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Abstract

Recently, text-to-molecule models have shown
great potential across various chemical appli-
cations, e.g., drug-discovery. These models
adapt language models to molecular data by
representing molecules as sequences of atoms.
However, they rely on atom-level tokenizations,
which primarily focus on modeling local con-
nectivity, thereby limiting the ability of models
to capture the global structural context within
molecules. To tackle this issue, we propose a
novel text-to-molecule model, coined Context-
Aware Molecular TS (CAMTS). Inspired
by the significance of the substructure-level
contexts in understanding molecule structures,
e.g., ring systems, we introduce substructure-
level tokenization for text-to-molecule mod-
els. Building on our tokenization scheme,
we develop an importance-based training strat-
egy that prioritizes key substructures, enabling
CAMTS to better capture the molecular seman-
tics. Extensive experiments verify the superi-
ority of CAMTS in various text-to-molecule
generation tasks. Intriguingly, we find that
CAMTS outperforms the state-of-the-art meth-
ods using only 2% of training tokens. In addi-
tion, we propose a simple yet effective ensem-
ble strategy that aggregates the outputs of text-
to-molecule models to further boost the genera-
tion performance. Code is available at https:
//github.com/Songhyeontae/CAMT5.git.

1 Introduction

Discovering molecules that match desired language
descriptions has been a long-standing goal in chem-
istry since it is an essential ingredient for practical
deployments like drug-discovery and material de-
sign (Su et al., 2022; Gong et al., 2024; Li et al.,
2024). However, achieving such text-to-molecule
generation poses a challenge because of the differ-
ent structural modalities of language and molecules.

* These authors contributed equally.
T Work done at KAIST.

To address this challenge, researchers have ex-
plored the fine-tuning of pre-trained language mod-
els with additional molecular data (Christofidellis
et al., 2023; Chen et al., 2024), which is inspired
by the recent success of language models in lever-
aging various domain knowledge, including chemi-
cal concepts (Taylor et al., 2022; Yu et al., 2024).
Specifically, they treat each molecule as a sequence
of tokens using string-based molecular represen-
tations such as SMILES (Weininger, 1988) and
SELFIES (Krenn et al., 2020). Intriguingly, they
show that these molecule-aware language models,
i.e., text-to-molecule models, can be obtained by
learning the text-conditional molecule distribution
based on treating atoms as tokens of language mod-
els (Edwards et al., 2022; Pei et al., 2023).
However, it is yet underexplored which tokeniza-
tion strategy for molecules is more effective for
text-to-molecule models. Current state-of-the-art
approaches (Edwards et al., 2022; Pei et al., 2023)
adopt atom-level tokenization, where each atom is
represented as a single token within the model’s
token space (Christofidellis et al., 2023; Liu et al.,
2023; Pei et al., 2023). Even though they show re-
markable performance as pioneering efforts, such
atom-level tokenizations limit the models’ ability
to capture crucial global contextual patterns within
molecules, focusing only on local connectivities
(Xiaet al., 2022; Liu et al., 2024; Luong and Singh,
2024). This leads to the question of how to tokenize
molecules in a context-preserving manner to train
text-to-molecule models more effectively.
Contribution. In this paper, we introduce a novel
text-to-molecule model, coined Context-Aware
Molecular T5 (CAMTS), by proposing a context-
enriched motif-level token space. Specifically,
we draw inspiration from the following chemical
prior—the structural context of molecules is more
effectively captured through their substructure-
level, i.e., motif-level, characteristics rather than
the atom-level attributes (Jin et al., 2018, 2020;
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Figure 1: An overview of our proposed method. (a) Context-aware moecule tokenization: we train CAMTS5 with a
motif-level token sapce. (b) Importance-based pre-training: we priortize key motifs during pre-training.

Zhang et al., 2021; Kim et al., 2023). Consequently,
we hypothesize that text-to-molecule models can
be further improved by emphasizing the informa-
tion on key motifs during the training phase. To
this end, we propose a new motif-level tokens for
text-to-molecule models and develop a novel train-
ing strategy that effectively leverages the relative
importance of the individual motif-level tokens (see
Figure 1 for description).

In particular, we carefully design the motif-level
tokenization for CAMTS to additionally alleviate
two drawbacks in the tokenization strategies of pre-
vious text-to-molecule models. First, CAMTS5 al-
ways generates a valid molecule, while MolT5 (Ed-
wards et al., 2022) often generates an invalid token
sequences that do not correspond to any molecule.
Second, each of our motif-level tokens has a unique
interpretation, while some of the tokens in BioT5
(Pei et al., 2023) have multiple interpretations, e.g.,
both an atom and the number of atoms in a ring pre-
ceding the token (Krenn et al., 2020), introducing
semantic-level ambiguities for the models.

Consequently, to leverage our motif-level tokens
effectively, we propose an importance-based train-
ing approach that prioritizes key motifs. Specifi-
cally, each token is assigned to an importance value
derived from its constituent atoms, and the training
loss is adjusted by weighting it according to this
pre-defined importance. This loss design is made
possible by our carefully designed motif-level to-
kens, each representing a unified chemical context
(Kim et al., 2023; Luong and Singh, 2024), unlike
atom-wise tokenizations (Weininger, 1988; Krenn
et al., 2020) in previous text-to-molecule models.

We verify our method’s effectiveness on popu-
lar benchmarks, e.g., ChEBI-20 (Edwards et al.,
2021). On ChEBI-20, the state-of-the-art results

are achieved using only 2% of the training tokens
required by the previous best-performing baseline,
BioT5 (Pei et al., 2023)." Specifically, CAMTS5
improves the ratio of molecules that exactly match
the description (Exact; higher is better) by 0.413 —
0.430, and those similar to the description (RDK;
higher is better) by 0.801 — 0.840. We also show
that a simple ensemble strategy utilizing CAMTS5
further improves the overall performance, e.g., Ex-
act by 0.430 — 0.472. Finally, we verify CAMTS’s
effectiveness in molecule modification.

2 Related works

Text-to-molecule models. Inspired by the recent
advancements in language models (Raffel et al.,
2020; Taylor et al., 2022; Achiam et al., 2023),
significant efforts have been made to adapt these
models for molecular applications, leading to the
development of molecule-aware language models,
i.e., text-to-molecule models (Edwards et al., 2021,
2022; Christofidellis et al., 2023; Liu et al., 2023;
Pei et al., 2023; Chen et al., 2024). These ap-
proaches typically involve fine-tuning pre-trained
language models, such as T5 (Raffel et al., 2020),
using molecular data by representing molecules as
sequences of atom-level tokens. For instance, ex-
isting models (Edwards et al., 2022; Christofidellis
et al., 2023; Pei et al., 2023) leverage molecular
representations like SMILES (Weininger, 1988)
or SELFIES (Krenn et al., 2020), which encode
molecules as atom-level token sequences for text-
to-molecule frameworks. As a result, they primar-
ily focus on capturing local atom-wise connectivity,
while overlooking the crucial global structural con-

'The performance of BioT5 (Pei et al., 2023) benefits from

additional non-public high-quality molecular pre-training data,
which is not available for us.
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Method | Token | Validity ~Non-degeneracy
MolT5 Atom v
BioT5 Atom v

CAMTS5 (Ours) | Motif | v v/

Table 1: Comparison of our molecular tokens with pre-
vious text-to-molecule models. Token denotes the infor-
mation encoded in a single token. We mark Validity if a
sequence of tokens always represents a valid molecule,
and we mark Non-degeneracy if a single token corre-
sponds to a unique molecular interpretation.

text of molecules (Zhang et al., 2021; Xia et al.,
2022; Kim et al., 2023; Luong and Singh, 2024).

In addition, text-to-molecule models based on
atom-level tokenizations come with additional
drawbacks. First, SMILES-based models often
generate invalid token sequences that violate the
grammar (Weininger, 1988), which do not corre-
spond to valid molecules. Second, SELFIES-based
models introduce semantic-level ambiguities, i.e.,
degeneracy, in token interpretations (Krenn et al.,
2020), leading to sub-optimal performance in mod-
eling the token distribution. For example, the ‘[0]
token can be interpreted completely differently: an
oxygen atom or an indicator of a ring system com-
prising six atoms preceding this token. To address
the aforementioned limitations, we carefully design
our context-enriched motif-level tokens, ensuring
validity of the generated token sequences and non-
degeneracy in token interpretations (see Table 1).

Context-aware molecule learning. Recent studies
in the molecular domain have explored the concept
of context-aware learning for molecules. For exam-
ple, Zhang et al. (2021); Kim et al. (2023); Luong
and Singh (2024) propose self-supervised learning
frameworks that leverage motif-level context to de-
rive chemically meaningful molecular embeddings.
A notable approach in this line of work is context-
aware molecule generation (Jin et al., 2018, 2020;
Kong et al., 2022; Geng et al., 2023), which fo-
cuses on learning the distribution of motifs instead
of individual atoms with specialized architectures.
Intriguingly, they show superior performance in
molecule generation by incorporating contextual
patterns of motifs within molecules. In particular,
t-SMILES (Wu et al., 2024) introduces a linearized
representation of motifs using full binary tree struc-
tures. Therefore, they require additional grammar
tokens to describe the full binary tree structures. In
contrast, our motif tokens do not require any gram-
mar tokens, enabling CAMTS to concentrate solely
on learning the relationships between motifs with-

out being constrained by grammar representations
(see Appendix D.5 for experimental comparison).

3 Method

In Section 3.1, we explain an overview of our prob-
lem of interest. In Section 3.2, we provide the
description of our context-aware text-to-molecule
model, CAMTS. In Section 3.3, we describe our
confidence-based ensemble strategy.

3.1 Problem description

We define our problem of fext-to-molecule gener-
ation as follows. Our goal is to train a text-to-
molecule model fp such that fp(x) = m, where
x is a text description of the desired molecule and
m is the corresponding target molecule (see Ta-
ble 11 for an example). Recent works (Edwards
et al., 2022; Pei et al., 2023) have shown that such
fo can be obtained by fine-tuning a pre-trained
language model with description-molecule pairs
{xg, my HY_|, using the following objective:

£(0; %0, my) = Log (folxi)me), (1)

where Lcg denotes cross-entropy loss, and x; and
my, denote the k-th text description and the to-
ken sequences of the target molecule in the text-to-
molecule model’s token space, respectively.

Here, the choice of tokenization strategy for my,
plays a critical role in training an effective fy (Pei
et al., 2023), as it directly influences how the se-
quence of tokens captures and represents the struc-
tural context of the original molecule. However,
previous text-to-molecule models often overlook
such importance, relying only on the local connec-
tivity of atoms based on the atom-level tokeniza-
tion methods, e.g., SMILES (Weininger, 1988) and
SELFIES (Krenn et al., 2020). In contrast, our
contribution resolves the drawbacks of previous to-
kenization strategies by incorporating substructure-
level contextual patterns into the token space of
text-to-molecule models. This allows us to repre-
sent a molecule in a context-aware manner.

3.2 CAMTS5: Context-Aware Molecular T5

Context-aware molecule tokenization. We pro-
pose to construct the molecule token space of
CAMTS5 to effectively capture and reflect the struc-
tural context of molecules. To achieve this, we con-
sider chemically meaningful fragments, i.e., motifs,
as individual tokens in CAMTS. This approach dif-
fers from previous text-to-molecule models that
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only rely on atom-level tokens (Edwards et al.,
2022; Pei et al., 2023). Specifically, we consider
the following set of atoms, i.e., a motif, as a single
token: (1) atoms forming a ring structure and (2)
atoms connected by a non-single bond (see Figure 1
for an example). Such groups of atoms are rigidly
bound to each other and represent an important
structural context, such as resonance (Anslyn and
Dougherty, 2006). An atom not associated with (1)
and (2) is considered as a single token.

We then propose to represent a molecule as a se-
quence of motif-level tokens, based on the order of
the tree-search algorithm on a tree of motifs. Con-
sider a molecule graph G = (V, E)) with the set of
atoms V and edges F. We construct a tree of mo-
tifs 7(G) = (V, ), where V = {M;}"_, is the set
of n motifs with M; = (V;, E;), and & is the set of
bonds between motifs. Here, 7 (G) effectively pre-
serves all the information of the original molecule
graph G, ie., V = UV, and F = U;FE; U €,
with context-enriched nodes by replacing atom-
level nodes V' with motif-level nodes V, satisfying
|V| < |V|. Consequently, we obtain the sequence
of motif tokens by enumerating ) based on the or-
der of the depth-first-search (DFS) algorithm, i.e.,
mcamrs = [Mi, ..., M,]. We then train our text-
to-molecule model fy with {x, mCAMTS,k}szl us-
ing the training objective in Eq. (1). Note that our
method ensures the (1) validity of the generated
token sequences since we do not introduce tokens
that should appear as a pair, c.f., the branch tokens
‘C and ‘)’ in SMILES (Weininger, 1988). Also,
our tokens are (2) non-degenerate by construction;
a single token represents only a single motif, c.f.,
‘(0] as an oxygen atom or an indicator of a ring sys-
tem comprising six atoms preceding this token in
SELFIES (Krenn et al., 2020). We provide further
details of our token space in Appendix A.

Our context-enriched tokenization plays a
crucial role in discriminating the atoms within
different structural contexts. For example,
the aromatic carbons in a phenyl group (i.e.,
[C][= C][C][= C][C][= C][Ringl][= Branchl] in
BioT5; Pei et al., 2023) and the aliphatic carbons
(i.e., [C][C][c][C][C][C] in BioT5) differ significantly
in chemical context, due to resonance and ring
structure. However, previous text-to-molecule
models do not distinguish the difference between
the carbon atoms of each motif, regarding both
carbons as the same [C] token. CAMTS5 resolves
this by assigning different tokens for the entire
phenyl groups and the carbons in aliphatic carbons.

Importance-based pre-training. Previous state-
of-the-art text-to-molecule models were pre-trained
on vast amounts of tokens from unlabeled
molecules (Liu et al., 2023; Chen et al., 2024). No-
tably, MolT5 (Edwards et al., 2021) and BioT5 (Pei
et al., 2023) demonstrated the effectiveness of the
masked language modeling pre-training objective
(Raffel et al., 2020) in enriching the understanding
of the molecular domain with unlabeled molecules.

In this paper, we advance the masked language
modeling (Raffel et al., 2020) for our motif-level
token space, focusing on key motifs during pre-
training to better capture molecular structural con-
text. To achieve this, we define an importance value
A(M;) for each M; € V, reflecting the relative sig-
nificance of motifs in a given molecule. Based
on these pre-defined importance values, we train
CAMTS with the weighted training loss:

Z)\

where Lyry denotes the masked language modeling
loss. Here, we find that a simple choice of \(M;),
i.e., the number of atoms in M;, efficiently and
effectively improves the generation performance
(see Appendix B for details on the definition of \).

ECAMT5 ['MLM ) (2)

3.3 Confidence-based ensemble

We propose a simple yet effective confidence-based
ensemble method to further improve the gener-
ation quality of our CAMTS. Specifically, we
leverage the outputs of other text-to-molecule mod-
els, which often use different token space, e.g.,
SMILES (Weininger, 1988) and SELFIES (Krenn
et al., 2020). Here, we note that recent ensem-
ble strategies (Jiang et al., 2024; Sukhbaatar et al.,
2024) only work on the models with the same to-
ken space, and thus are not applicable to text-to-
molecule models with different tokenizations.

To tackle this issue, we define the confidence
C(my; f;,x) as the average log-likelihood of the
generated tokens, and treat it as a proxy for the
quality measure of the generated molecules, i.e.,

K;
3 1ogPy (T |
Clmy: finx) = = e

= —Lee(fi(x), m;),

where f; is the ¢-th text-to-molecule model and
m; = [11,...,Tk,] be the generated K; tokens

Ti...,T;-1])
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Model | #Params. | Representation | Train Tokens | Exact? MACCSt RDK?1 Morgant Valid. 1

RNN 56M SMILES - 0.005 0.591 0.400 0.362 0.542
Transformer 76M SMILES - 0.000 0.480 0.320 0.217 0.906
TSema11 7™M SMILES - 0.064 0.704 0.578 0.525 0.608
T5vase 248M SMILES - 0.069 0.731 0.605 0.545 0.660
TS1arge 783M SMILES - 0.279 0.823 0.731 0.670 0.902
MolT5¢na11 7™M SMILES 66B 0.079 0.703 0.568 0.517 0.721
MolT5pase 248M SMILES 66B 0.081 0.721 0.588 0.529 0.772
MoIT5;arge 783M SMILES 66B 0.311 0.834 0.746 0.684 0.905
GPT-3.5-turbo >175B SMILES - 0.019 0.705 0.462 0.367 0.802
MolReGPT >175B SMILES - 0.139 0.847 0.708 0.624 0.887
MolXPT \ 350M \ SMILES \ 1.8B \ 0.215 0.859 0.757 0.667 0.983
BioT5; ¢ \ 252M \ SELFIES \ 69B \ 0.413 0.886 0.801 0.734 1.000
MolTSlase 248M SMILES 1.6B 0.326 0.847 0.797 0.720 0.950
BioTSltase 252M SELFIES 1.6B 0.344 0.842 0.773 0.664 1.000
CAMTS5;011 (Ours) 103M Motif (Ours) 1.6B 0.391 0.874 0.827 0.727 1.000
CAMT5,.5e (Ours) 286M Motif (Ours) 1.6B 0.422 0.882 0.834 0.742 1.000
CAMTS5,.g. (Ours) 836M Motif (Ours) 1.6B 0.430 0.885 0.840 0.749 1.000

Table 2: Quantitative results of the text-to-molecule generation task in the CheBI-20 (Edwards et al., 2021)
benchmark. small, base and large denote that the model is derived from the T5-small, T5-base and T5-large
(Raffel et al., 2020), respectively. #Params denotes the number of parameters in each text-to-molecule model. Train
Tokens refers to the number of molecule-related pre-training tokens. * denotes that the model is pre-trained with
an additional non-public high-quality molecular dataset, which is not available for us. { denotes that the model is
trained with the same training configuration, e.g., training dataset, as ours. We highlight the best score in bold.

Model | #Params. | Representation | Exactt | MACCSt RDK® Morgant Valid. 1
MolT5],.. 248M SMILES 0.151 0.578 0523 0417 0.793
BioT5! .., 252M SELFIES 0.132 0.695 0.624  0.458 1.000
CAMTS5y,5c (Ours) ‘ 286M ‘ Motif (Ours) ‘ 0.196 ‘ 0.738 0.679 0.528 1.000

Table 3: Quantitative results of the text-to-molecule generation task in PCDes (Zeng et al., 2022). 1 denotes that the
model is trained with the same training configuration, e.g., training dataset, as ours. We bold the best score.

from f; to the given description x. Then, we define
the confidence-based ensemble fons With fi, ..., fn
as follows:

our experimental setups. Section 4.2 presents the
text-to-molecule generation results on the ChEBI-
20 and PCDes benchmarks. In Section 3.3, we
present the results of our confidence-based ensem-
ble strategy. In Section 4.4, we show the text-
() conditional molecule modification task results. In
Section 4.5, we provide ablation studies on com-
ponents of CAMTS. We provide additional experi-
mental results and analyses in Appendix D.

fens(x) = my, where k = argmax; C(m;; f;, x).

We note that this ensemble strategy is partic-
ularly useful in practical scenarios. Previously,
people simply chose the best-performing model
among the existing text-to-molecule models, ig-
noring other on-average under-performing models.
However, when the selected model is not confi-

4.1 Experimental setup

Baselines. We consider the recently proposed state-

dent in a certain text description, other models may
provide more confident alternatives. In this case,
our confidence-based ensemble strategy can be ap-
plied to further improve the performance of the
best-performing model, i.e., CAMTS, with the help
of other existing models, i.e., MolT5 and BioT5.

4 Experiments

We verify the effectiveness of CAMTS through ex-
tensive experiments. In Section 4.1, we explain

of-the-art text-to-molecule models: MolT5 (Ed-
wards et al., 2022), MolReGPT (Li et al., 2024),
MolIXPT (Liu et al., 2023), and BioT5 (Pei et al.,
2023). These models are based on atom-wise tok-
enization, i.e., SMILES and SELFIES.

Datasets. We evaluate the text-to-molecule gen-
eration performance of text-to-molecule models
on two popular benchmarks, ChEBI-20 (Edwards
etal., 2021) and PCDes (Zeng et al., 2022). In addi-
tion, we construct a new dataset of 34k description-
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Description | MolT5 BioT5 CAMTS5 (Ours) | Ensemble (Ours) | Target
The molecule is a (\G |
sulfonamide that A # & A L © 8
EE i 18 g e o
sulfonamide ~ NV P 4

) D
substituted by a RDK: 1.00 RDK: 0.50 RDK: 0.92 RDK: 1.00
trifluoromethyl... Confidence: -5E-4  Confidence: -2E-3  Confidence: -8E-4 | Confidence: -5E-4
It is a 5-metho- o 5 - o
xyfurocoumarin R o N0 o )
that is psoralen o 0’ R o 5
substituted by a A —0 _d 0
o)

methoxy group at RDK: 0.73 RDK: 1.00 RDK: 0.82 RDK: 1.00 -

position 5. It has...

Confidence: -5E-4 Confidence: -6E-5

Confidence: -1E-3 Confidence: -6E-5

Table 4: Visualizations of the confidence-based ensemble on CheBI-20 (Edwards et al. 2021; the first row) and
PCDes (Zeng et al. 2022; the second row). We visualize the cases that other models, i.e., MolT5 and BioT5, help
our CAMTS through ensemble when the confidence (maximally 0.00) of our generated molecule is relatively low.
We report the confidences and the RDK scores below each visualization. Our ensemble strategy selects the molecule
with the highest confidence as the output of ensemble (see Eq. (3)). We bold the highest score.

Model \ Exactt MACCST RDK1 Morgan? Valid. T
Results on the CheBI-20 benchmark.
MolT5 0.326 0.847 0.797 0.720 0.950
BioT5 0.413 0.886 0.801 0.734 1.000
CAMTS 0.430 0.885 0.840 0.749 1.000
Ensemble | 0.472 0.902 0.860 0.781 1.000
Results on the PCDes benchmark.
MolT5 0.151 0.578 0.523 0.417 0.793
BioT5 0.132 0.695 0.624 0.458 1.000
CAMTS 0.196 0.738 0.679 0.528 1.000
Ensemble ‘ 0.213 0.755 0.695 0.554 1.000

Table 5: Quantitative results of our confidence-based
ensemble on the CheBI-20 (Edwards et al., 2021) and
PCDes (Zeng et al., 2022) benchmarks. We report the
ensemble results based on the best-performing models
of MolTS5, BioT5, CAMTS5 in Table 2 and 3, respec-
tively. We highlight the best score in bold.

molecule pairs from the PubChem database, ensur-
ing no overlap with the molecules in ChEBI-20 or
PCDes. This dataset is used to train our CAMTS, as
well as T-marked MolT5 and BioT5 models (see Ta-
ble 2). Further details are provided in Appendix C.

Training setup. Following the previous practices
(Edwards et al., 2021; Pei et al., 2023), we pre-train
text-to-molecule models with publically available
uni-modal datasets, i.e., C4 (Raffel et al., 2020) for
the text corpus and ZINC-15 (Sterling and Irwin,
2015) for the molecule corpus. We note that the pre-
vious models, e.g., MolT5 and BioT?3, are trained
with different datasets, which limits a genuine com-
parison of proposed methods. For example, the
official BioT5 model benefits from an additional
non-public pre-training dataset. To alleviate this
issue, we have aligned the pre-training and fine-

tuning configurations of each model and marked
t, e.g., as shown in Table 2. We provide further
details of experimental setups in Appendix B.

Metrics. For an extensive evaluation of text-to-
molecule generation, we utilize various metrics
that reflect the quality of the generated molecules.
The detailed description of metrics are as follows:

e Exact: The ratio of the generated molecules
that exactly match with the target molecule.

e MACCS/RDK/Morgan Fingerprint Tani-
moto Similarity (MACCS/RDK/Morgan):
Metrics that measure the fingerprint-level sim-
ilarity between the generated molecule and
the target molecule. MACCS (Durant et al.,
2002), RDK (Schneider et al., 2015), and Mor-
gan (Rogers and Hahn, 2010) fingerprints are
used. If the generated token sequence is not
a valid molecule, we set this score as 0. For
each dataset, we report the average scores of
the generated molecules in each dataset.

e Validity (Valid.): The ratio of the generated
token sequences that are valid molecules.’

4.2 Main experiments

Table 2 and 3 summarize the quantitative results of
the text-to-molecule generation tasks in ChEBI-20
(Edwards et al., 2021) and PCDes (Zeng et al.,
2022), respectively. In both benchmarks, our
CAMTS consistently outperforms the baseline
text-to-molecule models by generating desirable
molecules corresponding to the text description.

For BioT5 and CAMTS5, Validity is guaranteed to be 1.0
due to the characteristics of used token representations.
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Query | MolT5 |

BioT5 | CAMTS (Ours)

Prompt: “The molecule is an N-acyl acid ester ... Make it soluble in water.” (Lower LogP is better)

%

LogP: 1.82

Bosl % d..,g”d

LogP: 0.70 LogP: 0.86

Sj_.,;_«“

LogP: 0.73

&

LogP: 0.77

LogP: -1.08

LogP: -0.48

Prompt: “The molecule is a member of ureas... Make it insoluble in water.” (Higher LogP is better)

LogP: -0.66

LogP: -0.96 LogP: -0.57

o, oF
H
H,

LogP: 0.88

e

LogP: 0.50

‘ _(-(JJJJJ—( \ ,i-(JIF}

LogP: 1.96

LogP: 0.79

Table 6: Qualitative results of molecule modification on ChEBI-20 (Edwards et al., 2021). We visualize the
generated molecules with respect to the prompt with an additional chemical condition, i.e., solubility in water. We
report the LogP score below each visualization. Molecules with lower LogP values are more soluble in water. For
the best-performing models of MolT5, BioT5, and CAMTS, we report the top-2 molecules that match the property
description among 30 generated molecules based on temperature sampling with 7=0.5. We set the best score in bold.

“Soluble in water” “Insoluble in water”

Model MACCS?T ALogP1 | MACCST ALogP |
MolT5 0.351 1.96 0.268 -1.49
BioT5 0.357 2.01 0.286 171
CAMT5  0.441 226 | 0378 -1.98

Table 7: Quantitative results of molecule modification
on ChEBI-20 (Edwards et al., 2021). We average the
scores of top-2 molecules from the test set descriptions.

Results on ChEBI-20. In the ChEBI-20 bench-
mark (Edwards et al.,, 2021), CAMTS5 highly
outperforms the state-of-the-art text-to-molecule
model, BioT5 (Pei et al., 2023), which lever-
ages an additional non-public high-quality pre-
training dataset. For example, CAMTS5 shows su-
perior performance in generating molecules that
exactly match the given text descriptions, improv-
ing the Exact score by 0.413 — 0.430. Further-
more, CAMTS5 generates molecules more similar
to the given description, achieving higher finger-
print similarity-based scores, e.g., 0.801 — 0.840
and 0.734 — 0.749 in the RDK and Morgan similar-
ity scores, respectively. Notably, CAMTS5 achieves
these improvements with only 2% of molecule-
related pre-training tokens compared to BioT5, un-
derscoring the superiority of our molecule tokeniza-
tion and importance-based pre-training strategy.
For an extensive comparison with baselines
in a fair setup, we also provide the results un-
der the same training datasets and configura-
tions as our CAMTS5 (denoted by MolTS:r,ase and
BioTSlase). Within this setup, our model of a
similar size, i.e., CAMT5ya5e, demonstrates a sig-

nificant performance improvement, achieving the
Exact score by 0.344 — 0.422. Moreover, it
is noteworthy that even with the smaller variant,
i.e., CAMT5gpa11, our method consistently out-
performs both MolTSlese and BioTSlase across
all evaluated metrics. These results underscore
CAMTS’s strong efficacy in generating desired
molecules and establish it as a promising approach
for text-to-molecule generation tasks.

Results on PCDes. Table 3 shows that CAMTS is
also effective in the more challenging PCDes (Zeng
et al., 2022) benchmark, with improvements such
as 0.151 — 0.196 in the Exact score and 0.624
— 0.679 in the RDK score. This highlights the
robustness and applicability of our CAMTS across
various text-to-molecule generation tasks.

4.3 Confidence-based ensemble

In Table 5, we report the quantitative results of the
selected molecules from our confidence-based en-
semble strategy (see Eq.(3)). In this experiment,
we construct an ensemble model based on the state-
of-the-art text-to-molecule models, e.g., MolT5
(Edwards et al., 2022), BioT5 (Pei et al., 2023),
and our CAMTS5. During ensemble, we make sure
that the generated molecules are all valid, by ignor-
ing the output from MolT5 when it does not corre-
spond to a valid molecule. We note that this does
not incur an additional computational overhead,
since verifying the validity of the generated out-
put does not require computational cost. Overall,
our ensemble strategy significantly improves the
performance of existing text-to-molecule models,
e.g., 0.430 — 0.472 and 0.196 — 0.213 in the Ex-
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Model | Importance | Exactt MACCSt RDK? Morgant Valid. 1 ] .a———-*“"‘"
MolT5],.. - 0.326 0.847 0797 0720 0.950 B e vl
BioT5| .. - 0.344 0842 0773 0.664 1000 o] e
[CR—-
CAMT5,¢c 0.397 0.868 0.819 0.725 1.000 i 303 /
CAMT5,.. v 0.422 0.882 0.834 0742 1.000 ] Y C e
25 -3 = CAMTS,,,5, Wio Importance (Ours)
Table 8: Quantitative results on the CheBI-20 (Edwards et al., 2021) benchmark. ] e R o o ()
0 0.4 0.8 1.2 1.6

1 denotes that the model is trained with the same training configuration, e.g.,
training dataset, as ours. We mark Importance if the importance-based pre-
training strategy (see Eq. (2)) is applied. We bold the highest score.

act score on the CheBI-20 and PCDes benchmarks,
respectively. In Table 4, we provide some exam-
ples where our CAMTS is not quite confident in its
output, and other models, i.e., MolT5 and BioT5,
generate more confident molecules. In these cases,
the ensemble strategy selects the molecules gener-
ated by MolTS5 or BioT5, which are indeed more
similar to the target molecules. In summary, our
ensemble strategy effectively leverages on-average
underperforming models, i.e., MoIT5 and BioT?3, to
further improve the output of the best-performing
model, i.e., CAMTS, through our carefully de-
signed confidence-based ensemble strategy.

4.4 Text-conditional molecule modification

In this section, we verify the potential of our
CAMTS in the context of modifying molecules
based on additional text prompt conditions. To
achieve molecule modification, we consider a text-
to-molecule model f, where f(x) = m maps
a molecule description x to its corresponding
molecule m. Then, we slightly alter the description
x by appending an additional condition prompt,
such as x' = x + “Make it insoluble in water”.
The resulting modified molecule m’ = f(x') is
expected to (1) maintain structural similarity to the
original molecule m and (2) faithfully capture the
additional conditional text in x’. Although previ-
ous studies have considered the modification of
molecules based on numerical value conditions
(Chen et al., 2021; Zhu et al., 2024b), the explo-
ration of molecule modification conditioned on tex-
tual descriptions remains relatively under-explored
(Zhu et al., 2024a), despite its practical potential.
In Table 6, we consider the descriptions in
the ChEBI-20 test set where MolT5, BioT5, and
CAMTS each generate the same molecule repre-
sented in the Query column. We then generate
molecules with additional condition prompt in ad-
dition to the original description. The results show
that our CAMTS5 demonstrates meaningful mod-

# Train Tokens (B)
Figure 2: Performance varying the
number of pre-training tokens.

ification capabilities by excelling in two key as-
pects: (1) preserving the critical substructures of
the original molecule in the Query column, such as
the N-acyl group, and (2) effectively incorporating
additional prompts, as evidenced by the resulting
LogP values. We hypothesize that this improve-
ment stems from our unique motif-level tokeniza-
tion strategy, which is advantageous for incorporat-
ing motifs closely related to molecular properties.
In Table 7, we compare the performance of each
model based on (i) the MACCS similarity to the
original target molecule, and (ii) ALogP, defined
as the difference in LogP values between the gener-
ated molecule and the target molecule. The results
show that CAMTS5 generates molecules that are
structurally closer to the target molecule, while
also reflecting the intended property condition.

4.5 Ablation studies

In this section, we verify the effectiveness of the
core components of CAMTS, context-aware tok-
enization and importance-based pre-training strat-
egy. As demonstrated in Table 8 and Figure 2, our
CAMTS without importance-based training (i.e.,
the third row of the table) already improves the
previous best-performing models, e.g., MolT5 (Ed-
wards et al., 2022) and BioT5 (Pei et al., 2023). In
other words, this result shows the superiority of our
tokenization compared to the previous atom-wise
tokenizations, such as SMILES (Weininger, 1988)
in MolT5 and SELFIES (Krenn et al., 2020) in
BioT5. Furthermore, CAMTS with the importance-
based pre-training strategy (i.e., the last row of
the table) significantly outperforms the model pre-
trained with the conventional masked language
modeling (Raffel et al., 2020) objective (i.e., the
third row of the table). This result underscores that
guiding the text-to-molecule model to focus more
on key substructures is largely advantageous in
learning the text-conditional molecule distribution.
Overall, these results demonstrate that our care-
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fully designed context-aware tokenization and the
importance-based pre-training strategy play crucial
roles in understanding molecules, and thus improv-
ing text-to-molecule generation performance.

5 Conclusion

We propose CAMTS, a new text-to-molecule
model with chemistry-specialized tokenization.
Specifically, we adapt pre-trained language mod-
els by utilizing motif-level tokenization and
importance-based training strategy to better under-
stand the chemical structural context of molecules.
In addition, we propose a confidence-based en-
semble technique to further improve the quality
of the generated molecules from CAMTS, using
other text-to-molecules. We hope that our work fur-
ther accelerates future research on domain-specific
adaptations of pre-trained language models.

Limitations

In this work, we mainly focus on improving the
token space of text-to-molecule models, which
is a crucial yet under-explored problem in text-
to-molecule models. An interesting future direc-
tion would be applying our tokenization to train
advanced text-to-molecule models, e.g., leverag-
ing pseudo-data (Chen et al., 2024), diffusion-
based generation (Chang and Ye, 2024), and
multi-task language modeling (Christofidellis et al.,
2023), which are originally based on the previous
atom-wise tokenization schemes, e.g., SMILES
(Weininger, 1988). We believe that those works
will further benefit from our carefully designed
context-aware tokenization.
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Appendix: Training Text-to-Molecule Models
with Context-Aware Tokenization

A Context-aware tokenization details

Height:1

Height:0 Y oths

Motif Tree

Linearization H
(thourgh DFS order) i

Figure 3: Details of our proposed tokenization scheme in CAMTS5: (1) atoms forming a ring structure, (2) atoms
connected by a non-single bond, and (3) an atom not associated with (1) and (2) is considered as a single token.

<0£h> i<1s’c> <0th>, <0th> NH
N
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Figure 4: Visualizations of some context-aware motif tokens in CAMTS.

In Figure 3, we visualize the details of our context-aware tokenization scheme. For each motif-level
token M, there may exist several v € V; where (u,v) € £ for some u € V, i.e., a single motif which is
connected to several motifs in 7 (see the second token of CAMTS in Figure 1 for an example). Therefore,
we additionally store the order of fragmented bonds when traversing the motif tree. In the fragmented
bonds in height 0, the marked number denotes the order of bonds that are connected to children in the
linearized token sequence. In the fragmented bonds in height more than 0, the bond marked with zero is
connected to its parent. Other bonds are connected to its children by their marked order, starting with 1.
We also store the stereo information, e.g., tetrahedral or E-Z, in each token. We utilize this order when
converting the sequence of tokens to a molecule. For a given sequence of tokens, we convert the sequence
to a molecule by the exactly inverse consequences of the construction of the token sequences. If there
exist unvisited fragmented bonds, we simply ignore them, i.e., we consider them to be connected to a
hydrogen atom, not to other motif tokens. The number of motif tokens introduced in our CAMTS is
24,735 in the ChEBI-20 and PCDes benchmarks.

We visualize some of our motif tokens in Figure 4. We note that our choice of tokenization strategy
is largely different from previous molecule representations. For example, t-SMILES (Wu et al., 2024)
constructs a full binary tree to construct a tree of motifs. However, such construction requires additional
grammar representations, e.g., dummy nodes, to ensure the full binary trees. In contrast, our representation
does not impose such restrictions, e.g., our motif token can have several children and thus does not require
any grammar tokens.
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B Experimental details

Details on token importance. We simply use the number of atoms in each token as the importance value

A(M;) = Softmax(log(A; + 1)),

where A; denotes the number of atoms in each motif token. For special tokens, e.g., mask tokens, the
atom count is set to 0.

Details on pre-training. For each text-to-molecule model, i.e., MolIT5T, BioT5t, and CAMTS5, we use a
general text corpus (Colossal Clean Crawled Corpus (Raffel et al., 2020)) and a molecule corpus (ZINC-15
(Sterling and Irwin, 2015)). Specifically, each model is pre-trained on 1.6B of molecule-related tokens.
Training is conducted with a batch size of 16 per GPU across 4 GPUs, with each batch containing an
equal mix of text and molecule data. The training runs for 100k steps. We use AdamW with RMS scaling
as the optimizer, and apply cosine annealing for the learning rate schedule. Gradients are clipped at 30.0.
The base learning rate is 2e-3, and the number of warm-up steps is 1000. The maximum input length for
pre-training is 512. Except for our CAMTS, the pre-training loss is the conventional masked language
modeling loss from Raffel et al. (2020).>

Details on fine-tuning. We fine-tune each model with description-molecule data pairs in the ChEBI-20
(Edwards et al., 2021) and the PCDes (Zeng et al., 2022) benchmarks. Additionally, we utilize 34k
text-molecule pairs extracted from PubChem (Wang et al., 2009), ensuring that no molecules overlap with
those in the benchmarks. Each model is trained based on the objective in Eq. (1) with the corresponding
molecule token representations. We fine-tune the models in 50k steps with a batch size of 48, applying
cosine annealing and gradient clipping at 30.0. We select the best model by varying the learning rate
within [1e-3, 2e-3].

Computing resources. In our experiments, we use Intel(R) Xeon(R) Gold 6326Y CPU @ 2.90GHz. We
use A6000 48GB GPUs for pre-training and a single NVIDIA GeForce RTX 3090 GPU for fine-tuning.

30ur importance-based pre-training strategy is not applicable for models with atom-level tokenization, since their tokens
represent a single atom.
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C Dataset details

PubChem

3-[3-[(2-bromo-4-
chlorophenoxy)methyl]-4-
methoxyphenyl]-N-[(1,3-
dimethyl-4-pyrazolyl)methyl]-2-
propenamide is a member of
cinnamamides and a secondary
carboxamide.

N-acetyl-L-phenylalanyl-L-
diiodotyrosine is a dipeptide
composed of N-acetyl-L-
phenylalanine and 3,5-diiodo-L-
tyrosine joined together by a
peptide linkage. It is a synthetic
substrate for pepsin. It is
functionally related...

Disuccinimidyl suberate is a N-
hydroxysuccinimide ester
resulting from the formal
condensation of the two
carboxy groups of suberic acid
with the hydroxy group of 1-
hydroxypyrrolidine-2,5-dione. It
is a noncleavable and...

© 0,
0 w
0
Q -
. i

(10-Acetyloxy-8,8-dimethyl-2-
ox0-9,10-dihydropyranol2,3-
flchromen-9-yl) 3-methylbut-2-
enoate is a member of
coumarins.

Table 9: Visualizations of our description-molecule pairs collected from Pubchem database (Wang et al., 2009).

ChEBI-20

PCDes

The molecule is an
indolylmethylglucosinolate that
is the conjugate base of 4-
methoxyglucobrassicin,
obtained by deprotonation of

It is a member of pyrimidines, an
organofluorine acaricide, a
methyl ester, an enoate ester
and an enol ether. It has a role

the sulfo group. It is a conjugate \ =0y o° as a mitochondrial cytochrome-
base of a 4- V4 &N bc1 complex inhibitor.

methoxyglucobrassicin.

The molecule is an amino
trisaccharide comprising of
three 2-amino-2-deoxy-D-
glucopyranose units joined by
beta-(1->4) linkages. It has a
role as a marine metabolite and
a eukaryotic metabolite.

It is a spironolactone derivative
and a potent aldosterone
antagonist on mineralocorticoid
biosynthesis with diuretic activity
. As an aldosterone antagonist, it
may inhibit sodium resorption in
the collecting duct and may
eventually lead to diuresis.

The molecule is a steroid
glucosiduronic acid. It has a role
as a human metabolite and a
mouse metabolite. It derives
from a 3alpha-hydroxy-5beta-
androstan-17-one.

It is an L-alanine derivative
consisting of an N-acetyl-D-
muramoy! group attached to L-
alanine via an amide linkage. It is
a glyco-amino acid and a L-
alanine derivative. Itis a
conjugate acid of a N-acetyl-D-
muramoyl-L-alaninate.

Table 10: Visualizations of description-molecule pairs in the ChEBI-20 (Edwards et al., 2021) and PCDes (Zeng
et al., 2022) datasets.

The ChEBI-20 dataset consists of 33,008 description-molecule pairs, split into 26,407/3,301/3,300
pairs for train/validation/test (Pei et al., 2023). The PCDes dataset contains more challenging 15,000
description-molecule pairs, split into 10,500/1,500/3,000 pairs for train/validation/test (Zeng et al., 2022).
Both are derived from qualified description-molecule pairs in the open-sourced PubChem database (Wang
et al., 2009), where each text description describes the corresponding molecule’s structure and chemical
properties. In Table 9, we provide some visualizations of our curated 34k text-molecule pairs, which
are introduced in Section 4.1. In Table 10, we visualize some description-molecule pairs of our main
benchmark dataset, i.e., the ChEBI-20 (Edwards et al., 2021) and PCDes (Zeng et al., 2022) benchmarks.
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D Additional experiments and analyses

D.1 Qualitative results

Description \ MolT5 BioT5 CAMTS5 (Ours)

The molecule is
conjugate base of
2,3-dihydrobio-
chanin A arising
from selective

OH

0

q
o
b \
O/\Q 3 o
HO'
o

deprotonation... RDK: 0.29 RDK: 0.57

It is conjugate

base of L-histidinol I o I, .

phosphate having B AN LN A O 1
. . S H § % . o*

an anionic phosp- b & 4 AN \/\!/

hate and a catoinic

amino group... RDK: 0.37 RDK: 0.50

RDK: 1.00

Table 11: Qualitative results of the text-to-molecule generation task in the CheBI-20 (Edwards et al., 2021)
benchmark (the first row) and PCDes (Zeng et al., 2022) benchmark (the second row). For the best-performing
models of MolT5, BioT5, and CAMTS, we visualize the generated molecules with respect to the given description.
We report the RDK score (Schneider et al., 2015) between the generated and ground truth molecules below each

visualization. We set the highest score in bold.

In Table 11, we provide some visualizations of the generated molecules from each text-to-molecule
model. From these visualizations, we observe that our CAMTS effectively generates molecules that contain
crucial motifs of the target molecules, e.g., imidazole in the second row, which further demonstrates the

importance of our motif-level tokenization scheme in CAMTS.

D.2 Results based on T5-large models

Model | Exact? MACCST RDK? Morgan? Validity 1
MolT5/, .. 0.351 0872 0820  0.746 0.963
BioTslTarge 0.375 0.855 0.790 0.688 1.000
CAMT 5}y (Ours) | 0.430 0.885 0.840 0.749 1.000

Table 12: Quantitative results on the ChEBI-20 (Edwards et al., 2021) benchmark. t denotes that the model is
trained with the same training configuration, e.g., training dataset, as ours. We highlight the best score in bold.

In Table 12, we report the results of the text-to-molecule models derived from the T5-large (Raffel
et al., 2020) backbone model. Our CAMT5 e outperforms the previous state-of-the-art text-to-molecule

models, improving the Exact score by 0.375 — 0.430.
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D.3 Performance varying the size of molecules

# Atoms | Model | Exact? MACCS? RDK?1 Morgan?t Validity
MolT5] ., 0.365 0.848 0.789 0.708 0.964
(0,30] | BioT5 ] 0.346 0.830 0.760 0.650 1.000
CAMT5p55 | 0.439 0.861 0.808 0.717 1.000
MolT5] 0.278 0.873 0.840 0.763 0.939
(30,70] | BioT5] 0.341 0.884 0.829 0.721 1.000
CAMT5p,se | 0.397 0.913 0.870 0.775 1.000
MolT5/, . 0.194 0.826 0.811 0.749 0.854
(70,00) | BioT5] 0.291 0.924 0.887 0.761 1.000
CAMT5p56 | 0.369 0.951 0.931 0.843 1.000

Table 13: Performance on ChEBI-20 (Edwards et al., 2021) grouped by number of atoms in molecules. | denotes
that the model is trained with the same training configuration, e.g., training dataset, as ours.

In Table 13, we analyze the generation performance on the ChEBI-20 benchmark grouped by the
number of atoms in molecules. Our tokenization consistently outperforms other methods when working
with both small and large molecules. This is likely due to the fact that our tokenization successfully
incorporates both local and global molecular information.

D.4 Performance on atom-level descriptions

Description | Model ‘ Exact1 MACCST RDK {1 Morgan?1 Validity T
MolTSlT)ase 0.244 0.781 0.677 0.589 0.944
‘chlor® BioTSlase 0.216 0.738 0.638 0.524 1.000
CAMT5p, | 0.258 0.793 0.702 0.603 1.000
MolTStT)ase 0.223 0.790 0.709 0.610 0.961
‘fluoro’ BioTSLlse 0.204 0.738 0.644 0.523 1.000
CAMT5p, | 0.262 0.816 0.715 0.622 1.000
MolTSlT)ase 0.371 0911 0.872 0.824 0.976
‘phospho’ BioTSlT)ase 0.510 0.910 0.854 0.799 1.000
CAMT5p, | 0.614 0.952 0.916 0.865 1.000
MolTSlase 0.387 0.856 0.779 0.707 0.955
‘sulf’ BioTStT)ase 0.300 0.831 0.744 0.632 1.000
CAMTS5,, | 0.424 0.882 0.825 0.740 1.000

Table 14: Performance on ChEBI-20 (Edwards et al., 2021) containing specific atom-level descriptions. } denotes
that the model is trained with the same training configuration, e.g., training dataset, as ours.

In Table 14, we evaluate the generation performance on ChEBI-20 that include atom-level descriptions.

CAMTS consistently outperforms MolT5 and BioT5 across various atom-level descriptions such as ‘chlor’,
“fluoro’, ‘phospho’, and ‘sulf’, demonstrating its robustness in handling atom-specific information.
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D.5 Comparison with alternative tokenization strategies

Tokenization ‘ Exactt MACCST RDK{ Morgant Validity 1
t-SMILES (Wu et al., 2024) | 0.025 0.700 0.636 0.475 0.997
BRICS (Degen et al., 2008) | 0.216 0.808 0.765 0.633 1.000
Ours ‘ 0.391 0.874 0.827 0.727 1.000

Table 15: Comparison of tokenization strategies on ChEBI-20 (Edwards et al., 2021) using the models derived from
T5-small (Raffel et al., 2020).

In Table 15, we compare our tokenization strategy with previously proposed motif-aware tokenizations
i.e, t-SMILES (Wu et al., 2024) and BRICS (Degen et al., 2008), following their official implementations.
The result shows that our tokenization strategy achieves superior performance across all metrics.

D.6 Analysis on linearization algorithms in tokenization

Algorithm ‘ Exact MACCS1T RDK1T Morgan?1 Validity T
Breadth-First Search (BFS) ‘ 0.368 0.858 0.808 0.707 1.000
Depth-First Search (DFS) ‘ 0.391 0.874 0.827 0.727 1.000

Table 16: Ablation of linearization algorithms in our tokenization strategy on ChEBI-20 (Edwards et al., 2021)
using the models derived from T5-small (Raffel et al., 2020).

In Table 16, we compare the linearization algorithms used in our tokenization strategy (see Figure 4).
We adopt depth-first search (DFS) as our traversal strategy, which is a common linearization algorithm
in molecular serialization such as SMILES (Weininger, 1988). To verify whether this choice is indeed
effective, we compare DFS with breadth-first search (BFS), another popular traversal method. The result
shows that DFS consistently outperforms BES across all evaluation metrics. We think that the nature of
DEFS traversal, which sequentially explores long, connected motif chains, facilitates the model’s ability to
capture the underlying structural patterns of molecules.

D.7 Ablation on token importance

Importance ‘ Exactt MACCST RDK{ Morgan? Validity 1
Frequency of atoms | 0.390 0.867 0.816 0.719 1.000
Frequency of motifs | 0.281 0.811 0.758 0.638 1.000
Number of atoms ‘ 0.391 0.874 0.827 0.727 1.000

Table 17: Ablation on the training objective in importance-based training on ChEBI-20 (Edwards et al., 2021) using
the models derived from T5-small (Raffel et al., 2020).

In Table 17, we compare the results varying the definition of imporatnce in Eq. (2), i.e., frequency
of atoms and frequency of motifs. Specifically, frequency-based importance is defined as the inverse
frequency of atoms or motifs in the training data prioritizing rare components. We find that our original
choice of importance, i.e., the number of atoms, is the most effective among the candidates.
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D.8 Ensemble performance analysis

MolT5 BioT5 CAMTS (Ours) ‘ Exactt MACCST RDK1 Morgan? Validity 1

v v 0.443 0.889 0.841 0.760 1.000
v 4 0.455 0.891 0.849 0.768 1.000

v v 0.462 0.902 0.857 0.772 1.000
v v v 0.472 0.902 0.860 0.781 1.000

Table 18: Performance of ensemble with different combinations of models on ChEBI-20 (Edwards et al., 2021). We
report the results based on the best-performing model of MolT5, BioT5, CAMTS in Table 2, respectively.

In Table 18, we compare the ensemble result based on different combinations of models. Intriguingly,
the result shows that even the model with inferior performance, e.g., MolTS5, is useful when it is ensembled

with other models, i.e., the performance is improved by 0.462 — 0.472.

D.9 Data-efficient molecular generation

Importance ‘ Active. T FCD 1 NSPDK 1 Valid. T Unique.? Novelty T
MolT5 (Edwards et al., 2022) 11.2 18.7 0.020 70.4 87.2 100
BioT5 (Pei et al., 2023) 11.6 17.0 0.019 100 96.8 100
CAMTS5 (Ours) ‘ 12.0 16.3 0.018 100 96.4 100

Table 19: Results on data-efficient generation (Kim et al., 2024) on the HIV dataset (Wu et al., 2018).

In Table 19, we compare the results on data-efficient molecular generation, which an important
application of text-to-molecule models. CAMTS outperforms other text-to-molecule models, verifying

the potential of CAMTS5 to other molecule-related applications.
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D.10 Statistical analysis

Model ‘ Exact 1 MACCS 1 RDK 1 Morgan 1  Validity 1
MolTS5 (Edwards et al., 2021) | 0.278 0009 0.836 +0006 0.779 £0.005 0.696 +0005 0.946 + 0.004
BioT5 (Pei et al., 2023) 0.324 £o0010 0.841 +0002 0.771 £0003 0.658 +0.004 1.0 + 00
CAMTS (Ours) ‘ 0.388 + 0003 0.871 0003 0.823 £0.004 0.723 +0.003 1.0 + 00

Table 20: Comparison of the mean and standard deviation values based on the text-to-molecule models derived
from T5-small (Raffel et al., 2020). The results are calculated over 3 runs with different seeds.

In Table 20, we report the mean and standard deviation values based on 3 independently trained
text-to-molecule models. CAMTS5 shows superior performance across the evaluation metrics, consistently
achieving the higher average scores compared to the baselines.

D.11 Computational cost

Cost ‘ Fine-tuning cost (hrs) Memory (GB) Inference cost (sec)
MolTS5 (Edwards et al., 2021) 20 3.95 0.65
BioT5 (Pei et al., 2023) 19 3.95 0.61
CAMTS (Ours) | 15 2.79 0.30

Table 21: Comparison of computational costs among the models derived from T5-base (Raffel et al., 2020).

In Table 21, we provide the computational cost, including training costs, memory requirements, and
inference costs. By treating multiple atoms as a single motif token, CAMTS3 significantly reduces the
token sequence length, leading to improved training and inference efficiency.

E Impact statement

This work will accelerate improvements in the field of text-to-molecule models, which will affect various
applications such as drug discovery and material design. However, malicious usage of text-to-molecule
models (including our models) may lead to a potential threat of generating harmful chemicals. We believe
that safeguarding these models is an important future research direction, which is also widely studied
in various domains (Achiam et al., 2023). We used Al assistants in coding and draft refinement, e.g.,
grammar check.
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