Can Out-of-Distribution Evaluations Uncover Reliance on Shortcuts?
A Case Study in Question Answering
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Abstract

A majority of recent work in Al assesses mod-
els’ generalization capabilities through the lens
of performance on out-of-distribution (OOD)
datasets. Despite their practicality, such eval-
uations build upon a strong assumption: that
OOD evaluations can capture and reflect upon
possible failures in a real-world deployment.

In this work, we challenge this assumption and
confront the results obtained from OOD evalu-
ations with a set of specific failure modes doc-
umented in existing question-answering (QA)
models, referred to as a reliance on spurious
features or prediction shortcuts.

We find that different datasets used for OOD
evaluations in QA provide an estimate of
models’ robustness to shortcuts that have a
vastly different quality, some largely under-
performing even a simple, in-distribution eval-
uation. We partially attribute this to the obser-
vation that spurious shortcuts are shared across
ID+OO0OD datasets, but also find cases where a
dataset’s quality for training and evaluation is
largely disconnected. Our work underlines lim-
itations of commonly-used OOD-based evalua-
tions of generalization, and provides methodol-
ogy and recommendations for evaluating gener-
alization within and beyond QA more robustly.

1 Introduction

Improving the generalization of language models
(LMs), i.e., their capability to perform well be-
yond patterns covered by their limited training data
(Chollet, 2019; Guo et al., 2023), presents one of
the most important challenges in modern NLP, with
direct implications to their practical applicability
in a wide variety of tasks. The most common ap-
proach towards evaluating LMs’ ability to gener-
alize is to assess their performance on so-called
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Figure 1: How to pick the most robust model? Rank-
ing of popular QA models by two facets of generaliza-
tion: Out-of-Distribution evaluations (left) and Reliance
on prediction shortcuts/spurious features (right); models
are ordered by the average ranking across all spurious
features (last column).

out-of-distribution (OOD) datasets: datasets of the
same task(s) but of different origins — an approach
made practical by the large variety of pre-existing
datasets for an extensive array of NLP tasks. We
expect a model that generalizes well to achieve
high scores on OOD data. However, as we hold
limited knowledge of the properties of datasets, it
is difficult to ensure that OOD datasets can compre-
hensively capture real-world failures to generalize
observed in LMs’ practical applications.

On the other hand, a growing body of work has
been documenting and classifying the systematic
generalization failures of LMs as due to predic-
tion bias (Utama et al., 2020), prediction shortcuts
(Mikula et al., 2024), or a reliance on spurious
features (Zhou et al., 2021). These failures are
characterized by a model’s over-reliance on a fea-
ture that can explain the training data well but is
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not representative of the task overall.

In this case study, we confront these two orthog-
onal views on generalization — OOD performance
and non-reliance on shortcuts — by using them to
establish two sets of independent rankings for a se-
lection of the most popular QA models. We focus
on extractive QA where previous work provides
the most extensive documentation of prediction
shortcuts, allowing for a robust assessment.

We find that many OOD datasets can accurately
portray models’ robustness to shortcuts, but an un-
informed selection of OOD datasets can also de-
liver a ranking that is not at all correlated with a
reliance on shortcuts, underperforming even tradi-
tional in-domain evaluations. Finally, by assessing
reliance on shortcuts for models trained on datasets
used as OOD, we show that different QA datasets
exhibit the same types of shortcuts. Nevertheless,
we find that a dataset’s usefulness in uncovering
shortcuts does not entail that it can be used to train
more robust models.

2 Background

Evaluating generalization in QA Evaluations
on out-of-distribution (OOD) datasets (Wang et al.,
2022) are decisively the most popular method for
evaluating generalization of language models —
to the point that performance on OOD is often
even referred interchangeably with the term of
generalization (Yang et al., 2023a). Within QA,
among many others, Awadalla et al. (2022) train
models on SQuUAD (Rajpurkar et al., 2016) as in-
distribution (ID) and evaluate generalization on
TriviaQA (Joshi et al., 2017), NewsQA (Trischler
et al., 2017), SearchQA (Dunn et al., 2017) or
NaturalQuestions (Kwiatkowski et al., 2019) as
OOD. Clark et al. (2019) evaluates even shortcut-
eliminating method by training on SQuAD and
evaluating on Adversarial QA (Jia and Liang, 2017)
as OOD. Yogatama et al. (2019) train on SQuAD
as ID and evaluate on TriviaQA as OOD. Despite
its known blindspots, SQuAD still remains the de-
fault training dataset for a majority of the most
popular QA models on HuggingFace. With a pri-
mary objective of improving generalizations, these
works assume that OOD evaluations can also un-
cover reliance on non-representative, spurious fea-
tures.! In this work, we question this assumption
and find cases where OOD evaluations are largely

'While we focus on QA, we can easily find such an assump-

tion in other tasks, including NLI (Du et al., 2021; Korakakis
and Vlachos, 2023) or classification (Yang et al., 2023b).

independent from a reliance on non-representative,
spurious features.

Prediction shortcuts A complementary yet less
prevalent approach to assessing models’ generaliza-
tion aims to exploit functional failures identified in
previous models. One approach towards this goal
consists in identifying models’ prediction shortcuts,
i.e. a reliance on spurious features that are not rep-
resentative for the learned task in general. Such
shortcuts were previously identified in NLI (Nie
et al., 2020), in-context learning (Wei et al., 2023)
or question answering (Mikula et al., 2024). While
these shortcuts are difficult to identify, with their
knowledge, we can test the model specifically for
the reliance on each of the shortcuts. This can be
done by constructing synthetic data (Clark et al.,
2019) or subsetting existing data (Mikula et al.,
2024) into subset(s) where we make sure that a
specific shortcut is not applicable.

In NLI, where the impact of specific prediction
shortcuts is widely studied, a common practice is
to evaluate on datasets specifically constructed to
exploit reliance on shortcuts (McCoy et al., 2019).
However, in open-ended tasks including QA or
multitask benchmarks such as MMLU (Hendrycks
et al., 2021), the applicability of shortcuts across
different datasets used for OOD evaluations re-
mains under-studied.

3 Methodology

Our goal is to uncover if, and to what extent can
commonly-performed OOD evaluations capture
models’ failures attributed to models’ reliance on
prediction shortcuts. We approach this by repro-
ducing several OOD evaluations used in previous
work and comparing the results of these evaluations
with models’ measured sensitivity to prediction
shortcuts representing previously reported failures
modes.

Models For our assessments, we aim to pick a
set of existing QA models that are the most widely-
used in practice. Towards this goal and with a mi-
nor preference for diversity, we pick five among the
thirty most-downloaded models on HuggingFace?
with the added criterion that they must have been
trained on SQuAD only, so as to ensure a fair com-
parison. Additionally, to further enhance diversity,

Zhttps://huggingface.co/models?pipeline_tag=
question-answering&sort=downloads; accessed 21/04/25.
The selected models total over 2.4 million monthly downloads.
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Figure 2: Kendall 7 Correlation (a ratio of changed or-
derings) between the rankings provided by two different
facets of generalization: (rows) performance on OOD
datasets; and (columns) reliance on prediction short-
cuts. First row and column contain an average rankings
across all evaluated datasets and shortcuts.

we complement this selection by training a set of
our own models covering the most popular model
families among QA, such that all other training pa-
rameters (e.g, early stopping, batch size, learning
rate) are fixed across different model families.

ID & OOD Datasets Consistent with previous
work (§2) and the most popular QA models, we use
SQuAD (Rajpurkar et al., 2016) as our ID dataset
unless otherwise noted. To evaluate robustness, we
pick five different OOD datasets, al/l used in prior
studies. We then use the performances on each of
these datasets, as well as their average, to establish
a first set of rankings for our models.

Prediction shortcuts We create a second set of
model rankings by evaluating their reliance on five
shortcuts identified in previous work on QA and
attested across all models in our study (detailed in
§A): shared words (Shinoda et al., 2021), question-
words distance (Jia and Liang, 2017), keywords
match (Clark et al., 2019), answer length (Bartolo
et al., 2020) and entity match (Mikula et al., 2024).
To quantify the reliance of a given model on each
of these shortcuts, we follow the methodology of
Mikula et al. (2024). In practice, we (1) split the
in-distribution validation dataset into two segments
based on whether the example (i) can or (ii) can not
be solved by the shortcut; (2) compute the accuracy
on both segments; and (3) calculate the relative

drop in accuracy between the segments.’

Metrics We assess the agreement between the
OOD evaluations and models’ reliance on short-
cuts by visualizing the ranking obtained by each of
these features, and their mutual correlation. All our
reported results employ the exact-match metric.*

4 Results

Figure 1 displays model rankings as derived from
the two approaches for evaluating generalization:
(left) OOD evaluations relied upon in previous
work (§2) and (right) reliance on a set of prediction
shortcuts, i.e. a relative drop in models’ accuracy
when shortcuts are not applicable. The last column
in each group presents an average within the group.
Models marked as (ours) are newly-trained and
mutually comparable while other models present
the most popular QA models from HuggingFace.

Lower-position rankings are relatively consistent
across both OOD and shortcuts. However, discrep-
ancies become more pervasive at the fop positions,
instructive for picking the most robust model. Here,
a majority (3/5) of OOD evaluations do not agree
on the selection of the most robust model with
the average ranking by shortcuts. Consequentially,
picking the ‘most robust’ model based on some
OOD datasets (NewsQA and NaturalQuestions)
may yield the model with a 23% larger average
dependence on shortcuts. Noticeably, OOD eval-
uations on these datasets rank the highest those
models that rely on shortcuts more than those con-
sidered the best by a standard ID evaluation.

In Figure 2, we compare the different rankings
via Kendall 7 pairwise correlations, a metric pro-
portional to the number of pairwise swaps needed
to transform one ranking into another. Results
reveal that there are two vastly different OOD
datasets: NaturalQuestions and SearchQA. Rank-
ings according to these datasets have minimal cor-
relation (7 < 0.4) with each of the shortcuts, but,
as we find, also other with datasets. Both datasets
correlate with the averaged reliance on shortcuts
substantially worse than the traditional ID evalua-
tions. On the other hand, some OOD evaluations
correlate with average shortcuts’ ranking much bet-
ter than ID or even averaged OOD performance —

3We ensure the statistical significance of our shortcuts
through bootstrapped confidence intervals.

*We confirmed on a subset of our evaluations that com-
pared to using F-score, the exact-match metric does not have
any effect on the resulting ranking in a majority of evaluations.
See §B.1 for absolute values for OOD evaluation and shortcut.
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Train(}) [ 1528 2.79 3.09 3.17 [ 16.21 3.22

Table 1: Quality of datasets for (top) evaluation, i.e.
dataset’s ability to uncover shortcuts in evaluation (re-
ported in Fig. 2; 1 higher is better), and (bottom) for
training, i.e. a reliance on shortcuts for models trained
on the given dataset (| smaller is better).

which suggests that ranking among a large set of
OOD evaluations, assumed as more robust in some
of previous works (Awadalla et al., 2022) need not
provide a better assessment of robustness than an
informed selection of a single OOD dataset.

4.1 Analyses

The large discrepancy among different evaluation
datasets in their ability to uncover shortcuts raises
the question of whether different datasets can in-
deed exhibit the same prediction shortcuts. If so,
models’ reliance on shortcuts would not only re-
main hidden from OOD evaluations but could even
improve their OOD results. To answer this, we
train new QA models on each of our OOD datasets
and assess their reliance on each of our shortcuts.
Except for the training data, our methodology re-
mains identical to the training of ID models (§3).
We limit our analyses to the model least reliant on
shortcuts, viz. ROBERTa-Large.

In Table 1, we report two metrics for each of our
datasets: (top row) the correlation with reliance on
shortcuts when evaluating with the dataset (iden-
tical to Fig. 2), and (bottom row) the average re-
liance on shortcuts (a relative drop in accuracy)
when training on this dataset. The datasets (x-axis)
are ordered based on their correlation with ranking
based on the reliance on shortcuts (Fig. 2).

Can different OOD datasets exhibit the same
prediction shortcuts? Table 1 shows that except
for Adversarial QA and NewsQA, models trained
on OOD datasets rely on shortcuts of SQuAD sim-
ilarly or even more than a SQuAD-trained model.
In the case of TriviaQA and SearchQA, the drop in
accuracy caused by the unavailability of shortcuts
is around five times larger than that of the SQuAD
model. However, detailed results (Appx. B.1) re-
veal that even the less-reliant Adversarial QA and
NewsQA-trained models exhibit a significant re-
liance on shortcuts in the case of three and four

out of seven inspected shortcuts. Together, these
evaluations provide evidence that datasets used for
OOD evaluations in previous work exhibit the same
types of prediction shortcuts as the training data.

Are bad training datasets also bad evaluation
datasets? We showed that different datasets can
provide vastly different quality in both training ro-
bust models and uncovering reliance on shortcuts.
Consequentially, we may assume that there is a pro-
portional relationship between the dataset’s ability
to train a robust model and to uncover the reliance
on shortcuts. However, relating these two facets in
Table 1 (Train vs Eval row), we can see no clear
relation between the dataset’s quality for training
and evaluation; For instance, while TriviaQA is the
best proxy for evaluating models’ reliance on short-
cuts, using it as a training dataset delivers a model
almost five times more reliant on shortcuts than
less reliable SQUAD or NaturalQuestions (NQ’s).
These results point to the presence of other co-
variates that determine datasets’ quality indepen-
dently for training and evaluation. We investigate
several potential features, including dataset size,
context size, and sample format. While we do not
identify a robust discriminant in training, in evalu-
ation, we find that the least robust evaluations are
delivered by datasets with more specific formats
containing delimiters of different context sections
(SearchQA) or in-context references (NQ’s). We
hypothesize that while the context format may not
necessarily harm the robustness in training, it may
strongly bias the evaluation towards dominantly as-
sessing robustness to the dataset-specific artifacts.

5 Conclusions

This paper investigates a discrepancy between
OOD evaluations used in previous work in QA
as a proxy for generalization, and previously docu-
mented failures to generalize identified as uncover
reliances on prediction shortcuts. By ranking a
set of popular QA models according to these two
facets, we find that datasets previously used for
OQD evaluations vastly differ in their capacity to
uncover shortcuts.

We find that prediction shortcuts are to a large
extent shared across datasets used for both training
and evaluations of generalization. However, the
quality of datasets in uncovering shortcuts is not
proportional to their capacity to train more robust
models, possibly due to dataset-specific features
with a different impact on training and evaluation.
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We hope our results will inspire future work to-
wards a more systematic selection of OOD datasets
and provide concrete recommendations for OOD
datasets selection in QA. Crucially, our findings
may also motivate future work in generalization
within and beyond QA to restrain from over-
generalized conclusions based on demonstratedly
limited OOD benchmarks.
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Limitations

We identify a primarily limitation of our work in a
limited scope of prediction shortcuts that we sur-
vey. This limitation is conditioned by the scope
of (seven) types of shortcuts identified in previous
work, among which we identify only five to be sig-
nificant for most of our evaluated models. This
also restrains us from expanding our case study
into other candidate tasks; in NLI, we identify only
three known prediction shortcuts (McCoy et al.,
2019), while in in-context learning, we identified
in previous work only a single prediction shortcut
to assess (reliance on label’s semantics uncovered
in Wei et al. (2023)).

We further acknowledge that the database of
known prediction shortcuts presents only a small
subset of functional failures, where the failures of
other categories would certainly be also desirable
to capture in generalization evaluations. This limi-
tation invites future work to assess models for other
notorious functional deficiencies as our knowledge
of models’ functioning will grow, in a methodology
similar to ours.
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A Definitions of shortcuts
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Figure 3: Exact-match results of (i) OOD evaluations and (ii) reliance on prediction shortcuts denoting a minimal
relative drop in accuracy (in percentage) when facing data where the prediction shortcut is not applicable. See the
Prediction bias algorithm in Mikula et al. (2024) for further details. These evaluations were used to compute the

ranking and correlations in Figs. 1 and 2.

* Keywords match (Clark et al., 2019): Mod-
els’ reliance on the matching keywords, i.e.
low-frequency words between the question
and answer.

¢ Answer length (Bartolo et al., 2020): Models’
false reliance on a specific word-level length
of the answer.

¢ Entity match (Mikula et al., 2024): Models’
reliance on that the answer must contain a first
entity matching the type of the question, such
as “Who”, “Where”, etc.

B Experimental Details

Our experiments train a set of QA models, sepa-
rately on each of our training and evaluation dataset.
Towards the goal training models representative for
real-world deployment, we perform hyperparam-
eter search within each model family for optimal
values of learning rate (including values 1le-6, 2e-6,
le-5, 2e-5, 4e-5, 5e-5, 2e-4) and batch size (includ-
ing values 8, 16, 32, 64). We used early stopping
based on evaluation loss based on (in-distribution)
validation set of SQuAD, patience=5, evaluations
every 2000 updates and a maximum of 5 epochs.
In this configuration, we were able to train each
of our 11 trained models under 24 hours on a sin-
gle Nvidia A40 GPU. Our training scripts are us-
ing HuggingFace Transformers library (Wolf et al.,
2020). Training script can also be found among
supplementary materials of this submission.

All our evaluations, including ID and OOD eval-
uations, employ exact-match metric and on the
case of our own-trained models, we verify that
the choice of our primary evaluation metric has no
effect on the ranking of models in a majority of
OOD evaluations, while causing at most two swaps
in ranking in other cases.

Evaluations of Reliance on shortcuts follow the
methodology of Mikula et al. (2024); here, we em-
ploy the isbiased library from the Authors’ refer-
enced GitHub repository’. Following the original
methodology, we assess reliance on shortcuts con-
sistently using the SQuAD 1.1°s standard validation
set of the full size. We include also our evaluation
script among the supplementary materials of this
submission.

B.1 Detailed Results

Figure 3 shows the detailed results with the ab-
solute values of out-of-distribution evaluations as
well as the relative dependencies on a reliance on
surveyed spurious features for all our evaluated
models. The OOD values are listed in exact-match
metric, while the dependencies on spurious features
are listed as a percentage of models’ performance
that depends on applicability of prediction short-
cuts. Consistently with other figures, the models
are ordered based on their absolute average depen-

dency on shortcuts (last column).

Shttps://github.com/MIR-MU/isbiased
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ahotrod/ELECTRA-L ahotrod/electra_large_discriminator_squad2_512
deepset/DeBERTa3-L deepset/deberta-v3-large-squad?2
deepset/XLM-R-L deepset/x1m-roberta-large-squad?2
deepset/RoBERTa-B deepset/roberta-base-squad2
deepset/RoBERTa-Dist deepset/x1lm-roberta-base-squad2-distilled

Table 2: Links to models on HuggingFace

SQUAD (Rajpurkar et al., 2016) rajpurkar/squad
AdversarialQA (Jia and Liang, 2017) UCLNLP/adversarial_ga
TriviaQA (Joshi et al., 2017) mandarjoshi/trivia_qa
NewsQA (Trischler et al., 2017) StellarMilk/newsqa
SearchQA (Dunn et al., 2017) lucadiliello/searchga

NaturalQuestions (Kwiatkowski et al., 2019) sentence-transformers/natural-questions

Table 3: Links to datasets on HuggingFace

C Scientific artifacts used in this paper

We rely on publicly available datasets and models,
all of them were made available under broad per-
missive licenses. At time of writing, none of the
models we retrieved from HuggingFace have asso-
ciated publications. To support a reproducibility
of our results, we provide links to both existing
models (Table 2) and datasets used in this work
(Table 3).
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