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Abstract

Recent advancements in 2D multimodal large
language models (MLLMs) have significantly
improved performance in vision-language tasks.
However, extending these capabilities to 3D en-
vironments remains a distinct challenge due
to the complexity of spatial reasoning. Nev-
ertheless, existing 3D benchmarks often lack
fine-grained numerical reasoning task annota-
tions, limiting MLLMs’ ability to perform pre-
cise spatial measurements and complex numer-
ical reasoning. To address this gap, we intro-
duce NUMINA, the first Natural Understanding
benchmark for Multi-dimensional Intelligence
and Numerical reasoning Abilities to enhance
multimodal indoor perceptual understanding.
NUMINA features multi-scale annotations and
various question-answer pairs, generated us-
ing NUMINA-Flow, an automated annotation
pipeline that integrates LLM rewriting and
rule-based self-verification. We evaluate the
performance of various state-of-the-art LLMs
on NUMINA following the Chat-Scene frame-
work, demonstrating that current LLMs strug-
gle with multimodal numerical reasoning, par-
ticularly in performing precise computations
such as distance and volume estimation, high-
lighting the need for further advancements in
3D models. The dataset and source codes
can be obtained from https://github.com/
fengshun124/NUMINA.

1 Introduction

Multimodal perception has gained increasing at-
tention in recent years. Leveraging large language
models (LLMs), 2D multimodal LLMs (MLLMs)
have progressed rapidly, leading to groundbreaking
achievements in image classification (Zeng et al.,
2024, 2025; Bao et al., 2025) and reasoning (Kang
et al., 2025; Yan et al., 2025). To extend the ap-
plications of MLLMs to 3D domains, researchers
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Figure 1: Statistics of the NUMINA benchmark. NUMINA
is composed of non-numerical and numerical questions,
where the latter are further divided into three categories
with increasing difficulty: Fact Validation (FV), Prompt
Matching (PM), and Numerical Inference (NI).

have strived to unlock the potential of MLLMs
in spatial intelligence to enable practical function-
alities, such as autonomous driving (Yang et al.,
2023), indoor navigation (Coffrini et al., 2025),
and route planning (Li et al., 2025). Nevertheless,
understanding accurate spatial information in 3D
environments remains a significant challenge due
to the exponential increase in structural complexity
introduced. For instance, when positioning a cabi-
net in a living room, one must consider not only the
availability of space in the front and back but also
factors such as excessive vertical space occupancy
and efficient space utilization. Consequently, equip-
ping MLLMs with spatial perception capabilities,
including precise measurement and localization, is
critical for improving their real-world applicability.

Achieving precise spatial reasoning necessitates
well-annotated 3D vision-language datasets. How-
ever, existing benchmarks offer only coarse, global
annotations, which limit their applicability for fine-
grained reasoning. Datasets like ScanRefer (Chen
et al., 2020), Talk2Nav (Vasudevan et al., 2021),
and ScanQA (Azuma et al., 2022) advance 3D tasks
by supporting object localization, navigation, and
question answering, but they lack multimodal nu-
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merical reasoning incorporating spatial precision.
Unlike simpler spatial understanding tasks, numer-
ical reasoning involves complex scene interpreta-
tion, requiring detailed annotations of object dis-
tances, sizes, and positions, which current datasets
do not provide. Additionally, these benchmarks pre-
dominantly focus on textual outputs, limiting the
diversity of question formats and response types,
and consequently, their utility in developing mod-
els for sophisticated multimodal reasoning. This
highlights the need for a more comprehensive, nu-
merically enriched 3D vision-language benchmark.

To this end, we present NUMINA, the first Natural
Understanding benchmark for Multi-dimensional
Intelligence and Numerical reasoning Abilities. As
shown in Figure 1, NUMINA stands out by focusing
on fine-grained spatial understanding and numer-
ical reasoning in indoor environments, featuring
74,526 question-answer (QA) pairs across three
response types with increasing difficulty: Fact Val-
idation (judgment questions), Prompt Matching
(multiple-choice questions), and Numerical Infer-
ence (value-output questions). Each category is
evaluated using tailored metrics and can be further
subdivided. These tasks, spanning from simple ver-
ification to complex numerical reasoning, ensure
that progress on NUMINA reflects genuine advances
in 3D multimodal reasoning rather than overfitting
to a single question format.

Compared with existing benchmarks, as shown
in Table 1, NUMINA is the first dataset that diversely
focuses on large-scale, object-level natural under-
standing of multi-dimensional relationships and
numerical reasoning across multiple categories, of-
fering the following key features. (1) Comprehen-
sive Numerical Annotations. Building upon Scan-
Net (Dai et al., 2017), NUMINA introduces multi-
dimensional labels, including object center coordi-
nate, bounding box dimensions, and convex hull
distances between objects, to enable value-based
inference and facilitate the development of diverse
numerical reasoning question types. (2) Type-Rich
Data. NUMINA enhances global spatial understand-
ing by incorporating LLM rewriting on ScanQA
(Azuma et al., 2022), alongside numerical reason-
ing tasks. The dataset features a diverse task for-
mats, including judgment, multiple-choice, and
value-output questions, with difficulty levels rang-
ing from basic to advanced. (3) Automatic Anno-
tation Pipeline. To streamline data generation, we
introduce NUMINA-Flow, an automated dataset con-
struction pipeline. NUMINA-Flow employs LLMs

Name #Pairs
Question Types

Non-Num. Num. Sub-Cat.

ScanRefer 41,846 ! % %

Scan2Cap 34,345 ! % %

ScanQA 30,813 ! % %

FE-3DGQA 20,215 ! % %

SQA3D 29,884 ! % %

Multi3DRefer 48,810 ! % %

CLEVER3D 171,174 ! % %

NUMINA 74,526 ! ! !

Table 1: Comparison between NUMINA and existing 3D
vision-language benchmarks. (Num.: Numerical Ques-
tions; Cat.: Categories)

to generate high-quality data samples with numer-
ical ground truth. It also incorporates diverse QA
templates, adopts the convex hull distance measure-
ment that aligns with human intuition, and ensures
a balanced data distribution to prevent models from
exploiting shortcuts or biases.

To rigorously assess the utility of NUMINA and
establish a baseline, we utilize several mainstream
open-source LLMs, such as Vicuna (Chiang et al.,
2023) and Qwen (Yang et al., 2024), to serve as de-
coders within the Chat-Scene (Huang et al., 2024)
framework, enabling the simultaneous processing
of 3D point clouds, 2D images, and textual inputs.
Experimental results reveal substantial challenges
of existing LLMs in 3D numerical inference and
spatial reasoning, with accuracy falling below 3%
under a 5% error Threshold Accuracy (TA@5) in
distance and volume estimation tasks. While the
models perform well in non-numerical evaluations,
their accuracy declines considerably in distance-
related tasks, achieving only about 54%, close to
random selection. Notably, no single model consis-
tently outperforms across all task categories, high-
lighting diverse strengths depending on the specific
evaluation criteria.

2 Related Work

3D Vision-Language Understanding. Existing
3D vision-language benchmarks play a pivotal role
in advancing research on vision and natural lan-
guage understanding in 3D environments. ScanRe-
fer (Chen et al., 2020) is a pioneering effort, inte-
grating detailed textual descriptions with complex
indoor scenes to facilitate 3D object localization
based on natural language queries. Building on
this foundation, ScanQA (Azuma et al., 2022) ex-
pands the scope by introducing diverse QA pairs to
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Instance Information
ID: “0”,
Label: “window”,
Center: [4.421, 8.2634, 1.900],
Size: [1.657, 0.636, 0.572] ...

Object ID Pairwise Distance
“0-1”: 0.021,
“0-2”: 0.541,
“0-3”: 2.486 …

Fact Validation

Prompt Matching

Numerical Inference +

Question: “Could you identify the size of 
ceiling and express it as a numerical value in 
square meters?”
Answer: “0.019”

Question: “Does the distance between cardboard 
and the smallest desk measure equal to 2.571 
meters? Positive or Negative?”
Answer: “Negative”

Question: “What color is the table with drawers 
on the left side? A) Brown B) White C) Black”
Answer: “A”

Numerical Ground Truth 
Generation

Task-based Template 
Generation

Rule & Human
Inspect

GT-based QA-Pair 
Generation

Template
(1) “Would you say the gap between {OBJ1} 

and the {TYPE} {OBJ2} is less than {X} 
meters? Yes or No?”

(2) “What is the color of the {OBJ1}? A) 
Green B) Red C) Blue”

(3) “What is the numerical distance 
separating {OBJ1} and the {TYPE} {OBJ2}?”

ScanNet

Non-Numerical 
Questions

ScanQA
LLM Question Rewriting

Figure 2: Overview of the NUMINA-Flow pipeline. Numerical Ground Truth (NGT) is extracted from ScanNet,
including instance details and pairwise distances. GPT-4o generates diverse question templates filled with NGT,
followed by rule-based and manual validation. Non-numerical questions are rewritten using Qwen2.5-72B with the
ScanQA dataset for added diversity.

support various vision-language tasks, such as 3D
visual grounding and 3D visual question answer-
ing (VQA). ReferIt3D (Achlioptas et al., 2020) fo-
cuses on fine-grained 3D object localization using
natural language references, encompassing both
real-world (Natural ReferIt3D, Nr3D) and syn-
thetic (Synthetic ReferIt3D, Sr3D) contexts. Mean-
while, Talk2Nav (Vasudevan et al., 2021) intro-
duces dialog-based interactions with agents, en-
abling the clarification of ambiguous or incomplete
instructions through natural language queries, par-
ticularly for long-range navigation tasks. However,
none of these benchmarks offer multi-level numeri-
cal annotations, which poses challenges for training
models capable of achieving precise 3D perception.
As a result, such models face limitations in applica-
tions requiring accurate measurement and localiza-
tion, such as interior design and spatial planning.

Indoor Environment Perception. Indoor envi-
ronment perception is an essential research field
with broad applications in robotics and augmented
reality (AR). Researchers have proposed various
approaches leveraging diverse sensing modalities
and computational methods to advance scene un-
derstanding and mapping. Vision-based techniques
(Ran et al., 2021; Ruotsalainen et al., 2021), which
rely on RGB or RGB-D cameras, often employ
deep neural networks (DNNs) such as R-CNN (He
et al., 2017) and U-Net (Ronneberger et al., 2015;
Cao et al., 2022) for tasks like object detection and
semantic segmentation, enabling the identification
of structural components within indoor spaces (Gan
et al., 2025). However, the limitations of these sys-

tems, such as visual illusions and occlusions caused
by the absence of depth information, have led to the
adoption of LiDAR and depth cameras. These sen-
sors provide rich 3D spatial information, enabling
methods like Cartographer (Dwijotomo et al., 2020)
and KinectFusion (Izadi et al., 2011) to construct
accurate geometrical representations of indoor en-
vironments. Despite notable advancements, several
challenges remain. For instance, current MLLMs
often lack the precise numerical reasoning capabil-
ities required to locate objects accurately within a
room. Additionally, there is a significant shortage
of indoor multimodal datasets with comprehensive,
multi-level numerical annotations, hindering the
development of robust perception models.

3 NUMINA and NUMINA-Flow

This section describes in detail the automatic con-
struction pipeline NUMINA-Flow for the NUMINA
dataset. As illustrated in Figure 2, NUMINA-Flow
generates numerical data by extracting Numerical
Ground Truth (NGT) from ScanNet (Dai et al.,
2017). It leverages GPT-4o (Hurst et al., 2024)
to create question-answer templates, followed by
rule-based and manual verification. The generated
templates are validated by human evaluators to en-
sure clarity and ambiguity, making them compre-
hensible to both humans and models. Additionally,
variations in expression and syntactic structure are
incorporated to promote generalization across dif-
ferent reasoning patterns. To enhance question
diversity, non-numerical questions are further gen-
erated using Qwen2.5-72B (Yang et al., 2024).
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D.

Where is the pillow on the bed? A) under the 

blanket B) beside the lamp C) inside the mattress 

D) on top of bed E) behind the headboard

Prompt Matching

What color is the door in the right corner? A) 

blue B) white C) red D) green E) black

B.

2.05.

Please calculate the distance between the closet 

rod and door in the room in meters. Provide a 

number as the answer.

Numerical Inference

Please count the number of clothes in the room. 

Kindly provide a number as the answer.

2.

Yes.

Can you tell if the count of box is less than the 

count of curtain? Provide "yes" or "no“.

Fact Validation

Is table and closet doorframe approximately as 

far as nightstand and books? Provide a "yes" or 

"no" as the answer.

Is the volume of the bounding box of pillow 

greater than the volume of the bounding box of 

chair? Provide a "yes" or "no" as the answer.

The reddish brown leather armchair is positioned 

right of the white door. True or False?

False.

Yes.

Yes.

Figure 3: Example of various scene understanding and numerical reasoning tasks in NUMINA dataset. All tasks are
formulated as single-turn question-answering pairs without the use of additional task-specific heads, ensuring a
unified and consistent evaluation framework.

3.1 Dataset Construction
To bootstrap the dataset construction process, we
select the indoor 3D scenes from the existing Scan-
Net (Dai et al., 2017) dataset. Building on these
complex indoor environments, NUMINA expands
the scope of questions beyond text-only answers.
Three distinct tasks, designed with varying levels
of difficulty, are defined as follows. Examples of
these tasks are shown in Figure 3.

• Fact Validation (FV): Binary classification
questions requiring “yes” or “no” responses
to evaluate factual accuracy.

• Prompt Matching (PM): Multiple-choice
questions requiring the selection of the correct
answer from five options, demanding stronger
spatial comprehension.

• Numerical Inference (NI): The most chal-
lenging task requiring precise numerical out-
puts for quantities, volumes, or distances.

To enhance diversity beyond numerical reason-
ing, 14,000 QA pairs from ScanQA (Azuma et al.,
2022) covering color, shape, and spatial relation-
ships are integrated after rewriting with Qwen2.5-
72B (Yang et al., 2024), with diverse templates
in Appendix A. This yields the dataset of 74,526
total QA pairs, containing 46,194 numerical QA
pairs (62.0%) across quantity, distance, and volume
subcategories, plus 28,332 non-numerical pairs
(38.0%) from ScanQA, as shown in Figure 1.

3.2 Numerical Ground Truth Extraction

Based on the original annotations, we calculate cru-
cial geometric parameters for each instance in the
scene, including centroid coordinates, bounding
box dimensions, and the minimum and maximum
values along the (x, y, z) axes. Furthermore, we
calculate the convex hull distance (Bentley et al.,
1982) for every pair of instances. This metric, de-
fined as the shortest distance between the outer
boundaries of two point sets determined by their
convex hulls, provides a precise representation of
relative positional relationships, especially for com-
plex shapes, as it accounts for both the center points
and the overall geometry. We adopt this distance
due to its strong alignment with human visual per-
ception (Bentley et al., 1982). To represent the
volume of irregular point cloud objects, we utilize
the smallest axis-aligned bounding box, a rectangu-
lar box aligned with the coordinate axes that fully
encloses the object. The calculated pairwise con-
vex hull distances and bounding box dimensions
are systematically organized and form the basis for
generating QA pairs in subsequent stages.

3.3 QA-Pair Generation

Our QA-pair generation process follows a system-
atic three-stage pipeline designed to ensure linguis-
tic diversity, factual accuracy, and balanced diffi-
culty distribution.
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Step 1: Template Generation and Selection. To
enhance linguistic diversity and question complex-
ity, we employ GPT-4o (Hurst et al., 2024) to gener-
ate ten distinct question templates for each task cat-
egory. These templates incorporate varied syntactic
structures and expressions to promote generaliza-
tion across different reasoning patterns. During
question generation, templates are randomly sam-
pled to ensure diversity, with reserved placeholders
systematically replaced by NGT values and object
references from the target scene.

Step 2: Task-specific Formatting. Each task
type requires specific formatting to ensure clear
evaluation criteria. For Fact Validation (FV) tasks,
we append explicit prompts such as “Is the state-
ment Yes or No?” to ensure binary output. Prompt
Matching (PM) tasks include constraint-oriented in-
structions guiding models to select from five given
options (from A to E). Numerical Inference (NI)
tasks explicitly request precise numerical values
with appropriate units.

Step 3: Bias Mitigation and Balance. To pre-
vent systematic biases, we implement several bal-
ancing strategies: (1) For PM tasks, correct answers
are uniformly distributed across all five options (A-
E) to prevent positional bias; (2) For FV tasks, “yes”
and “no” answers are equally represented; (3) Tem-
plate selection follows uniform random sampling to
ensure no linguistic patterns dominate the dataset.

Furthermore, to expand dataset diversity beyond
purely numerical reasoning, we integrate 14,000
non-numerical QA pairs from ScanQA (Azuma
et al., 2022) covering color, shape, and spatial re-
lationships. These questions undergo systematic
rewriting using Qwen2.5-72B (Yang et al., 2024) to
conform to our FV and PM task formats, ensuring
consistency with our evaluation framework while
preserving their original semantic content.

The complete pipeline produces 74,526 QA pairs
with progressive difficulty levels across all cate-
gories. Detailed templates and examples for each
task type are provided in Appendix A.

3.4 Rule-based and Human Inspection

To ensure NUMINA’s accuracy and consistency, out-
puts from the automatic NUMINA-Flow pipeline un-
dergo a two-stage validation. First, a rule-based
framework detects issues in Qwen2.5-generated
questions, such as hallucinations or incorrect op-
tion counts, and regenerates faulty items up to five

times. Questions must meet all inspection crite-
ria before passing this stage. Second, five human
evaluators conduct a detailed review of 20,000 ran-
domly selected samples, checking for grammar,
logic, expression, and unit consistency, achieving
a correctness rate of 99.5%, validating the quality
and reliability of the NUMINA dataset.

All aforementioned annotation processes, ex-
cept human inspection, are consolidated and in-
tegrated into the single NUMINA-Flow annotation
pipeline. This pipeline enables practitioners to
replicate and further improve our annotation pro-
cedure or modify specific portions of the code to
create customized datasets tailored to their needs.
The detailed process of the QA-pair generation is
presented in Appendix B.

4 Experiments

4.1 Model Architecture

To assess data quality and task difficulty, we con-
duct our 3D-language VQA experiments following
the Chat-Scene (Huang et al., 2024) paradigm. As
illustrated in Figure 4, a pre-trained detector seg-
ments the point cloud into individual objects, which
are then projected onto multi-view images using
corresponding masks. Object-centric features are
extracted using tailored 3D Mask3D (Schult et al.,
2023) and 2D DINO-V2 (Oquab et al., 2023) en-
coders, processed through projection layers, and in-
tegrated with unique object identifiers (IDs) to form
a sequence of object-level embeddings. Finally,
given the object-level embeddings and question
prompts, the LLM generates a concise response
either True or False, a multiple-choice option, or a
numerical value based on the task type.

4.2 Evaluation Metrics

Since the outputs in all three tasks of NUMINA are
straightforward and unambiguous, we define dis-
tinct metrics for each task separately. For the Fact
Validation (FV) and Prompt Matching (PM) tasks,
we use accuracy as the evaluation metric, where
a response is considered correct only if the pre-
diction exactly matches the ground truth. For the
Numerical Inference (NI) task, accurately measur-
ing the distance between two objects or the size
of a specific item presents a significant challenge
for the model. Therefore, we employ Threshold
Accuracy (TA) as the assessment metric, which
measures the model’s performance within specific
pre-defined thresholds. Formally, the TA metric
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Figure 4: Overall Chat-Scene framework. The framework processes 3D scenes through a multi-stage pipeline:
(1) scene decomposition into object segments, (2) mapping of segments to multi-view images via corresponding
masks, (3) extraction of object-centric representations using dedicated 3D and 2D encoders, and (4) combination of
these representations with object identifiers to generate scene embeddings as sequences of object-level embeddings.
These embeddings serve as input to the language model component. For evaluation on the NUMINA benchmark,
we substitute the original large language model with open-source alternatives including Vicuna, Mistral, Qwen, and
Phi to assess their numerical reasoning capabilities.

can be expressed as follows:

TA =
1

N

N∑

i=1

1
(
|dpred

i − dtrue
i | < Threshold

)
,

(1)
where d

pred
i represents the model’s prediction, and

dtrue
i denotes the ground truth. The indicator func-

tion 1 evaluates to 1 if the specified condition is
satisfied and 0 otherwise. Threshold is a predefined
value that limits the allowable error between the
prediction and the ground truth. In our case, we set
the threshold values as 5%, 10%, 20% correspond-
ing to TA@5, TA@10, TA@20, respectively.

4.3 Experimental Setup

We adhere to the original ScanNet (Dai et al., 2017)
split, using the training set for training and the vali-
dation set for evaluation, as the test set annotations
are not publicly available. This protocol is con-
sistent with prior works such as ScanQA (Azuma
et al., 2022). All tasks are formulated within a
user–assistant interaction framework. Joint train-
ing is performed using the Cross-Entropy loss func-
tion and the AdamW optimizer, enabling parameter
updates across unfrozen components of the model,
including the tokenizer, projector, and LLMs.

We adopt six open-source LLMs in our exper-
iments: Vicuna 7B v1.5, Vicuna 13B v1.5 (Chi-
ang et al., 2023), Qwen2.5-7B (Yang et al., 2024),
Phi 4-mini (Abouelenin et al., 2025), Mistral-7B

(Instruct-v0.3, Jiang et al., 2023) and DeepSeek-
R1-Dstill-Qwen-7B (Guo et al., 2025). To fine-tune
these models, we apply LoRA (Hu et al., 2021)
with a rank of 16. The learning rate is set to 2e-6,
following a cosine annealing schedule. The train-
ing process spans three epochs and is completed
using 4 NVIDIA A100 Tensor Core GPUs.

4.4 Experiment Results

Table 2 presents the performance of the six LLMs
across various NUMINA subtasks. In Prompt Match-
ing (PM), all models achieve high accuracy on non-
numerical tasks, ranging from 82.19% to 85.70%.
Similarly, in Fact Validation (FV), models perform
well on non-numerical assessments but exhibit a
significant drop in accuracy for distance-related
tasks, with scores around 54%, indicating chal-
lenges in understanding convex hull distances. Nu-
merical Inference (NI) proves to be the most dif-
ficult category, particularly in distance and vol-
ume estimation, where accuracy remains below
3%. Among the models, Vicuna 13B v1.5 achieves
the highest average score in numerical inference,
though it only slightly outperforms Vicuna 7B v1.5
by 1.26%. These results highlight the limitations of
current LLMs in fine-grained 3D spatial reasoning,
particularly in tasks requiring precise numerical
analysis. For Qwen, Phi, Mistral, and the latest
DeepSeek-R1 distilled models, their performance
has been unsatisfactory. Overall, no single model
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LLM
Prompt Matching Fact Validation Numerical Inference

Non-Num Non-Num Quantity Distance Volume Quantity Distance Volume

Vicuna 7B v1.5 83.35 77.31 71.69 53.89 83.44 8.01 1.73 2.40

Vicuna 13B v1.5 85.12 76.17 71.30 54.35 83.66 10.15 2.71 3.06

Phi 4-mini 84.79 75.24 65.23 51.62 80.36 10.36 1.21 3.17

Mistral 7B 84.75 75.88 71.97 55.31 83.14 8.49 2.54 3.22

Qwen2.5-7B 85.70 75.34 69.76 54.29 82.95 10.63 1.21 1.80

DeepSeek-R1-Distill-Qwen-7B 82.19 73.11 69.59 52.70 81.81 9.99 2.02 2.67

Table 2: Performance comparison of different LLMs on the NUMINA benchmark for different kinds of problems.
PM and FV are evaluated by Accuracy. NI is assessed by the Threshold Accuracy (TA@5), which measures the
proportion of predictions falling within a 5% error margin with respect to the ground truths.

excels in all numerical sub-tasks. These six large
models exhibit varying strengths and weaknesses
depending on the specific tasks and problems to
which they are applied. Figure 3 provides some
illustrative examples of the three tasks for further
clarification.

4.5 Analysis

Current MLLMs exhibit strong performance on
purely linguistic and non-numerical spatial tasks
(Prompt Matching and non-numeric Fact Valida-
tion, both >75% accuracy) but break down when
asked to perform fine-grained numerical reasoning,
especially in 3D settings. Architecturally, Trans-
formers lack inductive biases for geometry: they
treat numbers as discrete tokens without true mag-
nitude awareness and are not designed to encode
spatial relationships such as distances, angles, or
volumes. Moreover, standard pretraining corpora
of LLMs seldom include explicit 3D-spatial super-
vision or grounded numerical examples, leaving
models underexposed to the types of geometric
computations required by NUMINA.

Even in emerging multimodal variants, MLLMs
typically fuse visual inputs only via generic embed-
dings, without dedicated modules for point-cloud
processing or multi-view depth estimation. As a re-
sult, tasks like convex-hull distance estimation and
precise volume calculation, which demand multi-
step geometric reasoning and spatial continuity,
fall outside the models’ learned capabilities. The
anomalously high “volume” accuracy (83%) likely
reflects reliance on commonsense size priors (e.g.,
“monitors are larger than phones”) rather than true
geometric inference.

These findings suggest that improving numer-
ical reasoning in MLLMs requires fundamental
architectural changes beyond simply scaling model
size. The consistent poor performance across all
tested models (including recent architectures like

LLM Type
Fact Validation

Quantity Distance Volume

Vicuna 7B v1.5
Ori 74.47 65.52 63.64

CP 73.56 67.06 66.32

Vicuna 13B v1.5
Ori 73.61 64.69 64.88

CP 74.47 66.23 63.84

Qwen2.5-7B
Ori 72.49 67.18 72.11

CP 74.89 69.08 72.31

Table 3: Logical consistency ablation study. “Ori” refer
to original QA-pair and “CP” indicates the correspond-
ing contrapositive ones.

Phi4 (Abouelenin et al., 2025) and DeepSeek-R1
(Guo et al., 2025) indicates these limitations re-
flect deeper constraints in how current transformer
architectures process spatial and numerical infor-
mation, pointing toward the need for specialized
geometric reasoning modules and grounded train-
ing paradigms that incorporate explicit 3D spatial
supervision.

4.6 Ablation Study
Logical Consistency. The Fact Validation (FV)
task includes two sets of questions with correspond-
ing answers designed to evaluate semantic under-
standing, common sense reasoning, and logical co-
herence. For example, in one QA pair, the original
question asks, “Is it correct that the sofa is bigger
than the cell phone?”, with the expected answer be-
ing “Yes.” In the corresponding contrapositive pair,
the question states, “The sofa is smaller or equal
than the cell phone”, with the correct answer being
“No.” By systematically altering relational state-
ments and their corresponding answers, we test the
model’s ability to maintain logical consistency and
accurately interpret semantic relationships. Details
are in Appendix D.

Table 3 summarizes the logical consistency eval-
uation results of three models in the FV task. The
quantitative analysis reveals that the average per-
formance discrepancy between original and con-
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LLM Fact Validation
Quantity Distance Volume

Vicuna 7B v1.5 63.41 53.76 80.72
+ CoT 66.61 56.93 79.85

Vicuna 13B v1.5 70.14 54.55 83.12
+ CoT 72.20 55.34 79.74

Table 4: Chain-of-Thought study on fact validation.

LLM Numerical Inference (Volume)
TA@5 TA@10 TA@20

Vicuna 7B v1.5 2.62 4.91 8.41
+ CoT 2.95 4.20 11.95

Vicuna 13B v1.5 2.67 4.48 8.57
+ CoT 3.88 5.46 9.39

Table 5: Chain-of-Thought study on volume numerical
inference task. TA@5/10/20 indicates Threshold Accu-
racy at error levels of 5%, 10%, and 20%.

trapositive QA-pairs across these models is 1.71%,
1.15%, and 1.50%, respectively. Notably, Vicuna
13B v1.5 exhibits superior performance stability
compared to other models, which can be reasonably
attributed to its enhanced model capacity with 13
billion parameters. Experimental findings demon-
strate that all evaluated LLMs exhibit robust logical
reasoning capabilities, which consistently produce
accurate judgments, even when the logical structure
of both the questions and corresponding answers is
reversed. This outcome highlights the models’ re-
silience to logical perturbations and their capacity
to generalize reasoning patterns beyond fixed, pre-
defined formats. Furthermore, model scale appears
to provide a stronger baseline for performance.
However, the training methodology and the nature
of the source data, such as differences between
Vicuna and Qwen, play a critical role in enabling
more complex forms of reasoning. These factors
suggest that both architectural scale and training
data composition significantly influence the depth
and flexibility of logical reasoning in LLMs.

Effects of Chain-of-Thought. In many natu-
ral language tasks, the Chain-of-Thought (CoT)
paradigm has been shown to enhance reasoning
by guiding models through step-by-step problem-
solving processes. To investigate its effective-
ness in value reasoning tasks, we adapted FV and
volume-related tasks of the NI problems to the CoT
framework. Specifically, instead of providing short
numerical answers, we incorporate structured in-
termediate reasoning steps leading to the final an-
swers. For instance, in volume-related questions,
the CoT paradigm first extracts the 3D bounding

box data of the specified object. It then computes
the object’s volume by multiplying the bounding
box dimensions, ultimately deriving the final size.
This structured reasoning process aims to improve
the model’s numerical inference ability. A concrete
example can be found in Appendix E.

Tables 4 and 5 present the impact of CoT rea-
soning on Vicuna 1.5 models across FV and NI
tasks. The results reveal mixed effectiveness of
CoT across different model scales and task types.
For the 7B model, CoT demonstrates consistent
improvements in quantity (+3.20%) and distance
(+3.17%) estimation within FV tasks, while show-
ing minimal degradation in volume estimation (-
0.87%). Conversely, the 13B model exhibits more
variable performance: improvements in quantity
(+2.06%) and distance (+0.79%) tasks are accom-
panied by a notable decline in volume estimation
(-3.38%). In the NI task, both models show modest
improvements with CoT. The 7B model achieves
gains across all threshold levels, with the most sub-
stantial improvement at TA@20 (+3.54%). Simi-
larly, the 13B model demonstrates improvements
at TA@5 (+1.21%) and TA@10 (+0.98%), though
with a slight decrease at TA@20 (-1.18%).

The varied effectiveness of CoT can be attributed
to a complex interplay between task requirements
and the reasoning process it induces. CoT demon-
strates significant utility for tasks amenable to log-
ical decomposition, such as quantity and distance
estimation, by enforcing a structured, procedural
pathway. In contrast, its efficacy diminishes for
tasks that rely on holistic, commonsense heuristics,
as exemplified by the performance degradation in
volume fact validation. This negative impact likely
stems from CoT’s explicit reasoning steps interfer-
ing with the models’ more accurate, pre-existing in-
tuitive knowledge, an effect amplified in the larger
13B model, whose robust implicit knowledge is
more susceptible to such disruption.

5 Conclusion

We introduce NUMINA, a Natural Understanding
Benchmark for Multi-dimensional Intelligence and
Numerical Reasoning Abilities, which is designed
to advance multimodal indoor perceptual under-
standing. NUMINA provides a diverse dataset with
multi-scale annotations and a variety of question-
answer pairs spanning multiple task types. This
dataset is generated using NUMINA-Flow, an au-
tomated annotation platform that leverages LLM
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rewriting and rule-based self-verification. Follow-
ing the Chat-Scene paradigm, we replace LLMs
within the architecture and jointly train and evalu-
ate all tasks. Experimental results indicate that cur-
rent LLMs exhibit significant limitations in multi-
modal numerical reasoning, particularly in tasks re-
quiring fine-grained computational precision, such
as quantity, distance, and volume estimation. In
the future, we will develop further advancements
in numerical and spatial reasoning for multimodal
AI systems.

Limitations

While the NUMINA benchmark represents a sig-
nificant advancement in the assessment of multi-
dimensional intelligence and numerical reasoning,
several limitations warrant consideration. First, the
complexity of the benchmark necessitates substan-
tial computational resources, which may pose ac-
cessibility challenges for researchers with limited
hardware capabilities. Second, although the bench-
mark encompasses a wide range of tasks, it may
not fully capture all aspects of human cognition,
particularly those dimensions that are inherently
subjective or difficult to quantify, such as emo-
tional intelligence and creativity. Finally, although
the evaluation framework is designed to be compre-
hensive, the interpretation of outcomes may still be
influenced by subjective decisions made during the
task selection and formulation process. These limi-
tations should be carefully considered, and future
iterations of the benchmark could benefit from ad-
dressing these concerns to enhance its applicability
and robustness.

Ethical Considerations

We discuss the following ethical considerations
related to our NUMINA dataset: (1) Intellectual
Property. The ScanQA dataset is distributed with
the CC BY-NC-SA 3.0 license1, and the ScanNet
dataset is also available for research use2. (2)
Worker Treatments. We hired five annotators
and fairly pay them according to agreed salaries
and workloads. (3) Intended Use. NUMINA can be
utilized to develop more persuasive 3D reasoning
models. Researchers can also inherit our dataset de-
sign and utilize NUMINA-Flow to develop their own
datasets. (4) Controlling Potential Risks. Since

1https://creativecommons.org/licenses/
by-nc-sa/3.0/

2https://github.com/ScanNet/ScanNet

the documents of NUMINA do not contain private
information and annotating this dataset is not nec-
essary to make many judgements about social risks,
we believe NUMINA does not introduce any addi-
tional risks. We manually verified some randomly
sampled data to ensure the dataset did not contain
risky issues. (5) AI Assistance. The writing of this
paper adopts ChatGPT in refining some sentences.
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A Templates for Each Category

Table 6 presents the QA-pair template for each task
type in NUMINA. In this framework, <OBJX> within
the question is substituted with actual object names
present in the given scenario, while the correspond-
ing answer is generated based on the annotated
dataset. This ensures consistency and accuracy in
the question-answer pairs while maintaining adapt-
ability across different scenarios.

Each category assesses different aspects of an
AI model’s reasoning capabilities related to ob-
ject properties, spatial relationships, and numerical
estimations. Fact Validation (highlighted in red)
focuses on binary (yes/no) reasoning about object
comparisons, including quantity differences, rela-
tive distances, and bounding box size comparisons.
Prompt Matching (highlighted in green) evaluates
the model’s ability to correctly interpret and match
prompts to predefined categorical choices, such as
identifying an object’s color, spatial positioning, or
orientation. Numerical Inference (highlighted in
blue) measures the model’s ability to provide pre-
cise numerical responses, including object count-
ing, distance estimation, and volume computation.
These templates serve as standardized benchmarks
to assess LLMs’ spatial reasoning, object recogni-
tion, and numerical estimation accuracy in indoor
environments.

B Details of Dataset Construction

The construction of the dataset follows a dual-
track generation pipeline, NUMINA-Flow, which

comprises independent LLM-based and rule-based
methods. Each track operates separately, con-
tributing contrapositive strengths to ensure high-
quality, factually grounded question-answer pairs.
The LLM-based track focuses on rewriting Short-
Answer Questions (SAQs) from ScanQA into struc-
tured formats, while the rule-based track generates
questions directly from annotated scene data. To-
gether, these methods enhance linguistic fluency,
maintain logical consistency, and minimize halluci-
nations.

B.1 LLM-Based Generation

The LLM-based track transforms SAQs into other
question types, including Prompt Matching (PM)
and Fact Validation (FV) Questions. This process
leverages the generative capabilities of large lan-
guage models while enforcing structural constraints
to ensure output consistency and reliability. Key
components of this track include:

• Structured Prompting: The LLM is guided
by carefully designed prompts that explicitly
define the rewriting task, specify output con-
straints in JSON format, and provide illustra-
tive examples. These constraints ensure that
the reformulated questions maintain clarity
and coherence while adhering to strict format-
ting guidelines.

• Rigorous Validation: Post-generation, an au-
tomated validation process verifies key struc-
tural properties, such as the correct number of
options, proper answer placement, and logi-
cal distinctiveness of distractors (for PM) or
alternative statements (for FV). Any outputs
failing these criteria are discarded and regen-
erated to maintain dataset integrity.

To ensure consistency and high-quality question
generation, the system employs predefined prompts
tailored for different question types. Tables 7 and 8
illustrate the structured LLM prompts used for PM
and FV generation, respectively.

B.2 Rule-Based Generation

Independent of the LLM-based track, the rule-
based track constructs questions directly from struc-
tured scene annotations using deterministic proce-
dures. This method ensures factual accuracy by
deriving question-answer pairs solely from observ-
able, verifiable data. The rule-based track consists
of the following steps:
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Fact Validation
Q1: Are there fewer <OBJ1> than <OBJ2>? Please reply with a “yes” or “no” only.
A1: yes
Q2: Is the distance between <OBJ1> and <OBJ2> greater than the distance between <OBJ3> and <OBJ4>?
A2: no
Q3: Is the size of the bounding box of <OBJ1> less than the one of <OBJ2>? Select “yes” or “no” as the answer.
A3: yes
Prompt Matching
Q1: What color is the <OBJ1>? A) Red B) Blue C) Green D) Yellow E) Black
A1: B
Q2: What is to the left of the <OBJ1>? A) Armchair B) Bookshelf C) Lamp D) Painting E) Couch
A2: E
Q3: What is the <OBJ1> facing? A) Bookshelf B) Window C) Door D) Round table E) Fireplace
A3: D
Numerical Inference
Q1: Please count the number of <OBJ1> in the room. Give a number as the answer.
A1: 2
Q2: Please estimate the distance between the <OBJ1> and <OBJ2> in the room in meters. Give a numerical response.
A2: 1.04
Q3: Can you estimate the volume of the bounding box of <OBJ1> in cubic meters? Give a numerical response.
A3: 3.83

Table 6: Templates for each category in NUMINA.

• Candidate Selection: The pipeline selects
objects or object pairs that meet predefined
criteria, such as bounding box sizes, or numer-
ical attributes. Non-informative labels (e.g.,
item, object) are filtered out to ensure rele-
vance and diversity in the generated questions.

• Automated Question Formation: Once
appropriate candidates are identified, the
pipeline applies structured templates and log-
ical rules to generate FV or NI questions.
These templates guarantee consistency and ac-
curacy in queries while keeping them diverse
and reflective of real-world data.

• Grounding in Factual Data: Since this track
draws directly on scene metadata (e.g., object
labels, spatial relationships, and numerical at-
tributes), the resulting questions are inherently
grounded in real, observable data, minimizing
ambiguity and eliminating the risk of halluci-
nated content.

By operating as independent yet contrapositive
tracks, the LLM-based and rule-based approaches
provide a balanced mechanism for dataset construc-
tion. The LLM-based track enhances linguistic
naturalness while adhering to strict structural con-
straints, whereas the rule-based track guarantees
factual accuracy through deterministic question
generation. This dual-track framework ensures that
the resulting dataset is both diverse and reliable,

making it well-suited for evaluating AI models in
spatial reasoning and numerical inference tasks.

C System Prompt

Table 9 presents the system prompt provided to
the LLM, which defines its role, outlines the task
requirements, and specifies the meanings of “dis-
tance” and “volume” used in the subsequent ques-
tions. This ensures standardization in spatial rea-
soning tasks within the NUMINA dataset, promoting
uniform interpretation and evaluation of distance
and volume-related queries. However, the LLM
struggles to accurately comprehend the concept of
convex hull distance, likely due to the complexity
of its calculation. As a result, the model performs
poorly on all distance-related tasks, highlighting its
limitations in numerical spatial reasoning.

D Logical Consistency Question-Answer
Pairs

Table 10 presents a structured set of logical consis-
tency QA-pairs in NUMINA, designed to assess the
reasoning capabilities of language models. Each
original question (Ori-Q) is accompanied by its cor-
responding original answer (Ori-A), establishing a
baseline response. Additionally, a contrapositive or
logically equivalent question (CP-Q) is introduced
to verify coherence in reasoning, with its expected
logically consistent answer (CP-A).

The QA pairs encompass comparisons involv-
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Introduction
Please rewrite a Short Answer Question (SAQ) into a Prompt Matching (PM) format with n options.
Input
- Original SAQ: <Original Question>
- Original Answer: <Original Answer>
- Expected Correct Option: <Correct Option Label>
- Number of Options: n
Task Description
1. Convert the SAQ into a clear and concise PM format.
2. Generate n-1 incorrect options as distractors:

- Keep distractors in the same category as the correct answer (e.g., if the answer is a noun, all
distractors should be nouns).

- Ensure distractors are plausible but incorrect.
- Avoid synonyms, overly obvious wrong choices, or options that reveal the correct answer.

3. Place the correct answer exactly as specified (including any spelling variations) in the designated
option label.
4. Format the options as follows:

- “A) Option A B) Option B C) Option C ...”
- Ensure the correct answer appears at the predefined correct option label.

5. Include a hint instructing the user to answer using the correct option letter.
Output Format
Return only a JSON object with the following keys:
{
“question”: “The rewritten PM”,
“Answer”: “The correct option label (e.g., ’A’)”

}
Do not include any additional text or explanations outside this JSON object.
Example Formatting
Input:
- SAQ: “What is the capital of France?”
- Answer: “Parris” (note the misspelling)
- Expected Correct Option: “B”
- Number of Options: 4
Expected Output:
{
“question”: “What is the capital of France? Answer using the correct option letter.
A) Berlin B) Parris C) London D) Rome”,
“Answer”: “B”

}

Table 7: LLM Prompt for PM question Generation.
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Introduction
Please rewrite a Short Answer Question (SAQ) into a Fact Validation (FV) format and also generate its
contrapositive version.
Input
- Original SAQ: <Original Question>
- Original Answer: <Original Answer>
- Boolean Indicator: <True or False>
- Answer Options: “<Affirmative Word>” (for True) / “<Negative Word>” (for False)
Task Description
1. Convert the SAQ into a clear, factual statement incorporating the given answer.
2. Rewrite the statement into a FV based on the Boolean Indicator:

- If True → Keep the statement affirmative (e.g., “Bob sits next to Alice.”).
- If False → Negate the statement (e.g., “Bob does not sit next to Alice.”).

3. Append the answer options at the end as:
- “Is this correct? Answer with <Affirmative Word> or <Negative Word>.”

4. Generate a contrapositive question by logically inverting the original statement and answer.
5. Ensure that both original and contrapositive questions are logically and grammatically correct.
Output Format
Return only a JSON object with the following keys:
{
“question”: “The rewritten FV question”,
“Answer”: “The answer option corresponding to the preset Boolean indicator”,
“cp_question”: “The contrapositive version of the FV”,
“cp_answer”: “The answer option corresponding to the negation of the preset Boolean indicator”

}
Do not include any additional text or explanations outside this JSON object.
Example Formatting
Input:
- SAQ: “Who sits next to Alice?”
- Answer: “Bob”
- Boolean Indicator: False
- Answer Options: “<Affirmative Word>” (True) / “<Negative Word>” (False)
Expected Output:
{
“question”: “Bob does not sit next to Alice. Is this correct? Answer with <Affirmative Word> or

<Negative Word>.”,
“Answer”: “<Negative Word>”,
“cp_question”: “Bob sits next to Alice. Is this correct? Answer with <Affirmative Word> or

<Negative Word>.”,
“cp_answer”: “<Affirmative Word>”

}

Table 8: LLM Prompt for FV Generation.

You are an AI Assistant providing accurate, detailed, and polite explanations. Your goal is to give
clear and helpful responses. Distances refer to convex hull distances, the shortest distance between
points on the convex hulls of two objects, where a convex hull is the smallest convex shape enclosing
an object. Volumes refer to the space within an object’s minimum axis-aligned bounding box (AABB),
a rectangular box aligned with the coordinate axes. Always use these definitions for distances and
volumes.

Table 9: System Prompt of NUMINA.
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Ori-Q: Are there fewer kitchen counter than table? Reply with a “yes” or “no” only.
Ori-A: yes
CP-Q: Can you tell if the count of kitchen counter is greater than or equal to the count of table? Reply
with a “yes” or “no” only.
CP-A: no
Ori-Q: Is the distance between tissue box and guitar greater than the one between refrigerator and
sink? Offer a “yes” or “no” as the answer.
Ori-A: no
CP-Q: Is the distance between tissue box and guitar less than or equal to the distance between
refrigerator and sink? Offer a “yes” or “no” as the answer.
CP-A: yes
Ori-Q: Is the size of the bounding box of kitchen counter greater than or equal to the one of door?
Select “yes” or “no” as the answer.
Ori-A: yes
CP-Q: Can you tell if the volume of the bounding box of kitchen counter is less than the volume of the
bounding box of door? Select “yes” or “no” as the answer.
CP-A: no

Table 10: Templates for logical consistency QA-Pairs in NUMINA. Each original question (Ori-Q) is followed by its
corresponding original answer (Ori-A), while a logically equivalent or contrapositive question (CP-Q) is provided to
verify coherence in reasoning, with its expected logically consistent answer (CP-A). such contrary-logical QA-pairs
aids in evaluating the reliability and robustness of language models in maintaining logical consistency.

ing quantities, distances, and bounding box sizes,
where the contrapositive questions are framed to
test whether the model maintains consistency when
restating or reversing relational statements (e.g.,
“greater than” vs. “less than or equal to”). This
framework ensures the reliability and robustness of
language models by systematically evaluating their
logical consistency across related queries.

E Chain of Thoughts Question-Answer
Pairs

Table 11 presents a set of question-answer (QA)
pairs designed to illustrate the application of Chain-
of-Thought (CoT) reasoning in the NUMINA dataset.
Each original question (Ori-Q) is accompanied by
a direct answer (Ori-A), followed by a reformu-
lated question incorporating CoT reasoning (CoT-
Q) and its corresponding answer (CoT-A). The CoT-
based responses provide step-by-step logical expla-
nations to enhance interpretability and reasoning
transparency.

The QA pairs cover various spatial reasoning
and numerical estimation tasks, including volume
computation, object counting, and comparative dis-
tance assessments. For instance, in the volume
estimation task, the CoT response explicitly details
the bounding box dimensions and the multiplica-
tion process to derive the final volume, reinforcing
numerical reasoning. Similarly, in object counting

tasks, the CoT response explicitly states the numer-
ical values being compared before concluding the
answer. Distance-based reasoning follows a similar
pattern, where spatial distances are quantitatively
analyzed before providing the final decision.
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Ori-Q: Can you estimate the volume of the bounding box of bed in cubic meters? Give a numerical
response.
Ori-A: 3.83
CoT-Q: Can you estimate the volume of the bounding box of bed in cubic meters? Please solve the
problem step by step. Show each intermediate thought process clearly and provide the final answer
after completing the reasoning process.
CoT-A: Given the bounding box dimensions of the object along the X, Y, and Z axes as 1.98 m, 2.32
m, and 0.83 m respectively, the volume of the bounding box is calculated as (length x width x height)
yielding approximately 3.83 cubic meters.
Ori-Q: Are there fewer stool than cabinet? Please reply with a “yes” or “no” only.
Ori-A: yes
CoT-Q: Are there fewer stool than cabinet? Please solve the problem step by step. Show each
intermediate thought process clearly and provide the final answer after completing the reasoning
process.
CoT-A: Given the count of stool as 4 and the count of cabinet as 5, the count of stool is less than the
count of cabinet. Therefore, the answer is yes.
Ori-Q: Is backpack and toaster further than coffee table and mirror? Please provide a “yes” or “no” as
the answer.
Ori-A: no
CoT-Q: Is backpack and toaster further than coffee table and mirror? Please solve the problem step by
step. Show each intermediate thought process clearly and provide the final answer after completing the
reasoning process.
CoT-A: The distance between backpack and toaster is approximately 5.05 meters. The distance
between coffee table and mirror is approximately 5.27 meters. Since the distance between backpack
and toaster is greater than the distance between coffee table and mirror, the correct answer is no.
Ori-Q: Is the size of the bounding box of curtain approximately equal to the one of cabinet? Kindly
provide a “yes” or “no” as the answer.
Ori-A: no
CoT-Q: Is the size of the bounding box of curtain approximately equal to the one of cabinet? Please
solve the problem step by step. Show each intermediate thought process clearly and provide the final
answer after completing the reasoning process.
CoT-A: Given the volume of the bounding box of curtain as 10.41 cubic meters and the volume
of the bounding box of cabinet as 4.88 cubic meters, the volume of the bounding box of curtain is
approximately equal to the volume of the bounding box of cabinet. Therefore, the answer is no.

Table 11: Templates for Chain-of-Thoughts QA-Pairs in NUMINA. Each example includes an original question
(Ori-Q) with its corresponding direct answer (Ori-A), followed by a CoT-augmented question (CoT-Q) that prompts
a step-by-step reasoning process. The CoT-augmented answer (CoT-A) then provides a detailed breakdown of the
logical steps leading to the final response.
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