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Abstract

Translating cultural content poses challenges
for machine translation systems due to the
differences in conceptualizations between cul-
tures, where language alone may fail to con-
vey sufficient context to capture region-specific
meanings. In this work, we investigate whether
images can act as cultural context in multi-
modal translation. We introduce CAMMT,
a human-curated benchmark of over 5,800
triples of images along with parallel captions
in English and regional languages. Using this
dataset, we evaluate five Vision Language Mod-
els (VLMs) in text-only and text+image set-
tings. Through automatic and human eval-
uations, we find that visual context gener-
ally improves translation quality, especially
in handling Culturally-Specific Items (CSIs),
disambiguation, and correct gender marking.
By releasing CAMMT, our objective is to
support broader efforts to build and evaluate
multimodal translation systems that are better
aligned with cultural nuance and regional vari-
ations.

1 Introduction

Translation brings cultures into contact. It usually
involves deciding how much foreignness to keep
in the resulting translation and invariably involves
blending cultures to some extent (Aixela, 1999).
As pointed out by Hershcovich et al. (2022), part of
the difficulty in deciding the right level of culture
blending during translation arises from the different
conceptualizations that each culture holds. Transla-
tors must, therefore, choose suitable strategies for
adapting vocabulary as well as deciding whether to
conserve or substitute foreign elements. Conform-
ing the source text to the target culture by substitut-
ing unknown elements with familiar ones can ease
comprehension, yet it simultaneously erases traces
of the original culture (Venuti, 2003). Conversely,
ignoring an adequate vocabulary choice that ac-
counts for regional variation in the target language
risks misinterpretation, as lexical choice directly
shapes how readers understand a text (Szymańska,
2017).

✝ Equal Contribution
https://huggingface.co/datasets/villacu/cammt

Figure 1: Examples of CAMMT dataset
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Text-only machine translation inherits this
dilemma with limited contextual knowledge to
ground these translation decisions. However, im-
ages can supply that missing extra-linguistic in-
formation; visual reference may act as a cultural
proxy, revealing a region’s set of values (Yadav
et al., 2025) as well as social practices and ma-
terial culture, such as clothing, architecture, and
food. With photography being thought of as a form
of translation from reality into images (Gagliano,
2008), we hypothesize that images can capture ad-
ditional information that language alone may strug-
gle to encode.

Multimodal Machine Translation (MMT) (Spe-
cia et al., 2016) attempts to embed this information
by grounding source sentences with images. CoM-
MuTe (Futeral et al., 2022) provides an evaluation
framework for MMT centered on lexical disam-
biguation, but does not address broader cultural
nuances, leaving questions about how visuals in-
fluence translation in culturally grounded settings
largely unanswered.

In this work, we present CAMMT ( Culturally-
Aware Multimodal Machine Translation Bench-
mark), the first human-curated MMT corpus with
triples across 19 languages of culture-related cap-
tions spanning 23 regions worldwide. Addition-
ally, we study the impact of visual grounding for
culture-aware multimodal machine translation in
Vision–Language Models (VLMs).

To frame our study, we pose the following re-
search questions:

• RQ1 : How does visual grounding impact
translation quality and native speakers’ prefer-
ences across different languages in culturally-
relevant settings?

• RQ2 : What reasons drive preferences be-
tween text-only and multimodal translations?

• RQ3 : How do VLMs perform in MT com-
pared to each other and to state-of-the-art ma-
chine translation models?

• RQ4 : Which translation strategies do native
speakers prefer in the case of CSIs?

Our contributions are as follows:

• Culturally-Specific MMT Dataset: We
present CAMMT, a human-curated corpus
of 5, 817 image-captions triples, where the
captions are collected for both English and

regional languages. For triples containing
CSIs, we also provide a separate split with
1,550 samples, where each includes two En-
glish translations: one conserving the term
and another substituting it.

• Insights into visual grounding for culture-
aware translation: We evaluate five VLMs
on CAMMT to assess the impact of visual
grounding on human preferences and perfor-
mance in automatic metrics. Through these
experiments, we find that visual context im-
proves translation outputs. Native speakers
tend to prefer multimodal translations because
they better preserve CSIs, resolve lexical am-
biguities, and reflect proper gender marking,
highlighting aspects of translation quality ig-
nored by standard evaluation metrics.

2 Related Work

In translation studies, CSIs (Aixela, 1999) refer
to words or concepts that lack direct equivalents
or carry different connotations in the target cul-
ture. These often arise when cultural references
embedded in the source language do not directly
exist or are understood differently in the target lan-
guage. When translating CSIs, translators typically
adopt one of two strategies: substitution, which
adapts the foreign element into a culturally familiar
counterpart to reduce its strangeness; or conserva-
tion, which preserves the original cultural reference,
maintaining the source text’s foreignness and ex-
posing readers to its original context (Aixela, 1999;
Venuti, 2003).

Efforts to incorporate cultural awareness into
machine translation have been addressed in spe-
cific domains such as cultural adaptation in recipe
translation (Cao et al., 2024; Zhang et al., 2024).
Yao et al. (2023) generalized beyond this scope
by constructing an evaluation dataset by automati-
cally extracting CSIs from Wikipedia to study how
LLMs and MT systems handle cultural references.
However, the dataset is restricted to a smaller num-
ber of languages, automatically generated without
input from regional speakers, and does not consider
the effect of visual context on translation decisions.

Recent benchmarks such as CVQA (Romero
et al., 2024), CulturalVQA (Nayak et al., 2024),
ALM-bench (Vayani et al., 2025), and FoodieQA
(Li et al., 2024) demonstrate growing progress in
regional image understanding within VLMs. How-
ever, none of these works study how imagery can
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Figure 2: Examples where the text+image translation was marked as preferred over the text-only setting. Image
(a) is generated by Gemma3 27B, while (b) and (c) are from Qwen2.5-VL 32B. Examples (a) and (c) illustrate
translations preferred because of CSI-preservation, while (c) was preferred as the correct gender of “athlete” was
used when translating from English to Arabic (a gender-marking language).

affect translation across cultures. Together, these
studies motivate our evaluation on the multimodal
translation ability of VLMs.

3 CAMMT Dataset

CVQA (Romero et al., 2024) is a visual question
answering dataset comprising more than 10,000
questions across 39 country-language pairs. The
questions within CVQA are formulated in both re-
gional languages and English, classified into 10 dis-
tinct categories. To develop CAMMT, we utilized
CVQA’s question-answer pairs and transformed
them into declarative statements using Gemini 2.0
Flash (Team et al., 2024) to generate parallel cap-
tion pairs in English and regional languages.

No images were used in this process to ensure
that the phrasing of these seed captions (later re-
fined by annotators) was not influenced by them.
The simplicity of the statements, combined with
human curation, further reduced the risk of any bias
from the language model.

Human Annotations To ensure the correctness
of the generated caption pairs, we involved native
speakers (annotators) for each of the languages that
participated in the original data curation and are co-
authors of this paper. The annotators were asked
to complete three tasks: (1) evaluate and ensure
the grammatical correctness and parallelism of the
generated pairs in English and regional language by
correcting captions when needed, (2) ensure CSIs

in regional language captions are preserved and (3)
categorize each of the pairs into three categories:
(a) Not culturally relevant sentences, (b) culturally
relevant, but do not contain any CSI (Non-CSI) or
(c) contain CSI.

We borrowed the definition of CSIs provided to
annotators from Aixela (1999). To achieve a bet-
ter coverage of translation strategies for CSIs (as
previously discussed in Section 2), we asked them
to further categorize sentence pairs marked as con-
taining CSIs into (i) CSI with possible translation -
captions containing CSIs that have culturally equiv-
alent terms that can convey an equivalent meaning
when translated into English and (ii) CSI forced
translation - captions containing CSIs that do not
have any equivalent translation in English. For
each sentence containing CSIs, we asked the anno-
tators to provide both conserved (retaining CSIs)
and substituted (using familiar equivalents) English
translations, then select their preferred version as
native speakers.

For example, in the possible translation category,
the Mexican term tianguis can be translated as flea
market, as in: “The name for this type of Mexican
informal market is tianguis” (conserved) or “The
name for this type of Mexican informal market
is flea market” (substituted). In contrast, a forced
translation case is: “The name of the Egyptian food
in the glass plate in the picture is Hawawshi” (con-
served) and “The name of the Egyptian food in
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the glass plate in the picture is minced meat sand-
wich” (substituted), where the original term lacks
an exact English equivalent. For forced translations,
they provide the closest possible English approx-
imation. We provide the annotation guidelines in
Appendix A.8.

Dataset Statistics In total, CAMMT comprises
23 regions with 19 different languages, with a total
of 5,817 triples with additional 1,550 with con-
served and substituted CSIs for targeted analysis.
We present representative samples in Figure 1, and
report the number of triples per language included
in the corpus in Appendix A.1.

4 VLMs for Multimodal Machine
Translation

This section explains our motivation for using
VLMs as off-the-shelf MMT systems and our eval-
uation framework. We first present the selected
models and validate their effectiveness for the task,
followed by a description of our evaluation setup,
which measures translation quality through human
and automatic assessments in both text-only and
text+image conditions in CAMMT.

As discussed in Section 2, task-specific MMT
models are limited by their training data, often
lacking coverage for many languages. On the
other hand, LLMs have demonstrated strong per-
formance in machine translation across multiple
language pairs (Hendy et al., 2023; Zhu et al.,
2024). As the paradigm shifts from text-only to
multimodal LLMs which can process both text
and images (VLMs), we explore their potential for
multimodal translation, particularly in culturally
grounded scenarios.

Model Setting De Fr Ru

mBART+MT T 25.9 38.2
VGAMT T+I 29.3 (+3.4) 32.2 (-2.3)
NLLB-600M T 36.2 39 19.4
NLLB-3.3B T 40.8 41.4 23.1
Gemma3 27B T 39.1 41.7 23.2
Gemma3 27B T+I 44.9 (+5.8) 49.6 (+7.9) 31.7 (+8.4)
Qwen2.5 VL 32B T 32.8 33.1 21.4
Qwen2.5 VL 32B T+I 37.0 (+4.2) 41.7 (+8.6) 24.1 (+2.7)
Gemini 2.0 Flash T 42.6 43.1 26.8
Gemini 2.0 Flash T+I 49.9 (+7.3) 55.2 (+12.1) 32.3 (+5.5)

Table 1: BLEU scores reported on CoMMuTe for text-
only (T) and text+image (T+I) settings. The scores from
mBART+MT and VGAMT (an MMT system based on
BART) are as reported by Futeral et al. (2022), who
does not evaluate Russian.

To initially assess the ability of VLMs in ground-

ing translations using images, we conduct a control
experiment on the CoMMuTe dataset (Futeral et al.,
2022), comparing them against strong task-specific
MT and MMT baselines. CoMMuTe consists of
English sentences with ambiguous terms paired
with two images that lead to different translations
(e.g., mole may refer to an animal or a skin mark).
Thus, improvements when images are provided
indicate that the model is effectively leveraging
visual context to disambiguate the source sentence.

In the text-only setting, models are prompted to
translate from English to the target language. In the
text+image setting, they are additionally provided
with an image and prompted to use it as context
for the translation (see Appendix A.5 for prompt
details). Importantly, no further instructions are
given regarding the nature of the disambiguation
task. We evaluate five VLMs: Gemma 3 27B and
12B (Team et al., 2025), Qwen 2.5-VL 32B and
8B (Bai et al., 2025), and Gemini 2.0 Flash (Team
et al., 2024).

Results presented in Table 1 demonstrate con-
sistent and significant improvements in the perfor-
mance of VLMs in the text+image over text-only
setting. Moreover, the BLEU scores achieved by
VLMs match or surpass those of NLLB-600M and
NLLB-3.3B, strong baselines, as well as dedicated
MMT systems. These results confirm that VLMs
can indeed leverage visual context to guide trans-
lation decisions. Based on this validation, we con-
tinue with VLMs as our testbeds to probe how
visual grounding influences translation choices in
our culturally relevant dataset.

We focus on the Gemini, Gemma, and Qwen
families, covering closed-weight and open-weight
models at different scales. For completeness, we
also report automatic evaluation results for Aya-
Vision (Cohere, 2025) in Appendix A.3, consistent
with the main models’ findings.

All models are evaluated in both text-only and
text+image setups. In the text+image setting, we
do not explicitly instruct models to use images as a
cultural reference, only as additional context, allow-
ing us to observe their default effect in translation.
To evaluate the impact of visual input on translation
quality, we conduct both human preference eval-
uation and automatic evaluation using standard
machine translation metrics and the curated pairs
as ground truth.

Human Preference Evaluation Setup For 21
of the CAMMT regions, native speakers are pre-
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Figure 3: Win rates in human preference evaluation of text+image (T+I) translations over text-only (T) across
languages and models. Each bar represents the win rate above chance (i.e., over 50%) for cases where native
speakers expressed a preference between the two translation conditions. The left plot corresponds to the X → En
direction, and the right to En → X .

sented with anonymized translations from three
models—Qwen2.5-VL 32B, Gemma 3 27B, and
Gemini 2.0 Flash—generated under both text-only
and text+image settings. For each instance, they
select the preferred translation and specify the rea-
son for their preference from a predefined set: “CSI
is preserved,” “Correct gender,” “Disambiguates
word,” or “Regionally appropriate phrasing”. We
identified this set of reasons based on an analysis
carried out in preliminary experiments on a sub-
set of languages. Annotators are also allowed to
specify other reasons if none of the previous rea-
sons explain the preference. In Appendix A.9, we
present the instructions provided for this evalua-
tion.

Automatic Evaluation Setup We automatically
evaluate translation quality using BLEU (Pap-
ineni et al., 2002), chrF++ (Popović, 2017), and
BERTScore (F1) (Zhang et al., 2019). BLEU and
chrF++ are calculated using SacreBLEU (Post,
2018a).

5 Evaluation

Building on our experimental setup, this section
presents the results of our multimodal translation
evaluations.

5.1 Effect of Visual Grounding
We begin by assessing translation quality and the
effect of visual grounding using both human pref-
erence and automatic evaluations.

Human Preferences Evaluation Figure 3
shows native speaker preferences across 21
languages, comparing translations from text-only
and text+image settings. We report win rates
in instances where a preference was expressed
between the two. Overall, translations with visual
context are preferred above chance (50%) in
the majority of language–model combinations.
Specifically, in the X → En direction, multimodal
outputs are favored in 43 out of 63 experiments.
A similar trend holds in the En → X direction,
where text+image translations are preferred in 42
out of 63 cases. We observe that the text-only
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X → En En → X

Model Setting chrF++ chrF++

NLLB-600M T 56.9 50.3
NLLB-3.3B T 58.9 54.9

Gemini 2.0 T 68.1 60.3
Gemini 2.0 T+I 68.7 (+0.7) 61.0 (+0.7)

Gemma3 12B T 64.0 54.5
Gemma3 12B T+I 64.7 (+0.7) 54.4 (-0.1)
Gemma3 27B T 64.9 57.6
Gemma3 27B T+I 66.0 (+1.1) 57.5 (-0.1)

Qwen2.5 VL 7B T 56.0 43.5
Qwen2.5 VL 7B T+I 58.50 (+2.5) 44.0 (+0.5)
Qwen2.5 VL 32B T 58.7 47.4
Qwen2.5 VL 32B T+I 61.2 (+2.5) 47.5 (+0.1)

Table 2: chrF++ scores averaged across languages for
text-only (T) vs multimodal (T+I) settings in both direc-
tions (X → En and En → X). The difference (T+I -
T) is shown in parentheses.

output was preferred in 37 out of the 126 total
comparisons (29.4%), while 4 out of 126 show a tie
in preferences between modalities. These results
suggest that visual grounding generally leads to
translations that are more aligned with native
speaker preferences, regardless of translation
direction.

Automatic Evaluation We base our main anal-
yses on chrF++ as it has shown higher correla-
tion with human judgments over BLEU (Popović,
2017; Kocmi et al., 2021). Figure 4 reports chrF++
for 23 regions across 19 language pairs. In the
X → En direction, most regions show improve-
ments with image-grounded translations, with a
few exceptions (e.g., Japan, Indonesia, and China).
In the En → X direction, the benefit of multi-
modality is less consistent: while Gemini demon-
strates clear gains, other models show mixed trends,
with no systematic advantage or degradation from
adding images. We present the results on BLEU
and BertScore in Appendix A.4, which reflect a
similar pattern. Additionally, in Appendix A.6 we
report average chrF++ scores per CVQA-category.

In Table 2, we report the average chrF++ scores
across languages (for BLEU and BERT scores, re-
fer to Appendix A.4). Notably, the addition of
image context consistently improves performance
across most VLMs, with gains most pronounced
in the X → En direction. Both evaluations sup-
port the conclusion that visual grounding improves
translation quality for most languages, particularly
when translating from regional languages to En-
glish. For the reverse direction, benefits are model-

specific: native speakers still tend to prefer image-
grounded translations from open-weight models,
but this is not always reflected in automatic metrics.

To ensure that the observed gains are due to the
images’ content and not the fact that we are simply
providing an image, we carry out a control exper-
iment. We replicate the evaluation of this section
using randomly sampled images (i.e., images from
other items in CAMMT) in the T+I setting. We
find that this consistently hurts performance, with
chrF++ scores dropping across most languages and
models (see Figure 5). Therefore, these results con-
firm that the observed gains are due to the actual
image content rather than simply providing any im-
age. At the same time, they show that unrelated
images can be harmful to multimodal translation.

5.2 Reasons Behind Preferences
To better understand how visual input influences
translation decisions, we analyze the reasons pro-
vided by annotators during the human preference
evaluation. Table 3 reports the number of prefer-
ences for text-only (T) versus text+image (T+I)
translations, broken down by reason.

Across both directions, the primary factors driv-
ing preferences toward multimodal translation in-
clude CSI preservation, correct gender, and lexi-
cal disambiguation. These effects are more pro-
nounced in the X → En direction, where VLMs
appear better at resolving gender and lexical am-
biguities when images are available. The most
common reason for preference is more regionally
appropriate phrasing. While the T+I setting is still
generally favored here, the margin over text-only
is smaller, suggesting that visual input has a more
modest impact on phrasing compared to other fac-
tors.

In preferences explained by annotators with
other reasons, which include reasons such as gram-
matical correctness, plural forms, and capitaliza-
tion, the difference between T and T+I is also min-
imal, suggesting that images have a greater impact
in resolving cultural or semantic ambiguity than in
improving general linguistic quality.

We also examine native speakers’ preferences in
the conserved and substituted splits of CAMMT
(EnCons → X and EnSub → X), where the CSI
in the source sentence has either been preserved or
substituted. In these preferences (labeled with the
CSI-preserved reason), speakers more frequently
prefer translations from the T+I setting, implying
that visual input helps models recover or preserve
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60.5/58.8 52.7/50.5 55.0/52.9 32.0/24.4 38.0/30.9
73.1/73.5 67.2/68.6 72.0/70.6 63.9/61.1 70.4/68.9
62.1/62.6 62.4/61.7 62.2/62.8 59.8/57.7 61.0/59.1
69.3/68.7 67.4/66.5 68.8/66.9 59.5/59.2 66.1/63.1
72.2/70.9 70.8/70.2 70.3/70.0 70.5/70.1 71.3/71.7
79.8/80.6 78.2/78.7 77.9/78.6 77.5/77.7 77.3/77.3
78.6/77.4 77.5/77.0 77.7/77.3 75.6/75.9 76.0/75.9
79.8/78.1 78.0/77.4 78.2/76.8 77.2/75.3 78.5/78.1
65.4/64.5 64.1/63.2 64.5/64.2 59.5/56.6 61.5/58.1
64.6/60.3 47.7/42.7 51.0/44.3 26.2/21.4 28.9/23.4
70.9/71.4 66.5/70.6 68.2/70.0 66.6/67.3 68.1/69.1
59.7/61.4 56.7/57.7 57.0/58.6 55.1/54.7 54.3/55.7
64.2/65.2 63.5/64.3 65.0/65.3 62.7/61.8 66.7/65.4
64.4/64.2 61.9/58.7 63.0/61.4 51.6/47.4 56.3/52.9
68.1/66.3 63.8/65.1 65.5/64.4 63.7/60.0 65.8/63.5
63.7/61.3 42.0/37.7 49.6/41.8 21.8/16.7 24.1/18.7
78.8/77.2 77.3/76.7 77.6/77.0 75.1/74.3 76.3/76.3
64.9/64.5 64.3/64.0 64.0/62.5 63.9/63.0 63.7/63.6
65.0/63.3 61.6/59.9 64.3/61.4 42.3/35.9 51.8/46.1
63.0/62.1 59.6/59.0 61.3/60.0 51.8/48.7 54.0/49.2
77.5/76.2 72.7/69.7 73.0/72.1 63.8/58.6 68.1/64.0
73.8/74.3 74.2/71.6 71.1/72.8 67.8/62.0 67.3/58.3
62.0/62.5 59.0/60.0 60.0/61.0 58.4/58.6 61.2/60.9
68.7/68.1 64.7/64.0 66.0/64.9 58.5/56.0 61.2/58.7

Avg (T+I) / Avg (T) (chrF++) X En

Gemini 2.0 Flash

Gemma 3 12B

Gemma 3 27B

Qwen2.5-VL 7B

Qwen2.5-VL 32B

Model

46.4/46.2 29.6/29.4 34.6/35.2 7.9/8.6 10.5/12.2
61.0/61.5 51.2/51.3 58.5/59.1 41.9/42.3 43.6/44.1
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77.4/76.0 75.2/74.0 75.1/74.7 72.1/71.3 74.3/74.2
59.6/57.8 54.1/55.1 55.7/56.8 53.5/50.7 57.7/56.3
63.2/63.1 55.0/55.4 59.2/59.4 27.0/26.8 33.3/34.0
57.1/55.6 52.3/53.5 54.3/54.7 31.4/33.3 37.7/38.4
73.9/72.3 58.0/59.1 65.8/66.3 33.8/34.0 43.3/43.3
65.0/64.6 54.5/53.0 59.8/59.1 31.5/30.6 45.3/45.8
38.2/39.9 34.7/34.4 37.2/36.6 35.5/34.4 34.6/33.5
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Figure 4: Heatmaps showing average chrF++ scores for text+image (T+I) and text-only (T) settings. Left: Regional-
to-English translation. Right: English-to-regional. Each cell shows (T+I) / (T) scores, with color indicating the
difference, green shades represent improvements from image input.

Gemini 2.0 Flash

Gemma 3 12B

Gemma 3 27B
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58.5/58.8 48.5/50.5 52.0/52.9 24.0/24.4 30.5/31.3
73.3/73.5 66.4/68.6 69.5/70.6 61.3/61.1 68.4/68.9
61.9/62.6 61.1/61.7 60.9/62.8 57.0/57.7 58.5/59.2
67.7/68.7 66.3/66.5 66.1/66.9 57.1/59.2 62.6/63.3
70.1/70.9 68.8/70.2 68.2/70.0 69.4/70.1 69.6/71.3
80.0/80.6 78.1/78.7 76.6/78.6 77.1/77.7 76.7/77.6
77.4/77.4 76.3/77.0 75.2/77.3 74.9/75.9 75.2/75.4
78.2/78.1 77.1/77.4 77.0/76.8 76.2/75.3 76.7/78.0
64.1/64.5 61.7/63.2 62.4/64.2 52.6/56.6 56.8/57.7
61.4/60.3 39.5/42.7 39.7/44.3 21.7/21.4 22.4/24.1
68.4/71.4 68.3/70.6 67.9/70.0 66.2/67.3 67.1/69.1
56.4/61.4 53.3/57.7 53.6/58.6 52.0/54.7 51.7/53.7
59.2/65.2 61.3/64.3 60.5/65.3 60.0/61.8 63.5/64.2
62.1/64.2 58.5/58.7 58.9/61.4 47.7/47.4 52.3/52.9
64.8/66.3 62.7/65.1 63.3/64.4 61.0/60.0 62.1/63.7
55.5/61.3 33.5/37.7 38.5/41.8 17.4/16.7 19.6/18.5
77.2/77.2 76.9/76.7 75.9/77.0 74.0/74.3 75.2/76.2
63.5/64.5 63.6/64.0 62.1/62.5 62.8/63.0 63.1/64.1
58.9/63.3 55.8/59.9 57.6/61.4 34.6/35.9 43.3/44.1
58.3/62.1 57.4/59.0 57.4/60.0 45.0/48.7 48.3/48.7
74.0/76.2 64.9/69.7 64.9/72.1 55.1/58.6 61.0/63.7
71.1/74.3 69.5/71.6 65.8/72.8 63.6/62.0 61.2/58.1
59.9/62.5 58.3/60.0 55.6/61.0 56.3/58.6 58.9/60.1
66.2/68.1 62.1/64.0 62.2/64.9 55.1/56.0 57.6/58.4
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61.7/65.8 59.2/60.5 62.0/63.1 51.0/51.1 53.0/53.9
59.4/60.6 58.4/59.4 60.4/62.6 38.7/37.9 45.4/46.6
67.2/71.0 69.2/69.9 68.0/70.8 66.0/66.1 68.2/68.6
76.9/78.7 75.4/76.7 73.6/76.5 72.5/72.9 74.3/74.8
70.9/72.9 72.1/72.3 71.2/72.8 69.0/68.9 72.4/72.1
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49.4/49.6 44.3/44.9 47.8/50.5 31.3/32.3 30.4/32.2
63.6/66.8 64.5/65.1 66.8/66.0 60.6/59.5 62.4/62.5
53.2/49.8 28.8/29.4 34.6/35.6 18.3/18.9 19.8/20.9
73.5/76.0 73.7/74.0 73.6/74.7 71.1/71.3 73.6/74.2
56.7/57.8 53.1/55.1 54.7/56.8 51.8/50.7 56.4/56.1
54.7/63.1 54.4/55.4 58.4/59.4 25.8/26.8 33.1/33.8
55.2/55.6 51.8/53.5 52.7/54.7 31.1/33.3 36.4/38.4
73.4/72.3 57.5/59.1 63.9/66.3 32.5/34.0 43.1/43.5
64.1/64.6 54.5/53.0 59.3/59.1 29.4/30.6 44.9/45.8
35.9/39.9 30.8/34.4 31.2/36.6 33.2/34.4 32.0/33.5
58.6/60.3 53.4/54.5 56.0/57.6 43.0/43.5 46.8/47.3
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Figure 5: Average chrF++ scores for text+image (T+I) and text-only (T) settings when the image in the T+I setting
is randomly sampled. Unlike Figure 4, where the image corresponds to the translated sentence, here we observe that
unrelated images consistently lower chrF++ scores compared to the text-only setting.

relevant cultural content.

Models’ Behavior on CSIs Beyond human pref-
erences, we further analyze VLMs’ ability to han-
dle CSIs in translation. Specifically, we compute
the average proportion of translations in which a
CSI is preserved when the English source sentence
contains a substituted (EnSub → X) or conserved
(EnCons → X) CSI.

In the substituted setting, the source includes
a substituted term instead of the CSI. We com-

pute the percentage of times the model “recov-
ers” the original CSI with the help of the image
instead of keeping the substituted term or replacing
it by other equivalent. In the conserved setting, the
source already contains the CSI, and we evaluate
the percentage of times the model preserves it after
translation. This analysis is independent of anno-
tator preferences or ground-truth references, and
instead probes how images bias models’ translation
choices. As in prior experiments, models are not
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X → En En → X EnSub → X EnCons → X
# (T+I / T) %(T+I) # (T+I / T) %(T+I) # (T+I / T) %(T+I) # (T+I / T) %(T+I)

CSI-preserved 380 / 277 57.8 304 / 203 60.0 223 / 147 60.3 139 / 79 63.8
Gender 33 / 2 94.3 45 / 36 55.6 10 / 12 45.5 10 / 6 62.5
Disambiguation 432 / 174 71.3 239 / 170 58.4 92 / 78 54.1 67 / 58 53.6
Phrasing 1329 / 1046 56.0 1238 / 1152 51.8 402 / 394 50.5 370 / 343 51.9
Others 368 / 320 53.5 301 / 289 51.0 56 / 74 43.1 86 / 98 46.7

Table 3: Breakdown of human preference reasons across translation directions. For each category, we report the
number of times across all languages where a translation with image (T+I) or without image (T) was preferred,
as well as the percentages for preferred (T+I). Numbers in bold indicate the modality with the highest preference.
Results are shown for both directions and aggregated across languages and models.

EnSub → X EnCons → X

Model T T+I T T+I

Qwen2.5 VL 32B 20.27 23.05 80.70 77.83
Gemma3 27B 32.49 36.03 90.32 89.33
Gemini 2.0 Flash 41.72 44.05 91.24 90.91

Table 4: Average percentage of preserved CSIs across
languages. A value of 100 indicates that all CSIs are re-
tained in the translation; 0 indicates none are preserved.
Appendix A.10 reports per-language differences and the
average impact of images.

given explicit instructions about handling CSIs.
To do this, we use GPT-4o in a two-step process:

(1) extract the CSI from the conserved version of
each sample, and (2) check whether it appears in
the model-generated translation. Details of this
procedure are provided in Appendix A.10. We
then compute the percentage of CSI preservation
by dividing the number of retained instances by the
total number of samples.

Results presented in Table 4 show that, in the
substituted setting, the inclusion of images leads
to a higher rate of CSI preservation, indicating
the model’s ability to retrieve appropriate region-
specific concepts with visual grounding. In the
conserved setting, the effect of images is less con-
sistent: while CSIs are often preserved, we observe
that image grounding can also lead to modifications
of the terms, resulting in a small decrease in the
proportion of retained CSIs compared to the text-
only setting. These results suggest that images can
bias models to recover CSIs that were previously
replaced in English, but may also introduce vari-
ability in CSIs when the CSI is already conserved
in the source.

5.3 Comparisons of VLMs’ Performance

We assess the overall MT performance of VLMs.
Firstly, as shown in Figure 4 and Table 2, the best
performance is achieved by Gemini, followed by

Forced-C Forced-S Possible-C Possible-S

Latin 94±6.7 6±6.7 63±29.4 37±29.4
Non-Latin 75±36.2 25±36.2 53±20.2 47±20.2

Table 5: Translation preferences when curating
CAMMT. Annotators classified each CSI as either hav-
ing a ‘Forced’ translation or having a ‘Possible’ trans-
lation. ‘C’ and ‘S’ represent conserved and substituted
translations, respectively.

Gemma and Qwen models. Secondly, we com-
pare their performance against a strong text-based
MT baseline. As shown in Table 2, compared to
NLLB-3.3B, the best-performing VLMs (Gemini
2.0 and Gemma3-27B) achieve comparable or su-
perior translation performance in most metrics, par-
ticularly in the X → En direction, where they
show considerable advantages.

5.4 Human Translation Preferences for CSIs
This section examines native speakers’ preferred
translation strategies when handling CSIs at the
moment of curating CAMMT, where we examine
their patterns across languages with different script
types. Table 5 presents the percentage distribution
of human preferences for conserved versus substi-
tuted translations for Latin and non-Latin scripts
under two distinct conditions: when the CSI has a
similar equivalent in English (conserved), against
the case in which there is no equivalent (forced).

For forced translations, annotators with Latin
script languages strongly favored conservation. An-
notators with non-Latin scripts also leaned towards
conservation, but were more open to substitution.
When possible translations existed, both script
types demonstrated a more balanced choice be-
tween the two strategies.

6 Discussion

In this section, we revisit our research questions in
light of the experimental findings.
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RQ1 & RQ2 : What is the impact of visual
grounding on translation quality, and what fac-
tors explain this effect? Visual grounding gener-
ally improves translation quality, particularly in
ways that are meaningful to human evaluators.
While gains in automatic metrics such as BLEU
and chrF++ may appear modest, human preference
evaluations tell a richer story: In 85 out of 126
model–language–direction comparisons (67.5%)
where a preference was stated, native speakers pre-
ferred multimodal translations, underscoring the
value of images for improving cultural and seman-
tic alignment of translations.

Reasons for preference, shown in Table 3, re-
veal that images are particularly helpful in preserv-
ing CSIs, correcting gender, and improving dis-
ambiguation. These improvements often involve
small textual changes that can significantly impact
perceived quality, but may not strongly affect auto-
matic metrics. We conclude that, visual grounding
seems to strengthen translation quality primar-
ily by supporting semantic precision and cul-
tural retention, benefits that are better captured by
human judgments than by traditional MT metrics.

That said, in 37 out of 126 comparisons (29.4%),
text-only translations were preferred, indicating
that visual input can occasionally degrade trans-
lation quality. Understanding why this occurs re-
mains an open question and is an important direc-
tion for future work. Moreover, the relatively small
gains in automatic metrics are consistent with pat-
terns observed in earlier multimodal MT studies
(Futeral et al., 2022), underscoring the need for im-
proved evaluation methods that more accurately re-
flect the contribution of visual context, particularly
in multicultural scenarios. Finally, we observed
that unrelated images can negatively affect transla-
tion; therefore, future work should also study how
to develop new models that can, on the fly, decide
when visual context should influence translation to
improve the robustness of these systems to noisy
visual information.

RQ3 : How do VLMs perform in MT compared
to each other and to specialized systems? In
terms of Machine Translation performance, all eval-
uated VLMs matched or exceeded the performance
of strong baselines like NLLB-600M and 3.3B,
where the closed-source model (Gemini 2.0 Flash)
outperformed open-weight models (Qwen2.5 and
Gemma3 families). Notably, we do not observe
an evident tradeoff when using VLMs for trans-

lation: they offer competitive performance in stan-
dard metrics while simultaneously providing the
ability to leverage visual context. This highlights
their potential as general-purpose translation sys-
tems capable of steering translations using multi-
modal inputs without sacrificing textual quality.

RQ4 : Which translation strategies do native
speakers prefer in the case of CSIs? Contrary
to the predominant research direction in NLP on
substitution strategies for unfamiliar CSIs, our find-
ings suggest that native speakers often prefer con-
servation, especially when no culturally equivalent
term exists in English. This trend holds across
both Latin and non-Latin scripts, although the lat-
ter group shows greater variability. When equiva-
lents are available, preferences are more balanced,
but still do not lean completely toward substitution.
These results point to the importance of incorpo-
rating script-aware translation strategies regarding
CSIs in future research, highlighting the need for
MT systems to better align with native speaker pref-
erences by adapting conservation and substitution
choices to regional and linguistic contexts.

7 Conclusions

We present CAMMT, a human-curated dataset for
Multimodal Machine Translation that encompasses
19 languages across 23 regions. We evaluated five
VLMs at different scales on CAMMT and observed
that providing images as auxiliary context gener-
ally improves translation quality in ways that native
speakers find meaningful. When translations incor-
porate images, they tend to better preserve cultural
elements, use correct gender marking, and resolve
ambiguities. All of these improvements are often
overlooked by automatic MT metrics. However, we
also observe a non-trivial number of cases where
visual input negatively affects translations. Un-
derstanding when and why this occurs remains an
important direction for future research.

Our findings also show that annotators tend
to favor conserving CSIs, particularly when no
clear equivalent exists in English, underscoring
the importance of culturally sensitive translation
strategies. Future work should incorporate such
speaker-aligned choices when designing models
and datasets for grounded, culturally aware transla-
tion.
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Limitations

While CAMMT provides broad language and re-
gional coverage, the number of samples is con-
strained by the original CVQA dataset. Due to de-
sign choices inherited from CVQA, some samples
are marked as non-culturally relevant; however, we
retain them as they remain useful for evaluating
general multimodal machine translation. When
curating CAMMT, we relied on a single annota-
tor per region for human annotations, which may
introduce subjectivity in CSI assessments and trans-
lation preferences. Expanding annotator diversity
would likely improve the reliability and objectivity
of these judgments. On the evaluation side, we
do not evaluate specialized MMT systems, as most
lack training data for the 19 languages included. To
keep human evaluation feasible across three mod-
els, we restrict evaluation to pairwise preferences
between text-only and text+image outputs. We
do not include Likert-scale judgments of transla-
tion quality, relying primarily on automatic metrics
for this purpose. Future work should explore how
visual grounding affects human perception of trans-
lation quality, as well as expand the dataset with
more samples per region and involve multiple an-
notators to improve coverage and objectiveness of
cultural relevance and CSI judgments.
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A Appendix

A.1 CAMMT Statistics

In Table 6, we report the number of samples per re-
gion in CAMMT, their language and writing script.
In addition, we include number of samples that are:
CSIs (Forced translation or Has possible transla-
tions), Culturally Relevant (non-CSI), or Not cul-
turally relevant.

We use statistics of this dataset (specifically,
scripts of each language), to understand transla-
tions choices of annotators when it comes to con-
serving or substituting CSIs.

A.2 Experimental Setting

We employ the transformers library (Wolf et al.,
2020) for all the experiments conducted on open-
weight models. The specific identifiers for each
model are shown in Table 7. All experiments are
run on single NVIDIA A100 80G card. We set
temperature to 0.0 for generating the translations.

Following Cavalin et al. (2025), we evaluate
chrF++ and BLEU scores at sentence-level using
SacreBLEU (Post, 2018b). BERTScore is calcu-
lated using bert-base-multilingual-cased model for
all languages1 at corpus-level.

A.3 Aya-Vision Evaluations

In Figure 6, we report chrF++ scores for Aya-
Vision 8B and 32B. The results show a pattern

1https://github.com/Tiiiger/bert_score
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consistent with Gemini, Gemma 3, and Qwen2.5-
VL. In the X → En direction, providing the image
generally improves performance, yielding higher
scores in most cases. In the En → X direction,
the effect is more mixed, though it remains mostly
positive, particularly for the larger model. Overall,
these results complement and reinforce our main
findings.

Model Hugging Face Identifier

Gemma 3 27B2 google/gemma-3-27b-it
Gemma 3 12B3 google/gemma-3-12b-it
Qwen2.5-VL 32B4 Qwen/Qwen2.5-VL-32B-Instruct
Qwen2.5-VL 7B5 Qwen/Qwen2.5-VL-7B-Instruct
AyaVision 32B6 CohereForAI/aya-vision-32b
AyaVision 8B7 CohereForAI/aya-vision-8b

Table 7: HuggingFace identifiers for models used in our
experiments.

A.4 BLEU and BertScore metrics across
models

In Table 8, we calculate BLEU and BERTScore
metrics for both MMT and text-based translations

2https://huggingface.co/google/gemma-3-27b-it
3https://huggingface.co/google/gemma-3-12b-it
4https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
5https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
6https://huggingface.co/CohereForAI/aya-vision-32b
7https://huggingface.co/CohereForAI/aya-vision-8b

averaged across languages for all models. We also
present heatmaps in Figure 7 showing the results
for each language, providing a comparison between
the performance of MMT and text-based settings.

En → X X → En

Model Setting BLEU BERT BLEU BERT

NLLB-3.3B T 28.98 36.01

Gemini 2.0 T 35.70 0.9 45.60 0.92
Gemini 2.0 T+I 36.56 (+0.87) 0.9 46.51 (+0.91) 0.92

Gemma3 12B T 30.03 0.89 41.46 0.91
Gemma3 12B T+I 30.62 (+0.59) 0.89 42.33 (+0.87) 0.91
Gemma3 27B T 32.78 0.9 42.60 0.91
Gemma3 27B T+I 33.17 (+0.38) 0.9 43.45 (+0.85) 0.92 (+0.01)

Qwen VL 7B T 21.96 0.85 34.57 0.88
Qwen VL 7B T+I 22.68 (+0.72) 0.85 36.71 (+2.14) 0.89 (+0.01)
Qwen VL 32B T 24.39 0.86 37.32 0.89
Qwen VL 32B T+I 24.65 (+0.26) 0.86 39.21 (+1.89) 0.90 (+0.01)

Table 8: BLEU and BERT scores averaged across lan-
guages for text-only (T) vs multimodal (T+I) settings in
both directions (En → X and X → En). The differ-
ence (T+I - T) is shown in parentheses.

A.5 Translation Prompts
In our experiments, we use two types of prompts
for translation tasks: text-only translation (MT) and
multimodal translation (MMT). The prompts are
defined as follows:

PROMPT_MT = ’’’Translate the following
sentence from {source} to {target }.
Provide ONLY the translated text ,
with no additional information ,
explanation , or context.

Language-Region Script(s) Size CSI Culturally Relevant
(non-CSI)

Not culturally
relevant

Forced Possible

Amharic-Ethiopia Ge’ez 234 31 49 97 57
Arabic-Egypt Arabic 203 16 8 95 84
Bengali-India Bengali 286 54 31 61 140
Bulgarian-Bulgaria Cyrillic 369 8 19 90 252
Chinese-China Hanzi 308 26 18 152 112
Filipino-Philippines Latin (Rumi) 203 26 29 20 128
Igbo-Nigeria Latin 200 22 41 62 75
Indonesian-Indonesia Latin (Rumi) 202 29 7 81 85
Japanese-Japan Kanji 203 46 26 51 80
Korean-South Korea Hangul 290 51 11 103 125
Malay-Malaysia Latin (Rumi) 315 48 40 196 31
Marathi-India Devanagari 202 27 25 99 51
Oromo-Ethiopia Latin 214 51 70 93 0
Portuguese-Brazil Latin 284 46 31 203 4
Russian-Russia Cyrillic 200 31 26 31 112
Spanish-Argentina Latin 265 32 50 55 128
Spanish-Chile Latin 234 34 49 73 78
Spanish-Ecuador Latin 362 12 60 70 220
Spanish-Mexico Latin 323 12 67 94 150
Swahili-Kenya Latin 271 43 99 124 5
Tamil-India Tamil 213 32 16 44 121
Urdu-India Perso-Arabic 220 27 22 97 74
Urdu-Pakistan Perso-Arabic 216 24 28 120 44

Table 6: Languages covered in CAMMT and Dataset statistics: including writing script, region, number of
samples, and CI counts. Each region was annotated by native speaker.
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Aya 8B
Aya 32B

Model

amh_eth
ar_egy
bg_bg

bn_india
es_arg
es_chl

es_ecu
es_mex

fil_phl
ig_nga
ind_ind

jp_jap
kor_sk

mr_india
ms_mys
om_eth
pt_brz
ru_rus

sw_ken
ta_india
ur_india
ur_pak
zh_ch

Average

La
ng

ua
ge

20.5/13.2 30.2/22.9
62.3/61.6 70.6/70.9
54.5/51.5 59.0/57.4
55.2/48.1 61.4/60.9
68.6/69.3 69.8/70.5
75.5/75.1 76.6/76.1
74.4/74.2 75.4/74.7
76.8/75.0 77.0/74.9
53.6/50.5 62.9/61.1
23.5/20.9 27.9/23.9
62.6/64.5 67.2/68.0
52.7/52.9 55.7/56.4
62.8/60.9 63.7/63.4
47.2/42.0 54.8/48.8
58.2/57.9 63.0/63.8
20.8/15.2 27.8/19.6
74.5/74.7 76.8/75.1
62.7/61.5 62.9/61.4
44.1/39.0 53.7/49.9
46.7/45.2 59.9/57.2
48.4/46.5 64.4/60.9
42.1/45.1 61.9/63.1
53.0/55.6 57.3/60.0
53.9/52.2 60.0/58.3

Avg (T+I) / Avg (T) (chrF++) X En

Aya 8B
Aya 32B

Model

1.1/1.5 8.0/8.4
44.8/45.7 49.9/50.2
41.5/40.9 45.1/45.5
29.1/28.9 35.9/37.5
68.2/67.6 70.6/70.1
74.9/75.2 76.8/76.2
71.7/70.9 73.3/72.9
73.9/73.5 75.5/74.9
43.2/41.4 50.2/49.6
15.3/15.7 19.1/19.5
64.5/63.5 64.7/64.6
31.4/29.8 35.0/33.0
40.5/41.5 45.3/45.3
31.9/32.1 32.8/33.3
55.1/53.9 60.3/58.7
17.6/16.7 21.6/21.0
71.4/71.8 74.2/73.5
50.9/50.9 56.4/55.8
28.2/27.9 31.7/32.3
30.8/31.2 45.3/45.5
32.5/34.2 39.6/38.8
31.6/34.0 37.7/37.6
29.2/29.3 36.3/36.1
42.6/42.5 47.2/47.0

Avg (T+I) / Avg (T) (chrF++) En X
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Figure 6: Heatmaps showing average chrF++ scores in the Aya-Vision family for text+image (T+I) and text-only
(T) settings. We observe a consistent behavior with the models evaluated in our main analysis.

"{ sentence }"
’’’

PROMPT_MMT = ’’’Translate the following
sentence from {source} to {target}
using the provided image as
additional context. Provide ONLY the
translated text , with no additional
information , explanation , or

context.
"{ sentence }"
’’’

Where PROMPT_MT was used for text-only transla-
tion (T) and PROMPT_MMT was used for multimodal
translation with text and image (T+I).

A.6 Comparison between categories
measured by chrF scores

The original CVQA dataset encompasses questions
across 10 diverse categories: vehicles, food, people,
sports, plants & animals, objects, brands, geogra-
phy, tradition, and pop culture. Figure 8 shows
automatic evaluation using CHRF++ scores across
models and CVQA categories.

In the En → X direction, the impact of visual
input is notably selective. Only the geography and
traditions categories consistently benefit from mul-
timodal input across all models. The X → En
direction presents a different pattern, where visual
context provides substantial benefits across most
categories. Interestingly, two categories consis-
tently show minimal benefits from visual input in
X → En direction: brands and pop culture.

A.7 License
CVQA (Romero et al., 2024) allows using their QA
data for research purposes, which is the aim of this
work. We do not include the images in our release,
and instead include their ID in CVQA. Refer to
Romero et al. (2024) for the licenses of the images,
as each has a specific license.

The CAMMT corpus is exclusively for academic
research, under the Creative Commons Attribution-
NonCommercialShareAlike 4.0 International (CC
BY-NC-SA 4.0) license.
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Gemini 2.0 Flash

Gemma 3 12B

Gemma 3 27B

Qwen2.5-VL 7B

Qwen2.5-VL 32B

Model

amh_eth
ar_egy
bg_bg

bn_india
es_arg
es_chl

es_ecu
es_mex

fil_phl
ig_nga
ind_ind

jp_jap
kor_sk

mr_india
ms_mys
om_eth
pt_brz
ru_rus

sw_ken
ta_india
ur_india
ur_pak
zh_ch

Average

La
ng

ua
ge

37.3/35.1 29.2/26.3 30.8/29.4 14.4/9.8 18.6/13.8
52.0/51.8 43.7/46.0 50.8/49.3 41.6/38.3 49.7/47.5
38.6/38.8 38.9/38.1 38.8/39.6 36.1/33.9 37.1/35.3
47.5/48.0 45.4/45.4 46.8/45.2 36.9/37.5 44.5/42.1
48.5/46.8 46.8/46.1 46.5/46.4 46.1/46.2 48.1/48.5
61.7/61.9 59.0/59.3 58.7/60.7 58.3/58.7 57.2/57.9
57.5/56.1 56.4/55.4 56.4/55.5 52.8/52.7 53.6/53.8
64.0/60.5 61.1/59.4 61.4/58.8 59.5/56.5 61.5/60.3
42.3/41.2 42.5/41.4 42.6/41.8 35.7/34.0 38.3/34.3
46.2/42.1 30.4/26.1 31.9/27.9 14.0/10.7 15.1/11.2
47.3/48.3 42.5/48.3 44.2/46.9 41.8/43.3 43.3/45.5
32.9/34.2 30.2/31.7 30.4/31.1 28.8/27.6 26.4/28.2
39.9/40.6 39.8/40.3 41.2/41.8 38.2/37.6 42.9/42.6
40.4/40.8 37.4/32.4 38.0/36.9 26.4/22.6 29.9/27.2
43.7/41.4 39.6/41.1 40.8/40.3 39.6/34.7 42.3/39.3
35.5/32.4 17.4/14.5 23.8/19.1 7.0/5.5 7.8/6.3
61.5/59.0 59.7/58.6 59.5/58.9 56.7/55.3 57.8/57.8
43.0/42.0 40.8/40.9 42.0/40.0 40.8/39.6 41.2/41.4
36.8/35.0 33.3/31.3 36.6/32.7 18.1/13.3 25.5/20.9
39.7/38.7 35.8/34.9 37.5/35.9 27.9/26.2 31.1/26.4
58.1/56.9 51.6/48.3 52.0/51.8 41.7/36.3 46.9/42.7
51.9/53.0 54.5/50.3 50.2/51.9 45.6/38.2 44.6/34.8
39.4/39.8 37.7/37.6 37.5/37.2 35.4/36.2 37.4/37.4
46.3/45.4 42.3/41.5 43.4/42.6 36.7/34.5 39.2/37.2

Avg (T+I) / Avg (T) (BLEU) X En

Gemini 2.0 Flash

Gemma 3 12B

Gemma 3 27B

Qwen2.5-VL 7B

Qwen2.5-VL 32B

Model

26.0/25.4 15.4/15.6 17.0/18.6 1.9/2.6 4.8/4.6
34.7/35.0 24.6/25.5 31.5/31.8 18.7/19.2 19.3/19.3
40.7/42.0 37.5/36.3 40.2/39.0 27.9/26.9 29.3/29.7
31.2/32.9 29.3/30.1 33.4/34.6 14.1/13.7 18.6/18.6
49.4/47.6 47.9/46.3 48.4/47.9 42.0/41.3 46.2/44.5
59.1/59.6 57.3/56.6 57.8/56.8 52.4/51.6 53.4/52.7
50.3/49.3 49.1/48.1 49.8/48.7 44.7/43.2 48.5/47.3
55.6/55.2 54.8/52.8 55.6/54.7 46.9/46.0 51.3/50.6
29.5/27.4 30.8/30.5 31.2/32.3 22.7/21.8 26.3/26.4
33.6/31.1 16.1/17.6 22.3/22.1 8.0/7.7 7.1/7.4
41.7/41.2 40.6/39.0 41.5/41.3 35.1/34.9 35.5/34.5

7.4/6.5 4.6/5.1 4.9/5.1 3.9/2.5 4.4/3.9
28.3/27.8 24.1/24.0 25.7/25.9 20.1/20.7 23.9/22.9
25.1/23.0 17.9/19.2 22.2/24.2 11.1/11.6 12.8/13.0
41.3/38.1 41.8/36.9 41.7/37.4 36.1/32.3 36.7/35.4
22.0/18.7 10.7/10.7 13.0/12.2 8.9/7.2 7.2/7.6
58.7/55.8 54.2/52.3 54.1/53.7 50.0/48.9 53.7/52.9
34.3/31.3 29.5/28.3 31.4/30.9 26.9/24.0 30.3/29.5
35.1/35.5 26.8/27.2 31.5/31.6 7.7/7.3 10.1/10.5
23.4/22.9 20.4/19.9 21.2/21.1 8.5/9.1 10.5/11.2
55.5/53.5 35.6/36.5 43.6/43.4 14.2/14.4 20.3/20.6
41.2/41.0 26.5/25.0 32.3/31.0 11.4/11.2 16.9/17.5
9.8/11.7 8.8/7.8 10.5/9.2 8.4/6.8 1.3/2.3

36.3/35.3 30.6/30.1 33.1/32.8 22.7/22.0 24.7/24.5

Avg (T+I) / Avg (T) (BLEU) En X
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(a) BLEU scores comparison

(b) BERT scores comparison

Figure 7: Heatmaps showing the difference in average BLEU and BERT scores for text+image (T+I) and text-only
(T) settings. Left: Regional-to-English translation. Right: English-to-regional. Each cell shows (T+I) / (T) scores,
with color indicating the difference, green shades represent improvements from image input.
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Figure 8: Heatmaps showing the difference in average chrF++ scores for text+image (T+I) and text-only (T) across
categories and models. Left: Regional-to-English translation. Right: English-to-regional. Each cell shows (T+I) /
(T) scores, with color indicating the difference, green shades represent improvements from image input.
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A.8 CAMMT Data Curation Guideline

Guidelines for cleaning captions
Thank you for participating in this project!

You will receive items from the CVQA dataset specific to your region. Each item includes two automatically generated 
captions:

One caption in English

One caption in your regional language

Each caption describes an image depicting culturally-specific content. Your task is to review and correct these 
captions as needed. You have one week to complete this task.

Task Guidelines:
For each item, fix regional_corrected  and English_corrected , ensuring the following:

1. Grammatical Correctness and Parallelism:

Ensure both captions (English and regional language) are grammatically correct.

Ensure both captions are as parallel as possible.

Correct grammatical errors, awkward phrasing, and unclear meanings.

2. Regional Language Caption ( regional_corrected  field):

Retain the cultural specificity of the original QA pair accurately.

Preserve culturally-specific items (CSIs) clearly.

Avoid unnecessary naturalization or cultural substitution.

After fixing regional_corrected  and English_corrected , you need to do the following.

3. English Caption Categories:

Categorize each English caption into one of the highlighted categories by selecting it in the Category column and 
take action accordingly:

Not culturally-relevant sentence

Example: "This bank was founded in 1898."

Only ensure grammatical correctness and parallelism. (Leave Conserved_translation  and Substituted_translation  
fields blank.)

Non-CSI (Does not contain a Culturally-Specific Item);

Includes widely borrowed words (e.g., "falafel"), named entities (e.g., "El Santo"), or well-known 
equivalents (e.g., "Great Pyramids").

Ensure grammatical correctness and parallelism only. (Leave Conserved_translation  and Substituted_translation  fields 
blank.)

CSI (Culturally-Specific Item)
These are culturally-specific terms with no direct equivalent or carrying different connotations in English (See 
Appendix). Categorize them further as:

1. CSI with possible translation: Has a culturally-equivalent that can convey an equivalent meaning.

2. CSI forced translation: Does not have any equivalent in English, to translate it we would need to use 
another concept which may have an impact on the meaning

Guidelines for cleaning captions 1

Figure 9: Annotation guideline
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Figure 10: Differences in CSI retention percentages between text-only and text+image settings for Gemma 3 (27B),
Gemini 2.0 Flash, and Qwen2.5-VL 32B across languages. Left: conserved CSIs; right: substituted CSIs.

A.9 Human Preference Evaluation
Instructions

Instructions for Translation Evaluation Task

You are tasked with selecting your preferences on
the provided evaluation sheet. Each item includes:

• A source sentence
• Two model translations (Model A and

Model B)
• The target translation you previously cre-

ated
• A reference image to help you disam-

biguate or contextualize cultural elements

Please fill the following columns:

1. Translation Quality:
• Indicate whether one translation is bet-

ter, both are good, or both are bad/un-
intelligible.

2. Translation Preference:
• Choose A or B based on which transla-

tion you prefer.
• Try to select one even if both are

equally good or bad.
3. Reason for Preference:

• If you selected one translation as better,
choose a reason from the predefined
list.

• If no reason applies, explain briefly in
the “Other Reasons” column (a few
words are enough).

4. In the case of ‘both are good’:
• If both translations are essentially

identical and equally good (e.g., dif-
fering only in word order), you may
leave the preference entry blank.

A.10 CSI Retention Evaluation
In this section, we report the per-language analysis of the im-
pact of visual input on the retention of CSIs across languages
(comparing text-only and text+image settings) and describe
the algorithm for CSI identification in translations.

For each language and model, we compute the difference in
CSI preservation rates using translations from the conserved
and substituted splits. As shown in Table 4, and further illus-
trated in Figure 7, visual input tends to help models recover
CSIs in the substituted setting—where the original term is not
present in the source sentence, by providing complementary
visual cues. In contrast, when translating from the conserved
split, where the CSI is explicitly present in the source, we
observe no consistent effect from the image across models or
languages.

CSI extraction and identification We developed a
two-stage approach to evaluate how well machine translation
systems preserve CSIs. This methodology leverages large
language models to first identify CSIs and then evaluate their
preservation in different translation outputs.

Our methodology consists of two key stages:

1. CSI Extraction: Automatically identifying CSI using
the prompt shown in Box A.10, which compares con-
served translations (containing the CSI) against substi-
tuted translations (where the CSI is replaced with a more
general term).

2. CSI Preservation Evaluation: Determining which of
two competing translation systems better preserves the
identified CSI when compared to a gold reference, fol-
lowing the evaluation setup in Box A.10.

For both CSI extraction and evaluation, we utilized GPT-
4o with temperature = 0.0 to ensure deterministic outputs.
The CSI extraction was limited to max_tokens = 50, while
we used default token limits for the evaluation task. All pro-
cessing was performed through the OpenAI API, maintaining
consistent parameters across all language pairs and translation
systems.
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CSI Extraction Prompt

Given two versions of a sentence:

1. A sentence with a culturally specific item (conserved_translation)

2. A sentence where that item has been replaced with a more general term (substituted_translation)

Your task is to identify the culturally specific item (CSI) that appears only in the conserved translation.
Compare the two sentences and extract only the specific culturally-significant word or phrase that was replaced in the
substituted version.
Return ONLY the culturally specific item as a single word or phrase, without any explanations, quotation marks, or
additional text.
Example:
Conserved: "The person in the picture is a famous charro from the state of Jalisco."
Substituted: "The person in the picture is a famous cowboy from the state of Jalisco."
Output: charro
. . .

CSI Evaluation Prompt

Given two translations (0 and 1), a gold reference sentence (y), and a culturally specific item (CSI), your task is to:
Evaluate which translation better preserves the CSI from the reference.
Output the results strictly as a JSON list of dictionaries with the following exact structure:

[
{
"word": [word_in_0, word_in_1, word_in_y],
"type": "CSI",
"aligned_translation": "0" | "1" | "None" | "both"

}
]

Where "aligned_translation" values mean:

• "0": Translation 0 better preserves the CSI

• "1": Translation 1 better preserves the CSI

• "both": Both translations include the provided CSI

• "None": None of the translations includes the original CSI (it is replaced by another term)

Example 1:
Input:
y: Este personaje es un charro famoso
0: Este personaje es un vaquero famoso
1: Este personaje es un charro famoso
csi: charro
Output:

[{"word": ["vaquero", "charro", "charro"], "type": "CSI", "aligned_translation": "1"}]

. . .

22440



A.11 Affiliations
This section outlines the affiliations of each of the co-authors
of this work:

• Emilio Villa-Cueva (MBZUAI),

• Sholpan Bolatzhanova (MBZUAI),

• Diana Turmakhan (MBZUAI),

• Kareem Elzeky (MBZUAI),

• Henok Biadglign Ademtew (Vella AI),

• Alham Fikri Aji (MBZUAI),

• Vladimir Araujo (Sailplane AI),

• Israel Abebe Azime (Saarland University),

• Jinheon Baek (KAIST),

• Frederico Belcavello (Federal University of Juiz de Fora,
CNPq),

• Fermin Cristobal (MBZUAI),

• Jan Christian Blaise Cruz (MBZUAI),

• Mary Dabre (Independent Researcher),

• Raj Dabre (IIT Madras),

• Toqeer Ehsan (Independent Researcher),

• Naome A Etori (University of Minnesota -Twin Cities),

• Fauzan Farooqui (MBZUAI),

• Jiahui Geng (MBZUAI),

• Guido Ivetta (Universidad Nacional de Córdoba, Ar-
gentina),

• Thanmay Jayakumar (IIT Madras),

• Soyeong Jeong (KAIST),

• Zheng Wei Lim (The University of Melbourne),

• Aishik Mandal (Technische Universität Darmstadt),

• Sofía Martinelli (Universidad Nacional de Córdoba, Ar-
gentina),

• Mihail Minkov Mihaylov (MBZUAI),

• Daniil Orel (MBZUAI),

• Aniket Pramanick (Technische Universität Darmstadt),

• Sukannya Purkayastha (Technische Universität Darm-
stadt),

• Israfel Salazar (University of Copenhagen),

• Haiyue Song (NICT),

• Tiago Timponi Torrent (Federal University of Juiz de
Fora, CNPq),

• Debela Desalegn Yadeta (Addis Ababa University),

• Injy Hamed (MBZUAI),

• Atnafu Lambebo Tonja (MBZUAI),

• Thamar Solorio (MBZUAI)

22441


