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Abstract
Vision–language models (VLMs) often process
visual inputs through a pretrained vision en-
coder, followed by a projection into the lan-
guage model’s embedding space via a connec-
tor component. While crucial for modality fu-
sion, the potential information loss induced by
this projection step and its direct impact on
model capabilities remain understudied. We
introduce two complementary approaches to
examine and quantify this loss by analyzing the
latent representation space. First, we evaluate
semantic information preservation by analyzing
changes in k-nearest neighbor relationships be-
tween image representations, before and after
projection. Second, we directly measure in-
formation loss by reconstructing visual embed-
dings from the projected representation, local-
izing loss at an image patch level. Experiments
reveal that connectors substantially distort the
local geometry of visual representations, with
k-nearest neighbors diverging by 40–60% post-
projection, correlating with degradation in re-
trieval performance. The patch-level embed-
ding reconstruction provides interpretable in-
sights for model behavior on visually grounded
question-answering tasks, finding that areas of
high information loss reliably predict instances
where models struggle.1

1 Introduction

Vision–language models (VLMs) have advanced
on many tasks, e.g., visual question answering and
image captioning by combining pretrained vision
encoders with pre-trained language models. Many
of these models employ a small neural network
module, known as a connector (or a projector),
to bridge the gap between the visual and textual
representation spaces. The connectors project vi-
sual representations into sequences of embeddings
that a language model can process (Chen et al.,
2024a; Liu et al., 2023; Deitke et al., 2024; Lau-
rençon et al., 2024; Chen et al., 2024b; Zhang et al.,

1Code: https://github.com/lyan62/vlm-info-loss.

2025; Sun et al., 2024). Common connector ar-
chitectures include multi-layer perceptrons (MLPs)
or attention-based approaches (Jaegle et al., 2021;
Laurençon et al., 2024).

While these connector modules enable efficient
cross-modal integration (Li and Tang, 2024), pro-
jecting rich visual features into embeddings com-
patible with language models typically involves
dimensional conversion and representation restruc-
turing. Naturally, this raises questions about poten-
tial information loss2 during projection, and how
such loss impacts downstream task performance.
As shown in Figure 1, the loss of critical visual
details most relevant to answering the question im-
poses inherent limitations on the reasoning capa-
bilities, since the language model’s performance is
constrained by the quality and completeness of the
visual information it receives.

Despite the growing research on VLM connec-
tor architectures and their impact on downstream
performance (Lin et al., 2024; Zhu et al., 2025),
there has been limited investigation into how well
they preserve visual information in the latent space.
Quantifying this information loss presents substan-
tial challenges; traditional methods like canonical
correlation analysis (Hotelling, 1936) struggle with
variable-length high-dimensional visual features
processed through diverse connector architectures
in vision-language models. Performance degrada-
tion can also take more than one form, adding to
the complexity of its study. For instance, it can
take the form of a direct information loss due to an
inherently lossy connector, or a geometric collapse
where distinct features become entangled in the
projected embedding space.

2In this paper, we use “information loss" to broadly de-
scribe possible degradation of visual information, including
aspects of the representation that cannot be recovered or di-
rectly observed after the projection. In a stricter sense, this
could also be viewed as a representational gap or discrepancy
rather than true loss, e.g. changes in the local geometry as
reflected by k-nearest-neighbor relationships.
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(a) Input image with red answer mask
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(b) Embedding norm signed difference
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(c) Image overlay with norm difference

Figure 1: Visualization of patch-wise information loss in the embeddings explains the incorrect predicted answer
in VizWiz Grounding VQA. For the question “What is the fifth number?”, LLaVA incorrectly predicted “18”.
Figure 1b display the difference between the L2 norm of the original and the reconstructed patch embeddings.
Blue regions indicate where original embeddings have larger norms than predicted embeddings, while red regions
show where predicted embeddings have larger norms. The top 10 high-loss patches are marked by yellow squares.
Figure 1c shows high loss occurring in several answer-relevant patches contribute to the incorrect prediction.

To bridge this gap in the literature, we present
an evaluation framework to quantify information
loss in VLM connectors from both the geomet-
ric perspective and that of localized information
loss. We first examine if the connector projection
changes the geometric structure of latent visual rep-
resentations. By introducing k-nearest neighbors
overlap ratio, we measure how much the neighbor-
hoods of image embeddings change before and af-
ter the projection in the latent representation space,
thereby estimating how well geometric and seman-
tic relationships are preserved.3 Second, we quan-
tify localized information loss by training a model
to reconstruct the original visual embeddings from
the projected embeddings. This patch-level visual
embedding reconstruction allows us to pinpoint
the high-loss regions in the image—areas where
visual features are hard to recover after projection
(Figure 1). This two-step approach provides both
quantitative analysis and interpretable visualiza-
tions, offering insights into the nature of informa-
tion transformation during vision-text integration.

2 VLMs and Connectors

Integrating visual and textual inputs is fundamen-
tal for VLMs to process multimodal information
effectively. Existing VLMs typically employ two
main approaches (Li and Tang, 2024): models like
LLama3.2 (gra, 2024) and BLIP (Li et al., 2023)
leverage cross-modal attention mechanisms, while
others such as LLaVA (Liu et al., 2023) and Qwen-

3Here, the semantic relationship denotes the semantic sim-
ilarity between pairwise embeddings measured by L2 distance
or their inner product similarity.

2-VL (Bai et al., 2025) adopt connectors to project
visual representations into latent vectors compati-
ble with large language models (LLMs).4

Lin et al. (2024) categorize connectors into two
types: feature-preserving and feature-compressing
connectors. Feature-preserving connectors include
MLPs that preserve the number of patch embed-
dings, such as the two-layer MLP connector in
LLaVA. In contrast, feature compressing connec-
tors project image patch embeddings to a shorter se-
quence, often involving transformer-based or con-
volution architectures with pooling operations over
the original vision embedding (Jaegle et al., 2021).
Feature compressing connectors include the per-
ceiver sampler in Idefics2 (Laurençon et al., 2024)
and the patch merger in Qwen-2-VL (Bai et al.,
2025). In this paper, we estimate information loss
in both types of connectors.

2.1 Formalizing Encoders and Connectors

We now give a formal definition of connectors.
First, we consider the textual input. Let Σ be an
alphabet of symbols. A string encoder, ϕ, is a
function that maps a string σ to a sequence of real-
valued representations. Formally,

ϕ : ΣN → (RD)N , (1)

where N ∈ N is a parameter in the dependent
type that denotes the length of the input string,
and D is the dimensionality of the representa-
tion. Next, we turn to the visual input. Let

4In this paper, we do not consider VQ-VAE (van den Oord
et al., 2017) based VLMs, which are more often used for
text-to-image generation.
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∆ = {1, . . . , 256}H·W×C be an array of image
patches, where H and W represent the height and
width dimensions, and C is the number of color
channels per pixel. A two-dimensional image of
patch dimensionsM1×M2 can thus be represented
as an element of ∆M1×M2 . Where ∆M1×M2 de-
notes the set of all possible M1 × M2 grids of
patches. The vision encoder is formalized as a
dependent type:

ψ : ∆M1×M2 → (RD
′
)M1×M2 , (2)

where M1 and M2 are parameters in the dependent
type, representing the grid dimensions of the image
patches, and D′ is the visual embedding dimension.
This maps a grid of image patches to a grid of
embedding vectors.

A connector module transforms the vision en-
coder’s output to match the dimensionality of the
text encoder—projecting visual embeddings of di-
mension D′ to text-compatible dimension D. We
define the connector as a function of type:

CONN : (RD
′
)M1×M2 → (RD)MC , (3)

where we typically have MC ≤ M1M2. We also
use C as shorthand for CONN.

For combining the output of the string encoder
and the vision encoder, we define a flattener that
combines visual and textual embeddings into a uni-
fied sequence:

FLAT : (RD)MC × (RD)N → (RD)MC+N (4)

This creates a sequence of length MC +N by con-
catenating the flattened grid of visual embeddings
with the sequence of text embeddings.

The complete vision–language models we con-
sider can then be expressed as the a composition of
these functions:

VLM(x, σ) = LM(FLAT(CONN(ψ(x)), ϕ(σ)))
(5)

where x ∈ ∆M1×M2 is an input image, σ ∈ ΣN

is an input text sequence, and LM is an auto-
regressive language model that predicts probability
of next tokens.

We focus on quantifying the information loss at
the connector module defined in Equation 3. For-
mally, the information loss over the connector is
a function µ : (ψ(x), CONN(ψ(x))) → R≥0. We
explore how such loss correlates with and explains
model performance.

(a) Before projection (b) After projection

Figure 2: The k-nearest neighbors overlap ratio mea-
sures the overlap of an image’s neighbors before and
after projection. In this example, with k = 3, the over-
lap ratio is 0.67 because two out of the three nearest
neighbors are identical in both representation spaces.

3 Quantifying Information Loss

We propose two methods for quantifying informa-
tion loss over the projection step described above.
The first method quantifies the preservation of
structural information in semantic embeddings by
comparing each image representation’s k-Nearest
Neighbors (k-NN, Fix and Hodges (1951)) before
and after projection. The overlap ratio of the k-
NN neighbors captures how well local geometry
of the semantic embeddings are preserved in the
latent space. Figure 2 gives an example where
two of the three nearest neighbors overlap before
and after projection. The second method evaluates
patch-level representation (Figure 1) distortion by
training an ad hoc neural network to reconstruct
the original image embedding from its projected
representation, detailed in Section 3.2.

3.1 k-Nearest Neighbors Overlap Ratio

To quantify geometric information loss during pro-
jection in visual representation spaces, we propose
the k-nearest neighbors overlap ratio (KNOR),
which measures how well k-NN relationships
among image embeddings are preserved before and
after projection through the connector.

Let I be a finite set of images, ψ a vision en-
coder, and CONN (C for short) a connector as
described in §2.1. We use Iψ = {ψ(x)}x∈I
to indicate the family of embedded images, and
IC = {CONN(ψ(x))}x∈I for the projection of the
embedded images. The k-NN overlap ratio for an
image x is defined as

R(x, k)
def
=

∣∣NIψ(ψ(x), k) ∩NIC(C(ψ(x)), k)
∣∣

k
(6)
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Where NIψ(ψ(x), k) is the set of k-nearest neigh-
bors of ψ(x) among the pre-projected embeddings,
and NIC(C(ψ(x)), k) is the set of k-nearest neigh-
bors of C(ψ(x)) among the projected embeddings.
The average overlap ratio is given by

R(k)
def
=

1

|I|
∑

x∈I
R(x, k) (7)

The average overlap ratio measures how well
the local geometric structure is preserved after pro-
jection. An optimal connector would maintain the
same k-NN sets for ψ(x) and C(ψ(x)). Lower
overlap ratio corresponds to more geometric infor-
mation loss due to projection, while higher overlap
suggests faithful geometric retention.

3.2 Embedding Reconstruction
KNOR reflects structural information loss during
projection, indicating how well local geometric
relationships among image embeddings are pre-
served. However, it does not identify the loss of
fine-grained visual features at the patch level.

To address this, we further quantify and localize
patch-level information loss by attempting to re-
construct the original vision embeddings from their
projected representations.

Specifically, given a connector CONN defined in
Equation 3 and set of images I ⊂ ∆M1×M2 , we
train a reconstruction model fθ : (RD)MC →
(RD′

)M1×M2 to minimize reconstruction loss. For
each patch index (i, j) ∈M1 ×M2, we define the
per-patch loss as

Lpatch(x, i, j)
def
= ∥ψ(x)(i,j) − fθ(C(ψ(x)))(i,j)∥22

(8)
which measures the squared Euclidean distance be-
tween the original vision embedding and its recon-
struction for each patch. The total reconstruction
loss is therefore the sum of the patch-wise losses
across all patches and images:

Lrecon(I)
def
=

∑

x∈I

∑

(i,j)∈
M1×M2

Lpatch(x, i, j) (9)

This patch-wise reconstruction enables us to
identify and visualize the spatial distribution of
information loss across the image.

4 Experimental Setup

We quantify information loss using both methods
across three open-weights connector-based vision-
language models on six datasets spanning ques-
tion answering, captioning, and retrieval tasks.

We assume that greater structural and semantic
information loss during projection through the
connector leads to reduced neighborhood overlap,
while greater patch-wise information loss results in
higher reconstruction error.

4.1 Pretrained VLMs

We consider three open-weights connector-based
vision-language models including LLaVA (Liu
et al., 2023), Idefics2 (Laurençon et al., 2024), and
Qwen2.5-VL (Bai et al., 2025). LLaVA uses a two-
layer MLP as the connector, preserving total num-
ber of patches for each image. In contrast, Idefics2
uses an attention-based perceiver resampler (Jaegle
et al., 2021) that projects image embeddings to a
fixed-length sequence of embeddings. Qwen2.5-
VL uses a MLP-based patch merger which merges
every four neighboring patch representations into
one. We use the 7B-instruct model variants for
LLaVA and Qwen2.5-VL, and the Idefics2-8B-
instruct model.

4.2 Evaluation Datasets

We evaluate on six diverse datasets, each of which
probes different aspects of visual understanding.
SEED-Bench (Li et al., 2024) provides catego-

rized multiple-choice questions spanning cog-
nitive tasks from basic scene understanding to
complex visual reasoning.

VizWiz Grounding VQA (Chen et al., 2022) in-
cludes images taken by blind or low-vision indi-
viduals regarding scenarios that require visually-
grounded question answering.

VQAv2 (Antol et al., 2015) covers open-ended
questions that test general visual comprehension.

CUB-200-2011 (Wah et al., 2011) is a commonly
used dataset for fine-grained image retrieval that
covers 200 species of birds.

Flickr30k (Young et al., 2014) and COCO (Lin
et al., 2014) Karpathy test set (Karpathy and
Fei-Fei, 2017) are used for image captioning
evaluation.

Together, these datasets offer complementary per-
spectives on how different types of visual informa-
tion are preserved during projection and how infor-
mation loss impacts various downstream tasks.

4.3 Embedding Reconstruction Models

We build models to reconstruct image patch em-
beddings from connector outputs. These recon-
struction models are intentionally designed with
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Figure 3: Neighborhood overlap ratios across three datasets: SeedBench validation, a 10,000-sample subset of
VQAv2 validation, and Vizwiz grounding VQA validation. Analysis using 10, 50, and 100 nearest neighbors
shows overlap ratios below 0.62 for all models, suggesting connectors poorly preserve geometric relationships and
neighbor rankings for the visual representations.

Model M1M2 ×D′ MC ×D |CONN| |fθ|
LLaVA 576× 1024 576× 4096 21M 27M
Idefics2 576× 1152 64× 4096 743M 844M
Qwen2.5-VL 576× 1280 144× 3584 45M 843M

Table 1: Model parameters and embedding dimensions.
|CONN| denotes number of parameters in the connector
and |fθ| represents number of parameters of the recon-
struction model. Pre- and post-projection embedding
dimensions are listed as M1M2 ×D′ and MC ×D.

larger capacity than the original connectors, includ-
ing expanded hidden dimensions and additional
hidden layers. This controlled setup ensures our
models are trained to recover the original visual
representations without creating new bottlenecks
in the reconstruction process.

Architecture We tailor our reconstruction mod-
els to each VLM’s connector architecture. For
LLaVA, which preserves the number of image
patches during projection, we use a simple three-
layer MLP with a 2048-dimension hidden layer.
For Idefics2 and Qwen2.5-VL, which compress
sequence length from M1 × M2 to MC , we im-
plement transformer-based models to handle the
differences in sequence length. The reconstruction
model projects connector outputs to hidden em-
beddings with positional encodings before process-
ing them through a 16-layer, 16-head transformer
encoder with 2048-dimensional vectors. Table 1
summarizes the parameters of the reconstruction
models and their input and output dimensions.

Training We train each of the embedding recon-
struction models on the COCO 2017 train set (Lin
et al., 2014) for 30 epochs with early stopping. We
apply a learning rate of 1e−4, dropout of 0.1, and a
total batch size of 128. For training stability, we ap-
ply normalization to both pre- and post-projection
embeddings using mean and standard deviation of
the dataset.

5 Neighbor Rankings and Structural
Information are Not Preserved

We calculate KNOR (Section 3.1) for images in the
SeedBench validation set, a subset of the VQAv2
validation set with 10, 000 images, and the vali-
dation set of Vizwiz grounding VQA dataset. It
is intuitive that higher neighborhood overlap ra-
tios suggest that the projection better preserves the
structural relationships between image embeddings.
As the neighborhood rankings directly impact im-
age retrieval tasks, we also evaluate retrieval per-
formance on the CUB dataset using both pre- and
post-connector visual embeddings.

5.1 Low Overlap Ratio for All Models
In Figure 3, we show the neighborhood overlap
ratio across k = 10, 50, and 100 nearest neigh-
bors, averaging through all unique images in the
evaluation datasets.5 The neighborhood overlap
ratios for LLaVA and Idefics-2 are around 50%.
LLaVA achieves its highest overlap of 61.6% at
k = 100, while Qwen2.5-VL loses nearly 90% of

5Visual embeddings pre- and post-connector projection
have a 1-1 mapping to the input image, and these visual em-
beddings are not impacted by the language model prompts.
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Model Emb R̄ ρ Recall

R@1 R@5

LLaVA
Pre

0.40
0.08 8.34 21.82

Post 0.11 6.16 17.22

Idefics2
Pre

0.39
0.23 13.10 30.81

Post 0.28 10.87 25.28

Qwen-2.5-VL
Pre

0.08
0.10 4.23 11.74

Post 0.11 10.65 26.44

Table 2: Zero-shot retrieval performance on the CUB
test set using L2 distance as the similarity measure.
R@k denotes Recall at rank k. We also report average
overlap ratio R̄. The Spearman correlation coefficient ρ
is calculated between R@5 and k-nearest neighbor over-
lap ratio for each sample, with k = 100. All correlation
scores are statistically significant with p < 1e−3.

the neighborhood ranking information. This sug-
gests a significant reordering of nearest neighbors
post-projection across all models. While LLaVA
maintains higher structural preservation compared
to Qwen2.5-VL and Idefics-2, it shows notable
neighbor reshuffling, especially at smaller neigh-
borhood sizes (k=10).

In Figure 4, we visualize the nearest neighbors
of a given query image, revealing significant neigh-
bor reordering across all models. However, for
Qwen2.5-VL, the neighbors obtained with post-
projection embeddings are more semantically sim-
ilar to the query image. We suspect that this phe-
nomenon could stem from its continuous training
of the image encoder in the pretraining stage and
the patch merging, which yields more semantically
meaningful post-projection embeddings. Other
VLMs such as LLaVA use a frozen vision encoder,
where the connector is updated to inherit features
from the pretrained encoder. However, in Qwen2.5-
VL, continued pretraining with an unfrozen vision
encoder produces fundamentally different learned
visual embeddings. This indicates that the pre-
and post-projection visual representations are not
equivalent, but may not necessarily lead to worse
semantic representations of the image.

5.2 Image Retrieval Evaluation

To verify if neighborhood reordering correlates
with a degradation in the semantic representation
of images, we evaluate on the CUB-200-2011 im-
age retrieval test set (Wah et al., 2011). We per-
form zero-shot image retrieval with pre- and post-
connector embeddings for each query image, ex-

Before Projection

Query

Image

After Projection

(a) Five nearest neighbors of LLaVA image embeddings

Before Projection

Query

Image

After Projection

(b) Five nearest neighbors of Idefics2 image embeddings

Query

Image

After Projection

Before Projection

(c) Five nearest neighbors of Qwen2.5-VL image embeddings

Figure 4: Comparison of five nearest neighbors searched
with pre-projection (top) and post-projection (bottom)
embeddings using different models. The first image in
each row is the query image, followed by its nearest
neighbors. For Qwen2.5-VL, despite a low neighbor-
hood overlap ratio, post-projection embeddings retrieve
more semantically similar images.

cluding the query image itself from the gallery. The
pre-and post-projection embeddings are indexed
with FAISS (Douze et al., 2024), and we experi-
ment with retrieving similar images based on both
the L2 distance and the inner product similarity (Ta-
ble 8 in Appendix) of the image representations.

We report Recall@1 (R@1) and Recall@5
(R@5) in Table 2. Consistent with the neighbor-
hood overlap visualization in Figure 4, we observe
degradation in R@5 of 41.4% for LLaVA and
18.8% for Idefics2 when using post-projection im-
age embeddings for retrieval. In contrast, Qwen2.5-
VL shows improved retrieval performance with
post-projection embeddings, suggesting that its
low overlap ratio reflects substantial differences
between pre- and post-projection representations.

To examine how structural preservation relates
to retrieval, we compute Recall@5 and the 100-
nearest-neighbor overlap ratio (KNOR) for each
sample, then calculate their Spearman correlation.
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Model COCO Flickr30k

Reconstruction loss (avg / std)
LLaVA 0.087 / 0.016 0.097 / 0.019
Idefics2 0.796 / 0.082 0.854 / 0.074
Qwen-2.5-VL 1.069 / 0.117 1.069 / 0.115

Overall CIDEr Scores
LLaVA 81.28 56.79
Idefics2 53.64 39.22
Qwen-2.5-VL 13.04 12.85

Table 3: Reconstruction loss on COCO and Flickr30k
test sets. Top: reconstruction loss averaged over all sam-
ples, where LLaVA achieves lowest reconstruction er-
ror. Bottom: CIDEr scores of zero-shot captioning.6For
both datasets, we observe better overall captioning per-
formance with lower average reconstruction loss.

As shown in Table 2, all models show a posi-
tive correlation, with coefficients of about 0.1 for
Qwen2.5-VL and LLaVA, and a stronger correla-
tion of 0.3 for Idefics2. All p-values are below
1e− 3, indicating statistical significance. This pos-
itive per-sample correlation means that, within a
given model, images whose local neighborhoods
are better preserved tend to achieve higher retrieval
performance. For Qwen2.5-VL, we observe a small
but positive per-sample correlation between local
overlap ratio and recall score. This suggests that
while most of the pre-projection structure was dis-
carded to create a more semantically meaningful
space, retaining certain stable neighborhoods re-
mains advantageous for specific images. Retrieval
examples are shown in Figure 11 in the Appendix.

6 Reconstruction and Model Behavior

While the neighborhood overlap ratio reflects struc-
tural information loss in the semantic representa-
tion space, we further examine the information
loss at the image patch level. Specifically, as in
Equation 8, we reconstruct patch-level visual rep-
resentation ψ(x) of an image from its projected
counterpart CONN(ψ(x)). Higher reconstruction
loss indicates greater difficulty in recovering the
features that are captured in the original visual em-
beddings. This patch-level comparison between
original and reconstructed embeddings enables us
to precisely quantify and locate the visual informa-
tion loss at a more fine-grained level.

6We notice Qwen-2.5-VL is particularly sensitive to the
task prompt; we use the prompt in the official repo: https:
//huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct.

Model COCO Flickr30k

CIDEr Scores for High Loss / Low Loss samples
LLaVA 73.98 / 86.96 51.79 / 61.74
Idefics2 40.84 / 66.13 29.24 / 53.22
Qwen-2.5-VL 12.45 / 13.56 13.15 / 12.35

Spearman Correlation (ρ / p)
LLaVA −0.077 / 0.000 −0.096 / 0.000
Idefics2 −0.214 / 0.000 −0.226 / 0.000
Qwen-2.5-VL 0.001 / 0.975 0.027 / 0.403

Table 4: Top: The comparison of CIDEr scores for
top 25% highest and 25% lowest reconstruction loss
samples, reported as "High Loss / Low Loss" Bottom:
Spearman correlations (ρ) of per-sample reconstruction
loss and captioning CIDEr scores.

6.1 Reconstruction Loss Impacts Captioning

Our embedding reconstruction evaluation follows
two steps: 1) we train a reconstruction model for
each VLM using paired pre- and post-projection
embeddings from images in the COCO 2017 train
set (as described in Section 4.3); 2) we apply these
reconstruction models to predict the original image
representations from their projected counterparts.

For image captioning, we measure the recon-
struction loss for images in the Flickr30k validation
set and COCO Karpathy test split. We use CIDEr
score (Vedantam et al., 2015) to evaluate the qual-
ity of the generated captions. Table 3 summarizes
the overall average reconstruction loss of the three
models on the captioning test datasets. For both
datasets, we observe lower average reconstruction
loss yields better captioning performance. We also
investigate how reconstruction loss impacts cap-
tioning for each individual image by calculating
the correlation between per-sample CIDEr score
and reconstruction loss per-image. In Table 4, the
spearman correlation indicates higher reconstruc-
tion loss for a given image corresponds to worse
captioning for Idefics2 and LLaVA, indicating by
the negative correlation with p values smaller than
1e−5. Please see more visualization in Figure 12.
For Qwen-VL, we did not observe obvious correla-
tion for individual images. The large gap of CIDEr
scores between the highest and lowest reconstruc-
tion loss samples for LLaVA and Idefics2 suggests
substantial impact on downstream tasks.
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answer-relevant and irrelevant patches. Loss in relevant patches negatively affects performance of LLaVA and
Idefics2. “Norm” represents differences between the L2 norm of the embeddings.

6.2 Loss at Patch-level Visual Features
Explains Question Answering Behaviors

To distinguish whether the reconstruction loss
stems from selective feature preservation or ac-
tual information loss, we visualize the patch-level
loss for images in the VizWiz grounding VQA val-
idation dataset. This dataset is particularly suit-
able for our analysis as it provides answer ground-
ing—binary masks indicating image regions rele-
vant to each question. By examining the relation-
ship between the reconstruction loss for the answer-
relevant image patches and question-answering ac-
curacy, we can assess whether the projection pre-
serves task-relevant visual information.

We report the Spearman correlation between the
reconstruction loss and the question answering ac-
curacy in Figure 5. For LLaVA, we observe a
negative correlation between prediction accuracy
and reconstruction loss in answer-relevant patches,
while a positive correlation is found in irrelevant
patches. This indicates that information loss in
answer-relevant patches negatively impacts model
performance, whereas loss in irrelevant patches has
a less significant effect. For Idefics2, we can see
that information loss in any patches would hurt
question answering accuracy. We do not observe
significant correlation for Qwen-2.5-VL, which is
consistent with our findings in the captioning tasks.

As shown in Figure 1, identifying distorted fea-
tures allows us to pinpoint visual information that
becomes inaccessible or less reliable for the lan-
guage model. For instance, reconstruction loss in
the patches of the fifth number "8" rank among

the top ten of all image patches, suggesting that
the model may have struggled to answer the ques-
tion due to lost details necessary for identifying
the number. This analysis introduces a new visu-
alization approach to examine VLM limitations,
particularly in scenarios requiring reasoning or rec-
ognizing fine-grained viusal features. Please see
more visualization examples in Appendix D.

7 Analysis

Procrustes analysis We also attempt to find the
optimal geometrical transformation from the post-
projection embedding space to the pre-projection
one through Procrustes analysis (Gower, 1975) – a
method often used for supervised alignment of em-
beddings (Artetxe et al., 2018). The alignment er-
ror reflects the degree of structural similarity of the
two embedding spaces. We use mean-pooled image
embeddings from LLaVA, Idefics2, and Qwen2.5-
VL. As the pre- and post-projection embeddings
have different embedding dimensions and sequence
lengths, our analysis follows three steps to com-
plete the embedding alignment. We first take the
mean-pooled image representation by averaging
over the sequence length, producing fixed-size vec-
tors of sizeD′ andD. We then use PCA (Hotelling,
1933) on the mean-pooled post-projection embed-
dings to project them to the same dimension of the
mean-pooled pre-projection embeddings.

Orthogonal transformation matrix R was de-
rived through singular value decomposition of the
cross-covariance matrix X̄⊤T̄ , where X̄ ∈ RD′

represents mean-pooled pre-projection embeddings
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Model Mean Std Min Max

LLaVA 16.62 3.16 8.76 23.65
Idefics2 4.93 0.08 4.78 5.70
Qwen2.5-VL 4.41 0.09 4.24 5.05

Table 5: Procrustes analysis results. We report the align-
ment error on SeedBench image representations before
and after connector projection.

and T̄ ∈ RD′
the PCA-transformed post-projection

embeddings. Then the orthogonal transformation
matrix is learned to best align these two sets of
embeddings by minimizing the Euclidean distance.
The reconstruction error are reported in Table 5.
Figure 6 visualizes the alignment of LLaVA em-
beddings through procrustes analysis.

Our analysis reveals fundamental limitations in
linear alignment of the image embeddings. The
high alignment errors of 16.62 for LLaVA and
4.41 for Qwen2.5-VL indicate the inherent diffi-
culty of preserving geometric relationships through
rigid transformations. While serving as a criti-
cal baseline for structural fidelity assessment, this
constrained linear approach explains why our pro-
posed non-linear embedding reconstruction ap-
proach achieves significantly lower errors.

Ablation on Reconstruction Model Size and
Structure We train three reconstruction models
of different sizes for LLaVA: a 27M three-layer
MLP, a 39M five-layer MLP, and a 40M Trans-
former. In Table 6, we observe that the 27M model
is sufficient for reconstructing LLaVA visual em-
beddings, and a larger model does not yield better
validation loss.

8 Related Work

A series of analyses has been conducted to inves-
tigate the modality gap and representation limita-
tions of contrastive-based VLMs (Schrodi et al.,
2024; Liang et al., 2022; Tong et al., 2024). These
studies reveal that the representational shortcom-
ings in CLIP embeddings subsequently impact the
visual perception capabilities of VLMs relying on
such vision encoders. For connector-based VLMs,
Zhang et al. (2024) demonstrates that the latent
space sufficiently retains the information necessary
for classification through probing across different
layers, and Lin et al. (2024) demonstrates the im-
pact of different connectors on VLMs’ downstream
performance. However, there remains a significant
gap in understanding whether fine-grained visual

Model Size VizWiz SeedBench FoodieQA

MLP 27M
Avg 0.050 0.056 0.051
Std 0.013 0.011 0.007

MLP 39M
Avg 0.064 0.070 0.065
Std 0.015 0.013 0.008

Transformer 40M
Avg 0.237 0.231 0.228
Std 0.019 0.025 0.014

Table 6: Reconstruction loss with different architectures
across VizWiz, SeedBench, and FoodieQA datasets. Re-
ported values include average loss (Avg) and standard
deviation (Std).

information, crucial for tasks such as visual ground-
ing (Krishna et al.) and question answering (Chen
et al., 2022), is lost in the process. In this paper, we
focus on the connector-based models to understand
the information transformation. To the best of our
knowledge, our paper is the first to directly quan-
tify information loss of the connectors from the
representation perspective, offering deeper insights
into where and what specific information is lost
from the visual features.

9 Conclusion and Future Work

Our study provides a systematic evaluation of how
connectors in existing VLMs transform informa-
tion and reshape the representation space when
projecting visual embeddings into the language
embedding space. Through neighborhood overlap
ratios and embedding reconstruction, we establish
a quantitative framework that captures two critical
aspects of the information loss: 1) structural shift
of global semantic relationships shown by the 40-
60% divergence in nearest-neighbor rankings and
2) patch-level reconstruction loss negatively im-
pacts captioning performance and explains model
failures in fine-grained visually grounded question
answering. The patch-level reconstruction also en-
ables visualization of local information loss, offer-
ing interpretable explanations for model behaviors.

Our findings suggest two key properties of an
effective connector: preserving or improving se-
mantic representation of images and preserving
visual information most relevant to the text context.
These findings could guide further improvements in
VLM connectors. For example, the reconstruction
loss at the embedding level could potentially be
incorporated during model pretraining as regular-
ization. Future work could also explore designing
dynamic projection layers or better visual feature
selection mechanisms for modality fusion.
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Ethics Statement

We foresee no ethical concerns with our research
project. In particular, ours is merely a scientific
study of VLMs and provides no artifacts that can
be used in a real-world scenario.

Limitations

In this study, we evaluate the information loss intro-
duced by connectors in VLMs. However, several
limitations should be noted. First, due to varia-
tions in model architectures and pretraining strate-
gies, our findings may not generalize beyond the
connector-based VLMs analyzed, particularly to
architectures that employ cross-attention for modal-
ity fusion. Second, our experiments focus on mod-
els in the 7B–8B parameter range; extending the
analysis to both smaller and larger models could
yield deeper insights into how model scale influ-
ences information loss. Third, our pixel-level re-
construction experiments (Appendix E) produced
inconclusive results, likely due to limitations of the
image generation model and training dataset size.
Additionally, while we quantify the information
loss empirically with our k-NN overlap ratio and
embedding reconstruction methods, a more formal
theoretical characterization would strengthen their
reliability. Finally, our reconstruction experiments
cannot fully disentangle whether the observed infor-
mation loss arises from the connector layer itself or
from the learning limitations of the reconstruction
network, suggesting that more advanced methods
may be needed to refine the analysis.
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A Connectors in Autoregressive Vision-Language Models

Idefics2 Idefics2 leverages a perceiver resampler (Jaegle et al., 2021) as the connector. The perceiver
resampler forms an attention bottleneck that encourages the latent representations to attend to the most
relevant inputs in a high-dimensional input array through iterative cross-attention layers. In other words,
the cross-attention module projects the high-dimensional inputs into a fixed-dimensional learned represen-
tation. Please refer to Laurençon et al. (2024) for more details.

LLaVA LLaVA (Liu et al., 2023) uses a two layer MLP to project the image embeddings to the language
model’s embeddings space. The MLP projector preserves the image feature length – number of patches
extracted by the image encoder.

Qwen2.5-VL Qwen2.5-VL (Bai et al., 2025) uses a patch merger (two-layer MLP) to reduces the length
of the input image features. The image representations of the neighboring four patches in the image are
first merged, and then passed through a two-layer MLP to project the image representation to the LM
embedding dimension.

B Ablation on Index Method for k-NN Overlap Ratio

We evaluated k-NN overlap ratio using three different embedding types as search indices: original embed-
dings, mean-pooled image embeddings, and normalized embeddings (Table 7). Since the performance
differences were minimal, we selected mean-pooled embeddings for both pre- and post-projection image
representations in calculating k-NN overlap ratios.

Overlap Ratio
Index Type

IndexFlatL2 IndexFlatL2
(mean pooling)

IndexFlatIP
(normalized vectors)

mean std mean std mean std

top100 0.466 0.122 0.563 0.107 0.504 0.129
top50 0.488 0.128 0.556 0.120 0.425 0.142
top10 0.490 0.149 0.551 0.160 0.377 0.161

Vector Size
Before projection 576×1024 1×1024 576×1024
After projection 576×4096 1×4096 576×4096

Table 7: Ablation on KNN results when using original embeddings, mean pooled image embeddings, and normalized
embeddings. We chose to use the mean-pooled embeddings for efficiency due to large embeddings size.

C Additional Evaluation Results

C.1 CUB image retrieval performance
In Table 8, we show the image retrieval performance on CUB test set using L2 and inner product for
similarity measure. The performance are consistent regardless of the index method used.

C.2 Reconstruction loss on VQA datasets
For visual question answering tasks, we measure the reconstruction loss for images in the validation set
of VizWiz grounding VQA, Seed-Bench, and FoodieQA. Table 9 presents overall reconstruction loss.
Among all tested models, LLaVA’s projected embeddings maintain the highest reconstruction fidelity. The
overall reconstruction loss reflects the overall difficulty of recovering information encoded in the visual
representations.

D Visualization

D.1 Visualization for Procrustes Analysis
In Figure 6, we visualize the alignment for LLaVA pre- and post-projection embeddings, as well as the
embeddings learned through the linear transformation learned. From the visualization we can observe that
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Model L2 IP

R@1 R@5 R@1 R@5

Pre-projection
LLaVA 8.34 21.82 9.46 24.78
Idefics2 13.10 30.81 13.38 30.98
Qwen-2.5-VL 4.23 11.74 6.83 24.23

Post-projection
LLaVA 6.16 ↓ 17.22 ↓ 5.54 ↓ 20.49 ↓
Idefics2 10.87 ↓ 25.28 ↓ 10.99 ↓ 25.15 ↓
Qwen-2.5-VL 10.65 ↑ 26.44 ↑ 8.26 ↑ 26.70 ↑

Table 8: Zero-shot retrieval performance on CUB test
set using L2 distance and inner product for similarity
measure. R@k denotes Recall at rank k. Arrows indi-
cate performance change direction after projection.

Dataset MSE LLaVA Idefics2 Qwen2.5-VL

VizWiz
Avg 0.115 0.907 1.069
Std 0.086 0.298 0.684

SeedBench
Avg 0.106 0.872 1.069
Std 0.071 0.307 0.610

FoodieQA
Avg 0.113 0.918 1.069
Std 0.057 0.283 0.673

Table 9: Embedding reconstruction loss of images in
the VizWiz, SeedBench, and FoodieQA datasets. We
report both average loss (avg) and standard deviation
(std). LLaVA’s visual embeddings exhibit lowest recon-
struction error among all models. The reconstruction
performance is consistent to what we have observed for
the images in COCO and Flickr30k.

the linear transformation is not able to align the pre- and post-projection embeddings well.

Figure 6: Alignment visualization for LLaVA pre- and post-projection embeddings through PCA.

D.2 Patch-level Loss Visualization for Vizwiz Grounding VQA
In Figure 7, we visualize additional examples of high reconstruction loss patches that contributes to
model’s failure on answering questions that requires recognizing text in the objects.

D.3 Visualization of Neighborhood Reordering
In Figure 10, we present more k-NN examples on comparison of searching with pre-projection (top) v.s.
post-projection (bottom) embeddings. In Figure 11, we present CUB image retrieval visualization with
pre- and post-projection embeddings.

D.4 Visualization of reconstruction loss and captioning performance

E Image Reconstruction with Different Embeddings

Beyond neighbor-overlapping and embedding reconstruction, we aim to investigate how information loss
manifests in the reconstructed images themselves. To explore this, we project different representations of
visual features onto the input embedding space of a powerful image decoder to assess their reconstruction
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Figure 7: Additional visualization of high reconstruction loss patches that contributes to model’s failure on answering
questions that requires recognizing text in the objects. Left: input images with answer-relevant regions in red masks.
Middle: signed difference between post-projection embeddings norms and pre-projection embedding norms. Right:
normalized norm differences overlay with the input image, with highest loss patches marked in yellow.

quality. However, image reconstruction performance depends on various factors, including the expressive-
ness of the image decoder. As such, this section serves as a preliminary exploration, and we encourage
future work in this direction.

For our experiments, we use a fine-tuned VAE decoder7, trained on the original VAE checkpoint from
Stable Diffusion, trying to alleviate the influence of the decoder as a limiting factor in reconstruction
quality. To align the sequence length between the vision encoder in the VLM and the expected input
length of the VAE decoder, we employ a 6-layer Transformer encoder-decoder module with 4 attention
heads. We train the aligner module on the COCO 2017 training set for 100 epochs with three objectives:
1) Embedding loss minimizing the difference between the VAE encoder embeddings and the aligned
embeddings from the VLM’s visual encoder; 2) Reconstruction loss measuring the mean squared error
(MSE) between the original and reconstructed images; 3) Latent loss quantifying the divergence between
the mean and variance of the Gaussian distribution for diffusion.

For the VLM, we use the LLaVA model in our experiments. We evaluate reconstruction performance on
both an in-distribution image from the COCO 2017 dev split and an out-of-distribution image, as shown in
Figure 13. When using embeddings before projection, the overall pixel-wise MSE reconstruction loss is
0.2128, compared to 0.2443 after projection. Figure 13 illustrates the reconstructed images for both cases,
where pre-projection embeddings yield similar contour preservation with post-projection embeddings.

7https://huggingface.co/stabilityai/sd-vae-ft-mse
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Query Image Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Query Image Neighbor 1
Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Figure 8: Idefics high kNN overlap ratio example, where we can observe the reordering among semantically similar
vision embeddings.

Query Image Neighbor 1 Neighbor 2 Neighbor 3

Neighbor 4

Neighbor 5

Query Image
Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Figure 9: Qwen kNN example where the post-projection embeddings are better at retrieving semantically similar
images (bottom).

Query Image
Neighbor 1 Neighbor 2

Neighbor 3
Neighbor 4 Neighbor 5

Query Image
Neighbor 1

Neighbor 2 Neighbor 3
Neighbor 4

Neighbor 5

Figure 10: LLaVA low kNN overlap ratio example. We can observe the degradation in post-projection embedding.
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Before Projection

After Projection

(a) Top five retrieved images of LLaVA image embeddings

Before Projection

After Projection

(b) Top five retrieved images of Idefics2 image embeddings

Before Projection

After Projection

(c) Top five retrieved images of Qwen2.5-VL image embeddings

Figure 11: Comparison of top five retrieved images of pre-projection (top) and post-projection (bottom) embeddings
using different models on CUB test sample. Zero-shot retrieval based on fine-grained visual details is hard for all
tested models.
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Reference Captions

• People in navy uniforms and one person talking 

on a walkie- talkie. 

• Group of sailors in command center with one 

talking on walkie talkie. 

Generated Caption

• A group of men in uniforms are sitting at a table.

Reference Captions

• A book about understanding and maintaining a 

ten-speed bicycle. 

• A sign explaining the components of a 10 

speed bike. 

Generated Caption

• A man and a woman are working on a bicycle.

Reference Captions

• Various angle shots of the Nokia Windows cell phone. 

• A pink smartphone with Windows 8 on the screen.

Generated Caption

• A pink cell phone is displayed next to a red screen. 

Reference Captions

• The Halloween display includes a spiderweb and lots 

of pumpkins. 

• Multiple pumpkins and a skeleton on the wall.

Generated Caption

• A spooky Halloween display features a witch figure and 

a bunch of pumpkins.

Figure 12: Visualization of low CIDEr score captioning samples and the reconstruction loss overlay with the input
image. We can observe that details regarding the high loss patches are missing from the generated captions. High
loss patches are marked in yellow squares.

22692



  

   
    (b) Reconstruction with 

Pre-projection Embeddings
(a) Original (c) Reconstruction with 

Post-projection Embeddings

Figure 13: Image reconstruction with LLaVA pre-and post-projection embeddings on out-of-distribution (top) and
in-distribution (bottom) examples.
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