from the final decoder layer. A linear
regression head V ∈ Rd×m is then applied to
produce the predicted rating vector, which is
optimized using the following regression loss:

min
ψ,V

Ex,y,r∼D

∥∥∥V ⊤fψ(x⊕ y)− r
∥∥∥
2

2
. (1)

Projection for Scalar Metrics. Since the re-
ward model operates in a multi-objective setting,
where each response y is evaluated across m dif-
ferent reward attributes, it is often necessary to
project the reward vector r ∈ Rm onto a scalar
space. To achieve this, we introduce a projec-
tion vector λ ∈ Rm, which allows us to map the
multi-dimensional reward vector onto a single
scalar value by r = λ⊤r.

Quality-based Data Weighting. Given the
dataset D, we estimate the quality of each data
point to derive appropriate weights for reward
modeling. Let si ∈ R denote the estimated
quality score for each sample (xi, yi, ri). The
data weight wi is derived as wi = h(si), where
h : R → R+ is a monotonically increasing func-
tion that maps quality measures to data weights.
These weights are then incorporated into the
reward modeling objective:

min
ψ,V

E(x,y,r)∼Dw
∥∥∥V ⊤fψ(x⊕ y)− r

∥∥∥
2

2
. (2)

This formulation allows the model to adaptively
focus on samples based on their estimated qual-
ity during training.

3 Preference Data Weight
Optimization with Estimated Quality

In this section, we formulate the weight opti-
mization for preference data as a bilevel op-
timization problem. Our approach operates
in two stages. In the first stage, we estimate
initial data weights based on epistemic uncer-
tainty (Gal and Ghahramani, 2016; Hüllermeier
and Waegeman, 2021) and a disagreement func-
tion. These measures help identify more reli-
able and informative data points, guiding the

model towards higher-quality examples. The
second stage employs a bilevel optimization
framework (Kwon et al., 2023a). The lower
level optimizes reward model parameters us-
ing weighted preference data, while the upper
level refines these weights to minimize loss on
a high-quality validation set. Critically, we in-
corporate the initial weights as regularization
terms in the upper-level problem, anchoring the
optimization to the prior quality estimates and
stabilizing the process. We present our method
overview in Figure 1.

3.1 Quality-aware Preference Data Weighting

In the context of preference data optimization,
it is crucial to account for the varying quality of
data samples (Wang et al., 2024a). Assigning
appropriate weights to each data point based on
its estimated quality can enhance model perfor-
mance by emphasizing informative samples and
down-weighting noisy or unreliable ones. To
achieve this, we propose a method to estimate
prior weights for each data point by leveraging
measures of epistemic uncertainty and predic-
tion disagreement.

Estimating Epistemic Uncertainty. For each
data point xi, we estimate the epistemic uncer-
tainty using Monte Carlo (MC) dropout (Gal
and Ghahramani, 2016)1. We perform N
stochastic forward passes through the reward
model, where dropout introduces randomness
by deactivating different subsets of neurons in
each pass. This process yields a set of predic-
tions {r̂i,1, r̂i,2, . . . , r̂i,N} for the data point xi.

To compute the uncertainty, we first compute
the mean prediction by r̄i =

1
N

∑N
n=1 r̂i,n, and

then take the variance as uncertainty:

ui = σ2
i =

1

N

N∑

n=1

(r̂i,n − r̄i)
2 . (3)

Here, ui represents the epistemic uncertainty
associated with xi. A higher variance ui in-
dicates that the model’s predictions are more
sensitive to changes in its internal parameters,
reflecting less confidence in its output for that
data point.

1While we use MC dropout for simplicity and com-
putational efficiency, our method can work with other
Bayesian uncertainty estimation techniques.
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Figure 1: Overview of the two-stage bilevel optimization framework for reward modeling. The first stage
assigns initial data weights based on epistemic uncertainty and disagreement. The second stage refines these
weights in a bilevel optimization process, using a validation set and the initial weights as regularization.

Measuring Prediction Disagreement. To as-
sess the alignment between the model’s pre-
dictions and labels, we define a disagreement
function qi for each data point as:

qi =
|ri − r̄i|

maxn r̂i,n −minn r̂i,n
, (4)

where ri is the label, r̄i is the mean prediction
from the MC dropout ensemble, the normaliza-
tion ensures that qi is scale-invariant.

A higher value of qi suggests a greater dis-
crepancy between the model’s prediction and
the label, potentially indicating mislabeling or
noise in the data.

Defining Prior Weights To effectively priori-
tize data points during training, we combine the
epistemic uncertainty ui and the disagreement
measure qi to formulate the prior weight w0

i for
each data point:

w0
i = exp (ui − γqi) , (5)

where γ > 0 is a hyperparameter controlling
the balance of uncertainty and disagreement.

This formulation is grounded in the intuition
that data points with high epistemic uncertainty
(large ui) are situated in regions where the
model lacks confidence but have the potential to
provide significant learning gains. By assigning
higher weights to these points, we encourage
the model to focus on inputs where additional in-
formation could most improve its performance.

Conversely, the disagreement measure qi
serves as a penalty term. Data points where the

model’s predictions significantly deviate from
the labels (large qi) may indicate mislabeling or
noisy data. By subtracting γqi in the exponent,
we reduce the weights of these potentially unre-
liable points, thereby mitigating their influence
on the training process. For further empirical ev-
idence and characterization of how this weight-
ing formulation differentiates between hard and
noisy samples, please refer to Appendix H.

Interpretation in Extreme Cases. The prior
weight formulation behaves intuitively under
extreme scenarios. When ui → ∞ and qi ≈ 0,
the weight w0

i becomes very large. This indi-
cates that the data point is highly informative
(high uncertainty) and reliable (low disagree-
ment), deserving significant emphasis during
training. Conversely, when ui ≈ 0 and qi → ∞,
the weight w0

i approaches zero. In this case,
the model is confident in its prediction (low
uncertainty) but disagrees with the label (high
disagreement), suggesting possible mislabeling;
down-weighting such points prevents them from
negatively impacting the model. For data points
where both uncertainty and disagreement are
high, the weight depends on the relative values
of ui and γqi, allowing for careful consideration
based on the specified hyperparameters.

3.2 Regularized Bilevel Optimization
To incorporate prior knowledge about data qual-
ity into our optimization framework, we include
a regularization term for the upper-level opti-
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Algorithm 1 Solve the Bilevel Optimization Problem via A First-order Hypergradient Method

Require: initialization w0, u0, θ0, learning rates {ηw, ηu, ηθ}, and coefficients α, β
1: for t = 0 to T − 1 do
2: Sample mini-batches {Dt

tr, D
t
val} from the training set and the validation set {Dtr, Dval}

3: ut+1 = ut − αηu∇uLtr(wt, ut;D
t
tr)

4: θt+1 = θt − ηθ(∇θLval(wt, θt;D
t
val) + α∇θLtr(wt, θt;D

t
tr))

5: wt+1 = wt − ηw(∇wLval(wt, θt;D
t
val) + 2β(wt − w0

i ) + α(∇wLtr(wt, θt;D
t
tr)−∇wLtr(wt, ut;D

t
tr)))

6: end for
7: return (wT , θT , uT )

mization problem that penalizes deviations from
the estimated prior weights. Specifically, we
use the prior weights w0

i derived from the mea-
sures of epistemic uncertainty and prediction
disagreement discussed earlier.

Let θ represent the model parameters, and
w = [w1, w2, . . . , wk] ∈ Rk be the vector of
weights assigned to each training sample si,
where i = 1, . . . , k indexes over the training
data, and k is the total number of samples. We
formulate the bilevel optimization problem as:

min
w∈W

Lval(θ
∗(w)) + β

k∑

i=1

(wi − w0
i )

2

s.t. θ∗(w) = argmin
θ

k∑

i=1

wiLtr(θ, si)

(6)

where Ltr(θ, si) and Lval(θ
∗(w)) are the

training and validation loss, respectively, and
β > 0 is a hyperparameter controlling the
strength of the regularization. This L2 regu-
larization encourages the optimized weights to
stay close to the prior weights while allowing
for data-driven adjustments. The gradient with
respect to each weight pi is simply:

∂L

∂wi
=

∂Lval
∂wi

+ 2β(wi − w0
i ) (7)

Here we choose L2 regularization instead of
KL divergence because this formulation pro-
vides a simpler, more computationally efficient
way to incorporate prior knowledge, avoiding
the numerical instabilities associated with KL
divergence while allowing for unconstrained op-
timization of weights.

3.3 Solve the Bilevel Optimization via A
First-order Hypergradient Method

Solving the bilevel optimization problem in
Eq. (6) directly is challenging due to the
nested optimization and the dependency of the

upper-level objective on the lower-level solution
θ∗(w). To address this, we adopt a fully first-
order method inspired by (Kwon et al., 2023a;
Lu and Mei, 2024), which circumvents the com-
putational burdens associated with second-order
derivatives and is well-suited for stochastic op-
timization settings.

We begin by reformulating the bilevel prob-
lem as a single-level optimization with an equal-
ity constraint representing the optimality of the
lower-level problem:

min
w∈W,θ

Lval(w, θ) + β
k∑

i=1

(wi − w0
i )

2

s.t. Ltr(w, θ)−min
u

Ltr(w, u) = 0.

(8)

Here an auxiliary variable u is intro-
duced to transform the lower problem
θ∗(w) = argminθ Ltr(w, θ) to be the con-
straint Ltr(w, θ) − minu Ltr(w, u) = 0
where u serves as the proxy of θ∗(w). This
leads to a minimax problem defined as
minw∈WmaxuL

α(w, θ, u), where

L
α(w, θ, u) = Lval(w, θ) + β

k∑

i=1

(wi − w0
i )

2

+ α(Ltr(w, θ)− Ltr(w, u)).

(9)

This reformulation circumvents the upper-lower
dependency in the original bilevel optimization
via an equivalent min-max problem. We sum-
marize our algorithm in Algorithm 1.

4 Experiments

4.1 Experiment Setup
Datasets. We experiment with five datasets,
with details provided in Appendix A.

• HelpSteer2 (Wang et al., 2023): the most re-
cent high-quality human-annotated preference
data, a follow-up to the popular HelpSteer.
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Figure 2: Regularized bilevel optimization for reward modeling, where the prior weights are initialized from
preference data quality estimation.

• OpenAssistant2 (Köpf et al., 2024): human-
annotated assistant-style conversation corpus
with a multi-dimension label.

• Magpie-QWen-2.5 (Xu et al., 2024): a syn-
thetically generated dataset for supervised fine-
tuning using Qwen2-72B-Instruct.

• OffsetBias (Park et al., 2024): a pairwise pref-
erence dataset intended to reduce common bi-
ases inherent in judge models.

• WildGuard (Han et al., 2024): with examples
designed to evaluate the safety of LLM re-
sponses under various conditions.

Baselines. We consider two baseline groups:

• LLM-as-a-judge: These models generate a
preference label given a prompt with a pair
of responses as input. We include Llama-3.1-
405B (Dubey et al., 2024), GPT-4 (Achiam
et al., 2023), GPT-4o (Hurst et al., 2024),
Gemini-1.5-pro (Reid et al., 2024) and
self-taught evaluator (Wang et al., 2024d)
which is based on Llama-3-70B.

• Standard Reward Models: This category
consists of models those explicitly trained
on preference data. We compare against
standard RM (Stiennon et al., 2020), Cohere-
0514, Llama3-70B-SteerLM-RM (Wang
et al., 2024f), URM-Llama3-8B (Lou et al.,
2024), ArmoRM-Llama3-8B-v0.1 (Wang
et al., 2024c), Pair-preference-model-
LLaMA3-8B (Dong et al., 2024), and
Internlm2-20B-reward (Cai et al., 2024).

Evaluation. We evaluate DORM at both the
reward model and policy model levels. For re-
ward model performance, we benchmark on Re-
wardBench (Lambert et al., 2024). For policy

model evaluation, we conduct experiments on
UltraFeedback (Cui et al., 2023).
Implementation. We use Mistral NeMo 12B-
Instruct (NVIDIA and Mistral AI) as the back-
bone of our reward model. We set multi-
attribute head (total of 12 attributes for our
recipe) with regression loss for reward mod-
eling. Additional implementation details are
provided in Appendix C.

4.2 Main Experiments on RewardBench
Table 1 presents the main results on Reward-
Bench, we summarize the findings below.

• Learning to weigh preference data helps:
DORM outperforms the best LLM-as-a-judge
baseline by +2.2% in the overall Reward-
Bench score, demonstrating that incorporat-
ing preference data weighting leads to bet-
ter reward modeling accuracy than direct re-
sponse ranking by large LLMs. Furthermore,
DORM achieves performance on par with the
strongest standard reward model baselines
(e.g., ArmoRM-Llama3-8B-v0.1), showing
that our weighting strategy effectively opti-
mizes the use of available preference data
without requiring significantly larger model
capacity or data volume.

• Significant data efficiency: While achieving
comparable performance to the strongest re-
ward model baselines, our approach uses only
50k preference data, which is 10× less than
ArmoRM-Llama3-8B-v0.1 and Internlm2-
20B-reward 40× less than Internlm2-20B-
reward. This demonstrates the data efficiency
of our approach. We further analyze the data
efficiency in Appendix B.

• Improvements on challenging subtasks:
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Models Chat Chat_Hard Reasoning Safety Overall

LLM-as-a-judge
Llama3.1-405B-Instruct (Dubey et al., 2024) 97.2 74.6 77.6 87.1 84.1
GPT-4-0125 (Achiam et al., 2023) 95.3 74.3 87.6 86.9 86.0
GPT-4o-0806 (Hurst et al., 2024) 96.1 76.1 88.1 86.6 86.7
Gemini-1.5-pro-0514 (Reid et al., 2024) 92.3 80.6 92.0 87.9 88.2
Self-taught Evaluator (Wang et al., 2024d) 96.6 84.2 91.5 81.0 88.3

Standard Reward Models
RM (Stiennon et al., 2020) 98.3 74.5 88.0 83.8 86.4
Cohere-0514 96.4 71.3 92.3 97.7 89.4
Llama3-70B-SteerLM-RM (Wang et al., 2024f) 91.3 80.3 90.6 92.8 88.8
URM-Llama3-8B (Lou et al., 2024) 96.9 78.7 95.7 88.2 89.9
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024c) † 96.9 76.8 97.3 90.5 90.4
Pair-preference-model-LLaMA3-8B (Dong et al., 2024) † 98.3 65.8 94.7 89.7 87.1
Internlm2-20B-reward (Cai et al., 2024)† 98.9 76.5 95.8 89.5 90.2

DORM 95.6 83.4 93.1 89.8 90.5

Table 1: Main results on RewardBench, † indicates models trained with at least x10 preference data. The
baselines are selected based on contamination awareness, public reproducibility, and parameter count fairness
(see Appendix C for detailed discussion of selection principles).

DORM exhibits notable improvements on Rea-
soning (+1.5%) compared to the best LLM-
as-a-judge baseline and Chat_Hard (+3.1%)
compared to the best RM baseline. This sug-
gests that our data weighting strategy effec-
tively prioritizes informative and reliable pref-
erence data, enhancing model performance
on difficult tasks.

4.3 Training Cost Analysis.

While bilevel optimization is typically consid-
ered computationally intensive, DORM lever-
ages a first-order method that avoids second-
order Hessian computation. As detailed in Ap-
pendix E, despite introducing bilevel optimiza-
tion, DORM remains computationally feasible
at scale. The per-epoch training time increases
moderately from 2.4 hours (standard SFT) to
3.5 hours, yet this overhead results in a sig-
nificant RewardBench performance improve-
ment—from 85.6 to 91.5—highlighting the effi-
ciency of our first-order hypergradient method
and the strong return on added computation.

4.4 Component Effectiveness

We study the effectiveness of each component
in our two-stage method. Specifically, we eval-
uate whether applying the prior weights and the
bilevel optimization alone can improve the per-
formance, and if the integration of them can
bring extra benefits. As shown in Table 2, we
compare the entire method with the direct SFT

Method Reward-Bench Subsets

Chat Chat Hard Safety Reasoning Avg

SFT 90.7 72.8 86.7 91.1 85.3
Prior weights only 91.9 77.0 85.2 91.6 86.4
Bilevel w/o prior 93.2 81.3 89.8 92.2 89.1

DORM 94.7 84.8 88.5 92.9 90.2

Table 2: Study of component effectiveness. For
methods involving bilevel optimization, we have
3.5k validation data for the upper-level optimization.
For a fair comparison, we incorporate the validation
data to the training set for the SFT method and the
method with prior weights only.

baseline, the method with only prior weights,
and the method of bilevel optimization without
prior weights. We found that both prior weight-
ing and bilevel optimization individually en-
hance the results over the simple SFT approach.
Applying only prior weights leads to a notice-
able improvement, especially on the subtask of
chat hard, and employing bilevel optimization
without prior weights yields a substantial gain
on subtasks of chat hard and safety. Moreover,
incorporating both prior weights and bilevel op-
timization together further boosts the perfor-
mance, achieving the highest overall score. This
indicates that the two components are comple-
mentary, and their combination yields better
outcomes than using either alone.

4.5 Policy Model Alignment Results

We evaluate the effectiveness of our trained re-
ward models in downstream policy alignment
through DPO (Rafailov et al., 2024). We use the
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Figure 3: Policy model alignment results.

UltraFeedback (Cui et al., 2023) dataset, split-
ting its 64k samples into 20k for SFT, 40k for
DPO, and 4k for testing. A Mistral-7B model
serves as the policy, which is first fine-tuned for
one SFT epoch, followed by two DPO epochs.
To evaluate alignment quality, we compute win
rate using an independent RM – pair-preference-
model-LLaMA3-8B (Dong et al., 2024).

We compare DORM-trained reward models
against several baselines in terms of the pol-
icy win rate after DPO. These include both
strong internal ablations—such as SFT-trained
reward models, prior-weight-only training, and
bilevel optimization without prior—and top-
performing publicly available reward models
from the RewardBench leaderboard, including
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024c),
Internlm2-20B-reward (Cai et al., 2024), and
URM-Llama3-8B (Lou et al., 2024). All reward
models are used to generate preference labels
on the same DPO training set.

Figure 3 shows DORM outperforms both inter-
nal ablations and strong external reward models
in terms of win rate when aligning the policy
model. The consistent performance advantage
across both reward modeling and alignment
tasks indicates that DORM not only improves
reward modeling accuracy but also enhances
policy alignment - the primary objective of re-
ward modeling. This end-to-end improvement
suggests that the enhanced reward signals pro-
duced by DORM translate effectively into better-
aligned policies.

4.6 Track Data Weights Change

Figure 4 demonstrates the data weights dynam-
ics by tracking the average weights assigned
to studied datasets. HelpSteer2 consistently re-
ceives the highest weights, increasing from 0.26
to 0.32, suggesting DORM identifies it as the
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Figure 4: Data weights tracking in RM training.

most informative and reliable dataset. Magpie-
QWen-2.5 shows moderate importance with
gradual weight increase from 0.22 to 0.31, while
WildGuard maintains relatively stable weights
around 0.24. OpenAssistant2 and OffsetBias
receive decreasing weights (0.13 to 0.07 and
0.16 to 0.06), indicating DORM identifies them
as noisy or less reliable data and down-weights
them based on the validation loss. These vary-
ing trajectories demonstrate DORM’s capability
to automatically adjust data importance based
on their contribution to the learning objective.

5 Related Work
5.1 Preference Learning for LLM Alignment

Preference learning is crucial for aligning LLMs
with human intent. Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al.,
2022; Dubey et al., 2024; Reid et al., 2024)
trains a reward model on human preferences to
guide policy optimization but is susceptible to
reward hacking (Skalse et al., 2022; Liu et al.,
2024b) and training instability (Engstrom et al.,
2020; Wang et al., 2022).

To mitigate these issues, alternative methods
have been proposed. Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) bypasses
the explicit reward model, while methods like
Sequence Likelihood Calibration (SLiC) (Zhao
et al., 2023), reward model distillation (Bai
et al., 2022a; Zhang et al., 2024a), and test-
time alignment (Kong et al., 2024) also offer
more stable, non-reinforcement learning ap-
proaches. Recent works incorporate uncertainty
estimation into reward models. For instance,
Uncertainty-aware Reward Model (URM) (Lou
et al., 2024) introduces a probabilistic value
head to model aleatoric uncertainty and uses
an ensemble-based approach to quantify epis-
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temic uncertainty. In contrast, our method per-
forms uncertainty estimation with a single re-
ward model and, more importantly, introduces a
dynamic data weighting mechanism to address
preference data quality, a dimension largely
overlooked by prior methods.

5.2 Quality-aware LLM Alignment

Recent studies confirm that the quality of prefer-
ence data significantly impacts LLM alignment,
noting that datasets often contain noise (Zhang
et al., 2023a,b; Chen et al., 2024; Wang et al.,
2024e; Zhang et al., 2024b; Gao et al., 2024;
Wang et al., 2024a). Existing approaches to
address this fall into the following categories.

Heuristic-based filtering methods aim to se-
lect high-quality data based on predefined crite-
ria, such as reward scores (Liu and Zeng, 2024)
or dataset-specific rules (Dong et al., 2024).
However, these heuristics can discard informa-
tive examples or require considerable human
effort to generalize across diverse datasets. De-
noising techniques aim to improve data quality
during training, for example, by self-refining
reward differences (Yu et al., 2024) or using a
discriminator to filter preference labels (Cheng
et al., 2024), but they face challenges in bal-
ancing efficiency and robustness. An alter-
native direction is synthetic data generation.
Methods proposed by (Bai et al., 2022b) and
(Zhu et al., 2023) replace human feedback with
AI-generated feedback conditioned on human-
written principles. While this can potentially
scale the creation of preference data, it intro-
duces new challenges in ensuring the quality
and diversity of synthetic data.

These methods often depend on heuristic
rules or external oracle feedback, struggle to
leverage ambiguous preferences as informative
training signals, or lack mechanisms to dynami-
cally adjust data importance throughout training.
To overcome these challenges, DORM equips a
quality-aware preference data weighting strat-
egy and enables dynamic weighting in the re-
ward modeling process.

5.3 Data Weighting and Bilevel
Optimization.

Data weighting strategies are effective for im-
proving model robustness against noisy la-

bels (Ren et al., 2018; Zhang et al., 2020; Zhang
and Pfister, 2021; Wu et al., 2022). Bilevel
optimization provides a principled framework
for learning these weights by optimizing a val-
idation objective (Wu et al., 2022; Pan et al.,
2024). However, traditional second-order meth-
ods often suffer from computational inefficien-
cies due to Hessian-vector product computa-
tions (Domke, 2012; Franceschi et al., 2017;
Ji et al., 2020). Recent advancements address
these computational bottlenecks through first-
order hypergradient approximations, allowing
bilevel optimization to scale to large neural net-
works (Kwon et al., 2023a; Pan et al., 2024). For
example, Pan et al. (2024) introduced ScaleBiO,
a scalable first-order method designed for data
reweighting in the instruction-following train-
ing stage of LLMs.

Our method targets a distinct scope — the
reward modeling stage — and significantly dif-
fers in its methodological design. We introduce
a customized weighting function explicitly tai-
lored for preference data as an initial quality
estimator, which is subsequently incorporated
as a prior-based regularization term within the
bilevel optimization framework. This design
effectively incorporates prior knowledge, while
enhancing the convergence and training stability
of the bilevel optimization problem.

6 Conclusions

In this study, we presented DORM to tackle the
critical issue of preference data quality estima-
tion in aligning LLMs. By integrating epistemic
uncertainty with a disagreement measure, we de-
veloped a method to assess the informativeness
and reliability of each preference data point. By
utilizing these quality estimates as prior weights
and refining them through a bilevel optimization
framework, we balance prior knowledge with
data-driven insights and enhance the robustness
of reward models to handle diverse preference
data. DORM achieves high performance with
significantly less data, leading to more robust
reward models and better-aligned policy mod-
els. This work highlights the importance of
data quality in model alignment and provides a
promising avenue for developing more reliable
and human-aligned language models.
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Limitations

6.1 Dataset-level Weight Assignment

For computational efficiency, our current imple-
mentation assigns weights at the dataset level.
While this simplification maintains good perfor-
mance and computational efficiency, it may not
fully capture the fine-grained quality variations
within each dataset. Future work could explore
hierarchical weight optimization strategies for
finer-grained assignments.

6.2 Dependence on a High-Quality
Validation Set

DORM relies on a validation set for bilevel op-
timization, which is essential for guiding dy-
namic data reweighting. However, the effective-
ness of this approach depends on the quality
of the validation set. A low-quality validation
set with inconsistent or incorrect preference la-
bels may lead to suboptimal weight adjustments,
compromising reward model reliability.

That said, the validation set used in our ap-
proach is relatively small, making it feasible
in practice to acquire high-quality human an-
notations. Given its critical role in optimizing
preference weights, prioritizing label accuracy
in the validation set is a worthwhile investment.
Future work could further explore ways to refine
validation selection, such as automated valida-
tion data curation or self-refinement techniques
to enhance label quality.
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Appendix

A Dataset Statistics and Preprocessing

We evaluate our method on multiple preference datasets, each with distinct characteristics. Table 3
summarizes the dataset sizes and key attributes.

Table 3: Summary of the preference datasets used in our experiments.

Dataset Number of Attributes Train Set Size Validation Set Size Annotation Type Primary Use

HelpSteer2 (Wang et al., 2024f) 5 20k {0.7k, 1k, 2k} Human-annotated General alignment
OpenAssistant2 (Köpf et al., 2024) 4 {5k, 20k} {0.7k, 1k, 2k} Human-annotated Assistant-style conversations
Magpie-QWen-2.5 (Xu et al., 2024) 1 {10k, 32k} {0.7k, 1k, 2k} Synthetic Fine-tuning
OffsetBias (Park et al., 2024) 1 {10k, 16k} {0.7k, 1k, 2k} Human-annotated Bias mitigation
WildGuard (Han et al., 2024) 1 {5k, 12k} {0.7k, 1k, 2k} Adversarial Safety evaluation

Normalization of Rating Scales. These datasets use varying rating scales, which can introduce
inconsistencies in preference modeling. For instance, HelpSteer2 employs a scale of 0-4, whereas
other datasets use binary or continuous scores in different ranges. To standardize these ratings, we
apply a linear transformation to convert all scores to a common 0-4 scale. Binary labels are mapped
such that the preferred response corresponds to 4 and the non-preferred to 0.

Merging Reward Attributes. Some datasets contain overlapping but non-identical preference
objectives. Since these datasets follow different annotation rubrics and evaluation protocols,
we adopt the approach of (Wang et al., 2024c) and treat such objectives separately to maintain
consistency. This ensures that preference signals remain distinct, preventing biases introduced by
differing annotation standards. As a result, our reward model incorporates a 12-attribute head.

These preprocessing steps ensure that our dataset is well-structured for reward modeling and
policy optimization, reducing the impact of inconsistencies across different sources.

B Training Recipe Comparison

Table 4 presents the training data sizes of baseline models in our main experiments. DORM achieves
strong performance on RewardBench while using only 50k training data (with 5k validation set),
which is 10× less than ArmoRM-Llama3-8B-v0.1 and Pair-preference-model-LLama3-8B, and 40×
less than Internlm2-20B-reward. Despite the significantly smaller dataset size, our model attains a
RewardBench overall score of 90.5, outperforming models trained on substantially larger datasets.

This data efficiency stems from our quality-aware preference weighting strategy and dynamic
weighting in reward modeling. By prioritizing informative and reliable signals, our method
reduces reliance on large-scale preference data. Additionally, bilevel optimization ensures effective
use of high-value samples, mitigating performance degradation from noise or redundancy. These
techniques allow our model to achieve strong performance with significantly fewer training samples.

C Implementation Details

Reward Model Training. Our reward model is initialized with Mistral NeMo 12B-
Instruct (NVIDIA and Mistral AI) and fine-tuned using a 12-attribute head. Table 5 outlines
the hyperparameters used.

Bilevel Optimization. We initialize the proxy u0 from θ0, and initialize w0 being uniform. The
learning rate isηθ = ηu = 3e−6, ηw = 0.001 The coefficients are set to α = 10.0, β = 1.0. We use
Adam (Kingma, 2014) as the optimizer for both levels.

The training is conducted on two nodes (16 A100-80G GPUs in total), and it takes about 10.4
hours for 3-epoch training. During inference, we implement a Bayesian hyperparameter search to
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Model Number of Training Data RewardBench Overall Score

Llama3-70B-SteerLM-RM (Wang et al., 2024f) 20k 88.8
URM-Llama3-8B (Lou et al., 2024) 20k 89.9
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024c) † 585.4k 90.4
Pair-preference-model-LLaMA3-8B (Dong et al., 2024) † 585.4k 87.1
Internlm2-20B-reward (Cai et al., 2024) † 2.4 million 90.2
DORM 50k 90.5

Table 4: Models and their corresponding training dataset sizes.

Table 5: Training hyperparameters for reward model fine-tuning.

Hyperparameter Value Notes

Reward Head Dimension 12 Correspond to Number of Reward Attributes
Batch Size 4 Per GPU
Learning Rate 3× 10−6 Cosine decay
Weight Decay 0.01 Applied to Adam optimizer
Betas 0.9, 0.98 Applied to Adam optimizer
Warm-up Steps 200 Cosine scheduler
Mixed Precision BF16 Reduces memory consumption
Number of Epochs 3 Maximum Training Epochs

determine the projection vector λ on the validation set. This vector is used to compute a weighted
sum from the multi-attribute outputs of our reward model, enabling evaluation against the binary
labels of RewardBench.

Baseline Selection Criteria. To ensure a fair and reproducible comparison on RewardBench, we
selected baseline models based on the following principles:

• Contamination-aware selection: Some models on RewardBench were reported to involve
data contamination that their training data may overlap with prompts present in the Reward-
Bench evaluation set. We restrict our comparisons to models with no known data contamination
on RewardBench, in order to avoid inflated performance due to train/test overlap.

• Public availability and reproducibility: We prioritize openly accessible reward models with
released checkpoints or official links on the RewardBench leaderboard. Several top-ranked
models lack publicly available implementations, making them impossible to reproduce or
evaluate consistently.

• Model size fairness: Our method uses a 12B backbone. To ensure fair comparison, we
exclude models with significantly larger parameter counts, where improvements may be
largely attributed to model scale rather than training or data strategies.

We acknowledge that the field evolves rapidly. A new decontaminated dataset,
Skywork-Reward-Preference-80K-v0.2 (Liu et al., 2024a), was recently released, en-
abling the training of stronger models such as nicolinho/QRM-Llama3.1-8B-v2 and
Skywork/Skywork-Reward-Llama-3.1-8B-v0.2, both achieving 93.1 on Reward-
Bench. We note that Skywork’s improvements stem from carefully curated data pipelines—e.g.,
filtering high-quality subsets and subsampling based on RM scores (as in ArmoRM), as documented
by their authors. In contrast, our method automates preference weighting through bilevel optimiza-
tion over heterogeneous sources. These approaches are orthogonal and potentially complementary:
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our method could further benefit from applying its reweighting mechanism to cleaner datasets such
as Skywork’s.

D Results with Different Data Size

We investigate the impact of the training/validation set size on model performance. Table 6
summarizes the results.

Table 6: Effect of validation set size on model performance.

Training Size Validation Size Chat Chat Hard Reasoning Safety Overall

50k 3.5k 94.7 84.8 88.5 92.9 90.2
50k 5k 95.6 83.4 89.8 93.1 90.5
50k 10k 96.8 84.9 89.1 95.3 91.5

100k 3.5k 96.9 85.2 88.7 95.1 91.5
100k 5k 96.8 85.5 89.2 96.0 91.9
100k 10k 97.1 85.6 90.6 94.9 92.1

Larger validation sets improve model performance. As the validation set size increases from
3.5k to 10k, the overall performance improves consistently across all training configurations. For
instance, with 50k training samples, expanding the validation set from 3.5k to 10k leads to an
increase in the overall score from 90.2 to 91.5, with notable gains in safety (92.9 to 95.3). This
suggests that a larger validation set provides a more reliable signal for optimizing data weights,
contributing to better model performance.

Increased training data enhances robustness. Expanding the training set from 50k to 100k also
yields consistent improvements in overall performance, particularly in safety and reasoning. With a
10k validation set, the overall score increases from 91.5 (50k training) to 92.1 (100k training), while
safety improves from 95.3 to 94.9. These results indicate that additional training data strengthens
the model’s ability to generalize across different tasks.

E Training Overhead and Cost-Effectiveness of DORM

One common concern with bilevel optimization methods is the additional computational overhead
due to extra steps and models. We clarify and quantify this overhead both theoretically and
empirically.

Theoretical Overhead. The main overhead of DORM comes from maintaining an auxiliary
model u (with the same architecture as the primary model θ) and computing additional gradients
on the validation set. Specifically, u is a transient proxy that is updated only once per iteration
(Algorithm 1) to approximate the lower-level optimum for hypergradient calculation. By employing
a first-order hypergradient approximation method (Kwon et al., 2023b; Lu and Mei, 2024), we avoid
the need to compute expensive second-order Hessians required by traditional bilevel optimization
approaches.

Empirical Cost. Training our 12B reward model with DORM for 3 epochs takes approxi-
mately 10.4 hours on 16 A100 GPUs. This time includes all components of the bilevel optimiza-
tion—updates for u, θ, and w, and computations on both training set Dtr and validation set Dval.
This demonstrates that DORM is practically feasible even at scale.
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Cost-Benefit Tradeoff. To justify this overhead, we compare DORM against standard baselines in
terms of training time and downstream performance. As shown in Table 7, even when the baselines
are given the validation data for training, DORM achieves significantly higher RewardBench scores
with only moderate overhead.

Table 7: Training overhead and performance of different optimization strategies.

Method Training Data Optimization Time / Epoch RewardBench Score

SFT 60k (train + val) Standard ∼2.4 hrs 85.6
Prior weights only 60k (train + val) Standard ∼2.4 hrs 86.7
Bilevel w/o prior 50k train, 10k val Bilevel ∼3.5 hrs 89.4
DORM 50k train, 10k val Bilevel ∼3.5 hrs 91.5

These results demonstrate that DORM not only improves performance over strong baselines,
but also makes efficient use of validation data through bilevel training, justifying its moderate
computational overhead.

F Study on Uncertainty Measurement

In 3.1, we use MC dropout for epistemic uncertainty estimation. Our method is compatible with
other uncertainty estimation techniques. We include sigmoid-based and ensemble-based methods
for comparison and illustrate our rational for using MC dropout.

Table 8: Ablation study results on uncertainty-based weighting.

Method Chat Chat Hard Reasoning Safety Overall

Baseline 90.7 72.8 86.7 91.1 85.3
MC Dropout 91.9 77.0 85.2 91.6 86.4
Ensemble 87.7 74.6 89.8 92.5 86.1
Sigmoid 86.8 72.8 89.2 91.9 85.2

MC dropout achieves the highest overall score of 86.4, outperforming the baseline 85.3 and other
uncertainty-estimation methods. It provides balanced improvements across all tasks, particularly in
chat hard +4.2 and chat +1.2. While ensemble-based estimation achieves slightly better reasoning
and safety scores, its overall performance remains lower.

MC dropout is also computationally efficient, requiring only stochastic forward passes within a
single model, whereas ensemble methods require multiple model instances. Although the sigmoid-
based approach is computationally lightweight, it does not provide sufficient performance gains.

In summary, our method supports various uncertainty estimation techniques. MC dropout is
preferred due to its strong empirical performance and efficiency.

F.1 Why Epistemic Uncertainty and Disagreements Rather Than Aleatory Uncertainty?

In our quality estimation for the preference data, we consider uncertainty to identify which data
points are more informative for the reward model. There are two common forms of uncertainty:
epistemic and aleatory (Hüllermeier and Waegeman, 2021). Epistemic uncertainty arises from the
model’s lack of knowledge about the underlying preference function, while aleatory uncertainty is
related to inherent randomness or noise in the data generation process. Our quality estimation fo-
cuses on epistemic uncertainty and disagreements rather than aleatory uncertainty for the following
reasons:

22737



1. Epistemic uncertainty is reducible through data or model improvements: Epistemic
uncertainty reflects gaps in the model’s current representation. If a data point causes the model to
be uncertain, it suggests the model does not fully understand the underlying preference structure at
that point. Prioritizing such data helps refine model parameters. In contrast, aleatory uncertainty
stems from inherent randomness and cannot be mitigated through training.

2. Disagreements highlight label reliability issues: Discrepancies between model predictions
and labels indicate potential label noise or annotation errors. These disagreements help us identify
data that may be mislabeled or difficult for the model. Adjusting data weights based on these
disagreements allows the model to focus on data that can provide more reliable learning signals.

3. Aleatory uncertainty does not provide actionable insights for weighting: Since aleatory
uncertainty persists regardless of training, incorporating it into data weighting does not improve
learning. Epistemic uncertainty and disagreements, however, offer actionable insights for data
selection and model refinement.

For these reasons, our quality estimation leverages epistemic uncertainty and disagreements to
guide the model toward more informative data, improving training efficiency and alignment.

G Robustness to Noisy Preference Labels

We conduct additional experiments to evaluate the robustness of DORM to noisy preference labels,
and compare it against standard SFT under controlled label corruption. We use a LLaMA-3.2-
3B-IT reward model and progressively introduce noise into the training set by randomly flipping
chosen/rejected labels. For a fair comparison, DORM uses 50k noisy training samples and 10k clean
validation samples, while SFT uses the combined 60k data as training data (i.e., no validation set).
Evaluation is done across four RewardBench categories and aggregated using the standard average.

As shown in Table 9, DORM consistently outperforms SFT across all noise levels. The per-
formance gap becomes more pronounced as noise increases, indicating that DORM’s dynamic
reweighting mechanism makes it more robust to noisy supervision. In contrast, SFT lacks such
robustness and treats clean and corrupted samples uniformly.

Table 9: Performance under different amounts of training label noise.

Method # Noisy Samples Chat Chat Hard Safety Reasoning Overall

DORM 0 84.7 43.4 80.2 69.6 69.5 (+2.7)
SFT 0 82.0 41.1 77.6 66.3 66.8
DORM 5k 81.9 39.8 78.9 68.5 67.3 (+3.2)
SFT 5k 82.4 37.9 72.4 63.5 64.1
DORM 10k 78.8 39.0 75.7 68.8 65.6 (+3.6)
SFT 10k 79.6 37.2 69.5 61.7 62.0

These results show that DORM is more robust to label noise due to its dynamic weighting over
training samples. This advantage becomes more significant under higher noise levels, highlighting
the value of bilevel optimization for real-world, imperfect preference data.

H Distinguish Hard and Noisy Samples

A key question in our weighting approach is how to distinguish hard samples (truly ambiguous or
difficult) from noisy ones (incorrectly labeled), especially in cases where both the uncertainty u
and the disagreement q are high. Our method addresses this challenge in two stages:

1. Initial Prior Weighting (w0). Theoretically, both u (uncertainty) and q (disagreement with
the ground-truth label) can be high for either hard or noisy samples, but their statistical profiles
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often differ:

• Hard samples, such as those near decision boundaries or with genuinely ambiguous prefer-
ences, tend to induce high model uncertainty u but only moderate disagreement q, especially
if the model oscillates around the true label.

• Noisy samples, i.e., mislabeled data, may show low or moderate u (as the model is confident
in its incorrect prediction), but exhibit high q with the correct label.

To exploit this distinction, we use a heuristic prior weighting function:

w0 = exp(u− γq),

which favors high-uncertainty but low-disagreement samples and penalizes confident-but-wrong
predictions. The parameter γ controls the trade-off, providing intermediate weights when both u
and q are high.

2. Bilevel Optimization Refinement. Beyond the initial heuristic, our method employs a second-
stage bilevel optimization to refine weights using validation loss. This allows the model to learn
from data which samples are genuinely informative versus detrimental, even when the prior signal
is ambiguous.

By leveraging validation performance as a signal, the model adjusts w to down-weight noisy
or misleading samples and to emphasize helpful hard cases, surpassing the expressiveness of the
initial u/q-based heuristic.

Table 10: Statistical comparison between hard and noisy samples.

Sample Type # Samples Avg. u (± std) Avg. q (± std)

Hard samples 1,000 0.23 ± 0.08 0.34 ± 0.11
Noisy samples 1,000 0.14 ± 0.05 0.62 ± 0.17

Empirical Validation. To verify the distinguishable characteristics of hard vs. noisy samples
under our weighting scheme, we conduct an analysis using 10k validation samples from the
HelpSteer2 dataset. We construct two subsets:

• 1k Hard samples: Selected where human-assigned preference scores for chosen vs. rejected
candidates are close (within 1.0), indicating human-level ambiguity or disagreement.

• 1k Noisy samples: Generated by injecting Gaussian noise ϵ ∼ N(0, 1) into scalar human
scores (range [0, 5]), and clipping results to stay within bounds.

We compute the average u and q for each category, as shown in Table 10. The results confirms
that our prior weighting rule w0 = exp(u − γq) tends to favor truly ambiguous but trustworthy
samples (high u, low q), while de-emphasizing potentially mislabeled ones (low u, high q). While
imperfect, this initialization provides a useful inductive bias that is further refined through bilevel
optimization.
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